JP2012023990A - Circular type culture method of photosynthesis microalgae - Google Patents

Circular type culture method of photosynthesis microalgae Download PDF

Info

Publication number
JP2012023990A
JP2012023990A JP2010163800A JP2010163800A JP2012023990A JP 2012023990 A JP2012023990 A JP 2012023990A JP 2010163800 A JP2010163800 A JP 2010163800A JP 2010163800 A JP2010163800 A JP 2010163800A JP 2012023990 A JP2012023990 A JP 2012023990A
Authority
JP
Japan
Prior art keywords
culture
photosynthesis
microalgae
unit
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010163800A
Other languages
Japanese (ja)
Other versions
JP5657938B2 (en
Inventor
Kwan Ho Kim
クワン ホ キム
Hee-Gyoo Kang
ヒーギュー カン
Young Il Kwon
ヨン イル クウォン
Sun Jong Kim
スン ジョン キム
Hee Joung Lim
ヒー ジョウン イム
Mi Jon Kim
ミ ジョン キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAIROS GLOBAL CO Ltd
Industry Academic Cooperation Foundation of Eulji University
Original Assignee
KAIROS GLOBAL CO Ltd
Industry Academic Cooperation Foundation of Eulji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAIROS GLOBAL CO Ltd, Industry Academic Cooperation Foundation of Eulji University filed Critical KAIROS GLOBAL CO Ltd
Priority to JP2010163800A priority Critical patent/JP5657938B2/en
Publication of JP2012023990A publication Critical patent/JP2012023990A/en
Application granted granted Critical
Publication of JP5657938B2 publication Critical patent/JP5657938B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a circular type culture method of photosynthesis microalgae using an circular type optical bioreactor including a first culture part, a tubular second culture part, and a pump part which connects the first culture part and the second culture part.SOLUTION: The circular type culture method includes: (i) a stage in which a culture solution into which an object photosynthesis microalgae has been inoculated is supplied into the first culture part of the optical bioreactor including the first culture part, the tubular second culture part, and the pump part which connects the first culture part and the second culture part, and which irradiates light and carries out the first degree culture; (ii) a stage in which a fresh culture solution is further supplied after the first degree culture is completed, and is mixed with the culture solution in which the first degree culture has been carried out, then the mixed culture solution is circulated in the order of the second culture part and the first culture part through the pump part, and which irradiates light to the second culture part and carries out the additional culture; and (iii) a stage in which a culture solution is collected after the culture is completed, and which filters the solution and acquires the cell of the photosynthesis microalgae.

Description

本発明は、光合性微細藻類の循環式培養方法に関する。さらに具体的に、本発明は、第1培養部、管状の第2培養部、及び前記第1培養部及び第2培養部を連結するポンプ部を備えた循環型の光生物反応器を利用した光合性微細藻類の循環式培養方法に関する。   The present invention relates to a circulating culture method for photosynthesis microalgae. More specifically, the present invention utilizes a circulation type photobioreactor provided with a first culture section, a tubular second culture section, and a pump section connecting the first culture section and the second culture section. The present invention relates to a circulating culture method for photosynthesis microalgae.

現在、全世界的に耕作されている農作物類は、人類の主な食糧供給源として使われて来たが、農地面積当たりの収穫量が多くなく、太陽エネルギーの利用率が極めて低い。これに比べて、水中で太陽エネルギーと二酸化炭素、少量含有された無機塩類で生育することができる微細光合性藻類は、農作物の生育が不可能な地域でも生育が可能であり、農作物と比較して単位耕作面積当たり20倍以上のタンパク質を得ることができるだけではなく、多種の有用物質と微生物あるいは動植物細胞から生産が不可能な天然の珍しい物質の生産が可能である。特に、細胞の大きさが大きな藻類は、容易に沈澱されて多様な方法によって抽出及び分離することが可能であり、主なエネルギー源として太陽エネルギーを使うことで、地球上に照射される太陽エネルギーの効率的な利用が可能であり、炭素源として二酸化炭素を使い、副産物として酸素を放出する光合性過程を有しており、大気汚染を低める機能も有している。   Currently, crops that are cultivated all over the world have been used as the main food source for human beings, but the yield per farmland is not large and the utilization rate of solar energy is very low. Compared to this, fine photosynthetic algae that can grow in water with solar energy, carbon dioxide, and small amounts of inorganic salts can grow in areas where crops cannot grow. Thus, it is possible not only to obtain 20 times or more protein per unit cultivation area, but also to produce various kinds of useful substances and natural rare substances that cannot be produced from microorganisms or animal and plant cells. In particular, algae with large cell size can be easily precipitated and extracted and separated by various methods, and solar energy irradiated on the earth can be obtained by using solar energy as a main energy source. It can be used efficiently, has a photosynthesis process that uses carbon dioxide as a carbon source and releases oxygen as a by-product, and has a function of reducing air pollution.

これにより、主にクロレラ(Chlorella)属、ドナリエラ(Dunaliella)属、スピルリナ(Spirulina)属、この中でも、スピルリナ属の光合性微細藻類(以下、便宜上、「スピルリナ」と称する)は、他の微細光合性藻類に比べて細胞の大きさが大きく、アルカリ汚染性の環境でも容易に成長することができる藻類であって、食品、医薬、工業用製品などの多様な製品に応用されており、研究が活発に進められている。一方、大韓民国は、四季が明らかで季節による温度変化及び日照量の差が激しい気候的な特性のために、スピルリナの野外培養よりは室内培養と関連した技術が開発されている。   As a result, mainly the genus Chlorella, the genus Dunaliella, and the genus Spirulina, among these, the photosynthesis microalgae of the genus Spirulina (hereinafter referred to as “Spirulina” for the sake of convenience) Compared to marine algae, the size of the cells is large and the algae can grow easily even in an alkali-contaminated environment, and it has been applied to various products such as foods, pharmaceuticals, and industrial products. It is being actively promoted. On the other hand, South Korea has developed a technique related to indoor culture rather than outdoor culture of Spirulina because of the climatic characteristics that the seasons are obvious and the temperature changes and the amount of sunshine vary greatly.

例えば、特許文献1には、NaOHの代わりに炭を付け加えてpHを調節すると同時に、炭素源として活用してスピルリナ藻類を培養する方法が開示されており、特許文献2には、スピルリナ藻類の成長最適化及び最大収獲のために、窒素及び炭素の濃度を調節した培地組成物が開示されており、特許文献3には、上部に蓋を備えて内部にpHセンサーと分散器とが設けられた培養水槽、蛍光灯が備えられた培養水槽枠、pH調節器、エアポンプ及び二酸化炭素培養タンクを含む微細藻類用の高密度培養装置が開示されており、特許文献4には、培養容器を横に配された内部筒と外部筒とからなる二重円筒状に成形すると同時に、少なくとも外部筒を可視光線を透過する透明材料で構成し、ガス注入口を培養容器内の下部に開口させた微細藻類の培養装置が開示されている。しかし、炭を利用する場合には、炭にスピルリナ藻類が吸着されて、結果的には、生産性を悪化させるという問題点があり、新たな培地を使う場合には、生産性の向上程度より培養液の単価上昇程度がさらに高くて、実際に活用されることができなかった。それだけではなく、スピルリナ藻類は、光合性細菌に属するので、スピルリナ藻類を培養する場合には、光を十分な量で照射しなければならないが、培養時間が経過するにつれて培養装置の表面にスピルリナ藻類が固着されて、光の照射量を減少させるので、経時的に培養効率が低下するという問題点があった。   For example, Patent Document 1 discloses a method of adding spruce instead of NaOH to adjust pH, and simultaneously cultivating Spirulina algae using carbon as a carbon source. Patent Document 2 discloses growth of Spirulina algae. A medium composition in which the concentration of nitrogen and carbon is adjusted for optimization and maximum yield is disclosed. Patent Document 3 is provided with a lid on the top and a pH sensor and a disperser inside. A high-density culture apparatus for microalgae including a culture tank, a culture tank frame equipped with a fluorescent lamp, a pH controller, an air pump, and a carbon dioxide culture tank is disclosed. A microalgae that is formed into a double cylinder consisting of an arranged inner cylinder and outer cylinder, and at the same time, at least the outer cylinder is made of a transparent material that transmits visible light, and the gas inlet is opened in the lower part of the culture vessel Culture apparatus is disclosed. However, when using charcoal, spirulina algae are adsorbed on the charcoal, and as a result, there is a problem that the productivity is deteriorated. The increase in the unit price of the culture broth was even higher and could not be used in practice. Not only that, spirulina algae belong to photosynthesis bacteria, so when cultivating spirulina algae, it is necessary to irradiate with a sufficient amount of light. Since the amount of light is reduced and the amount of light irradiation is reduced, there is a problem that the culture efficiency decreases with time.

大韓民国特許公開第2004−0073693号Korean Patent Publication No. 2004-0073693 大韓民国特許公開第2006−17033号Korean Patent Publication No. 2006-17033 大韓民国特許登録第420492号Korean Patent Registration No. 442092 大韓民国特許登録第609736号Korean Patent Registration No. 609736

しかし、前述した培養方法を使って雑菌の汚染を防止することはできたが、培養装置の表面に増殖された光合性微細藻類が過度に固着されて、経時的に培養効率が低下するという問題点は相変らず解決されていない実情である。このような問題を解決することができれば、光合性微細藻類の培養効率が著しく増大して、より経済的に光合性微細藻類を生産することが期待されるが、いまだには何らの成果が報告されていない。本発明は、光合性微細藻類の固着を減少させて光合性微細藻類の培養効率を増大させることができる培養方法を提供する。   However, although the above-mentioned culture method could be used to prevent contamination of germs, there was a problem that the photosynthesis microalgae grown on the surface of the culture device were excessively fixed and the culture efficiency decreased over time. The point is still the situation that has not been solved. If such problems can be solved, the cultivation efficiency of photosynthesis microalgae is expected to increase significantly, and photosynthesis microalgae are expected to be produced more economically. However, no results have been reported yet. Not. The present invention provides a culture method capable of increasing the efficiency of culturing photosynthesis microalgae by reducing the fixation of photosynthesis microalgae.

本発明者は、培養装置の表面に増殖された光合性微細藻類が過度に固着される問題点を解決しようと鋭意研究努力した結果、通常の光生物反応器に、培養配管及びポンプが追加的に備えられた管状の光生物反応器を用いて光合性微細藻類を循環式で培養する場合、光合性微細藻類の培養液が光に露出される面積が極大化され、前記培養液が循環されて、培養装置の表面に増殖された光合性微細藻類が過度に固着されないということを確認し、本発明を完成した。   As a result of earnest research efforts to solve the problem of excessive fixation of the photosynthesis microalgae grown on the surface of the culture apparatus, the present inventor has added culture pipes and pumps to a normal photobioreactor. When the photosynthesis microalgae are cultured in a circulating manner using the tubular photobioreactor provided in the above, the area where the photosynthesis microalgae culture solution is exposed to light is maximized, and the culture solution is circulated. Thus, it was confirmed that the photosynthesis microalgae grown on the surface of the culture apparatus were not excessively fixed, and the present invention was completed.

本発明の一形態による光合性微細藻類の循環式培養方法が提供される。前記循環式培養方法は、
(i)光生物反応器の第1培養部に、対象光合性微細藻類が接種された培養液を投入し、光を照射して初度培養する段階と、
(ii)前記初度培養が終了した後、新鮮な培養液をさらに投入して、初度培養された前記培養液と混合した後、該混合された培養液を前記光生物反応器の前記第1培養部に連結された管状の第2培養部に移動させる段階と、
(iii)前記第2培養部に移動した前記培養液に光を照射して追加培養する段階と、
(iv)前記追加培養された培養液を再び前記光生物反応器の前記第1培養部に循環させる段階と、
(v)培養が終了した後、前記培養液を回収し、回収した前記培養液を濾過して光合性微細藻類の菌体を収得する段階と、を含む。
A circulating culture method for photosynthesis microalgae according to an aspect of the present invention is provided. The circulating culture method includes:
(I) The first culture part of the photobioreactor is charged with the culture solution inoculated with the target photosynthesis microalgae, irradiated with light, and initially cultured;
(Ii) After the completion of the initial culture, a fresh culture solution is further added and mixed with the culture solution which has been cultured for the first time, and then the mixed culture solution is used for the first culture of the photobiological reactor. Moving to a tubular second culture section connected to the section;
(Iii) irradiating the culture medium moved to the second culture unit with light to perform additional culture;
(Iv) circulating the additional cultured medium again to the first culture part of the photobioreactor;
(V) collecting the culture solution after the culture is completed, and filtering the collected culture solution to obtain cells of the photosynthesis microalgae.

本発明の他の形態による循環式培養方法が提供される。前記循環式培養方法は、
(i)培養タンクを有する第1培養部と、管状である第2培養部と、前記第2培養部の間に連結されたポンプ部とを備えた光生物反応器において、前記第1培養部に、対象光合性微細藻類が接種された培養液を投入し、光を照射して初度培養する段階と、
(ii)前記初度培養が終了した後、新鮮な培養液をさらに投入して、初度培養された前記培養液と混合した後、該混合された培養液を前記ポンプ部を通じて前記第2培養部及び前記第1培養部の順序で循環させ、前記第2培養部に光を照射して追加培養する段階と、
(iii)培養が終了した後、培養液を回収し、回収した前記培養液を濾過して光合性微細藻類の菌体を収得する段階と、を含む。
A circulating culture method according to another aspect of the present invention is provided. The circulating culture method includes:
(I) In the photobioreactor provided with the 1st culture part which has a culture tank, the 2nd culture part which is tubular, and the pump part connected between the 2nd culture part, the 1st culture part , Put the culture solution inoculated with the target photosynthesis microalgae, irradiate light and cultivate for the first time,
(Ii) After the completion of the initial culture, a fresh culture medium is further added and mixed with the culture medium that has been initially cultured, and then the mixed culture medium is passed through the pump unit to the second culture unit and Circulating in the order of the first culture part, irradiating the second culture part with light and further culturing;
(Iii) collecting the culture solution after the culture is completed, and filtering the collected culture solution to obtain the cells of the photosynthesis microalgae.

本発明の光合性微細藻類の循環式培養方法を使えば、培養装置の表面に光合性微細藻類の固着を防止して、光合性微細藻類の培養効率を増大させることができるので、スピルリナを含む光合性微細藻類のより経済的な生産に広く活用されうる。   If the circulation type culture method of the photosynthesis microalgae of the present invention is used, the photosynthesis microalgae can be prevented from sticking to the surface of the culture apparatus, and the culture efficiency of the photosynthesis microalgae can be increased. It can be widely used for more economical production of photosynthesis microalgae.

本発明の光合性微細藻類の循環式培養方法に利用される光生物反応器の一実施形態を示す概要図である。It is a schematic diagram which shows one Embodiment of the photobiological reactor utilized for the circulation type culture method of the photosynthesis microalgae of this invention. 本発明の光合性微細藻類の循環式培養方法に利用される光生物反応器に含まれた第1培養部の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the 1st culture part contained in the photobiological reactor utilized for the circulation type culture method of the photosynthesis microalgae of this invention. 本発明の光合性微細藻類の循環式培養方法に利用される光生物反応器に含まれた第2培養部の一実施形態を示す平面図である。It is a top view which shows one Embodiment of the 2nd culture part contained in the photobiological reactor utilized for the circulation type culture method of the photosynthesis microalgae of this invention.

本発明者は、スピルリナを含む光合性微細藻類を培養するに当って、培養装置の表面に光合性微細藻類が過度に固着される原因を把握しようと多様な研究を行った。その結果、光合性微細藻類が過度に固着される原因は、二つに把握されたが、一つは、光合性微細藻類を培養するに当って、明条件と暗条件とを規則的に付与することによって、光合性微細藻類の成長だけではなく、個体数の増殖がともに隋伴されるものであり、他の一つは、光合性微細藻類の培養時に培養液がほとんど流動されないか、または培養液の流動が制限されて培養液の流動程度が少ない部位で光合性微細藻類の固着が始まり、これより固着された領域が拡張されるものである。   The present inventor conducted various studies to grasp the cause of excessive fixation of the photosynthesis microalgae on the surface of the culture apparatus when culturing the photosynthesis microalgae containing spirulina. As a result, two causes of excessive fixation of photosynthesis microalgae have been grasped. One is that light conditions and dark conditions are regularly provided when culturing photosynthesis microalgae. As a result, not only the growth of the photosynthesis microalgae but also the growth of the population is accompanied, and the other one is that the culture solution hardly flows during the culture of the photosynthesis microalgae, or The fixation of the photosynthesis microalgae begins at a site where the flow of the culture solution is limited and the flow rate of the culture solution is small, and the fixed region is expanded.

本発明者は、前記原因を除去するために、光合性微細藻類の培養時に明条件のみを付与することで、光合性微細藻類の個体数の増殖速度を低下させ、攪拌機を用いて培養液を十分に流動させようとしたが、攪拌機が備えられた形態の光生物反応器を使う場合、攪拌機の撹拌速度を増加させても、培養液を十分に流動させることができないということを確認した。   In order to remove the cause, the present inventor reduces the growth rate of the photosynthesis microalgae population by providing only light conditions during cultivation of the photosynthesis microalgae, and uses a stirrer to remove the culture solution. Although it tried to flow sufficiently, it was confirmed that when using a photobioreactor equipped with a stirrer, the culture solution could not be flowed sufficiently even if the stirring speed of the stirrer was increased.

これにより、攪拌機を使う方式ではない他の方式で光合性微細藻類を含む培養液を流動させようとしたが、培養液自体を循環させる方式を利用する場合、攪拌機を使う方式よりも培養液を十分に流動させることができるということを確認し、従来のスピルリナ培養器に光源が付着された培養配管及びポンプを備えた管状のスピルリナ培養装置を用いて培養液自体を循環させる方式でスピルリナを培養する方法を考案した。   As a result, the culture solution containing the photosynthesis microalgae was tried to flow by another method that was not a method using a stirrer, but when using a method of circulating the culture solution itself, the culture solution was used rather than the method using a stirrer. After confirming that it can flow sufficiently, cultivate Spirulina by circulating the culture solution itself using a tubular Spirulina culture device equipped with a culture pipe and pump with a light source attached to a conventional Spirulina incubator Devised a way to do.

本発明によれば、従来の光合性微細藻類の培養方法とは異なって、第2光源によって光の照射が可能な培養配管及び前記培養配管と光生物反応器の本体との間を連結し、これらの間で培養液の循環を可能にするポンプが備えられた循環型の光生物反応器を用いて、前記培養配管及び光生物反応器の本体の間で培養液を一定速度で循環させ、光が供給される培養配管の面積を極大化し、培養液を全体的に十分に流動させることによって、培養配管の表面に光合性微細藻類が固着されないようにしながら、光合性微細藻類を培養することができる。   According to the present invention, unlike the conventional photosynthesis microalgae culturing method, the culture pipe capable of irradiating light with a second light source and the culture pipe and the main body of the photobioreactor are connected, Using a circulating photobioreactor equipped with a pump that enables circulation of the culture solution between them, the culture solution is circulated at a constant speed between the culture pipe and the main body of the photobioreactor, Incubating photosynthesis microalgae while maximizing the area of the culture pipe to which light is supplied and allowing the culture solution to flow sufficiently, preventing the photosynthesis microalgae from sticking to the surface of the culture pipe Can do.

以下、本発明の光合性微生物の循環式培養方法をより詳細に説明する。   Hereinafter, the circulating culture method of the photosynthesis microorganism of the present invention will be described in more detail.

本発明の一形態による光合性微生物の循環式培養方法は、
(i)光生物反応器の第1培養部に、対象光合性微細藻類が接種された培養液を投入し、光を照射して初度培養する段階と、
(ii)前記初度培養が終了した後、新鮮な培養液をさらに投入して、初度培養された前記培養液と混合した後、該混合された培養液を前記光生物反応器の前記第1培養部に連結された管状の第2培養部に移動させる段階と、
(iii)前記第2培養部に移動した前記培養液に光を照射して追加培養する段階と、
(iv)前記追加培養された培養液を再び前記光生物反応器の前記第1培養部に循環させる段階と、
(v)培養が終了した後、前記培養液を回収し、回収した前記培養液を濾過して光合性微細藻類の菌体を収得する段階と、を含む。
A circulating culture method for a photosynthesis microorganism according to one aspect of the present invention includes:
(I) The first culture part of the photobioreactor is charged with the culture solution inoculated with the target photosynthesis microalgae, irradiated with light, and initially cultured;
(Ii) After the completion of the initial culture, a fresh culture solution is further added and mixed with the culture solution which has been cultured for the first time, and then the mixed culture solution is used for the first culture of the photobiological reactor. Moving to a tubular second culture section connected to the section;
(Iii) irradiating the culture medium moved to the second culture unit with light to perform additional culture;
(Iv) circulating the additional cultured medium again to the first culture part of the photobioreactor;
(V) collecting the culture solution after the culture is completed, and filtering the collected culture solution to obtain cells of the photosynthesis microalgae.

この際、前記段階(i)で、対象光合性微細藻類は、特にこれに制限されるものではないが、クロレラ(Chlorella)属、ドナリエラ(Dunaliella)属、スピルリナ(Spirulina)属の微細藻類であることが望ましく、スピルリナ属の微細藻類であることがさらに望ましい。前記培養対象微生物の接種液は、培養タンクに備えられた接種注入口または培地注入口を通じて注入されることが望ましいが、これに制限されるものではない。また、前記段階(i)で、光生物反応器の第1培養部は、光の照射のために第1光源を備えており、前記第1光源は、第1培養部の内部に装着されるか、または外部に装着されるが、前記第1光源が、第1培養部の内部を照射できるように第1培養部の壁体が透明素材で構成されているか、透明素材で構成された採光窓を備えていることが望ましい。前記段階(i)で、照射される光の照度は、特にこれに制限されるものではないが、4,000〜8,000Luxであることが望ましく、初度培養温度は、特にこれに制限されるものではないが、32〜38℃であることが望ましい。前記段階(ii)で、第2培養部の一末端は、前記光生物反応器の本体の培養液排出口と連結されたポンプ部と連結されるが、表面積を最大化するためにジグザグの形態に屈折された管で構成されることが望ましいが、これに制限されるものではない。段階(iii)で、照射される光の照度は、4,000〜8,000Luxであることが望ましいが、これに制限されるのではなく、前記追加培養温度は、特にこれに制限されるものではないが、32〜38であることが望ましい。望ましい一実施形態で、前記第2培養部の培養配管で循環中である培養液の流速は、流速調節器で調節される。前記流速調節器は、前記ポンプ部に電気的に連結されるか、ポンプ部内に内蔵されることが望ましいが、これに制限されるものではない。前記流速は、5〜50cm/sに調節されることが望ましく、10〜40cm/sに調節されることがさらに望ましく、20〜30cm/sに調節されることが最も望ましい。前記培養液の流速の調節は、スピルリナのような微細藻類の成功的な培養のために重要な因子であるが、これは、スピルリナの場合、多細胞性の螺旋形の微細藻類として培養基の内壁によく付着される性質を有しているためである。流速が低い場合には、微細藻類の付着が発生し、不適切な流体動力学(hydrodynamics)によって、ガス交換及び光の照射が不良になる。逆に、流速が高い場合には、スピルリナ内の有用物質の損失をもたらす。したがって、前記流速は、適切に調節されなければならない。   At this time, in the step (i), the target photosynthesis microalga is not particularly limited, but is a microalga of the genus Chlorella, the genus Dunaliella, and the genus Spirulina. It is desirable that it is a microalga of the genus Spirulina. The inoculum of the microorganism to be cultured is preferably injected through an inoculation inlet or a medium inlet provided in the culture tank, but is not limited thereto. In the step (i), the first culture unit of the photobioreactor includes a first light source for light irradiation, and the first light source is mounted inside the first culture unit. Although it is attached to the outside, the wall of the first culture part is made of a transparent material or the daylight is made of a transparent material so that the first light source can irradiate the inside of the first culture part. It is desirable to have a window. In the step (i), the illuminance of the irradiated light is not particularly limited, but is preferably 4,000 to 8,000 Lux, and the initial culture temperature is particularly limited thereto. Although it is not a thing, it is desirable that it is 32-38 degreeC. In the step (ii), one end of the second culture unit is connected to a pump unit connected to a culture medium outlet of the main body of the photobioreactor. However, a zigzag configuration is used to maximize the surface area. However, the present invention is not limited to this. In step (iii), the illuminance of the irradiated light is preferably 4,000 to 8,000 Lux, but is not limited thereto, and the additional culture temperature is particularly limited thereto. Although it is not, it is desirable that it is 32-38. In a preferred embodiment, the flow rate of the culture solution circulating in the culture pipe of the second culture unit is adjusted by a flow rate controller. The flow rate adjuster is preferably electrically connected to the pump unit or built in the pump unit, but is not limited thereto. The flow rate is preferably adjusted to 5 to 50 cm / s, more preferably 10 to 40 cm / s, and most preferably 20 to 30 cm / s. Control of the flow rate of the culture medium is an important factor for the successful cultivation of microalgae such as Spirulina, which in the case of Spirulina is the inner wall of the culture medium as multicellular spiral microalgae. This is because it has a property of being well adhered to the surface. When the flow rate is low, microalgae adherence occurs, and gas exchange and light irradiation become poor due to improper fluid dynamics. On the contrary, when the flow rate is high, it causes loss of useful substances in Spirulina. Therefore, the flow rate must be adjusted appropriately.

一方、前記段階(i)の初度培養及び段階(iii)の追加培養時のpHは、特にこれに制限されるものではないが、8.5〜10に維持することが望ましい。   On the other hand, the pH during the initial culture in the step (i) and the additional culture in the step (iii) is not particularly limited, but is preferably maintained at 8.5 to 10.

本発明の一実施形態で、前記第1培養部は、培養タンクを含み、前記第1培養部及び前記第2培養部の間で、前記培養液の移動及び循環は、ポンプを用いて行うことが望ましいが、これに制限されるものではない。この場合、前記第1培養部を通じて二酸化炭素及び窒素の混合ガスを供給することによって、光合性微細藻類の光合性を行い、第1培養部内の陽圧を維持して空気を通じる雑菌の汚染を防止することが望ましく、前記陽圧の範囲は、特にこれに制限されるものではないが、通常的な微細藻類の培養時に使われる0.1〜1.0kg/cmfであることが望ましい。 In one embodiment of the present invention, the first culture unit includes a culture tank, and the culture medium is moved and circulated between the first culture unit and the second culture unit using a pump. However, it is not limited to this. In this case, by supplying a mixed gas of carbon dioxide and nitrogen through the first culture unit, photosynthesis of the photosynthesis microalgae is performed, and contamination of germs through the air is maintained while maintaining the positive pressure in the first culture unit. The range of the positive pressure is preferably not limited to this, but is preferably 0.1 to 1.0 kg / cm 2 f used in normal cultivation of microalgae. .

本発明の他の形態による光合性微生物の循環式培養方法は、
(i)培養タンクを有する第1培養部と、管状である第2培養部と、前記第2培養部の間に連結されたポンプ部とを備えた光生物反応器において、前記第1培養部に、対象光合性微細藻類が接種された培養液を投入し、光を照射して初度培養する段階と、
(ii)前記初度培養が終了した後、新鮮な培養液をさらに投入して、初度培養された前記培養液と混合した後、該混合された培養液を前記ポンプ部を通じて前記第2培養部及び前記第1培養部の順序で循環させ、前記第2培養部に光を照射して追加培養する段階と、
(iii)培養が終了した後、培養液を回収し、回収した前記培養液を濾過して光合性微細藻類の菌体を収得する段階と、を含む。
A circulating culture method for a photosynthesis microorganism according to another embodiment of the present invention includes:
(I) In the photobioreactor provided with the 1st culture part which has a culture tank, the 2nd culture part which is tubular, and the pump part connected between the 2nd culture part, the 1st culture part , Put the culture solution inoculated with the target photosynthesis microalgae, irradiate light and cultivate for the first time,
(Ii) After the completion of the initial culture, a fresh culture medium is further added and mixed with the culture medium that has been initially cultured, and then the mixed culture medium is passed through the pump unit to the second culture unit and Circulating in the order of the first culture part, irradiating the second culture part with light and further culturing;
(Iii) collecting the culture solution after the culture is completed, and filtering the collected culture solution to obtain the cells of the photosynthesis microalgae.

この際、前記段階(i)で、培養対象の光合性微細藻類は、特にこれに制限されるものではないが、クロレラ属、ドナリエラ属、スピルリナ属の微細藻類であることが望ましく、スピルリナ属の微細藻類であることがさらに望ましい。前記培養対象微生物の接種液は、培養タンクに備えられた接種注入口または培地注入口を通じて注入されることが望ましいが、これに制限されるものではない。また、前記段階(i)で、第1培養部は、光の照射のために第1光源を備えており、前記第1光源は、光生物反応器の内部に装着されるか、または外部に装着されるが、外部に装着される場合には、前記第1光源が培養タンクの内部を照射できるように培養タンクの壁体が透明素材で構成されているか、透明素材で構成された採光窓を備えていることが望ましい。前記段階(i)で、第1培養部に照射される光の照度は、特にこれに制限されるものではないが、4,000〜8,000Luxであることが望ましく、初度培養温度は、特にこれに制限されるものではないが、32〜38℃であることが望ましい。   At this time, in the step (i), the photosynthesis microalgae to be cultured is not particularly limited, but is preferably a microalga of the genus Chlorella, Donariella, or Spirulina, It is further desirable to be a microalgae. The inoculum of the microorganism to be cultured is preferably injected through an inoculation inlet or a medium inlet provided in the culture tank, but is not limited thereto. In the step (i), the first culture unit includes a first light source for light irradiation, and the first light source is mounted inside the photobioreactor or externally. Although it is mounted, when it is mounted outside, the wall of the culture tank is made of a transparent material or the daylighting window made of a transparent material so that the first light source can irradiate the inside of the culture tank It is desirable to have. In the step (i), the illuminance of light applied to the first culture part is not particularly limited, but is preferably 4,000 to 8,000 Lux, and the initial culture temperature is particularly Although not restricted to this, it is desirable that it is 32-38 degreeC.

段階(ii)で、第2培養部に照射される光の照度は、4,000〜8,000Luxであることが望ましいが、これに制限されるものではなく、前記追加培養温度は、特にこれに制限されるものではないが、32〜38℃であることが望ましい。   In step (ii), the illuminance of the light applied to the second culture part is preferably 4,000 to 8,000 Lux, but is not limited thereto, and the additional culture temperature is not limited to this. Although it is not restrict | limited to, it is desirable that it is 32-38 degreeC.

望ましい一実施形態で、前記第2培養部の培養配管で循環中である培養液の流速は、流速調節器で調節される。前記流速調節器は、前記ポンプ部に電気的に連結されるか、ポンプ部内に内蔵されることが望ましいが、これに制限されるものではない。前記流速は、5〜50cm/sに調節されることが望ましく、10〜40cm/sに調節されることがさらに望ましく、20〜30cm/sに調節されることが最も望ましい。流速調節の重要性は、上述した通りである。   In a preferred embodiment, the flow rate of the culture solution circulating in the culture pipe of the second culture unit is adjusted by a flow rate controller. The flow rate adjuster is preferably electrically connected to the pump unit or built in the pump unit, but is not limited thereto. The flow rate is preferably adjusted to 5 to 50 cm / s, more preferably 10 to 40 cm / s, and most preferably 20 to 30 cm / s. The importance of the flow rate adjustment is as described above.

一方、前記段階(i)の初度培養及び段階(ii)の追加培養時のpHは、特にこれに制限されるものではないが、pH8.5〜10に維持することが望ましい。同時に、第1培養部を通じて二酸化炭素及び窒素の混合ガスを供給することによって、光合性微細藻類の光合性を行い、培養タンク内に陽圧を維持して空気を通じる雑菌の汚染を防止することが望ましく、前記陽圧の範囲は、特にこれに制限されるものではないが、通常的な微細藻類の培養時に使われる0.1〜1.0kg/cmfであることが望ましい。 On the other hand, the pH during the initial culture in the step (i) and the additional culture in the step (ii) is not particularly limited, but is preferably maintained at pH 8.5 to 10. At the same time, by supplying a mixed gas of carbon dioxide and nitrogen through the first culture section, photosynthesis of the photosynthesis microalgae is performed, and positive contamination is maintained in the culture tank to prevent contamination of germs through the air. Although the range of the positive pressure is not particularly limited to this, it is preferably 0.1 to 1.0 kg / cm 2 f used during normal cultivation of microalgae.

以下、本発明の光合性微細藻類の循環式培養方法に使われる光生物反応器を添付図面を用いて具体的に説明する。   Hereinafter, the photobioreactor used in the circulating culture method for photosynthesis microalgae of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の循環式培養方法に使われる光生物反応器の一実施形態を示す概要図である。図1に示されたように、前記光生物反応器は、大きく第1培養部100、第2培養部300及び前記第1培養部100及び第2培養部300の間に培養液を循環させるように、前記第1培養部100及び第2培養部300に連結されたポンプ部200を含む。   FIG. 1 is a schematic diagram showing an embodiment of a photobioreactor used in the circulating culture method of the present invention. As shown in FIG. 1, the photobiological reactor largely circulates a culture solution between the first culture unit 100, the second culture unit 300, and the first culture unit 100 and the second culture unit 300. The pump unit 200 is connected to the first culture unit 100 and the second culture unit 300.

第1培養部100、ポンプ部200及び第2培養部300は、互いに連通されており、培養液が、第1培養部100→ポンプ部200→第2培養部300→第1培養部100の順序で循環しながら、光合性微細藻類を培養できるようにする。   The first culture unit 100, the pump unit 200, and the second culture unit 300 are in communication with each other, and the culture solution is in the order of the first culture unit 100 → the pump unit 200 → the second culture unit 300 → the first culture unit 100. Cultivate photosynthetic microalgae while circulating in

第2培養部300は、第1培養部100の外部に離隔して配されうる。第1培養部100は、図1に示したように、円筒形で提供されることがあるが、この実施例が、これに制限されるものではない。例えば、第1培養部100の形状は、多角筒状に多様に変形されうる。第2培養部300は、管状に提供され、例えば、多様な形状に成形された配管を含みうる。   The second culture unit 300 may be spaced apart from the first culture unit 100. As shown in FIG. 1, the first culture unit 100 may be provided in a cylindrical shape, but this embodiment is not limited thereto. For example, the shape of the first culture unit 100 can be variously modified into a polygonal cylinder. The second culture unit 300 is provided in a tubular shape, and may include, for example, piping formed into various shapes.

ポンプ部200は、培養液が第1培養部100及び第2培養部300の間で循環するように構成することができる。例えば、ポンプ部200は、第1培養部100と第2培養部300との間に存在し、第1培養部100の第1培養液排出口132と連通される第3培養液流入口210、ポンプ220及び第2培養部300の第2培養液流入口310と連通する第3培養液排出口230を備えることができる。これにより、第1培養部100から流入された培養液が第2培養部300に伝達され、結果的に、培養液が、第1培養部100→ポンプ部200→第2培養部300→第1培養部100の順序で循環する。前記ポンプ部200は、前記2培養部300を循環する培養液の流速をポンプ部200に電気的に連結された流速調節器を通じて調節することができる。望ましい実施形態で、前記流速器は、前記ポンプ部200に内蔵される。前記培養液の流速の調節は、スピルリナのような微細藻類の成功的な培養のために重要な因子であるが、これは、スピルリナの場合、多細胞性の螺旋形の微細藻類として培養基の内壁によく付着される性質を有しているためである。流速が低い場合には、微細藻類の付着が発生し、不適切な流体動力学によって、ガス交換及び光の照射が不良になる。逆に、流速が高い場合には、スピルリナ内の有用物質の損失をもたらす。したがって、前記流速は、適切に調節されなければならない。前記流速を1〜50cm/sに調節することが望ましい。さらに望ましくは、前記流速は、10〜50cm/sであり、最も望ましい実施形態で、前記流速は、20〜30cm/sである。   The pump unit 200 can be configured such that the culture solution circulates between the first culture unit 100 and the second culture unit 300. For example, the pump unit 200 exists between the first culture unit 100 and the second culture unit 300, and is connected to the first culture solution outlet 132 of the first culture unit 100. A third culture medium outlet 230 communicating with the pump 220 and the second culture medium inlet 310 of the second culture unit 300 may be provided. As a result, the culture solution flowing from the first culture unit 100 is transmitted to the second culture unit 300. As a result, the culture solution is changed from the first culture unit 100 → the pump unit 200 → the second culture unit 300 → first. Circulate in the order of the culture unit 100. The pump unit 200 may adjust the flow rate of the culture medium circulating through the second culture unit 300 through a flow rate controller electrically connected to the pump unit 200. In a preferred embodiment, the flow velocity device is built in the pump unit 200. Control of the flow rate of the culture medium is an important factor for the successful cultivation of microalgae such as Spirulina, which in the case of Spirulina is the inner wall of the culture medium as multicellular spiral microalgae. This is because it has a property of being well adhered to the surface. When the flow rate is low, microalgae adherence occurs and gas exchange and light irradiation are poor due to improper fluid dynamics. On the contrary, when the flow rate is high, it causes loss of useful substances in Spirulina. Therefore, the flow rate must be adjusted appropriately. It is desirable to adjust the flow rate to 1 to 50 cm / s. More preferably, the flow rate is 10-50 cm / s, and in the most preferred embodiment, the flow rate is 20-30 cm / s.

図2は、本発明の光生物反応器に含まれた第1培養部100の一実施形態を示す断面図である。図2に示されたように、第1培養部100には、円筒形培養タンク101、接種注入口110、ガス注入口111、センサー装着ポート120、第1培養液流入口131、第1培養液排出口132及び最終排出口133、圧力調節弁112及び培地注入口134、第1光源140及び攪拌機150、及び温度調節器160が結合されうる。   FIG. 2 is a cross-sectional view showing an embodiment of the first culture unit 100 included in the photobiological reactor of the present invention. As shown in FIG. 2, the first culture unit 100 includes a cylindrical culture tank 101, an inoculation inlet 110, a gas inlet 111, a sensor mounting port 120, a first culture fluid inlet 131, and a first culture fluid. The discharge port 132 and the final discharge port 133, the pressure control valve 112 and the medium injection port 134, the first light source 140 and the stirrer 150, and the temperature controller 160 may be combined.

例えば、接種注入口110は、培養タンク101の上端に結合され、ガス注入口111及びセンサー装着ポート120は、培養タンク101の下部に結合され、圧力調節弁112及び培地注入口134は、培養タンク101の上部に結合されうる。しかし、このような配置は、例示的に提供され、培養タンク101の形状などの変形によって多様に変形されうる。   For example, the inoculation inlet 110 is coupled to the upper end of the culture tank 101, the gas inlet 111 and the sensor mounting port 120 are coupled to the lower part of the culture tank 101, and the pressure control valve 112 and the culture medium inlet 134 are the culture tank. 101 can be coupled to the top. However, such an arrangement is provided by way of example, and can be variously modified by changing the shape of the culture tank 101 or the like.

最初の初度培養時、光合性微細藻類の接種液は、接種注入口110または培地注入口134を通じて注入可能であるが、滅菌環境を維持するため、接種注入口110を通じて注入されることが望ましい。   At the first initial culture, the photosynthesis microalgae inoculum can be injected through the inoculation inlet 110 or the medium inlet 134, but it is desirable to inject through the inoculation inlet 110 in order to maintain a sterile environment.

一方、ガス注入口111は、多様なガス、例えば、窒素と二酸化炭素との混合ガスを培養タンク101内に注入するように提供されることがある。これにより、培養タンク101の内部圧力を外部より高い陽圧に維持させ、光合性微細藻類の培養中に外部から由来された雑菌の流入を防止することができる。この際、陽圧の範囲は、特にこれに制限されるものではないが、通常的な微細藻類の培養時に使われる0.1〜1.0kg/cmfであることが望ましい。 Meanwhile, the gas inlet 111 may be provided to inject various gases, for example, a mixed gas of nitrogen and carbon dioxide, into the culture tank 101. Thereby, the internal pressure of the culture tank 101 can be maintained at a positive pressure higher than the outside, and inflow of germs derived from the outside during the cultivation of the photosynthesis microalgae can be prevented. At this time, the range of the positive pressure is not particularly limited, but is preferably 0.1 to 1.0 kg / cm 2 f used in normal microalgae culture.

前記センサー装着ポート120には、培養中である培養物の培養状態を確認するために、多様なセンサー装置、例えば、pHセンサー、二酸化炭素濃度センサー、溶存酸素濃度センサー及び温度センサーが装着されうる。   Various sensor devices such as a pH sensor, a carbon dioxide concentration sensor, a dissolved oxygen concentration sensor, and a temperature sensor can be attached to the sensor attachment port 120 in order to confirm the culture state of the culture being cultured.

一方、前記第1培養液流入口131を通じて前記第2培養部300から移動した培養液が第1培養部100に流入され、第1培養液排出口132を通じて第1培養部100からポンプ部200に培養液が流出され、培養が終了した培養液は、最終排出口133を通じて第1培養部100の外部に放出される。   Meanwhile, the culture medium that has moved from the second culture unit 300 through the first culture solution inlet 131 flows into the first culture unit 100, and passes from the first culture unit 100 to the pump unit 200 through the first culture solution outlet 132. The culture solution is flowed out and the culture solution that has been cultured is discharged to the outside of the first culture unit 100 through the final outlet 133.

例えば、圧力調節弁112は、光合性微細藻類の培養時に発生する酸素の圧力によって開閉される一方向(one−way)弁であって、前記培養部の内部圧力が外部圧力に比べて陽圧に維持される場合には、弁が開放されてガスを外部に排出するが、内部圧力が低下する場合には、弁が閉鎖されてガスの排出が停止されるように構成することができる。   For example, the pressure control valve 112 is a one-way valve that is opened and closed by the pressure of oxygen generated during cultivation of the photosynthesis microalgae, and the internal pressure of the culture unit is positive compared to the external pressure. When the internal pressure is maintained, the valve is opened and the gas is discharged to the outside. However, when the internal pressure is reduced, the valve is closed and the gas discharge is stopped.

前記培地注入口134は、末端が球型である棒状の管(tube)であって、球型の末端の表面には、多数の細孔が存在するスプレーボール状に提供されることがある。これを通じて培地を微細な水流で第1培養部100に分散供給することによって、培地注入口134は、培養部の内部で発生した泡を除去する役割を果たすこともでき、培養が完全に終了して培養物を排出した後、第1培養部100、ポンプ部200及び第2培養部300の内部を洗浄するための洗浄剤を供給する用途としても使われる。   The medium injection port 134 is a rod-shaped tube having a spherical end, and may be provided in the form of a spray ball having a large number of pores on the surface of the spherical end. Through this, the culture medium is dispersedly supplied to the first culture unit 100 with a fine water flow, so that the culture medium injection port 134 can also serve to remove bubbles generated inside the culture unit, and the culture is completely completed. After the culture is discharged, it is also used for supplying a cleaning agent for cleaning the inside of the first culture unit 100, the pump unit 200, and the second culture unit 300.

前記第1光源140は、光合性微細藻類の培養時に光合性を行うことができる光を発光する装置であって、自然光と似ている三波長または五波長の光を発散するが、この際、光源の照度及び明暗周期は、培養条件によって自動変動させることが望ましい。例えば、第1光源140は、培養タンク101の内部に配置される。他の例として、培養タンク101が光を透過させる材質で構成されているか、培養タンク101の一部分に光を透過することができる採光窓が備えられた場合には、第1光源140は、培養タンク101の外面に配置されることもある。   The first light source 140 is a device that emits light capable of performing photosynthesis when cultivating photosynthesis microalgae, and emits light having three or five wavelengths similar to natural light. It is desirable to automatically vary the illuminance and light / dark cycle of the light source depending on the culture conditions. For example, the first light source 140 is disposed inside the culture tank 101. As another example, when the culture tank 101 is made of a material that transmits light, or a daylighting window capable of transmitting light is provided in a part of the culture tank 101, the first light source 140 is used for the culture. It may be disposed on the outer surface of the tank 101.

前記攪拌機150は、培養タンク101の内部下端に備えられ、光合性微細藻類の初度培養時に培養液を混合する役割を果たし、本培養時にも、培養部に残留する培養物と培養液流入口から流入された培養物とを混合する役割を行う。前記温度調節器160は、第1培養部100の外部に付着されて、その温度を調節する役割を行える。温度調節器160は、特にこれに制限されるものではないが、適正温度の水をジャケット(jacket)で循環させることで、所望の培養温度を調節することができるウォータージャケット(water jacket)である。同時に、前記第1培養部100には、その内部を確認することができる視窓がさらに備えられることもある。   The stirrer 150 is provided at the inner bottom of the culture tank 101 and plays a role of mixing the culture solution during the initial culture of the photosynthesis microalgae, and from the culture solution remaining in the culture section and the culture solution inlet port even during the main culture. It performs the role of mixing the flowed culture. The temperature controller 160 may be attached to the outside of the first culture unit 100 to adjust its temperature. The temperature controller 160 is not particularly limited, but is a water jacket that can adjust a desired culture temperature by circulating water at an appropriate temperature through the jacket. . At the same time, the first culture unit 100 may further include a viewing window through which the inside can be confirmed.

図3は、本発明の管状の光生物反応器に含まれた第2培養部300の一実施形態を示す平面図である。図3に示されたように、前記第2培養部300には、ポンプ部(図1の200)の第3培養液排出口230と連通される第2培養液流入口310、培養配管330及び前記培養部の第1培養液流入口131と連通される第2培養液排出口340が備えられている。   FIG. 3 is a plan view showing an embodiment of the second culture unit 300 included in the tubular photobioreactor of the present invention. As shown in FIG. 3, the second culture unit 300 includes a second culture solution inlet 310, a culture pipe 330, and a third culture solution discharge port 230 connected to the pump unit (200 in FIG. 1). A second culture medium outlet 340 communicated with the first culture medium inlet 131 of the culture unit is provided.

第2光源320は、第2培養部300の一部または全体に付着されて備えられうる。例えば、第2光源320は、培養配管330の長手方向に沿って伸張するように培養配管330の外面に結合されうる。前記第2培養部300の培養配管330は、内部に光合性微細藻類を含む培養液を循環させながら、第2光源320から光が供給されて、前記光合性微細藻類が光合性を行うことができる環境を提供する役割ができる。これにより、培養配管330は、第2光源320から発散された光が透過することができる材質で構成され、例えば、培養配管330の全体が光が透過することができる材質で構成されることもでき、光源が備えられた部分のみ光が透過することができる材質で構成することもできる。選択的に、第2光源320は、培養配管内に配置されるが、この場合、前記第2光源320は、培養配管の内壁に設けられることが望ましく、LED素子で構成されることが望ましい。この場合、培養配管は、不透明材質で構成することができる。また、培養時の便宜をはかるために、前記培養配管330の一側端に、センサー装置、例えば、pHセンサー、二酸化炭素濃度センサー、溶存酸素濃度センサー、温度センサーなどをさらに備えることもできる。同時に、前記培養配管330は、培養液が光に露出される面積を極大化するように、細長形管状に構成されることが望ましいが、このように、細長形管状に構成される場合、培養配管330の効率的な配置のために、多重で折れた形態で構成することが望ましい。この場合、第2光源320は、培養配管330の折れた構造の間に多重で提供されることがある。   The second light source 320 may be attached to a part or the whole of the second culture unit 300. For example, the second light source 320 may be coupled to the outer surface of the culture pipe 330 so as to extend along the longitudinal direction of the culture pipe 330. The culture pipe 330 of the second culture unit 300 is supplied with light from the second light source 320 while circulating a culture solution containing the photosynthesis microalgae therein, and the photosynthesis microalgae performs photosynthesis. Can play a role to provide an environment that can Accordingly, the culture pipe 330 is made of a material that can transmit light emitted from the second light source 320. For example, the entire culture pipe 330 may be made of a material that can transmit light. It is also possible to use a material that allows light to pass through only the portion provided with the light source. Optionally, the second light source 320 is disposed in the culture pipe. In this case, the second light source 320 is preferably provided on the inner wall of the culture pipe, and is preferably configured by an LED element. In this case, the culture pipe can be made of an opaque material. In addition, for convenience during culture, a sensor device such as a pH sensor, a carbon dioxide concentration sensor, a dissolved oxygen concentration sensor, or a temperature sensor may be further provided at one end of the culture pipe 330. At the same time, the culture pipe 330 is preferably formed in an elongated tube shape so as to maximize the area where the culture solution is exposed to light. In order to efficiently arrange the pipes 330, it is desirable to configure the pipes 330 in a multiple and folded form. In this case, the second light source 320 may be provided in a multiple manner between the folded structures of the culture pipe 330.

本発明の一実施形態によれば、本発明の第2培養部300の培養配管330は、一つのフレーム(frame)上に直線部と屈曲部とを含む平行に多重で折れた形態で構成され、このように、折れた形態が多段に重畳されるように構成することもできる。また、前記フレームは、前記第2光源320と培養配管330とを固定するための枠であって、前記第2光源320に電力を供給するための電源供給装置をさらに含むこともできる。同時に、前記培養配管330に備えられた第2光源320は、光合性微細藻類の培養時に光合性を行うことができる光を発散する役割を行い、前記第2光源320から発散される光の波長は、特にこれに制限されるものではないが、自然光と似ている三波長または五波長が望ましく、光源の照度及び明暗周期は、培養条件によって自動変動させることが望ましい。   According to an embodiment of the present invention, the culture pipe 330 of the second culture unit 300 of the present invention is configured in a form that is folded in parallel and includes a straight part and a bent part on a single frame. In this way, the folded form can be configured to be superimposed in multiple stages. In addition, the frame may be a frame for fixing the second light source 320 and the culture pipe 330, and may further include a power supply device for supplying power to the second light source 320. At the same time, the second light source 320 provided in the culture pipe 330 plays a role of diverging light capable of photosynthesis during the cultivation of the photosynthesis microalgae, and the wavelength of the light emitted from the second light source 320. Although it is not particularly limited to this, three or five wavelengths similar to natural light are desirable, and it is desirable that the illuminance and light-dark cycle of the light source are automatically varied depending on the culture conditions.

望ましい実施形態で、前記培養配管330の内部直径は、3〜30cmである。さらに望ましい実施形態で、前記内部直径は、5〜20cmである。最も望ましい実施形態で、前記内部直径は、10〜15cmである。前記培養配管330の内部直径は、スピルリナのような微細藻類の培養に重要である。もし、内部直径が30cm以上であれば、不適切な光の照射によって生産性が落ち、逆に、内部直径が3cm以下になれば、培養体積を拡大(scale−up)しにくい。   In an exemplary embodiment, the culture pipe 330 has an internal diameter of 3 to 30 cm. In a further preferred embodiment, the internal diameter is 5 to 20 cm. In the most preferred embodiment, the internal diameter is 10-15 cm. The inner diameter of the culture pipe 330 is important for culturing microalgae such as Spirulina. If the internal diameter is 30 cm or more, productivity decreases due to inappropriate light irradiation, and conversely, if the internal diameter is 3 cm or less, it is difficult to scale-up the culture volume.

以下、実施例を通じて本発明をさらに詳しく説明する。これら実施例は、単に本発明をより具体的に説明するためのものであって、本発明の要旨によって本発明の範囲が、これら実施例によって制限されるものではないということは、当業者において自明である。   Hereinafter, the present invention will be described in more detail through examples. It is understood by those skilled in the art that these examples are merely for explaining the present invention more specifically, and that the scope of the present invention is not limited by these examples by the gist of the present invention. It is self-explanatory.

<比較例1:従来の微細藻類用の高密度培養装置を利用したスピルリナの培養>   <Comparative Example 1: Spirulina culture using a conventional high-density culture apparatus for microalgae>

特許文献3に開示された微細藻類用の高密度培養装置を用いて、スピルリナを培養した。   Spirulina was cultured using the high-density culture apparatus for microalgae disclosed in Patent Document 3.

前記特許文献3に開示された微細藻類用の高密度培養装置の水槽にスピルリナ(S.platensis ATCC 53843)を接種したSOT培養液(NaHCO 16.8g/l、KHPO 0.5g/l、NaNO 2.5g/l、KSO 1g/l、NaCl 1g/l、MgSO・7HO 0.2g/l、CaCl・2HO 0.04g/l、FeSO・7HO 0.01g/l、EDTA 0.08g/l、Trace Metal Mix A5(HBO 2.86g/l、MnCl・4HO 1.81g/l、ZnSO・7HO 0.222g/l、NaMoO・2HO 0.39g/l、CuSO・5HO 0.079g/l、Co(NO・6HO 49.4mg/l)1.0ml/l、Trace Metal Mix B6 Modified(NHNO 0.23g/l、KCr(SO・24HO 96mg/l、NiSO・7HO 47.8mg/l、NaWO・2HO 17.9mg/l、Ti(SO 40mg/l)1.0ml/l、適量のNaOH、pH9.5)50Lを入れて、光源として6,000Luxの光を照射し、35℃を維持しながら、3日間スピルリナの初度培養を実施した。初度培養が終了した後、前記水槽に新鮮なSOT培養液50Lをさらに供給し、20日間培養した。培養が終了した後、前記水槽から最終培養物を収得し、これを濾過してスピルリナ菌体を収得した。引き続き、収得したスピルリナ菌体を乾燥させて、乾燥重量を測定した。また、前記水槽の表面にスピルリナが固着された部位の面積を測定し、全体水槽の表面面積に対する比率を算出した。 The SOT culture solution (NaHCO 3 16.8 g / l, K 2 HPO 4 0.5 g / inoculated with spirulina (S. platensis ATCC 53843) in the water tank of the high-density culture apparatus for microalgae disclosed in Patent Document 3 above. l, NaNO 3 2.5 g / l, K 2 SO 4 1 g / l, NaCl 1 g / l, MgSO 4 .7H 2 O 0.2 g / l, CaCl 2 .2H 2 O 0.04 g / l, FeSO 4. 7H 2 O 0.01 g / l, EDTA 0.08 g / l, Trace Metal Mix A5 (H 3 BO 3 2.86 g / l, MnCl 2 .4H 2 O 1.81 g / l, ZnSO 4 .7H 2 O 0 .222g / l, Na 2 MoO 4 · 2H 2 O 0.39g / l, CuSO 4 · 5H 2 O 0.079g / l, Co (NO 3) 2 · 6H 2 O 49. mg / l) 1.0ml / l, Trace Metal Mix B6 Modified (NH 4 NO 3 0.23g / l, K 2 Cr 2 (SO 4) 4 · 24H 2 O 96mg / l, NiSO 4 · 7H 2 O 47 8 mg / l, Na 2 WO 4 .2H 2 O 17.9 mg / l, Ti 2 (SO 4 ) 3 40 mg / l) 1.0 ml / l, appropriate amount of NaOH, pH 9.5) 50 L As a result, spirulina was initially cultured for 3 days while irradiating light of 6,000 Lux and maintaining at 35 ° C. After the completion of the initial culture, 50 L of fresh SOT culture solution was further supplied to the water tank and cultured for 20 days. After the culture was completed, the final culture was obtained from the water tank and filtered to obtain Spirulina cells. Subsequently, the obtained Spirulina cells were dried and the dry weight was measured. Moreover, the area of the site | part with which Spirulina was fixed to the surface of the said water tank was measured, and the ratio with respect to the surface area of the whole water tank was computed.

<比較例2:従来の微細藻類の培養装置を利用したスピルリナの培養>   <Comparative Example 2: Spirulina culture using conventional microalgae culture apparatus>

特許文献4に開示された微細藻類の培養装置を用いて、スピルリナを培養した。   Spirulina was cultured using the microalgae culture apparatus disclosed in Patent Document 4.

前記特許文献4に開示された微細藻類の培養装置の開口部を通じて内部筒と外部筒との間にスピルリナ(S.platensis ATCC 53843)を接種したSOT培養液50Lを入れて、外部から光源で6,000Luxの光を照射し、35℃を維持し、ガス注入口を通じて二酸化炭素と大気とが1:1(v/v)に混合された混合ガスを持続的に注入して、培養液内に旋回流を発生させながら、3日間スピルリナの初度培養を実施した。初度培養が終了した後、前記開口部を通じて新鮮なSOT培養液50Lをさらに供給し、同じ条件で20日間培養した。培養が終了した後、前記培養装置から最終培養物を収得し、これを濾過してスピルリナ菌体を収得した。引き続き、収得したスピルリナ菌体を乾燥させて、乾燥重量を測定した。また、前記外部筒の表面にスピルリナが固着された部位の面積を測定し、全体外部筒の表面面積に対する比率を算出した。   The SOT culture solution 50L inoculated with spirulina (S. platensis ATCC 53843) is inserted between the inner tube and the outer tube through the opening of the microalgae culture apparatus disclosed in Patent Document 4 above, and the light source 6 , Irradiating light of 1,000 Lux, maintaining 35 ° C., continuously injecting a mixed gas of carbon dioxide and the atmosphere 1: 1 (v / v) through the gas inlet, into the culture solution The initial cultivation of Spirulina was performed for 3 days while generating a swirl flow. After the completion of the initial culture, 50 L of fresh SOT culture solution was further supplied through the opening and cultured for 20 days under the same conditions. After the culture was completed, the final culture was obtained from the culture apparatus and filtered to obtain Spirulina cells. Subsequently, the obtained Spirulina cells were dried and the dry weight was measured. Moreover, the area of the part where Spirulina was fixed to the surface of the outer cylinder was measured, and the ratio to the surface area of the entire outer cylinder was calculated.

<実施例1:管状のスピルリナ培養装置を利用したスピルリナの培養>   <Example 1: Culture of Spirulina using a tubular Spirulina culture apparatus>

図1〜図3に示された管状のスピルリナ培養装置を用いて、スピルリナを循環式で培養した。   Spirulina was cultured in a circulating manner using the tubular Spirulina culture apparatus shown in FIGS.

まず、スピルリナ(S.platensis ATCC 53843)をSOT培養液に10%(v/v)に接種した。   First, Spirulina (S. platensis ATCC 53843) was inoculated into SOT culture solution at 10% (v / v).

その後、前記管状のスピルリナ培養装置の第1培養部100の培養液注入口131、第1培養液排出口132及び最終排出口133を閉鎖し、接種注入口110を通じて、培養タンク101に、前記スピルリナが接種された培養液50Lを注入し、ガス注入口111を通じて、二酸化炭素を供給し、第1光源140で6,000Luxの光を供給し、温度調節器160を通じて35℃を維持しながら撹拌機150を60rpmで駆動させて、3日間スピルリナの初度培養を実施した。この際、培養中のスピルリナの成長程度を測定するために、分光光度計(Ultraspec 3100pro、Amersham)を用いて680nmでO.D.値を測定した。   Thereafter, the culture fluid inlet 131, the first culture fluid outlet 132 and the final outlet 133 of the first culture unit 100 of the tubular Spirulina culture apparatus are closed, and the Spirulina is introduced into the culture tank 101 through the inoculation inlet 110. 50 L of the inoculated culture solution is injected, carbon dioxide is supplied through the gas inlet 111, 6,000 Lux light is supplied from the first light source 140, and the temperature controller 160 is used to maintain the temperature at 35 ° C. 150 was driven at 60 rpm, and spirulina was initially cultured for 3 days. At this time, in order to measure the degree of growth of Spirulina in culture, a spectrophotometer (Ultraspec 3100pro, Amersham) was used for O.P. D. The value was measured.

初度培養が終了した後、培地注入口134を通じて、培養タンク101に新鮮な前記SOT培地50Lを注入し、一旦光合性が始まった後には、第1培養部100のガス注入口111を通じて、二酸化炭素及び窒素の混合ガスを持続的に注入して、光合性に使われる二酸化炭素を供給すると同時に、第1培養部100の培養タンク101に約1.0kg/cmfの陽圧がかかるようにして、外部から由来された雑菌の汚染を防止した。 After the initial culture is completed, the fresh SOT medium 50L is injected into the culture tank 101 through the medium inlet 134, and once photosynthesis begins, the carbon dioxide is supplied through the gas inlet 111 of the first culture unit 100. In addition, a mixed gas of nitrogen and nitrogen is continuously injected to supply carbon dioxide used for photosynthesis, and at the same time, a positive pressure of about 1.0 kg / cm 2 f is applied to the culture tank 101 of the first culture unit 100. Thus, contamination of germs derived from the outside was prevented.

その後、撹拌機150を同一速度で駆動させて、初度培養が終了した培養液と注入された新鮮なSOT培養液とを混合し、第1培養液注入口131と第1培養液排出口132とを開放して、前記混合された培養液をポンプ部200の第3培養液流入口210に伝達した。前記ポンプ部200の第3培養液流入口210に混合された培養液が伝達されれば、ポンプ部200のポンプ220を駆動して、1m/secの速度で前記培養液を第3培養液排出口230を通じて第2培養部300の第2培養液流入口310に伝達し、第2培養部300の第2培養液流入口310に伝達された前記培養液は、ポンプ220によって、培養配管330、第2培養液排出口340及び第1培養部100の第1培養液注入口131に順次に伝達して、最終的には、培養タンク101に伝達することによって、培養液を循環させた。この際、培養配管330に付着された第2光源320で6,000Luxの光を培養配管330に供給して、培養液に含まれたスピルリナが光合性を始めるようにし、前記温度調節器160を通じて培養液の温度を35℃に維持した。20日間循環式でスピルリナを培養し、該培養が終了した後には、第1培養部100の最終排出口133を開放して、最終培養物を収得し、これを濾過してスピルリナ菌体を収得した。   Thereafter, the stirrer 150 is driven at the same speed to mix the culture medium after the initial culture and the injected fresh SOT culture liquid, and the first culture liquid inlet 131 and the first culture liquid outlet 132 And the mixed culture solution was transmitted to the third culture solution inlet 210 of the pump unit 200. When the mixed culture solution is transmitted to the third culture solution inlet 210 of the pump unit 200, the pump 220 of the pump unit 200 is driven to discharge the culture solution at a speed of 1 m / sec. The culture medium transmitted to the second culture medium inlet 310 of the second culture unit 300 through the outlet 230 and transmitted to the second culture medium inlet 310 of the second culture unit 300 is supplied to the culture pipe 330 by the pump 220. The culture solution was circulated by sequentially transmitting to the second culture solution discharge port 340 and the first culture solution injection port 131 of the first culture unit 100 and finally to the culture tank 101. At this time, the second light source 320 attached to the culture pipe 330 supplies 6,000 Lux light to the culture pipe 330 so that Spirulina contained in the culture solution starts photosynthesis, and the temperature controller 160 The temperature of the culture solution was maintained at 35 ° C. After culturing Spirulina for 20 days and completing the culture, the final outlet 133 of the first culture unit 100 is opened to obtain the final culture, which is filtered to obtain Spirulina cells. did.

引き続き、収得したスピルリナ菌体を乾燥させて、乾燥重量を測定した。また、前記培養配管330の表面にスピルリナが固着された部位の面積を測定し、全体培養配管の表面面積に対する比率を算出した。   Subsequently, the obtained Spirulina cells were dried and the dry weight was measured. Moreover, the area of the site | part with which Spirulina was fixed to the surface of the said culture piping 330 was measured, and the ratio with respect to the surface area of the whole culture piping was computed.

その後、前記測定されたスピルリナ菌体の乾燥重量及びスピルリナ固着部位の比率を比較例1及び比較例2でそれぞれ測定されたものと以下の表1ように相互比較した。   Thereafter, the measured dry weight of Spirulina cells and the ratio of Spirulina fixation sites were compared with those measured in Comparative Example 1 and Comparative Example 2, respectively, as shown in Table 1 below.

Figure 2012023990
Figure 2012023990

前記表1に示されたように、本発明の循環式スピルリナ培養方法を利用する場合には、最終生産されたスピルリナ菌体の乾燥重量の面で、従来の培養装置を使った場合(比較例1及び比較例2)よりも約2〜3倍増加するということが分かった。   As shown in Table 1, when the circulating spirulina culturing method of the present invention is used, the conventional culturing apparatus is used in terms of the dry weight of the finally produced spirulina cells (Comparative Example). It was found that the increase was about 2-3 times that of 1 and Comparative Example 2).

これは、本発明の方法を利用する場合、スピルリナが培養容器の表面に固着されることを効果的に防止することができたためである。実際に、本発明の循環式スピルリナ培養方法を利用する場合には、全体培養配管表面の約3.4%程度にスピルリナ藻類が固着されたが、従来の培養装置を使った場合(比較例1及び比較例2)には、全体培養容器表面の67%及び87%にスピルリナ藻類が固着されるということを確認することができる。   This is because when using the method of the present invention, it was possible to effectively prevent Spirulina from sticking to the surface of the culture vessel. Actually, when the circulating spirulina culture method of the present invention is used, spirulina algae are fixed to about 3.4% of the entire culture piping surface, but when a conventional culturing apparatus is used (Comparative Example 1). In Comparative Example 2), it can be confirmed that Spirulina algae adhere to 67% and 87% of the entire culture vessel surface.

スピルリナは、光合性細菌であるので、光の日照量によって生産率が変化され、前記のように培養容器の表面にスピルリナが固着されれば、光の日照量が減少して、結果的には、スピルリナの生産量が減少する。したがって、本発明の光合性微細藻類の循環式培養方法を利用すれば、培養容器の表面に光合性微細藻類が固着される現象を防止して、スピルリナを含んだ光合性微細藻類の生産量を増大させることができるということを確認した。   Since Spirulina is a phototrophic bacterium, the production rate is changed by the amount of sunlight, and if Spirulina adheres to the surface of the culture vessel as described above, the amount of sunlight is reduced, and as a result, , Spirulina production decreases. Therefore, by using the photosynthesis microalgae circulation culture method of the present invention, the phenomenon of photosynthesis microalgae sticking to the surface of the culture vessel can be prevented, and the production of photosynthesis microalgae containing spirulina can be reduced. It was confirmed that it can be increased.

本発明は、光合性微細藻類の循環式培養方法関連の分野に適用可能である。   The present invention is applicable to fields related to circulating culture methods for photosynthesis microalgae.

Claims (16)

(i)光生物反応器の第1培養部に対象光合性微細藻類が接種された培養液を投入し、光を照射して初度培養する段階と、
(ii)前記初度培養が終了した後、新鮮な培養液をさらに投入して、初度培養された前記培養液と混合した後、該混合された培養液を前記光生物反応器の前記第1培養部に連結された管状の第2培養部に移動させる段階と、
(iii)前記第2培養部に移動した培養液に光を照射して追加培養する段階と、
(iv)前記追加培養された前記培養液を再び前記光生物反応器の前記第1培養部に循環させる段階と、
(v)培養が終了した後、前記培養液を回収し、回収した前記培養液を濾過して光合性微細藻類の菌体を収得する段階と、
を含む、光合性微細藻類の循環式培養方法。
(I) introducing a culture solution inoculated with the target photosynthesis microalgae into the first culture part of the photobiological reactor, irradiating with light and culturing for the first time;
(Ii) After the completion of the initial culture, a fresh culture solution is further added and mixed with the culture solution which has been cultured for the first time, and then the mixed culture solution is used for the first culture of the photobiological reactor. Moving to a tubular second culture section connected to the section;
(Iii) irradiating the culture medium moved to the second culture part with light to perform additional culture;
(Iv) circulating the additional culture medium again to the first culture part of the photobioreactor;
(V) after culturing is completed, recovering the culture solution, filtering the recovered culture solution to obtain cells of photosynthesis microalgae;
A circulating culture method for photosynthesis microalgae, comprising:
前記光合性微細藻類は、スピルリナ属の微生物である、請求項1に記載の培養方法。   The culture method according to claim 1, wherein the photosynthesis microalgae is a microorganism of the genus Spirulina. 前記段階(i)及び/または段階(iii)で照射される光の照度は、4,000〜8,000Luxである、請求項1または2に記載の培養方法。   The culture method according to claim 1 or 2, wherein the illuminance of the light irradiated in the step (i) and / or the step (iii) is 4,000 to 8,000 Lux. 前記段階(i)の初度培養及び/または段階(iii)の追加培養温度は、32〜38℃である、請求項1〜請求項3のうち何れか一項に記載の培養方法。   The culture method according to any one of claims 1 to 3, wherein the initial culture in the step (i) and / or the additional culture temperature in the step (iii) is 32 to 38 ° C. 前記段階(i)の初度培養及び/または段階(iii)の初度培養のpHは、8.5〜10である、請求項1〜請求項4のうち何れか一項に記載の培養方法。   The culture method according to any one of claims 1 to 4, wherein a pH of the initial culture in the step (i) and / or a primary culture in the step (iii) is 8.5 to 10. 前記第1培養部は、培養タンクを含み、前記第1培養部及び前記第2培養部の間で、前記培養液の移動及び循環は、ポンプを用いて行う、請求項1〜請求項5のうち何れか一項に記載の培養方法。   The first culture unit includes a culture tank, and the culture medium is moved and circulated between the first culture unit and the second culture unit using a pump. The culture | cultivation method as described in any one of them. 前記段階(i)の初度培養時、前記第1培養部の培養タンクに二酸化炭素及び窒素の混合ガスを供給することによって、光合性微細藻類の光合性を行い、前記第1培養部の培養タンク内の圧力を陽圧に維持して空気を通じる雑菌の汚染を防止する、請求項6記載の培養方法。   During the initial culture in the step (i), photosynthesis of photosynthesis microalgae is performed by supplying a mixed gas of carbon dioxide and nitrogen to the culture tank of the first culture unit, and the culture tank of the first culture unit The culture | cultivation method of Claim 6 which maintains the internal pressure to a positive pressure and prevents the contamination of various bacteria through the air. 前記陽圧の範囲は、0.1〜1.0kg/cmfである、請求項7に記載の培養方法。 The culture | cultivation method of Claim 7 whose range of the said positive pressure is 0.1-1.0 kg / cm < 2 > f. 段階(iv)の循環は、1〜50cm/sの流速で行われる、請求項1〜請求項8のうち何れか一項に記載の培養方法。   The culture method according to any one of claims 1 to 8, wherein the circulation in step (iv) is performed at a flow rate of 1 to 50 cm / s. (i)培養タンクを有する第1培養部と、管状である第2培養部と、前記第2培養部の間に連結されたポンプ部とを備えた光生物反応器において、前記第1培養部に、対象光合性微細藻類が接種された培養液を投入し、光を照射して初度培養する段階と、
(ii)前記初度培養が終了した後、新鮮な培養液をさらに投入して、初度培養された前記培養液と混合した後、該混合された培養液を前記ポンプ部を通じて前記第2培養部及び前記第1培養部の順序で循環させ、前記第2培養部に光を照射して追加培養する段階と、
(iii)培養が終了した後、培養液を回収し、回収した前記培養液を濾過して光合性微細藻類の菌体を収得する段階と、
を含む、光合性微細藻類の循環式培養方法。
(I) In the photobioreactor provided with the 1st culture part which has a culture tank, the 2nd culture part which is tubular, and the pump part connected between the 2nd culture part, the 1st culture part , Put the culture solution inoculated with the target photosynthesis microalgae, irradiate light and cultivate for the first time,
(Ii) After the completion of the initial culture, a fresh culture medium is further added and mixed with the culture medium that has been initially cultured, and then the mixed culture medium is passed through the pump unit to the second culture unit and Circulating in the order of the first culture part, irradiating the second culture part with light and further culturing;
(Iii) after culturing is completed, collecting the culture solution, filtering the collected culture solution to obtain the cells of the photosynthesis microalgae,
A circulating culture method for photosynthesis microalgae, comprising:
前記光合性微細藻類は、スピルリナ属の微生物である、請求項10に記載の培養方法。   The culture method according to claim 10, wherein the photosynthesis microalgae are microorganisms of the genus Spirulina. 前記段階(i)及び/または段階(ii)で照射される光の照度は、4,000〜8,000Luxである、請求項10または11に記載の培養方法。   The culture method according to claim 10 or 11, wherein the illuminance of the light irradiated in the step (i) and / or the step (ii) is 4,000 to 8,000 Lux. 前記段階(i)の初度培養及び/または段階(ii)の追加培養の温度は、32〜38℃である、請求項10〜請求項12のうち何れか一項に記載の培養方法。   The culture method according to any one of claims 10 to 12, wherein the temperature of the initial culture in the step (i) and / or the additional culture in the step (ii) is 32 to 38 ° C. 前記段階(i)の初度培養及び/または段階(ii)の追加培養のpHは、8.5〜10である、請求項10〜請求項13のうち何れか一項に記載の培養方法。   The culture method according to any one of claims 10 to 13, wherein the pH of the initial culture in the step (i) and / or the additional culture in the step (ii) is 8.5 to 10. 前記段階(i)の初度培養時、前記第1培養部の培養タンクに二酸化炭素及び窒素の混合ガスを供給することによって、光合性微細藻類の光合性を行い、前記培養タンク内の圧力を陽圧に維持して空気を通じる雑菌の汚染を防止する、請求項10〜請求項14のうち何れか一項に記載の培養方法。   During the initial culture in the step (i), the photosynthesis of the photosynthesis microalgae is performed by supplying a mixed gas of carbon dioxide and nitrogen to the culture tank of the first culture unit, and the pressure in the culture tank is positive. The culture method according to any one of claims 10 to 14, wherein the contamination is prevented from contamination by air while maintaining the pressure. 前記陽圧の範囲は、0.1〜1.0kg/cmfである、請求項15に記載の培養方法。 Range of the positive pressure is 0.1~1.0kg / cm 2 f, the culture method of claim 15.
JP2010163800A 2010-07-21 2010-07-21 Circulating culture method for photosynthetic microalgae Expired - Fee Related JP5657938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010163800A JP5657938B2 (en) 2010-07-21 2010-07-21 Circulating culture method for photosynthetic microalgae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010163800A JP5657938B2 (en) 2010-07-21 2010-07-21 Circulating culture method for photosynthetic microalgae

Publications (2)

Publication Number Publication Date
JP2012023990A true JP2012023990A (en) 2012-02-09
JP5657938B2 JP5657938B2 (en) 2015-01-21

Family

ID=45777726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010163800A Expired - Fee Related JP5657938B2 (en) 2010-07-21 2010-07-21 Circulating culture method for photosynthetic microalgae

Country Status (1)

Country Link
JP (1) JP5657938B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103238512A (en) * 2013-05-28 2013-08-14 甘肃凯源生物技术开发中心 Sealed integrated system for producing spirulina
JP2015146788A (en) * 2014-02-07 2015-08-20 三菱マテリアル株式会社 Algae culture method and algae culture apparatus
JP2016507245A (en) * 2013-02-26 2016-03-10 ヒリエ デベロップメント, エルエルシー Modular tubular bioreactor
CN108048299A (en) * 2017-12-21 2018-05-18 湖北工业大学 A kind of method that fixed carbon dioxide is absorbed using spirulina
KR101844484B1 (en) * 2016-07-26 2018-05-18 전북대학교산학협력단 Fluid flow correction instrument, the mechanism using the instrument and the micro algae culture system adopting the instrument
KR101864296B1 (en) * 2016-11-24 2018-07-13 문영실 Apparatus for cultivationg spirulina
KR20190139793A (en) * 2018-06-08 2019-12-18 주식회사 창생스피루리나 Method for Manufacturing Spirulina sp. Algae using minimal medium

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168463A (en) * 1991-06-07 1993-07-02 Nippon Sanso Kk Method for fixing carbon dioxide using photosynthetic organism and apparatus therefor
JPH10509861A (en) * 1994-07-22 1998-09-29 アクアサーチ インコーポレイテッド Control method of microbial growth process
JPH11509402A (en) * 1995-02-02 1999-08-24 アスピタリア エッセ.エレ.エレ. Method and apparatus for culturing microalgae in a closed circuit
JP3111873U (en) * 2004-09-21 2005-07-28 盧 朝輝 Plant algae / microorganism photosynthesis reactor
JP2007319039A (en) * 2006-05-30 2007-12-13 Chao Hui Lu Photosynthetic reaction system of alga microorganism
JP2009011197A (en) * 2007-07-02 2009-01-22 Univ Of Miyazaki Culture medium for photosynthetic organism utilizing incineration ash and method for producing the same and method for culturing photosynthetic organism
JP2010088334A (en) * 2008-10-07 2010-04-22 Ogaki Bio Technology Kenkyu Center:Kk Method for producing starch and ethanol by using algae releasing starch to exterior of cell
JP2010525833A (en) * 2007-05-07 2010-07-29 プロタリクス リミテッド Large-scale disposable bioreactor
JP2011068832A (en) * 2009-09-28 2011-04-07 Japan Biomass Corp Biomass fuel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168463A (en) * 1991-06-07 1993-07-02 Nippon Sanso Kk Method for fixing carbon dioxide using photosynthetic organism and apparatus therefor
JPH10509861A (en) * 1994-07-22 1998-09-29 アクアサーチ インコーポレイテッド Control method of microbial growth process
JPH11509402A (en) * 1995-02-02 1999-08-24 アスピタリア エッセ.エレ.エレ. Method and apparatus for culturing microalgae in a closed circuit
JP3111873U (en) * 2004-09-21 2005-07-28 盧 朝輝 Plant algae / microorganism photosynthesis reactor
JP2007319039A (en) * 2006-05-30 2007-12-13 Chao Hui Lu Photosynthetic reaction system of alga microorganism
JP2010525833A (en) * 2007-05-07 2010-07-29 プロタリクス リミテッド Large-scale disposable bioreactor
JP2009011197A (en) * 2007-07-02 2009-01-22 Univ Of Miyazaki Culture medium for photosynthetic organism utilizing incineration ash and method for producing the same and method for culturing photosynthetic organism
JP2010088334A (en) * 2008-10-07 2010-04-22 Ogaki Bio Technology Kenkyu Center:Kk Method for producing starch and ethanol by using algae releasing starch to exterior of cell
JP2011068832A (en) * 2009-09-28 2011-04-07 Japan Biomass Corp Biomass fuel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016507245A (en) * 2013-02-26 2016-03-10 ヒリエ デベロップメント, エルエルシー Modular tubular bioreactor
CN103238512A (en) * 2013-05-28 2013-08-14 甘肃凯源生物技术开发中心 Sealed integrated system for producing spirulina
JP2015146788A (en) * 2014-02-07 2015-08-20 三菱マテリアル株式会社 Algae culture method and algae culture apparatus
KR101844484B1 (en) * 2016-07-26 2018-05-18 전북대학교산학협력단 Fluid flow correction instrument, the mechanism using the instrument and the micro algae culture system adopting the instrument
KR101864296B1 (en) * 2016-11-24 2018-07-13 문영실 Apparatus for cultivationg spirulina
CN108048299A (en) * 2017-12-21 2018-05-18 湖北工业大学 A kind of method that fixed carbon dioxide is absorbed using spirulina
KR20190139793A (en) * 2018-06-08 2019-12-18 주식회사 창생스피루리나 Method for Manufacturing Spirulina sp. Algae using minimal medium
KR102281855B1 (en) * 2018-06-08 2021-07-28 주식회사 창생스피루리나 Method for Manufacturing Spirulina sp. Algae using minimal medium

Also Published As

Publication number Publication date
JP5657938B2 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
JP5657938B2 (en) Circulating culture method for photosynthetic microalgae
JP4165715B2 (en) Multiple photobioreactor and photosynthetic microorganism culture method using the same
US8709808B2 (en) Accordion bioreactor
US8658421B2 (en) Circulatory photobioreactor
US20080311646A1 (en) Carbon Supply Device for Cultivating Miro Algae in Large and Its Application Method and Use
CN108138101A (en) Light emitting diode bioreactor and application method
CN105316217B (en) Artificial light source both culturing microalgae equipment
CN102851213B (en) Formula of Pavlova viridid medium and three-stage culture method
EP2412794A1 (en) Method for circulatory cultivating photosynthetic microalgae
CN107916211A (en) Mass production method of microalgae
KR20100113179A (en) Tubular-type apparatus for cultivating spirulina sp
US20120021496A1 (en) Method for circulatory cultivating photosynthetic microalgae
JP5324532B2 (en) Circulating photobioreactor
KR101670129B1 (en) Photoreactive Apparatus and method for culturing microalgae
US20210002595A1 (en) Culture tank
KR101721448B1 (en) Microalgae culture system
CN102453685B (en) Method for culturing marine green alga accumulated starch with carbon dioxide
US10829725B2 (en) Air accordion bioreactor
CN102344888B (en) Circulating type photobioreactor
CN102344889A (en) Method for cyclic culture of photosynthetic microalgae
CN205874418U (en) Domestic spirulina culture apparatus
CN107201313A (en) A kind of Dunaliella salina light fermented and cultured formula of liquid and its fast culture process
KR20100113180A (en) Method for circulatory cultivating spirulina sp
CN106893667A (en) A kind of photosynthetic bacteria rotation culture apparatus and the rotating and culturing method of photosynthetic bacteria
CN103131627A (en) Light organism reaction device and application

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120913

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121204

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121225

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130204

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140106

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140303

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141127

R150 Certificate of patent or registration of utility model

Ref document number: 5657938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees