JP2012024385A - Decontamination apparatus and decontamination method of poisonous substance - Google Patents

Decontamination apparatus and decontamination method of poisonous substance Download PDF

Info

Publication number
JP2012024385A
JP2012024385A JP2010166978A JP2010166978A JP2012024385A JP 2012024385 A JP2012024385 A JP 2012024385A JP 2010166978 A JP2010166978 A JP 2010166978A JP 2010166978 A JP2010166978 A JP 2010166978A JP 2012024385 A JP2012024385 A JP 2012024385A
Authority
JP
Japan
Prior art keywords
decontamination
oxidant
hydrogen peroxide
additive
decontamination chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010166978A
Other languages
Japanese (ja)
Other versions
JP5735761B2 (en
Inventor
Hiroshi Hayashi
博士 林
Hiroaki Hosaki
裕彰 保崎
Masato Yamamoto
正人 山本
Kazuyuki Sakamoto
和之 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2010166978A priority Critical patent/JP5735761B2/en
Publication of JP2012024385A publication Critical patent/JP2012024385A/en
Application granted granted Critical
Publication of JP5735761B2 publication Critical patent/JP5735761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a decontamination apparatus and a decontamination method of poisonous substances which hardly damages contaminated substances and a decontamination apparatus and can make the apparatus compact and a decontamination method.SOLUTION: The decontamination apparatus 1 of the poisonous substances decontaminating the contaminated substances 2 contaminated with the poisonous substances under the reactive oxidant atmosphere has a decontamination chamber 3 accommodating the contaminated substances 2, an oxidant feeding unit 4 feeding an oxidant to the decontamination chamber 3 under the steam atmosphere, the additive feeding device 5 feeding the additive enhancing oxidizing power to the decontamination chamber 3, the circulation unit 6 for circulating steam in the decontamination chamber 3 to the oxidant feeding unit 4, and an exhausting unit for exhausting the inside of the decontamination chamber 3, the circulation unit 6 circulates the steam during decontamination processing, the oxidant feeding unit 4 is constituted so as to intermittently feed the oxidant such that the average concentration of the oxidant in the decontamination chamber 3 is constant.

Description

本発明は、有毒物質の除染装置及び除染方法に関し、特に、有毒物質に汚染された被汚染物を反応性の酸化剤雰囲気で除染する有毒物質の除染装置及び除染方法に関する。   The present invention relates to a toxic substance decontamination apparatus and decontamination method, and more particularly to a toxic substance decontamination apparatus and decontamination method for decontaminating contaminated materials contaminated with a toxic substance in a reactive oxidizing agent atmosphere.

有毒物質は、一般に、コレラ菌等のバクテリア、ボツリヌス毒素等の毒素、黄熱病等のウイルスを含む生物系有毒物質と、VXガス等の神経作用剤、マスタードガス等のびらん剤、ホスゲン等の窒息剤、塩化シアン等の血液作用剤、アダムサイト等の嘔吐剤を含む化学系有毒物質と、に分類される。これらの有毒物質に汚染された被汚染物の多くは、種々の酸化剤により、不活性化又は無害化されて除染される(例えば、特許文献1〜特許文献3参照)。   Toxic substances are generally toxic substances such as bacteria such as Vibrio cholerae, toxins such as botulinum toxin, viruses such as yellow fever, neurological agents such as VX gas, erosive agents such as mustard gas, and asphyxiation such as phosgene. And chemical toxic substances including blood agents such as cyanogen chloride and antiemetics such as Adamsite. Many of the contaminated substances contaminated with these toxic substances are inactivated or detoxified by various oxidizing agents and decontaminated (for example, see Patent Documents 1 to 3).

特許文献1には、有毒物質に汚染された野外設備に、酸化剤溶液を液体又は発泡体の状態で噴霧し、一定時間経過後に水洗する除染方法が記載されている。   Patent Document 1 describes a decontamination method in which an oxidant solution is sprayed in a liquid or foamed state on a field facility contaminated with a toxic substance and washed with water after a predetermined time has elapsed.

特許文献2には、オゾンと過酸化水素とを含む活性水をダイオキシン含有ガス(焼却炉の排ガス等)に散布する除染方法が記載されている。また、特許文献2には、過酸化水素/オゾンの使用量比が0.1〜2程度であること、前記活性水には強力な酸化力を有するOHラジカルが含まれていること、短寿命のOHラジカルを効果的にダイオキシン類の酸化分解に活用することによりオゾン及び過酸化水素の使用量を低減することができること等が記載されている。   Patent Document 2 describes a decontamination method in which active water containing ozone and hydrogen peroxide is sprayed on a dioxin-containing gas (eg, exhaust gas from an incinerator). Patent Document 2 discloses that the usage ratio of hydrogen peroxide / ozone is about 0.1 to 2, the active water contains OH radicals having a strong oxidizing power, and has a short life. It is described that the usage amount of ozone and hydrogen peroxide can be reduced by effectively utilizing the OH radicals in the oxidative decomposition of dioxins.

特許文献3には、生物学的に活性な物質(有毒物質)の残渣を不活性化する方法であって、蒸気相にある強力な酸化剤(例えば、過酸化水素等のペルオキシ化合物を含むもの)で酸化する工程と、アルカリガス(例えば、アンモニア)を前記蒸気相の酸化剤に添加してphを調整する工程と、を有する除染方法が記載されている。また、前記蒸気相には、オゾン、アルケン、アルデヒド、ハロゲン等の増強剤が添加されてもよいことが記載されている。   Patent Document 3 discloses a method for inactivating a residue of a biologically active substance (toxic substance), which includes a strong oxidizing agent in a vapor phase (for example, a substance containing a peroxy compound such as hydrogen peroxide). ) And a step of adjusting the ph by adding an alkali gas (for example, ammonia) to the vapor phase oxidant is described. In addition, it is described that an enhancer such as ozone, alkene, aldehyde, or halogen may be added to the vapor phase.

また、特許文献3には、液体酸化剤供給器、蒸発器、密閉箱、ドライヤ、ポンプ、他の化学物質の供給源等を備えた除染装置が開示されている。ポンプは、蒸発器と密閉箱との間で蒸気を循環させる機能を有し、ドライヤは循環される蒸気を乾燥する機能を有している。   Further, Patent Document 3 discloses a decontamination apparatus including a liquid oxidant supplier, an evaporator, a sealed box, a dryer, a pump, a supply source of other chemical substances, and the like. The pump has a function of circulating the steam between the evaporator and the sealed box, and the dryer has a function of drying the circulating steam.

米国特許第6245957号明細書US Pat. No. 6,245,957 特開2003−311125号公報JP 2003-31125 A 特許第4255385号公報Japanese Patent No. 4255385

しかしながら、特許文献1に記載された除染方法は被汚染物が野外設備であり、特許文献2に記載された除染方法は被汚染物が排ガスであり、他の被汚染物(例えば、衣服、装備品、電子機器等)には適用し難いという問題があった。特に、被汚染物が水に弱い電子機器等の場合には、特許文献1や特許文献2に記載したような液体の酸化剤を使用した除染方法は使用することができない。   However, in the decontamination method described in Patent Document 1, the contaminated material is an outdoor facility, and in the decontamination method described in Patent Document 2, the contaminated material is exhaust gas, and other contaminated materials (for example, clothes , Equipment, electronic devices, etc.). In particular, in the case of an electronic device or the like in which an object to be contaminated is weak to water, a decontamination method using a liquid oxidizing agent as described in Patent Document 1 and Patent Document 2 cannot be used.

また、特許文献3に記載された除染装置では、ドライヤが配置されており、装置が大型化し易いという問題がある。特に、酸化剤の濃度が高い場合(例えば、1000〜2000ppm以上)の場合には、蒸気中の過酸化水素がすぐに飽和し易いことから、ドライヤ、乾燥機、除湿機等の蒸気の湿度を低減できる装置が必須となる。   Moreover, in the decontamination apparatus described in patent document 3, there exists a problem that the dryer is arrange | positioned and an apparatus tends to enlarge. In particular, when the concentration of the oxidizing agent is high (for example, 1000 to 2000 ppm or more), the hydrogen peroxide in the steam is likely to be saturated immediately, so the humidity of the steam from a dryer, dryer, dehumidifier, etc. Equipment that can be reduced is essential.

また、特許文献1〜3に記載された除染方法において、一般に酸化剤の濃度が高く、被汚染物や除染装置(特に、除染室)に金属部品が含まれる場合には、錆び等の損傷を与え易いという問題もあった。かかる錆びは、機器を劣化させるだけでなく、機能不全に至らしめる場合もあった。   In addition, in the decontamination methods described in Patent Documents 1 to 3, rusting or the like is generally caused when the concentration of the oxidizing agent is high and the contaminated object or the decontamination apparatus (particularly the decontamination chamber) contains metal parts. There was also a problem of being easily damaged. Such rust not only deteriorates the equipment but also sometimes causes malfunction.

本発明は、上述した問題点に鑑み創案されたものであり、被汚染物や除染装置に損傷を与え難く、装置の小型化を図ることができる有毒物質の除染装置及び除染方法を提供することを目的とする。   The present invention has been devised in view of the above-described problems, and provides a detoxifying device and decontamination method for toxic substances that are less likely to damage contaminated objects and decontamination devices and can be downsized. The purpose is to provide.

本発明によれば、有毒物質に汚染された被汚染物を反応性の酸化剤雰囲気で除染する有毒物質の除染装置であって、前記被汚染物を収容する除染室と、該除染室に酸化剤を蒸気雰囲気で供給する酸化剤供給装置と、前記除染室に酸化力を向上させる添加剤を供給する添加剤供給装置と、前記除染室内の蒸気を前記酸化剤供給装置に循環させる循環装置と、前記除染室内を排気する排気装置と、を有し、前記循環装置は、除染処理中に前記蒸気を循環させ、前記酸化剤供給装置は、前記除染室内における酸化剤の平均濃度が一定となるように間欠的に酸化剤を供給する、ことを特徴とする有毒物質の除染装置が提供される。   According to the present invention, there is provided a toxic substance decontamination apparatus for decontaminating a contaminated substance contaminated with a toxic substance in a reactive oxidizing agent atmosphere, the decontamination chamber for containing the contaminated substance, and the decontamination chamber. An oxidant supply device for supplying an oxidant to the dyeing chamber in a steam atmosphere, an additive supply device for supplying an additive for improving the oxidizing power to the decontamination chamber, and a vapor in the decontamination chamber for the oxidant supply device A circulation device that circulates to the decontamination chamber, and an exhaust device that exhausts the decontamination chamber, wherein the circulation device circulates the steam during the decontamination process, and the oxidant supply device is disposed in the decontamination chamber. There is provided a detoxification device for toxic substances, characterized in that the oxidant is intermittently supplied so that the average concentration of the oxidant is constant.

また、本発明によれば、有毒物質に汚染された被汚染物を反応性の酸化剤雰囲気で除染する有毒物質の除染方法であって、前記被汚染物を除染室に収容し、前記除染室に蒸気を除湿することなく循環させながら酸化剤を間欠的に平均濃度が一定となるように供給し、前記除染室に酸化力を向上させる添加剤を供給し、前記除染室内の被汚染物を前記添加剤を含む前記酸化剤の蒸気雰囲気で除染する、ことを特徴とする有毒物質の除染方法が提供される。   Further, according to the present invention, there is provided a decontamination method of a toxic substance for decontaminating a contaminated substance contaminated with a toxic substance in a reactive oxidant atmosphere, wherein the contaminated substance is accommodated in a decontamination chamber, While supplying steam to the decontamination chamber without dehumidification, an oxidant is intermittently supplied so that the average concentration is constant, and an additive for improving the oxidizing power is supplied to the decontamination chamber. There is provided a method for decontaminating a toxic substance, characterized by decontaminating indoor contaminants in a vapor atmosphere of the oxidizing agent containing the additive.

上述した本発明に係る有毒物質の除染装置及び除染方法において、例えば、前記酸化剤は過酸化水素であり、前記添加剤はオゾンである。   In the toxic substance decontamination apparatus and decontamination method according to the present invention described above, for example, the oxidizing agent is hydrogen peroxide and the additive is ozone.

また、前記過酸化水素は、例えば、1000mg/リットル未満の濃度である。また、前記過酸化水素と前記オゾンとの混合比は、例えば、4:1〜7:1の範囲内に調整される。   The hydrogen peroxide has a concentration of less than 1000 mg / liter, for example. Moreover, the mixing ratio of the hydrogen peroxide and the ozone is adjusted within a range of, for example, 4: 1 to 7: 1.

上述した本発明に係る有毒物質の除染装置において、前記除染室は、室内の温度を調節する空調装置を有していてもよい。また、前記循環装置及び前記排気装置は、前記酸化剤及び前記添加剤を除去するフィルタを有していてもよい。   In the toxic substance decontamination apparatus according to the present invention described above, the decontamination chamber may include an air conditioner that adjusts the temperature in the room. The circulation device and the exhaust device may include a filter that removes the oxidant and the additive.

上述した本発明に係る有毒物質の除染装置及び除染方法によれば、酸化剤と添加剤とを混合させることにより、ラジカルを発生させて酸化力を向上させることができる。また、除染室の蒸気を循環させつつ酸化剤を間欠的に供給することにより、低濃度の酸化剤であっても、除染に必要な酸化剤の濃度を略一定に維持することができる。したがって、低濃度の酸化剤を使用したことにより、被汚染物や除染装置に金属部品が含まれる場合であっても、錆び等の損傷を抑制することができる。   According to the toxic substance decontamination apparatus and the decontamination method according to the present invention described above, by mixing the oxidizing agent and the additive, radicals can be generated to improve the oxidizing power. Further, by intermittently supplying the oxidizing agent while circulating the vapor in the decontamination chamber, the concentration of the oxidizing agent necessary for decontamination can be maintained substantially constant even with a low concentration oxidizing agent. . Therefore, by using a low-concentration oxidizing agent, it is possible to suppress damage such as rust even when a metal part is included in an object to be contaminated or a decontamination apparatus.

さらに、低濃度の酸化剤を使用しつつ酸化力を向上させたことにより、酸化剤を含む蒸気が飽和に達し難くいため、ドライヤ、乾燥機、除湿機等の蒸気の湿度を低減する大型の装置が不要となり、装置の小型化を図ることができる。   Furthermore, since the oxidizing power is improved while using a low-concentration oxidizing agent, it is difficult for the steam containing the oxidizing agent to reach saturation, so a large-scale device that reduces the humidity of the steam of a dryer, dryer, dehumidifier, etc. Is unnecessary, and the apparatus can be downsized.

本発明の第一実施形態に係る有毒物質の除染装置の概略構成図である。1 is a schematic configuration diagram of a toxic substance decontamination apparatus according to a first embodiment of the present invention. 過酸化水素とオゾンとの混合ガスの除染性能を示す図であり、(a)はCEPSに対する除染性能、(b)はマラチオンに対する除染性能、を示している。It is a figure which shows the decontamination performance of the mixed gas of hydrogen peroxide and ozone, (a) has shown the decontamination performance with respect to CEPS, (b) has shown the decontamination performance with respect to malathion. 除染室内の過酸化水素蒸気の濃度の推移を示す図であり、(a)は過酸化水素蒸気を一回だけ供給した場合、(b)は過酸化水素蒸気を間欠的に供給した場合、を示している。It is a figure which shows transition of the density | concentration of the hydrogen peroxide vapor | steam in a decontamination chamber, When (a) supplies hydrogen peroxide vapor only once, (b) When hydrogen peroxide vapor is supplied intermittently, Is shown. 過酸化水素の蒸気線図である。It is a vapor diagram of hydrogen peroxide. 本発明の他の実施形態に係る有毒物質の除染装置の概略構成図であり、(a)は第二実施形態、(b)は第三実施形態、を示している。It is a schematic block diagram of the decontamination apparatus of the toxic substance which concerns on other embodiment of this invention, (a) has shown 2nd embodiment, (b) has shown 3rd embodiment.

以下、本発明の実施形態について図1乃至図4を用いて説明する。ここで、図1は、本発明の第一実施形態に係る有毒物質の除染装置の概略構成図である。また、図2は、過酸化水素とオゾンとの混合ガスの除染性能を示す図であり、(a)はCEPSに対する除染性能、(b)はマラチオンに対する除染性能、を示している。また、図3は、除染室内の過酸化水素蒸気の濃度の推移を示す図であり、(a)は過酸化水素蒸気を一回だけ供給した場合、(b)は過酸化水素蒸気を間欠的に供給した場合、を示している。また、図4は、過酸化水素の蒸気線図である。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 4. Here, FIG. 1 is a schematic configuration diagram of a decontamination apparatus for toxic substances according to the first embodiment of the present invention. Moreover, FIG. 2 is a figure which shows the decontamination performance of the mixed gas of hydrogen peroxide and ozone, (a) has shown the decontamination performance with respect to CEPS, (b) has shown the decontamination performance with respect to malathion. FIG. 3 is a diagram showing the transition of the concentration of hydrogen peroxide vapor in the decontamination chamber. (A) shows a case where hydrogen peroxide vapor is supplied only once, and (b) shows intermittent hydrogen peroxide vapor. In the case of supplying automatically. FIG. 4 is a vapor diagram of hydrogen peroxide.

本発明の第一実施形態に係る有毒物質の除染装置1は、図1に示したように、有毒物質に汚染された被汚染物2を反応性の酸化剤雰囲気で除染する有毒物質の除染装置であって、被汚染物2を収容する除染室3と、除染室3に酸化剤を蒸気雰囲気で供給する酸化剤供給装置4と、除染室3に酸化力を向上させる添加剤を供給する添加剤供給装置5と、除染室3内の蒸気を酸化剤供給装置4に循環させる循環装置6と、除染室3内を排気する排気装置7と、を有し、循環装置6は、除染処理中に蒸気を循環させ、酸化剤供給装置4は、除染室3内における酸化剤の平均濃度が一定となるように間欠的に酸化剤を供給するように構成されている。   The toxic substance decontamination apparatus 1 according to the first embodiment of the present invention, as shown in FIG. 1, is a toxic substance that decontaminates a contaminated object 2 contaminated with a toxic substance in a reactive oxidizing agent atmosphere. It is a decontamination device, which includes a decontamination chamber 3 that accommodates the object 2 to be contaminated, an oxidant supply device 4 that supplies an oxidant to the decontamination chamber 3 in a steam atmosphere, and an improvement in the oxidizing power of the decontamination chamber 3 An additive supply device 5 for supplying the additive, a circulation device 6 for circulating the vapor in the decontamination chamber 3 to the oxidant supply device 4, and an exhaust device 7 for exhausting the inside of the decontamination chamber 3, The circulation device 6 circulates steam during the decontamination process, and the oxidant supply device 4 is configured to intermittently supply the oxidant so that the average concentration of the oxidant in the decontamination chamber 3 is constant. Has been.

前記被汚染物2は、有毒物質が付着した物体であり、除染を必要とする物体である。例えば、衣服、装備品、電子機器、自動車、航空機等の物体又はその一部である。また、有毒物質とは、バクテリア、毒素、ウイルス等の生物系有毒物質や、神経作用剤、びらん剤、窒息剤、血液作用剤、嘔吐剤等の化学系有毒物質を意味する。本実施形態では、特に、錆びや液体に弱い電子機器等の被汚染物2であっても除染可能である。   The contaminated object 2 is an object to which a toxic substance is attached and is an object that requires decontamination. For example, it is an object such as clothes, equipment, an electronic device, an automobile, an aircraft, or a part thereof. The toxic substances mean biological toxic substances such as bacteria, toxins, and viruses, and chemical toxic substances such as nerve agents, erosants, asphyxants, blood agents, and vomiting agents. In the present embodiment, it is possible to decontaminate even the contaminated object 2 such as an electronic device that is particularly vulnerable to rust and liquid.

前記除染室3は、一定の空間を区画可能な容器又は部屋である。また、除染処理に使用する酸化剤や添加剤が、大気に放出可能な濃度の基準が定められている物質である場合には、除染室3は密閉可能に構成される。かかる除染室3は、自動車等の乗物により運搬可能であってもよいし、クリーンルーム内に設置されていてもよいし、野外で組立可能であってもよい。また、除染室3が広い空間を有する場合には、内部に拡散ファンを配置するようにしてもよい。   The decontamination chamber 3 is a container or room that can partition a certain space. In addition, when the oxidizing agent or additive used for the decontamination process is a substance for which the standard of the concentration that can be released to the atmosphere is determined, the decontamination chamber 3 is configured to be hermetically sealed. The decontamination chamber 3 may be transportable by a vehicle such as an automobile, may be installed in a clean room, or may be assembled outdoors. In addition, when the decontamination chamber 3 has a wide space, a diffusion fan may be disposed inside.

前記酸化剤供給装置4は、除染室3に酸化剤を蒸気雰囲気で供給する装置である。例えば、酸化剤が過酸化水素の場合には、酸化剤供給装置4内に35%過酸化水素水を供給し、酸化剤供給装置4内のヒータにより加熱して過酸化水素水を蒸発させ、所定の濃度になった過酸化水素蒸気を除染室3に供給する。また、酸化剤供給ライン41には、制御弁42が配置されており、制御弁42の開閉によって、過酸化水素蒸気(酸化剤)の供給及び停止をコントロールできるようになっている。また、酸化剤供給ライン41に、酸化剤蒸気を送気するためのファンやポンプを配置するようにしてもよい。なお、酸化剤供給装置4に供給される過酸化水素水は35%濃度のものに限定されるものではなく、例えば、20〜50%濃度の範囲内で適宜選択することができる。   The oxidant supply device 4 is a device that supplies an oxidant to the decontamination chamber 3 in a steam atmosphere. For example, when the oxidant is hydrogen peroxide, 35% hydrogen peroxide solution is supplied into the oxidant supply device 4 and heated by a heater in the oxidant supply device 4 to evaporate the hydrogen peroxide solution. Hydrogen peroxide vapor having a predetermined concentration is supplied to the decontamination chamber 3. In addition, a control valve 42 is disposed in the oxidant supply line 41, and the supply and stop of hydrogen peroxide vapor (oxidant) can be controlled by opening and closing the control valve 42. Further, a fan or a pump for supplying oxidant vapor may be arranged in the oxidant supply line 41. The hydrogen peroxide solution supplied to the oxidant supply device 4 is not limited to a 35% concentration, and can be appropriately selected within a range of 20 to 50% concentration, for example.

前記添加剤供給装置5は、除染室3に酸化力を向上させる添加剤を供給する装置である。添加剤には、例えば、オゾンガスが使用されるが、アルカリ、アルケン、アルデヒド、ハロゲン等の他の物質であってもよい。また、添加剤供給装置5は、添加剤供給ライン51を介して除染室3に接続されており、添加剤供給ライン51に配置された制御弁52により供給量がコントロールされる。なお、添加剤がオゾンガスの場合には、添加剤供給装置5はオゾン発生装置である。オゾンガス発生装置は、無声放電空間に酸素ガスを流すことによって酸素の一部をイオン化し、通常の酸素と結合させて、オゾンガスを生成し、除染室3に供給する。   The additive supply device 5 is a device that supplies an additive for improving the oxidizing power to the decontamination chamber 3. For example, ozone gas is used as the additive, but other substances such as alkali, alkene, aldehyde, and halogen may be used. The additive supply device 5 is connected to the decontamination chamber 3 via the additive supply line 51, and the supply amount is controlled by a control valve 52 disposed in the additive supply line 51. When the additive is ozone gas, the additive supply device 5 is an ozone generator. The ozone gas generator ionizes a part of oxygen by flowing oxygen gas through the silent discharge space, combines it with normal oxygen, generates ozone gas, and supplies it to the decontamination chamber 3.

ここで、酸化剤である過酸化水素に添加剤であるオゾンを混合させた混合ガスの除染性能について、図2を参照しつつ説明する。ここで、図2(a)は、マスタードガスの擬剤であるCEPSに対する試験結果を示し、図2(b)は、VXガスの擬剤であるマラチオンに対する試験結果を示している。なお、「擬剤」とは、「対象としている有毒物質と性質が一部類似した微生物や物質で、人体や環境に影響を与えないもの」を意味する。   Here, the decontamination performance of the mixed gas obtained by mixing the oxidizing agent hydrogen peroxide with the oxidizing agent ozone will be described with reference to FIG. Here, FIG. 2A shows a test result for CEPS which is a mustard gas mimetic, and FIG. 2B shows a test result for malathion which is a VX gas mimetic. The “mimetic” means “microorganisms or substances that are partially similar in nature to the target toxic substance and do not affect the human body or the environment”.

図2(a)は、初期濃度10[g/m]のCEPSを処理温度20℃で、A:1000[ppm]の過酸化水素単独で除染した場合、B:400[ppm]の過酸化水素単独で除染した場合、C:400[ppm]の過酸化水素蒸気と100[ppm]のオゾンガスとの混合ガスで除染した場合、におけるCEPSの濃度変化を図示したものである。横軸は時間[分]、縦軸はCEPSの残留濃度[g/m]を示している。なお、Aの試験結果を破線、Bの試験結果を一点鎖線、Cの試験結果を実線、で図示している。 FIG. 2A shows that when CEPS having an initial concentration of 10 [g / m 2 ] is decontaminated with hydrogen peroxide of A: 1000 [ppm] at a processing temperature of 20 ° C., excess of B: 400 [ppm] is obtained. When decontamination is carried out with hydrogen oxide alone, CEPS concentration change in the case of decontamination with a mixed gas of C: 400 [ppm] hydrogen peroxide vapor and 100 [ppm] ozone gas is shown. The horizontal axis represents time [minutes], and the vertical axis represents CEPS residual concentration [g / m 2 ]. The test result of A is indicated by a broken line, the test result of B is indicated by a one-dot chain line, and the test result of C is indicated by a solid line.

酸化剤である過酸化水素単独でCEPSを除染した場合には、低濃度である400[ppm]ではほとんど除染効果が期待できないが、高濃度である1000[ppm]では一定の除染効果が認められる。また、過酸化水素とオゾンガスとの混合ガスでCEPSを除染した場合には、過酸化水素が400[ppm]と低濃度であるにも関わらず、高濃度の過酸化水素単独で除染した場合よりも高い除染効果が得られた。これは、酸化剤に所定の添加剤を加えることにより、OHラジカル等の強い酸化力を有するラジカルが発生することに起因するものと考えられる。   When CEPS is decontaminated with hydrogen peroxide as an oxidizing agent alone, a decontamination effect can hardly be expected at a low concentration of 400 [ppm], but a constant decontamination effect at a high concentration of 1000 [ppm]. Is recognized. In addition, when CEPS was decontaminated with a mixed gas of hydrogen peroxide and ozone gas, it was decontaminated with a high concentration of hydrogen peroxide alone, even though the concentration of hydrogen peroxide was as low as 400 ppm. A higher decontamination effect was obtained. This is considered to result from the generation of radicals having strong oxidizing power such as OH radicals by adding a predetermined additive to the oxidizing agent.

図2(b)は、初期濃度10[g/m]のマラチオンを処理温度40℃で、D:2000[ppm]の過酸化水素単独で除染した場合、E:700[ppm]の過酸化水素単独で除染した場合、F:700[ppm]の過酸化水素蒸気と100[ppm]のオゾンガスとの混合ガスで除染した場合、におけるマラチオンの濃度変化を図示したものである。横軸は時間[分]、縦軸はマラチオンの残留濃度[g/m]を示している。なお、Dの試験結果を破線、Eの試験結果を一点鎖線、Fの試験結果を実線、で図示している。 FIG. 2B shows that when malathion having an initial concentration of 10 [g / m 2 ] is decontaminated with hydrogen peroxide of D: 2000 [ppm] at a treatment temperature of 40 ° C., an excess of E: 700 [ppm] is obtained. When decontamination with hydrogen oxide alone, the concentration change of malathion in the case of decontamination with a mixed gas of F: 700 [ppm] hydrogen peroxide vapor and 100 [ppm] ozone gas is illustrated. The horizontal axis represents time [min], and the vertical axis represents the residual concentration of malathion [g / m 2 ]. In addition, the test result of D is shown by a broken line, the test result of E is shown by a one-dot chain line, and the test result of F is shown by a solid line.

酸化剤である過酸化水素単独でマラチオンを除染した場合には、低濃度である700[ppm]ではほとんど除染効果が期待できないが、高濃度である2000[ppm]では多少の除染効果が認められる。また、過酸化水素とオゾンガスとの混合ガスでマラチオンを除染した場合には、過酸化水素が700[ppm]と低濃度であるにも関わらず、高濃度の過酸化水素単独で除染した場合よりも非常に高い除染効果が得られた。これは、酸化剤に所定の添加剤を加えることにより、OHラジカル等の強い酸化力を有するラジカルが発生することに起因するものと考えられる。   When malathion is decontaminated with hydrogen peroxide alone as an oxidizing agent, a decontamination effect can hardly be expected at a low concentration of 700 [ppm], but a slight decontamination effect at a high concentration of 2000 [ppm]. Is recognized. In addition, when malathion was decontaminated with a mixed gas of hydrogen peroxide and ozone gas, it was decontaminated with a high concentration of hydrogen peroxide alone, even though the concentration of hydrogen peroxide was as low as 700 ppm. A much higher decontamination effect was obtained than in the case. This is considered to result from the generation of radicals having strong oxidizing power such as OH radicals by adding a predetermined additive to the oxidizing agent.

したがって、酸化剤にラジカルを発生し得る添加剤を混合させることにより、低濃度の酸化剤であっても、優れた除染性能を有することが容易に理解できる。例えば、酸化剤が過酸化水素の場合には、添加剤としてオゾンガスを混合させることが好ましい。また、酸化剤が過酸化水素の場合には、低濃度とは1000[ppm]未満、言い換えれば、1000[mg/リットル]未満を意味する。なお、低濃度の下限については、被汚染物2に付着した除染対象物によって異なるため、一義的に決定することはできないが、概ね200[ppm]未満又は200[mg/リットル]未満の低濃度では、十分な除染効果が期待できないと考えられる。   Therefore, by mixing an additive capable of generating radicals in the oxidizing agent, it can be easily understood that even if the oxidizing agent has a low concentration, it has excellent decontamination performance. For example, when the oxidizing agent is hydrogen peroxide, it is preferable to mix ozone gas as an additive. When the oxidizing agent is hydrogen peroxide, the low concentration means less than 1000 [ppm], in other words, less than 1000 [mg / liter]. Note that the lower limit of the low concentration differs depending on the decontamination target attached to the contaminated object 2 and therefore cannot be determined uniquely, but is generally less than 200 [ppm] or less than 200 [mg / liter]. It is considered that a sufficient decontamination effect cannot be expected at the concentration.

また、酸化剤と添加剤との混合比は、除染対象物、酸化剤及び添加剤の種類によって、それぞれ調整されるものである。例えば、除染対象物が一般的な物質(例えば、マスタードガス又はその擬剤や、VXガス又はその擬剤等)であって、酸化剤が過酸化水素、添加剤がオゾンの場合には、少なくとも、上述の試験結果から、過酸化水素とオゾンとの混合比は、過酸化水素:オゾン=4:1、又は、過酸化水素:オゾン=7:1であれば、高濃度の過酸化水素単独の場合よりも除染性能に優れていることが容易に理解できる。したがって、過酸化水素とオゾンとの混合比は、例えば、4:1〜7:1の範囲内に調整することが好ましい。   Further, the mixing ratio of the oxidizing agent and the additive is adjusted according to the type of the decontamination object, the oxidizing agent, and the additive. For example, when the object to be decontaminated is a general substance (for example, mustard gas or its mimetic agent, VX gas or its mimetic agent), the oxidizing agent is hydrogen peroxide, and the additive is ozone, At least from the above test results, if the mixing ratio of hydrogen peroxide to ozone is hydrogen peroxide: ozone = 4: 1 or hydrogen peroxide: ozone = 7: 1, high concentration hydrogen peroxide It can be easily understood that the decontamination performance is superior to that of a single case. Therefore, it is preferable to adjust the mixing ratio of hydrogen peroxide and ozone within a range of, for example, 4: 1 to 7: 1.

前記循環装置6は、除染室3内の蒸気(雰囲気ガス)を酸化剤供給装置4に循環させる装置である。具体的には、循環装置6は、例えば、循環ライン61と、制御弁62と、循環ポンプ63と、フィルタ64と、を有する。循環ライン61は、除染室3と酸化剤供給装置4とを連通するラインである。かかる循環ライン61には、除染室3側から順に、制御弁62、循環ポンプ63、フィルタ64が配置されている。制御弁62は、循環ライン61の開閉をコントロールする部品である。循環ポンプ63は、除染室3内の雰囲気ガスを吸気し、酸化剤供給装置4に送気する部品である。かかる循環ポンプ63は、循環ファンであってもよい。   The circulation device 6 is a device that circulates steam (atmosphere gas) in the decontamination chamber 3 to the oxidant supply device 4. Specifically, the circulation device 6 includes, for example, a circulation line 61, a control valve 62, a circulation pump 63, and a filter 64. The circulation line 61 is a line that connects the decontamination chamber 3 and the oxidant supply device 4. In the circulation line 61, a control valve 62, a circulation pump 63, and a filter 64 are arranged in this order from the decontamination chamber 3 side. The control valve 62 is a component that controls opening and closing of the circulation line 61. The circulation pump 63 is a component that sucks the atmospheric gas in the decontamination chamber 3 and sends it to the oxidant supply device 4. The circulation pump 63 may be a circulation fan.

また、除染室3内の雰囲気ガスには、過酸化水素等の酸化剤、オゾン等の添加剤、除染により発生した不活性化又は無害化されたガス、蒸気等が含まれる。これらの成分のうち、酸化剤及び添加剤については、混合ガスの濃度を安定させるために、除去して循環させた方が好ましい。そこで、酸化剤供給装置4の上流側にフィルタ64が配置される。   The atmospheric gas in the decontamination chamber 3 includes an oxidizing agent such as hydrogen peroxide, an additive such as ozone, an inactivated or detoxified gas generated by decontamination, steam, and the like. Among these components, the oxidizing agent and the additive are preferably removed and circulated in order to stabilize the concentration of the mixed gas. Therefore, a filter 64 is disposed on the upstream side of the oxidant supply device 4.

フィルタ64には、酸化剤を分解する触媒64aと、添加剤を分解する触媒64bとが、例えば、直列に配置される。酸化剤が過酸化水素の場合には、触媒64aは、例えば、白金属元素、鉄、銅、コバルト等の金属又は二酸化マンガンであり、過酸化水素を水と酸素とに分解する。また、添加剤がオゾンの場合には、触媒64bは、例えば、マンガン、ニッケル、コバルト、鉄、銅等の金属若しくはそれらの金属酸化物又は活性炭であり、オゾンを酸素分子に分解する。なお、フィルタ64は、酸化剤供給装置4内に配置されていてもよい。   In the filter 64, for example, a catalyst 64a that decomposes the oxidizing agent and a catalyst 64b that decomposes the additive are arranged in series. When the oxidizing agent is hydrogen peroxide, the catalyst 64a is, for example, a metal such as a white metal element, iron, copper, cobalt, or manganese dioxide, and decomposes the hydrogen peroxide into water and oxygen. In addition, when the additive is ozone, the catalyst 64b is, for example, a metal such as manganese, nickel, cobalt, iron, copper, or a metal oxide thereof, or activated carbon, and decomposes ozone into oxygen molecules. The filter 64 may be disposed in the oxidant supply device 4.

前記排気装置7は、除染処理終了後の除染室3内の雰囲気ガスを外部に排気する装置である。具体的には、排気ライン71と、排気ファン72と、制御弁73と、フィルタ74と、を有する。排気ライン71は、除染室3と外部とを連通するラインである。かかる排気ライン71には、除染室3側から順に、排気ファン72、制御弁73、フィルタ74が配置されている。排気ファン72は、除染室3内の雰囲気ガスを吸気し、外部に送気する部品である。かかる排気ファン72は、排気ポンプであってもよい。制御弁73は、排気ライン71の開閉をコントロールする部品である。かかる制御弁73は、除染処理中は閉鎖されており、除染処理終了後に開放される。   The exhaust device 7 is a device that exhausts the atmospheric gas in the decontamination chamber 3 after the decontamination process to the outside. Specifically, it has an exhaust line 71, an exhaust fan 72, a control valve 73, and a filter 74. The exhaust line 71 is a line that communicates the decontamination chamber 3 with the outside. In the exhaust line 71, an exhaust fan 72, a control valve 73, and a filter 74 are arranged in this order from the decontamination chamber 3 side. The exhaust fan 72 is a component that sucks the atmospheric gas in the decontamination chamber 3 and sends it to the outside. The exhaust fan 72 may be an exhaust pump. The control valve 73 is a component that controls opening and closing of the exhaust line 71. The control valve 73 is closed during the decontamination process and is opened after the decontamination process is completed.

また、除染室3内の雰囲気ガスには、過酸化水素等の酸化剤、オゾン等の添加剤、除染により発生した不活性化又は無害化されたガス、蒸気等が含まれる。これらの成分のうち、酸化剤及び添加剤については、外部(大気)に放出可能な濃度の基準が定められている場合がある。そこで、排気ライン71には、酸化剤及び添加剤を除去するフィルタ74が配置される。フィルタ74には、循環装置6のフィルタ64を構成する触媒64a,64bと同じ触媒74a,74bを使用することができる。なお、濃度を監視する観点から、フィルタ64の少なくとも下流側に濃度計(図示せず)を配置することが好ましい。   The atmospheric gas in the decontamination chamber 3 includes an oxidizing agent such as hydrogen peroxide, an additive such as ozone, an inactivated or detoxified gas generated by decontamination, steam, and the like. Among these components, for oxidizers and additives, there are cases where standards for concentrations that can be released to the outside (atmosphere) are defined. Therefore, the exhaust line 71 is provided with a filter 74 that removes the oxidizing agent and the additive. As the filter 74, the same catalysts 74a and 74b as the catalysts 64a and 64b constituting the filter 64 of the circulation device 6 can be used. From the viewpoint of monitoring the concentration, it is preferable to arrange a concentration meter (not shown) at least on the downstream side of the filter 64.

次に、上述した有毒物質の除染装置1の作用、すなわち、本発明に係る有毒物質の除染方法について、図1、図3及び図4を参照しつつ説明する。   Next, the operation of the above-described toxic substance decontamination apparatus 1, that is, the toxic substance decontamination method according to the present invention will be described with reference to FIGS. 1, 3, and 4.

本発明に係る有毒物質の除染方法は、有毒物質に汚染された被汚染物2を反応性の酸化剤雰囲気で除染する有毒物質の除染方法であって、被汚染物2を除染室3に収容し、除染室3に蒸気を除湿することなく循環させながら酸化剤を間欠的に平均濃度が一定となるように供給し、除染室3に酸化力を向上させる添加剤を供給し、除染室3内の被汚染物2を添加剤を含む酸化剤の蒸気雰囲気で除染するものである。   The toxic substance decontamination method according to the present invention is a toxic substance decontamination method for decontaminating a contaminated substance 2 contaminated with a toxic substance in a reactive oxidizing agent atmosphere. An additive for improving the oxidizing power is supplied to the decontamination chamber 3 by supplying it to the decontamination chamber 3 so that the average concentration becomes constant while circulating the steam without dehumidifying the decontamination chamber 3. It supplies and decontaminates the to-be-contaminated object 2 in the decontamination chamber 3 in the vapor | steam atmosphere of the oxidizing agent containing an additive.

かかる除染方法では、酸化剤と酸化力を向上させる添加剤(例えば、ラジカルを発生し得る添加剤)との混合ガスにより被汚染物2を除染していることから、上述したように、低濃度の酸化剤であっても、所定の混合比で添加剤を添加することにより、高濃度の酸化剤と同等又はそれ以上の除染性能を発揮し得る。   In such a decontamination method, the contaminated object 2 is decontaminated with a mixed gas of an oxidizing agent and an additive that improves oxidizing power (for example, an additive capable of generating radicals). Even if it is a low concentration oxidizing agent, the decontamination performance equivalent to or higher than a high concentration oxidizing agent can be exhibited by adding an additive with a predetermined mixing ratio.

ところで、上述した有毒物質の除染装置1において、除染室3内に酸化剤である過酸化水素蒸気を一回だけ供給した場合には、図3(a)に示したように、過酸化水素蒸気の濃度は、ある時間でピークを形成するものの徐々に濃度は低下し、除染性能も低下してしまう。そこで、本発明においては、酸化剤である過酸化水素蒸気を間欠的に平均濃度が一定となるように供給している。ここでは、4回のタイミングに分けて過酸化水素蒸気を供給している。   By the way, in the toxic substance decontamination apparatus 1 described above, when hydrogen peroxide vapor as an oxidizing agent is supplied only once into the decontamination chamber 3, as shown in FIG. Although the concentration of hydrogen vapor forms a peak at a certain time, the concentration gradually decreases and the decontamination performance also decreases. Therefore, in the present invention, hydrogen peroxide vapor, which is an oxidizing agent, is supplied intermittently so that the average concentration is constant. Here, the hydrogen peroxide vapor is supplied in four timings.

一般に、除染対象物の種類と分量が把握できれば、使用する酸化剤、必要な処理濃度及び処理時間を把握することができる。そこで、図3(b)に示したように、平均濃度Av.を一定時間維持できるように間欠的に過酸化水素蒸気を供給する。具体的には、所定のタイミングで酸化剤供給装置4内に35%過酸化水素水を供給(滴下)し、酸化剤供給装置4内のヒータにより加熱して過酸化水素水を蒸発させ、所定の濃度になった過酸化水素蒸気を除染室3に供給する。また、本発明では、蒸気を循環させながら酸化剤を除染室3に供給していることから、無駄なく長時間の運用が可能となる。なお、「平均濃度が一定となるように」とは、「除染に必要な処理濃度と処理時間との積と、図3(b)において塗り潰した部分の面積(積分値)とが一致する状態」を意味する。   In general, if the type and amount of the decontamination object can be grasped, the oxidizing agent to be used, the necessary treatment concentration and the treatment time can be grasped. Therefore, as shown in FIG. The hydrogen peroxide vapor is supplied intermittently so that can be maintained for a certain time. Specifically, 35% hydrogen peroxide solution is supplied (dropped) into the oxidant supply device 4 at a predetermined timing, and heated by a heater in the oxidant supply device 4 to evaporate the hydrogen peroxide solution. Hydrogen peroxide vapor having a concentration of 1 is supplied to the decontamination chamber 3. In the present invention, since the oxidizing agent is supplied to the decontamination chamber 3 while circulating the steam, it is possible to operate for a long time without waste. Note that “so that the average concentration is constant” means that “the product of the treatment concentration necessary for the decontamination and the treatment time is equal to the area (integrated value) of the painted portion in FIG. 3B. Means "state".

また、上述したように、本発明では、酸化剤と所定の添加剤との混合ガスにより被汚染物2を除染していることから、低濃度の酸化剤で効果的に除染を行うことができる。ここで、図4の過酸化水素の蒸気線図に示したように、相対湿度が60%である状態Q1(温度20℃)と状態Q2(温度40℃)とについて検討する。   In addition, as described above, in the present invention, since the contaminated object 2 is decontaminated with the mixed gas of the oxidizing agent and the predetermined additive, the decontamination can be effectively performed with a low concentration oxidizing agent. Can do. Here, as shown in the vapor diagram of hydrogen peroxide in FIG. 4, the state Q1 (temperature 20 ° C.) and the state Q2 (temperature 40 ° C.) where the relative humidity is 60% are examined.

状態Q1,Q2のように、過酸化水素蒸気の相対湿度(飽和蒸気圧に対する過酸化水素蒸気圧の分圧)が高い場合、すなわち、高濃度の過酸化水素蒸気の場合、飽和させずに投入できる過酸化水素蒸気量はK1,K2であり、わずかな投入量で飽和に達してしまうことが容易に理解できる。したがって、酸化剤として、高濃度の過酸化水素蒸気を使用した場合、反応して消失した過酸化水素を補充して高濃度に維持するためには、除湿して水分を除去しなければならない。具体的には、酸化剤の蒸気圧状態を、状態Q1,Q2から、例えば、相対湿度が5%である状態Q3に移行させなければならない。   When the relative humidity of hydrogen peroxide vapor (partial pressure of hydrogen peroxide vapor pressure with respect to saturation vapor pressure) is high, as in states Q1 and Q2, that is, when hydrogen peroxide vapor is high in concentration, it is introduced without being saturated. The amount of hydrogen peroxide vapor that can be produced is K1 and K2, and it can be easily understood that saturation is reached with a small input amount. Therefore, when high-concentration hydrogen peroxide vapor is used as the oxidant, moisture must be removed by dehumidification in order to replenish the hydrogen peroxide that has disappeared by reaction and maintain it at a high concentration. Specifically, the vapor pressure state of the oxidant must be shifted from the states Q1 and Q2 to, for example, the state Q3 where the relative humidity is 5%.

このように、高濃度の酸化剤を使用した場合には、酸化剤を補充して長時間除染するためには、必ず除湿しなければ、すぐに飽和に達してしまい、安定した運用を行うことができない。一方、本発明のように、低濃度の酸化剤、すなわち、相対湿度の低い酸化剤蒸気を使用した場合には、飽和に達するまでに十分な投入できる過酸化水素蒸気量K3を確保できることから、繰返し酸化剤を補充しても除湿する必要がない。   In this way, when a high concentration oxidant is used, in order to replenish the oxidant and decontaminate for a long time, if it is not dehumidified, it will soon reach saturation and perform stable operation. I can't. On the other hand, when a low-concentration oxidant, that is, an oxidant vapor having a low relative humidity is used as in the present invention, a sufficient amount of hydrogen peroxide vapor K3 that can be charged until saturation is reached can be secured. There is no need to dehumidify even after replenishing the oxidizing agent.

例えば、従来の高濃度の酸化剤を用いた除染方法では、20mの除染空間に対して、約64リットル/時間の除湿能力が必要になる場合がある。この除湿能力は、産業用除湿機の約3倍、家庭用除湿機の約160倍であり、除湿機の大型化(例えば、容積:約4m)や重量化(例えば、重量:約970kg)を招くこととなる。また、消費電力も多くなり、コストも増加することとなる。さらに、除染空間として、航空機キャビン室を想定した場合、その体積は約300mであり、約940リットル/時間の除湿能力が必要となり、さらに装置の大型化(例えば、容積:約60m)や重量化(例えば、重量:約14t)を招くこととなる。 For example, in a conventional decontamination method using a high concentration oxidizing agent, a dehumidifying capacity of about 64 liters / hour may be required for a 20 m 3 decontamination space. This dehumidifying capacity is about 3 times that of an industrial dehumidifier and about 160 times that of a household dehumidifier, and the dehumidifier is increased in size (for example, volume: about 4 m 3 ) and weighted (for example, weight: about 970 kg). Will be invited. In addition, power consumption increases and costs also increase. Further, assuming an aircraft cabin room as a decontamination space, the volume is about 300 m 3 , and a dehumidifying capacity of about 940 liters / hour is required, and the apparatus is further enlarged (for example, volume: about 60 m 3 ). Or a weight increase (for example, weight: about 14 t).

しかしながら、上述した本発明の除染方法によれば、低濃度の酸化剤を使用しつつ酸化力を向上させたことにより、酸化剤を含む蒸気が飽和に達し難くいため、ドライヤ、乾燥機、除湿機等の蒸気の湿度を低減する大型の装置が不要となり、除染装置1の小型化や軽量化を図ることができる。また、上述した本発明の除染方法によれば、除染室3の蒸気を循環させつつ酸化剤を間欠的に供給することにより、低濃度の酸化剤であっても、除染に必要な酸化剤の平均濃度を略一定に維持することができる。したがって、低濃度の酸化剤を使用したことにより、被汚染物2や除染装置1に金属部品が含まれる場合であっても、錆び等の損傷を抑制することができる。   However, according to the decontamination method of the present invention described above, since the oxidizing power is improved while using a low-concentration oxidizing agent, it is difficult for the vapor containing the oxidizing agent to reach saturation. A large apparatus for reducing the humidity of steam such as a machine is not required, and the decontamination apparatus 1 can be reduced in size and weight. Further, according to the above-described decontamination method of the present invention, the oxidant is intermittently supplied while circulating the vapor in the decontamination chamber 3, so that even a low concentration oxidant is necessary for decontamination. The average concentration of the oxidizing agent can be maintained substantially constant. Therefore, by using a low-concentration oxidizing agent, damage such as rust can be suppressed even when the contaminated object 2 or the decontamination apparatus 1 includes metal parts.

なお、上述した有毒物質の除染装置1は、酸化剤供給装置4、添加剤供給装置5、循環装置6及び排気装置7の各機器(制御弁等の付属品も含む)は、図示しない制御装置によって、上述した除染方法を実行するように構成されていてもよい。   The toxic substance decontamination device 1 described above includes an oxidant supply device 4, an additive supply device 5, a circulation device 6, and an exhaust device 7 (including accessories such as a control valve) that are not shown in the drawing. Depending on the apparatus, the above-described decontamination method may be executed.

続いて、本発明の他の実施形態に係る有毒物質の除染装置1について説明する。ここで、図5は、本発明の他の実施形態に係る有毒物質の除染装置の概略構成図であり、(a)は第二実施形態、(b)は第三実施形態、を示している。   Next, a detoxifying substance decontamination apparatus 1 according to another embodiment of the present invention will be described. Here, FIG. 5 is a schematic configuration diagram of a toxic substance decontamination apparatus according to another embodiment of the present invention, in which (a) shows a second embodiment and (b) shows a third embodiment. Yes.

図5(a)に示した第二実施形態は、除染室3に室内の温度を調節する空調装置8を配置したものである。かかる空調装置8は、いわゆるエアコンディショナーであり、除染室3内の温度を、20〜60℃の温度域内の一定温度、好ましくは常温又は室温程度に保持する。この温度域は、被汚染物2に損傷を与えず、且つ、過酸化水素とオゾンとの混合ガスが効果的に被汚染物2を除染できる温度域である。一般に、除染の処理温度は、高い方が除染性能に優れることが知られているが、具体的には、除染対象物、酸化剤及び添加剤の種類によって適宜調整される。なお、空調装置8は、温度調節機能の他に除湿機能を備えているものであってもよいが、本発明の除染方法では除湿機能を使用する必要はない。ただし、除染装置1の故障時等のように異常な高湿度になった場合や過酸化水素蒸気の蒸気線図に大きな影響を与えない程度で使用する場合には、空調装置8の除湿機能を使用してもよい。   In the second embodiment shown in FIG. 5A, an air conditioner 8 that adjusts the indoor temperature is arranged in the decontamination chamber 3. The air conditioner 8 is a so-called air conditioner, and keeps the temperature in the decontamination chamber 3 at a constant temperature within a temperature range of 20 to 60 ° C., preferably about room temperature or room temperature. This temperature range is a temperature range in which the contaminated object 2 is not damaged and a mixed gas of hydrogen peroxide and ozone can effectively decontaminate the contaminated object 2. In general, it is known that the higher the decontamination processing temperature, the better the decontamination performance, but specifically, it is appropriately adjusted depending on the type of the decontamination object, the oxidizing agent, and the additive. The air conditioner 8 may be provided with a dehumidifying function in addition to the temperature adjusting function, but it is not necessary to use the dehumidifying function in the decontamination method of the present invention. However, the dehumidifying function of the air conditioner 8 is used when the humidity becomes abnormally high, such as when the decontamination apparatus 1 fails, or when it is used to the extent that it does not significantly affect the vapor diagram of the hydrogen peroxide vapor. May be used.

図5(b)に示した第三実施形態は、添加剤供給装置5の添加剤供給ライン51を酸化剤供給装置4の酸化剤供給ライン41に接続したものである。かかる位置に添加剤供給装置5を配置しても、第一実施形態と同様の効果を奏する。   In the third embodiment shown in FIG. 5B, the additive supply line 51 of the additive supply device 5 is connected to the oxidant supply line 41 of the oxidant supply device 4. Even if the additive supply device 5 is arranged at such a position, the same effects as those of the first embodiment can be obtained.

上述した実施形態では、CEPS(マスタードガスの擬剤)及びマラチオン(VXガスの擬剤)に対する除染性能について説明したが、本発明は、過酸化水素とオゾン等の添加剤との混合比、濃度、処理時間等を適宜調整することにより、ラジカルの発生量等を任意に調整することができ、上記以外の有毒物質(例えば、コレラ菌等のバクテリア、ボツリヌス毒素等の毒素、黄熱病等のウイルスを含む生物系有毒物質と、VXガス以外の神経作用剤、マスタードガス以外のびらん剤、ホスゲン等の窒息剤、塩化シアン等の血液作用剤、アダムサイト等の嘔吐剤を含む化学系有毒物質)にも適用することができる。   In the above-described embodiment, the decontamination performance for CEPS (mustard gas mimetic) and malathion (VX gas mimetic) has been described, but the present invention is a mixture ratio of hydrogen peroxide and additives such as ozone, By appropriately adjusting the concentration, treatment time, etc., the amount of radicals, etc. can be adjusted arbitrarily. Toxic substances other than those mentioned above (for example, bacteria such as Vibrio cholerae, toxins such as botulinum toxin, yellow fever etc. Chemical toxic substances including biological toxic substances including viruses, nerve agents other than VX gas, erosions other than mustard gas, suffocating agents such as phosgene, blood agents such as cyan chloride, and antiemetics such as Adamsite ).

本発明は上述した実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々変更が可能であることは勿論である。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

1 除染装置
2 被汚染物
3 除染室
4 酸化剤供給装置
5 添加剤供給装置
6 循環装置
7 排気装置
8 空調装置
64,74 フィルタ
DESCRIPTION OF SYMBOLS 1 Decontamination apparatus 2 Contaminated material 3 Decontamination chamber 4 Oxidant supply apparatus 5 Additive supply apparatus 6 Circulation apparatus 7 Exhaust apparatus 8 Air conditioner 64,74 Filter

Claims (10)

有毒物質に汚染された被汚染物を反応性の酸化剤雰囲気で除染する有毒物質の除染装置であって、
前記被汚染物を収容する除染室と、
該除染室に酸化剤を蒸気雰囲気で供給する酸化剤供給装置と、
前記除染室に酸化力を向上させる添加剤を供給する添加剤供給装置と、
前記除染室内の蒸気を前記酸化剤供給装置に循環させる循環装置と、
前記除染室内を排気する排気装置と、を有し、
前記循環装置は、除染処理中に前記蒸気を循環させ、
前記酸化剤供給装置は、前記除染室内における酸化剤の平均濃度が一定となるように間欠的に酸化剤を供給する、
ことを特徴とする有毒物質の除染装置。
A toxic substance decontamination device for decontaminating contaminated substances in a reactive oxidant atmosphere,
A decontamination chamber containing the contaminated material;
An oxidant supply device for supplying an oxidant to the decontamination chamber in a steam atmosphere;
An additive supply device for supplying an additive for improving the oxidizing power to the decontamination chamber;
A circulation device for circulating the vapor in the decontamination chamber to the oxidant supply device;
An exhaust device for exhausting the decontamination chamber,
The circulation device circulates the steam during the decontamination process,
The oxidant supply device supplies the oxidant intermittently so that the average concentration of the oxidant in the decontamination chamber is constant.
A detoxification device for toxic substances.
前記酸化剤は過酸化水素であり、前記添加剤はオゾンである、ことを特徴とする請求項1に記載の有毒物質の除染装置。   The toxic substance decontamination apparatus according to claim 1, wherein the oxidizing agent is hydrogen peroxide and the additive is ozone. 前記過酸化水素は、1000mg/リットル未満の濃度である、ことを特徴とする請求項2に記載の有毒物質の除染装置。   The toxic substance decontamination apparatus according to claim 2, wherein the hydrogen peroxide has a concentration of less than 1000 mg / liter. 前記過酸化水素と前記オゾンとの混合比は、4:1〜7:1の範囲内に調整される、ことを特徴とする請求項2に記載の有毒物質の除染装置。   The toxic substance decontamination apparatus according to claim 2, wherein a mixing ratio of the hydrogen peroxide and the ozone is adjusted within a range of 4: 1 to 7: 1. 前記除染室は、室内の温度を調節する空調装置を有する、ことを特徴とする請求項1に記載の有毒物質の除染装置。   The toxic substance decontamination apparatus according to claim 1, wherein the decontamination chamber includes an air conditioner that adjusts an indoor temperature. 前記循環装置及び前記排気装置は、前記酸化剤及び前記添加剤を除去するフィルタを有する、ことを特徴とする請求項1に記載の有毒物質の除染装置。   The toxic substance decontamination apparatus according to claim 1, wherein the circulation device and the exhaust device include a filter that removes the oxidant and the additive. 有毒物質に汚染された被汚染物を反応性の酸化剤雰囲気で除染する有毒物質の除染方法であって、
前記被汚染物を除染室に収容し、
前記除染室に蒸気を除湿することなく循環させながら酸化剤を間欠的に平均濃度が一定となるように供給し、
前記除染室に酸化力を向上させる添加剤を供給し、
前記除染室内の被汚染物を前記添加剤を含む前記酸化剤の蒸気雰囲気で除染する、
ことを特徴とする有毒物質の除染方法。
A detoxifying method for decontaminating contaminated substances contaminated with toxic substances in a reactive oxidant atmosphere,
The contaminated material is accommodated in a decontamination chamber,
Supplying the oxidant intermittently with an average concentration constant while circulating the steam without dehumidifying the decontamination chamber,
Supplying an additive for improving the oxidizing power to the decontamination chamber;
Decontaminating contaminants in the decontamination chamber in a vapor atmosphere of the oxidizing agent containing the additive,
A decontamination method for toxic substances.
前記酸化剤は過酸化水素であり、前記添加剤はオゾンである、ことを特徴とする請求項7に記載の有毒物質の除染方法。   The method for decontaminating a toxic substance according to claim 7, wherein the oxidizing agent is hydrogen peroxide, and the additive is ozone. 前記過酸化水素は、1000mg/リットル未満の濃度である、ことを特徴とする請求項8に記載の有毒物質の除染方法。   The method for decontaminating a toxic substance according to claim 8, wherein the hydrogen peroxide has a concentration of less than 1000 mg / liter. 前記過酸化水素と前記オゾンとの混合比は、4:1〜7:1の範囲内に調整される、ことを特徴とする請求項8に記載の有毒物質の除染方法。   The method for decontaminating a toxic substance according to claim 8, wherein a mixing ratio of the hydrogen peroxide and the ozone is adjusted within a range of 4: 1 to 7: 1.
JP2010166978A 2010-07-26 2010-07-26 Toxic substance decontamination equipment Active JP5735761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010166978A JP5735761B2 (en) 2010-07-26 2010-07-26 Toxic substance decontamination equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010166978A JP5735761B2 (en) 2010-07-26 2010-07-26 Toxic substance decontamination equipment

Publications (2)

Publication Number Publication Date
JP2012024385A true JP2012024385A (en) 2012-02-09
JP5735761B2 JP5735761B2 (en) 2015-06-17

Family

ID=45778065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010166978A Active JP5735761B2 (en) 2010-07-26 2010-07-26 Toxic substance decontamination equipment

Country Status (1)

Country Link
JP (1) JP5735761B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013158699A (en) * 2012-02-03 2013-08-19 Ihi Shibaura Machinery Corp Oxidation treatment method, and oxidation treatment system
WO2013137452A1 (en) 2012-03-16 2013-09-19 株式会社ウイングターフ Decontamination method for organic compound
JP2014023596A (en) * 2012-07-25 2014-02-06 Ihi Corp Sterilizer
WO2015019595A1 (en) * 2013-08-07 2015-02-12 パナソニックヘルスケアホールディングス株式会社 Isolator
JP2015211773A (en) * 2014-05-02 2015-11-26 三機工業株式会社 Decontamination method and device
JP2016154835A (en) * 2015-02-20 2016-09-01 株式会社Ihi Decontamination device and decontamination method
JP2017074375A (en) * 2015-10-13 2017-04-20 サントリーホールディングス株式会社 Chamber sterilizing apparatus
JP2018521770A (en) * 2015-07-11 2018-08-09 ウェリス カンパニー リミテッド Air sterilizer
WO2019244501A1 (en) * 2018-06-20 2019-12-26 日揮株式会社 Bacteria treatment mechanism and bacteria treatment method
WO2022075031A1 (en) * 2020-10-08 2022-04-14 国立研究開発法人産業技術総合研究所 Plasma sterilization device
JP7468060B2 (en) 2020-03-27 2024-04-16 三浦工業株式会社 Sterilization method and sterilization device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121559A (en) * 1980-02-29 1981-09-24 Chiyoda Seisakusho Formaldehyde sterilizer
JPH10328276A (en) * 1997-05-29 1998-12-15 Shibuya Kogyo Co Ltd Device and method for sterilizing
JP2001520532A (en) * 1995-07-27 2001-10-30 アメリカン ステリライザー カンパニー Real-time monitor, control system, and method for hydrogen peroxide vapor disinfection
JP2002066308A (en) * 2000-08-29 2002-03-05 Shukuji Asakura Method for decomposing chemical substance and device for decomposition
US6558622B1 (en) * 1999-05-04 2003-05-06 Steris Corporation Sub-critical fluid cleaning and antimicrobial decontamination system and process
JP2005519721A (en) * 2001-11-01 2005-07-07 インテコン システムズ インコーポレイテッド Method and apparatus for denaturing biochemical substances using active cleaning solution mist
JP2005523133A (en) * 2002-04-24 2005-08-04 ステリス インコーポレイテッド Activated oxidative steam treatment system and method
JP2006524551A (en) * 2003-04-24 2006-11-02 ステリス インコーポレイテッド Activated vapor deposition treatment to neutralize war weapons
US20070098592A1 (en) * 2005-11-01 2007-05-03 Steris Inc. Parallel flow VHP decontamination system
JP2007518954A (en) * 2003-12-10 2007-07-12 ステリス インク Ozone enhanced hydrogen peroxide vapor decontamination method and system
JP2007532862A (en) * 2003-06-06 2007-11-15 ステリス コーポレーション Method and apparatus for preparing and controlling the chemical concentration of a gas mixture
JP2008011928A (en) * 2006-07-03 2008-01-24 Daikin Ind Ltd Sterilization system
JP2008200511A (en) * 2004-03-31 2008-09-04 Yuyama Manufacturing Co Ltd Method and device for sterilization
JP2008264506A (en) * 2007-03-28 2008-11-06 Sanyo Electric Co Ltd System for maintaining sterile environment
JP2010532198A (en) * 2007-06-29 2010-10-07 リノセム カンパニー リミテッド Sterilization method using hydrogen peroxide and ozone, and apparatus using the method

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121559A (en) * 1980-02-29 1981-09-24 Chiyoda Seisakusho Formaldehyde sterilizer
JP2001520532A (en) * 1995-07-27 2001-10-30 アメリカン ステリライザー カンパニー Real-time monitor, control system, and method for hydrogen peroxide vapor disinfection
JPH10328276A (en) * 1997-05-29 1998-12-15 Shibuya Kogyo Co Ltd Device and method for sterilizing
US6558622B1 (en) * 1999-05-04 2003-05-06 Steris Corporation Sub-critical fluid cleaning and antimicrobial decontamination system and process
JP2002066308A (en) * 2000-08-29 2002-03-05 Shukuji Asakura Method for decomposing chemical substance and device for decomposition
JP2005519721A (en) * 2001-11-01 2005-07-07 インテコン システムズ インコーポレイテッド Method and apparatus for denaturing biochemical substances using active cleaning solution mist
JP2005523133A (en) * 2002-04-24 2005-08-04 ステリス インコーポレイテッド Activated oxidative steam treatment system and method
JP2006524551A (en) * 2003-04-24 2006-11-02 ステリス インコーポレイテッド Activated vapor deposition treatment to neutralize war weapons
JP2007532862A (en) * 2003-06-06 2007-11-15 ステリス コーポレーション Method and apparatus for preparing and controlling the chemical concentration of a gas mixture
JP2007518954A (en) * 2003-12-10 2007-07-12 ステリス インク Ozone enhanced hydrogen peroxide vapor decontamination method and system
JP2008200511A (en) * 2004-03-31 2008-09-04 Yuyama Manufacturing Co Ltd Method and device for sterilization
US20070098592A1 (en) * 2005-11-01 2007-05-03 Steris Inc. Parallel flow VHP decontamination system
JP2008011928A (en) * 2006-07-03 2008-01-24 Daikin Ind Ltd Sterilization system
JP2008264506A (en) * 2007-03-28 2008-11-06 Sanyo Electric Co Ltd System for maintaining sterile environment
JP2010532198A (en) * 2007-06-29 2010-10-07 リノセム カンパニー リミテッド Sterilization method using hydrogen peroxide and ozone, and apparatus using the method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013158699A (en) * 2012-02-03 2013-08-19 Ihi Shibaura Machinery Corp Oxidation treatment method, and oxidation treatment system
US9452307B2 (en) 2012-03-16 2016-09-27 Lunaere Inc. Decontamination method for organic compound
WO2013137452A1 (en) 2012-03-16 2013-09-19 株式会社ウイングターフ Decontamination method for organic compound
CN104411371A (en) * 2012-03-16 2015-03-11 卢纳埃尔公司 Decontamination method for organic compound
EP2818208A4 (en) * 2012-03-16 2015-11-04 Lunaere Inc Decontamination method for organic compound
JP2014023596A (en) * 2012-07-25 2014-02-06 Ihi Corp Sterilizer
WO2015019595A1 (en) * 2013-08-07 2015-02-12 パナソニックヘルスケアホールディングス株式会社 Isolator
JP2015211773A (en) * 2014-05-02 2015-11-26 三機工業株式会社 Decontamination method and device
JP2016154835A (en) * 2015-02-20 2016-09-01 株式会社Ihi Decontamination device and decontamination method
JP2018521770A (en) * 2015-07-11 2018-08-09 ウェリス カンパニー リミテッド Air sterilizer
JP2017074375A (en) * 2015-10-13 2017-04-20 サントリーホールディングス株式会社 Chamber sterilizing apparatus
WO2019244501A1 (en) * 2018-06-20 2019-12-26 日揮株式会社 Bacteria treatment mechanism and bacteria treatment method
CN111479595A (en) * 2018-06-20 2020-07-31 日挥株式会社 Fungus treatment mechanism and fungus treatment method
JPWO2019244501A1 (en) * 2018-06-20 2020-09-17 日揮株式会社 Bacterial treatment mechanism and bacterial treatment method
CN113797364A (en) * 2018-06-20 2021-12-17 日挥株式会社 Shielding structure
CN113797364B (en) * 2018-06-20 2023-05-02 日挥株式会社 Shielding structure
US11918712B2 (en) 2018-06-20 2024-03-05 Jgc Japan Corporation Bacteria treatment mechanism and bacteria treatment method
JP7468060B2 (en) 2020-03-27 2024-04-16 三浦工業株式会社 Sterilization method and sterilization device
WO2022075031A1 (en) * 2020-10-08 2022-04-14 国立研究開発法人産業技術総合研究所 Plasma sterilization device

Also Published As

Publication number Publication date
JP5735761B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5735761B2 (en) Toxic substance decontamination equipment
KR101206360B1 (en) Apparatus and method for the chemical and biological warfare agent decontamination
AU2004304783B2 (en) Ozone enhanced vaporized hydrogen peroxide decontamination method and system
EP2158481B1 (en) Method and apparatus for removal of vaporized hydrogen peroxide from a region
JPH0415059A (en) Deodorizer and sterilizer device
US20100112677A1 (en) Sterile environment maintaining apparatus
EA027073B1 (en) Disinfection aerosol, method of use and manufacture
JP2005528930A (en) How to use chlorine dioxide as a fumigant
JP4538452B2 (en) Activated vapor deposition treatment to neutralize war weapons
US7102052B2 (en) Activated vapor treatment for neutralizing warfare agents
WO2001078793A1 (en) Sterilization process for air, liquid and surfaces
JP2002360672A (en) Hydrogen peroxide sterilizer
EP4209723A1 (en) Device for generating hydroxyl radicals
JP4709608B2 (en) Radical treatment equipment
US20120308433A1 (en) Treatment of chemical/biological warfare agents
JP2005334015A (en) Air sterilizing/deodorizing unit
KR101052855B1 (en) Food processor hybrid sterilization deodorizer
KR100912382B1 (en) Method of Sterilizing a Room and Room Sterilizing Equipment
KR101055664B1 (en) Sterilization and detoxification method using metal oxide catalyst and plasma
JP5721107B2 (en) Decontamination method for organic compounds
JP7488212B2 (en) Sterilization and deodorization machine
RU2743881C1 (en) Method for disinfection of the air and the passenger compartment of public transport
JPH04135615A (en) Gas treating device
JPS63317155A (en) Method and apparatus for purifying atmosphere in prescribed space
KR20220055003A (en) Small household sterilization device detachably placed outside the water tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20131225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150417

R150 Certificate of patent or registration of utility model

Ref document number: 5735761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250