JP2012023422A - Radio - Google Patents

Radio Download PDF

Info

Publication number
JP2012023422A
JP2012023422A JP2010157561A JP2010157561A JP2012023422A JP 2012023422 A JP2012023422 A JP 2012023422A JP 2010157561 A JP2010157561 A JP 2010157561A JP 2010157561 A JP2010157561 A JP 2010157561A JP 2012023422 A JP2012023422 A JP 2012023422A
Authority
JP
Japan
Prior art keywords
correction
gain
agc amplifier
radio
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010157561A
Other languages
Japanese (ja)
Inventor
Toshihiko Kawada
俊彦 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010157561A priority Critical patent/JP2012023422A/en
Publication of JP2012023422A publication Critical patent/JP2012023422A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Amplification And Gain Control (AREA)
  • Noise Elimination (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radio capable of maintaining reception quality even when affected by a high-level signal such as a disturbing wave.SOLUTION: A radio unit 2 transmits/receives a radio signal via an antenna. The radio unit 2 includes a reception circuit of the radio signal having plural stages of AGC amplifiers. A storage unit 3 stores a temperature correction table that stores a correction amount corresponding to the temperature of a gain of each AGC amplifier for each of the AGC amplifiers of the reception circuit of the radio unit 2. A signal processing unit 1 calculates an SNR of the radio signal received in the radio unit 2. A control unit 4 reads out a correction amount corresponding to the temperature from the temperature correction table stored in the storage unit 3, according to the SNR of the radio signal received by the antenna, and controls distribution of the correction amount of the gains of the respective AGC amplifiers while maintaining a total sum of the correction gains of the respective AGC amplifiers in the reception circuit of the radio unit 2 to be substantially constant.

Description

本発明は、複数段のAGCアンプを有する受信回路を備える無線機に関する。   The present invention relates to a radio apparatus including a receiving circuit having a plurality of stages of AGC amplifiers.

無線通信を行う無線機の受信回路は、スーパーヘテロダイン方式等に代表されるように、中間周波数(IF)の信号を処理するIF回路と、無線周波数(RF)の信号を処理するRF回路とを設けるとともに、信号レベルのダイナミックレンジを拡大するために、これらIF回路およびRF回路の各々にゲインを調整するAGC(Automatic Gain Control)アンプを設けるのが一般的である。このような受信回路では、高温時には回路ゲインが低下するため、AGC電圧を上げてAGCアンプのゲインを増加させ、低温時には回路ゲインが増加するため、AGC電圧を下げてAGCアンプのゲインを低下させ、受信回路のゲインが全温度で一定になるように調整を行う。   As represented by the superheterodyne method, the receiver circuit of a radio that performs radio communication includes an IF circuit that processes an intermediate frequency (IF) signal and an RF circuit that processes a radio frequency (RF) signal. In general, in order to expand the dynamic range of the signal level, an AGC (Automatic Gain Control) amplifier for adjusting the gain is provided in each of the IF circuit and the RF circuit. In such a receiver circuit, since the circuit gain decreases at high temperatures, the AGC voltage is increased to increase the gain of the AGC amplifier. At low temperatures, the circuit gain increases. Therefore, the AGC voltage is decreased to decrease the gain of the AGC amplifier. Then, adjustment is made so that the gain of the receiving circuit is constant at all temperatures.

なお、特許文献1には、温度に応じてAGCによりアンプのゲインを制御する無線通信機器が開示されている。   Patent Document 1 discloses a wireless communication device that controls the gain of an amplifier by AGC according to temperature.

特開2005−236958号公報JP 2005-236958 A

上述したように、従来の無線機の受信回路では、高温時にはAGCアンプのゲインを上げ、低温時にはAGCアンプのゲインを下げる動作を行って、温度補正により、受信回路のゲインを全温度で一定に保つことができるが、アンプ、ミキサ等のデバイスは高温になるほど雑音が増加し、回路のNF(Noise Figure)が劣化してしまうため、常温時に比べて信号品質の劣化を生じることとなる。そこで前段のAGCアンプの補正量と後段のAGCアンプの補正量とを異なる値として、NFの劣化を抑制する補正が考えられる。ところが、他システムからの高レベルの妨害波が受信される場合、ミキサ等の回路が妨害波により飽和してしまい、受信特性が劣化することになる。NF重視の補正では、前段のAGCアンプのゲインを大きく、後段のAGCアンプのゲインを小さくするような補正を行うが、これにより回路前段部のゲインが高くなることで、AGCアンプ以降のデバイスにおいて飽和し易くなり、妨害波のような高レベルの信号に対する許容量が小さくなってしまう。   As described above, in the conventional radio receiver circuit, the gain of the AGC amplifier is increased at a high temperature and the gain of the AGC amplifier is decreased at a low temperature, and the gain of the receiver circuit is made constant at all temperatures by temperature correction. However, as the temperature of devices such as amplifiers and mixers increases, the noise increases and the NF (Noise Figure) of the circuit deteriorates. Therefore, the signal quality deteriorates as compared with the normal temperature. In view of this, it is conceivable to perform correction for suppressing the deterioration of NF by setting different values for the correction amount of the AGC amplifier at the preceding stage and the correction amount of the AGC amplifier at the subsequent stage. However, when a high level interference wave from another system is received, a circuit such as a mixer is saturated by the interference wave, and the reception characteristics are deteriorated. In the NF-oriented correction, correction is performed such that the gain of the AGC amplifier at the front stage is increased and the gain of the AGC amplifier at the rear stage is decreased. By this, the gain at the front stage of the circuit is increased. It becomes easy to saturate, and the tolerance for a high level signal such as an interference wave is reduced.

本発明は、このような問題点に鑑みてなされたものであり、本発明の目的は、妨害波のような高レベルの信号が影響するときにおいても受信品質を保つことができる無線機を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a radio device capable of maintaining reception quality even when a high level signal such as an interference wave is affected. There is to do.

上記目的を達成するため、本発明は、複数段のAGCアンプを有する無線信号の受信回路を備える無線機であって、前記AGCアンプ毎にAGCアンプのゲインの補正量を格納する補正テーブルを記憶する記憶部と、前記補正テーブルを参照して、受信した前記無線信号の受信品質に応じて、前記AGCアンプのそれぞれのゲインの補正量の総和を略一定に保ちながら前記AGCアンプのそれぞれのゲインの補正量の配分を制御する制御部とを備えることを特徴とする。   In order to achieve the above object, the present invention provides a radio apparatus having a radio signal receiving circuit having a plurality of stages of AGC amplifiers, and stores a correction table for storing a correction amount of the gain of the AGC amplifier for each AGC amplifier. Each of the gains of the AGC amplifier while keeping the sum of the correction amounts of the gains of the AGC amplifier substantially constant according to the reception quality of the received radio signal with reference to the storage unit and the correction table. And a control unit for controlling the distribution of the correction amount.

前記制御部は、前記補正テーブルを参照して、前記無線信号を送信した他の無線機からの距離と、受信した前記無線信号の受信品質に応じて、前記AGCアンプのそれぞれのゲインの補正量の総和を略一定に保ちながら前記AGCアンプのそれぞれのゲインの補正量の配分を制御することが好ましい。   The control unit refers to the correction table, and according to the distance from another radio device that has transmitted the radio signal and the reception quality of the received radio signal, the amount of correction of each gain of the AGC amplifier It is preferable to control the distribution of gain correction amounts of the AGC amplifiers while keeping the total sum of the AGC amplifiers substantially constant.

また、前記制御部は、前記受信回路の温度補正を行うとともに前記AGCアンプのそれぞれのゲインの補正量の配分を制御することが好ましい。
また、前記受信品質を受信SNRとすることが好ましい。
Further, it is preferable that the control unit performs temperature correction of the receiving circuit and controls distribution of gain correction amounts of the AGC amplifiers.
The reception quality is preferably a reception SNR.

本発明は、妨害波のような高レベルの信号が影響するときにおいても受信品質を保つことができる。   The present invention can maintain reception quality even when a high level signal such as an interference wave is affected.

本発明に係る無線機の要部の概略構成を示す機能ブロック図である。It is a functional block diagram which shows schematic structure of the principal part of the radio | wireless machine which concerns on this invention. 無線部の受信回路の具体的構成を示す機能ブロック図である。It is a functional block diagram which shows the specific structure of the receiving circuit of a radio | wireless part. 各温度での受信回路の出力特性を示す図である。It is a figure which shows the output characteristic of the receiving circuit in each temperature. 温度補正テーブルの一例を示す図である。It is a figure which shows an example of a temperature correction table. 複数段のAGCアンプを備える受信回路において各AGCアンプで温度補正を行うときの補正テーブルの一例を示す図である。It is a figure which shows an example of a correction table when performing temperature correction by each AGC amplifier in a receiving circuit provided with a multistage AGC amplifier. 本発明に係る受信回路の各AGCアンプで温度補正を行うときの補正テーブルの一例を示す図である。It is a figure which shows an example of a correction table when performing temperature correction with each AGC amplifier of the receiver circuit which concerns on this invention. 制御部がSNRの値に応じてAGCアンプの補正量の配分を変更するときの動作を説明するフローチャートである。It is a flowchart explaining operation | movement when a control part changes distribution of the correction amount of AGC amplifier according to the value of SNR.

本発明の実施の形態について図面を参照して説明する。
図1は、本発明の実施の形態に係る無線機の要部の概略構成を示す機能ブロック図である。この無線機は、例えば、基地局を構成するもので、信号処理部1、無線部2、記憶部3、および全体を制御する制御部4を有する。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a functional block diagram showing a schematic configuration of a main part of a wireless device according to an embodiment of the present invention. This wireless device constitutes, for example, a base station, and includes a signal processing unit 1, a wireless unit 2, a storage unit 3, and a control unit 4 that controls the whole.

無線部2は、アンテナを介して無線信号を送受信する。また、無線部2は、複数段のAGCアンプを有する無線信号の受信回路を備える。
記憶部3は、無線部2の受信回路が備える各AGCアンプ毎に、各AGCアンプのゲインの各温度に対応した補正量を格納する温度補正テーブルを記憶する。
信号処理部1は、無線部2で受信した無線信号のSNR(Signal to Noise Ratio:信号対雑音比)を算出する。
制御部4は、アンテナから受信した無線信号の受信品質(SNR)に応じて、記憶部3に記憶されている温度補正テーブルから各温度に対応した補正量を読み出し、無線部2の受信回路が備える各AGCアンプの補正ゲインの総和を略一定に保ちながら各AGCアンプのゲインの補正量の配分を制御する。なお、温度情報は、図示しない温度センサにより、無線部2の温度(例えば、受信回路を構成するAGCアンプ近傍の温度)を検出して制御部4に供給する。
The radio unit 2 transmits and receives radio signals via an antenna. The radio unit 2 includes a radio signal receiving circuit having a plurality of stages of AGC amplifiers.
The storage unit 3 stores, for each AGC amplifier included in the reception circuit of the wireless unit 2, a temperature correction table that stores a correction amount corresponding to each temperature of the gain of each AGC amplifier.
The signal processing unit 1 calculates an SNR (Signal to Noise Ratio) of the radio signal received by the radio unit 2.
The control unit 4 reads the correction amount corresponding to each temperature from the temperature correction table stored in the storage unit 3 according to the reception quality (SNR) of the radio signal received from the antenna, and the reception circuit of the radio unit 2 The distribution of the correction amount of the gain of each AGC amplifier is controlled while keeping the total correction gain of each AGC amplifier substantially constant. The temperature information is supplied to the control unit 4 by detecting the temperature of the wireless unit 2 (for example, the temperature in the vicinity of the AGC amplifier constituting the receiving circuit) by a temperature sensor (not shown).

図2は、図1に示した無線部2の受信回路の具体的構成を示す機能ブロック図である。受信回路は、LN(Low Noise)アンプ21、RFミキサ22、前段AGCアンプ23、IFアンプ24、IFミキサ25、後段AGCアンプ26を有する。   FIG. 2 is a functional block diagram showing a specific configuration of the receiving circuit of the wireless unit 2 shown in FIG. The receiving circuit includes an LN (Low Noise) amplifier 21, an RF mixer 22, a front stage AGC amplifier 23, an IF amplifier 24, an IF mixer 25, and a rear stage AGC amplifier 26.

アンテナから供給される入力信号INは、LNアンプ21で増幅され、RFミキサ22により、RFLO(Local Oscillator)信号と混合されて中間周波数にダウンコンバートされる。RFミキサ22の出力信号は、前段AGCアンプ23で増幅された後、IFアンプ24でさらに増幅され、IFミキサ25により、IFLO(Local Oscillator)信号と混合されてベースバンド周波数にダウンコンバートされる。IFミキサ25の出力信号は、さらに後段AGCアンプ26により増幅され、ADコンバーターによりデジタル変換された後、信号処理部1に送られる。   The input signal IN supplied from the antenna is amplified by the LN amplifier 21, mixed with the RFLO (Local Oscillator) signal by the RF mixer 22, and down-converted to an intermediate frequency. The output signal of the RF mixer 22 is amplified by the pre-stage AGC amplifier 23, further amplified by the IF amplifier 24, mixed with the IFLO (Local Oscillator) signal by the IF mixer 25, and down-converted to a baseband frequency. The output signal of the IF mixer 25 is further amplified by the post-stage AGC amplifier 26, digitally converted by the AD converter, and then sent to the signal processing unit 1.

前段AGCアンプ23のゲイン調整は、AGC電圧(VGCTL1)を調整して行い、後段AGCアンプ26のゲインの調整は、AGC電圧(VGCTL2)を調整して行う。受信回路は、ADコンバーターの入力レンジと受信信号のダイナミックレンジから算出される回路ゲインになるようにAGCアンプのゲインを調整してキャリブレーションを行う。   The gain of the AGC amplifier 23 is adjusted by adjusting the AGC voltage (VGCTL1), and the gain of the AGC amplifier 26 is adjusted by adjusting the AGC voltage (VGCTL2). The receiving circuit performs calibration by adjusting the gain of the AGC amplifier so that the circuit gain is calculated from the input range of the AD converter and the dynamic range of the received signal.

回路構成に示す増幅器やミキサ等の半導体デバイスは、一般的に、高温時にゲインが常温時に比べて低下し、低温時にゲインが増加する特性を有する。図3に各温度での受信回路の出力特性を示す。高温時にゲインが低下することで、同じAGC電圧設定で常温時に比べて出力が低下し、低温時にゲインが増加することで、同じAGC電圧設定で常温時に比べて出力が増加する。受信回路の出力は全温度で一定の必要があるため、温度補正テーブルを用いて常温以外の温度で回路ゲインの補正を行う必要がある。図4に、AGCアンプ全体の温度補正テーブルの一例を示す。図4は、各indexの補正量(dB)と温度(deg)の関係を表している。温度補正テーブルには、各温度に対応したAGCアンプのゲインの補正量が記載されており、制御部4は、低温になるほど受信回路のゲインを抑制し、高温になるほど受信回路のゲインを高くする補正を行う。マイナス値はゲイン抑制を、プラス値はゲイン増加を表す。   Semiconductor devices such as amplifiers and mixers shown in the circuit configuration generally have a characteristic that the gain decreases at a high temperature as compared with that at a normal temperature and the gain increases at a low temperature. FIG. 3 shows the output characteristics of the receiving circuit at each temperature. When the gain decreases at a high temperature, the output decreases compared to that at room temperature with the same AGC voltage setting, and when the gain increases at a low temperature, the output increases compared to that at room temperature with the same AGC voltage setting. Since the output of the receiving circuit needs to be constant at all temperatures, it is necessary to correct the circuit gain at a temperature other than room temperature using a temperature correction table. FIG. 4 shows an example of a temperature correction table for the entire AGC amplifier. FIG. 4 shows the relationship between the correction amount (dB) of each index and the temperature (deg). The temperature correction table describes the amount of gain correction of the AGC amplifier corresponding to each temperature, and the control unit 4 suppresses the gain of the receiving circuit as the temperature decreases, and increases the gain of the receiving circuit as the temperature increases. Make corrections. A negative value indicates gain suppression, and a positive value indicates gain increase.

受信特性においてはNF(Noise Figure)が重要なパラメータとなり、回路のNFが低いほど、回路内部で発生する雑音が小さくなり、受信感度が向上する。また、回路が、複数の部品により複数段で構成されている場合、各々がNFとゲインを持ち、前段になるほど、そのNFおよびゲインが、回路全体のNFを左右する。すなわち、前段のNFが良好であれば、回路全体のNFも良好になる。そこで温度補正の際にも、複数段のAGCアンプに同じゲイン補正量を適用するのではなく、前段のAGCアンプのゲインが高く、後段のAGCアンプのゲインが低くなるように補正量を配分することで、回路NFの低下を抑制する制御が考えられる。   In the reception characteristics, NF (Noise Figure) is an important parameter. The lower the NF of the circuit, the smaller the noise generated in the circuit and the higher the reception sensitivity. In addition, when the circuit is composed of a plurality of stages by a plurality of parts, each has an NF and a gain, and the NF and the gain influence the NF of the entire circuit as it becomes the previous stage. That is, if the NF at the previous stage is good, the NF of the entire circuit is also good. Therefore, in the temperature correction, the same gain correction amount is not applied to the multiple stages of AGC amplifiers, but the correction amount is distributed so that the gain of the front AGC amplifier is high and the gain of the rear stage AGC amplifier is low. Thus, control that suppresses the decrease in the circuit NF can be considered.

図5に、受信回路が複数段のAGCアンプを備え、各AGCアンプで温度補正を行うときの温度補正テーブルの一例を示す。マイナス値はゲイン抑制を、プラス値はゲイン増加を表す。前段AGCアンプには、図5(a)に示すindex1の温度補正テーブルの値を適用し、後段AGCアンプには、図5(b)に示すindex2の温度補正テーブルの値を適用する。高温においては回路ゲインが下がるために、温度補正により回路ゲインの増加を行うが、index1の補正量をindex2の補正量よりも大きくすることで、前段AGCアンプのゲインが後段AGCアンプよりも高くなり、NFの劣化を抑制することができる。また低温においては回路ゲインが上がるために、温度補正により回路ゲインの抑制を行うが、index1の補正量をindex2の補正量よりも小さくすることで、前段AGCアンプのゲインが後段AGCアンプよりも高くなり、NFの劣化を抑制することができる。なお、図5のindex1、2のconfig_rxTemp_z(zは0〜20)の補正量の和は、図4のconfig_rxTemp_z(zは0〜20)の補正量と、略同じに設定してある。   FIG. 5 shows an example of a temperature correction table when the receiving circuit includes a plurality of stages of AGC amplifiers and each AGC amplifier performs temperature correction. A negative value indicates gain suppression, and a positive value indicates gain increase. The value of the temperature correction table of index1 shown in FIG. 5A is applied to the front stage AGC amplifier, and the value of the temperature correction table of index2 shown in FIG. 5B is applied to the rear stage AGC amplifier. Since the circuit gain decreases at high temperatures, the circuit gain is increased by temperature correction. By making the correction amount of index1 larger than the correction amount of index2, the gain of the front-stage AGC amplifier becomes higher than that of the rear-stage AGC amplifier. , Degradation of NF can be suppressed. Since the circuit gain increases at low temperatures, the circuit gain is suppressed by temperature correction. By making the correction amount of index1 smaller than the correction amount of index2, the gain of the front-stage AGC amplifier is higher than that of the rear-stage AGC amplifier. Thus, the deterioration of NF can be suppressed. The sum of the correction amounts of config_rxTemp_z (z is 0 to 20) of indexes 1 and 2 in FIG. 5 is set to be substantially the same as the correction amount of config_rxTemp_z (z is 0 to 20) in FIG.

携帯端末を扱う無線通信システムにおいては、端末の位置情報から、基地局と端末間の距離が算出され、近距離の場合は受信信号も大きいことから受信信号のSNR(Signal to Noise Ratio)は大きく、遠距離の場合は受信信号が小さいことから受信信号のSNRは小さくなる。
ここで、前段AGCアンプのゲインが高い場合、このAGCアンプの後段にあるデバイスには、より高いレベルの信号が入力されることになる。帯域外において他システムから強い干渉波がある場合、前段AGCアンプのゲインが高いと、後段にあるミキサ等のデバイスで飽和が生じ、受信信号のSNRは低下することになる。
In a wireless communication system that handles mobile terminals, the distance between the base station and the terminal is calculated from the position information of the terminal. Since the received signal is large in the case of a short distance, the SNR (Signal to Noise Ratio) of the received signal is large. In the case of a long distance, since the received signal is small, the SNR of the received signal is small.
Here, when the gain of the front AGC amplifier is high, a signal at a higher level is input to the device at the rear stage of the AGC amplifier. When there is a strong interference wave from another system outside the band, if the gain of the front stage AGC amplifier is high, saturation occurs in a device such as a mixer in the rear stage, and the SNR of the received signal decreases.

従って、距離が近いにも関わらず、SNRが低下している場合は、他システムからの干渉を受けていることが考えられる。この場合、前述のように、前段AGCアンプのゲインを上げることは、回路の飽和レベルを下げてしまい、干渉に対してさらに弱くなることになる。距離が近い場合は、元々受信信号のレベルは高く、SNRは高いことから、回路NFが良好でなくても、受信特性は低下しない。従って、距離が近いにも関わらず、SNRが低下している場合においては、温度補正において、前段AGCアンプのゲインを下げ、後段AGCアンプのゲインを上げる補正を行うことで、回路の飽和レベルを上げ、妨害波に対する特性を向上させることが可能となる。   Therefore, when the SNR is reduced despite the short distance, it is considered that the system is receiving interference from another system. In this case, as described above, increasing the gain of the pre-stage AGC amplifier lowers the saturation level of the circuit and further weakens against interference. When the distance is short, the level of the received signal is originally high and the SNR is high, so that the reception characteristics do not deteriorate even if the circuit NF is not good. Therefore, when the SNR is decreased despite the short distance, the saturation level of the circuit is reduced by performing a correction in which the gain of the front AGC amplifier is lowered and the gain of the rear AGC amplifier is increased in the temperature correction. It is possible to improve the characteristics against interference waves.

基地局と端末との距離が遠い場合は、受信信号のSNRは小さいため、回路NFの劣化を最小限に抑えるために、前段AGCアンプのゲインを高く、後段AGCアンプのゲインを低くするような温度補正を、各AGCアンプに適用することで、受信特性の向上を図ることが可能となる。   When the distance between the base station and the terminal is far, the SNR of the received signal is small. Therefore, in order to minimize the deterioration of the circuit NF, the gain of the front AGC amplifier is increased and the gain of the rear AGC amplifier is decreased. By applying temperature correction to each AGC amplifier, it is possible to improve reception characteristics.

図6に、図1に示す本発明に係る受信回路の各AGCアンプで温度補正を行うときの温度補正テーブルの一例を示す。前段AGCアンプ23には、図6(a)に示すindex1の補正テーブルの値を適用し、後段AGCアンプ26には、図6(b)に示すindex2の補正テーブルの値を適用する。通常の温度補正においては、NFの劣化を最小限に抑えるために、テーブルのSNR1の欄の補正値を適用して、前段AGCアンプ23のゲインを高くし、後段AGCアンプ26のゲインを低くする制御を行う。そして距離が近いにも関わらず、受信SNRが低下している場合、SNR2の欄の補正値を適用して、前段AGCアンプ23のゲインを抑える補正を行う。受信SNRの改善があまり見られない場合は、さらにSNR3の欄の補正値を適用して、さらに前段AGCアンプ23のゲインを抑え、後段AGCアンプ26のゲインを上げる補正を行う。なお、図6のSNR1、SNR2、SNR3それぞれのindex1、2のconfig_rxTemp_z(zは0〜20)の補正量の和は、図4のconfig_rxTemp_z(zは0〜20)の補正量と、略同じに設定してある。   FIG. 6 shows an example of a temperature correction table when temperature correction is performed by each AGC amplifier of the receiving circuit according to the present invention shown in FIG. The value of the index 1 correction table shown in FIG. 6A is applied to the pre-stage AGC amplifier 23, and the value of the index 2 correction table shown in FIG. 6B is applied to the post-stage AGC amplifier 26. In normal temperature correction, in order to minimize the deterioration of NF, the correction value in the SNR1 column of the table is applied to increase the gain of the front-stage AGC amplifier 23 and decrease the gain of the rear-stage AGC amplifier 26. Take control. When the reception SNR is reduced despite the short distance, the correction value in the column of SNR2 is applied to correct the gain of the previous stage AGC amplifier 23. If the received SNR does not improve much, the correction value in the SNR3 column is further applied to further suppress the gain of the front AGC amplifier 23 and perform correction to increase the gain of the rear AGC amplifier 26. Note that the sum of the correction amounts of config_rxTemp_z (z is 0 to 20) of indexes 1 and 2 of SNR1, SNR2, and SNR3 in FIG. 6 is substantially the same as the correction amount of config_rxTemp_z (z is 0 to 20) in FIG. It is set.

図7は、制御部がSNRの値に応じてAGCアンプの補正量の配分を変更するときの動作を説明するフローチャートである。なお、本フローチャートは、基地局に実装されている無線機の制御部4の動作を表している。まず、制御部4は、無線部2内の温度センサから温度情報を取得する(S101)。次に、信号処理部1が算出した受信信号のSNRを所定の閾値と比較してSNRが小さいか否かを判定し(S102)、SNRが大きい場合(S102でNoの場合)は、温度補正テーブルのSNR1を選択し、SNR1の欄のステップ101で取得した温度情報(以下、該当温度という)に対応する補正値を取得して、前段AGCアンプ23のゲインを高くし、後段AGCアンプ26のゲインを低くする制御を行う(S107)。
ステップ102において、受信信号のSNRが小さい場合は、端末の位置情報から、基地局と端末間の距離が近いか否かを所定の閾値を用いて判定する(S103)。距離が遠い場合(S103でNoの場合)は、温度補正テーブルのSNR1を選択し、該当温度に対応する補正値を取得して前段AGCアンプ23のゲインを高くし、後段AGCアンプ26のゲインを低くする制御を行う(S107)。
ステップ103において、距離が近い場合は、温度補正テーブルのSNR2を選択し、該当温度に対応する補正値を取得して前段AGCアンプ23のゲインを抑える補正を行う(S104)。次に、SNRが改善されたか否かを判定し(S105)、改善されなければ、温度補正テーブルのSNR3を選択し、該当温度に対応する補正値を取得して、さらに前段AGCアンプ23のゲインを抑える補正を行う(S106)。
FIG. 7 is a flowchart for explaining the operation when the control unit changes the distribution of the correction amount of the AGC amplifier according to the SNR value. In addition, this flowchart represents operation | movement of the control part 4 of the radio | wireless machine mounted in the base station. First, the control unit 4 acquires temperature information from the temperature sensor in the wireless unit 2 (S101). Next, the SNR of the received signal calculated by the signal processing unit 1 is compared with a predetermined threshold value to determine whether or not the SNR is small (S102). When the SNR is large (No in S102), temperature correction is performed. Select SNR1 in the table, acquire a correction value corresponding to the temperature information acquired in step 101 of the SNR1 column (hereinafter referred to as the corresponding temperature), increase the gain of the front-stage AGC amplifier 23, and increase the gain of the rear-stage AGC amplifier 26. Control to lower the gain is performed (S107).
In step 102, when the SNR of the received signal is small, it is determined from the position information of the terminal using a predetermined threshold value whether the distance between the base station and the terminal is short (S103). When the distance is long (No in S103), SNR1 in the temperature correction table is selected, a correction value corresponding to the temperature is acquired, the gain of the front AGC amplifier 23 is increased, and the gain of the rear AGC amplifier 26 is increased. Control to lower is performed (S107).
In step 103, if the distance is short, SNR2 in the temperature correction table is selected, a correction value corresponding to the temperature is acquired, and correction for suppressing the gain of the pre-stage AGC amplifier 23 is performed (S104). Next, it is determined whether or not the SNR has been improved (S105). If the SNR has not been improved, SNR3 in the temperature correction table is selected, a correction value corresponding to the corresponding temperature is acquired, and the gain of the pre-stage AGC amplifier 23 is further acquired. Correction to suppress this is performed (S106).

また、良好なSNRで受信していたにも関わらず、急にSNRが劣化した場合、妨害波の影響が考えられるので、この場合においても、上述のような補正を行い、SNRの改善を図るものとする。   In addition, when the SNR suddenly deteriorates even though it was received with a good SNR, the influence of the disturbing wave can be considered. Even in this case, the above-described correction is performed to improve the SNR. Shall.

上述のように、本発明の受信回路は、距離と受信SNRの状況に応じて、前段AGCアンプと後段AGCアンプに対する温度補正を切り替える、さらには急なSNRの劣化に対して前段AGCアンプと後段AGCアンプに対する温度補正を切り替えることで、帯域外の干渉波に対しても許容特性を大きくすることが可能となる。   As described above, the receiving circuit of the present invention switches the temperature correction for the front-stage AGC amplifier and the rear-stage AGC amplifier according to the status of the distance and the received SNR. By switching the temperature correction for the AGC amplifier, it is possible to increase the permissible characteristics even for out-of-band interference waves.

1 信号処理部
2 無線部
3 記憶部
4 制御部
21 LNアンプ
22 RFミキサ
23 前段AGCアンプ
24 IFアンプ
25 IFミキサ
26 後段AGCアンプ
DESCRIPTION OF SYMBOLS 1 Signal processing part 2 Radio | wireless part 3 Memory | storage part 4 Control part 21 LN amplifier 22 RF mixer 23 Front stage AGC amplifier 24 IF amplifier 25 IF mixer 26 Back stage AGC amplifier

Claims (4)

複数段のAGCアンプを有する無線信号の受信回路を備える無線機であって、
前記AGCアンプ毎にAGCアンプのゲインの補正量を格納する補正テーブルを記憶する記憶部と、
前記補正テーブルを参照して、受信した前記無線信号の受信品質に応じて、前記AGCアンプのそれぞれのゲインの補正量の総和を略一定に保ちながら前記AGCアンプのそれぞれのゲインの補正量の配分を制御する制御部と、
を備えることを特徴とする無線機。
A wireless device including a wireless signal receiving circuit having a multi-stage AGC amplifier,
A storage unit for storing a correction table for storing a correction amount of the gain of the AGC amplifier for each AGC amplifier;
Referring to the correction table, according to the reception quality of the received radio signal, the distribution of the correction amounts of the respective gains of the AGC amplifier while keeping the sum of the correction amounts of the respective gains of the AGC amplifier substantially constant A control unit for controlling
A wireless device comprising:
前記制御部は、前記補正テーブルを参照して、前記無線信号を送信した他の無線機からの距離と、受信した前記無線信号の受信品質に応じて、前記AGCアンプのそれぞれのゲインの補正量の総和を略一定に保ちながら前記AGCアンプのそれぞれのゲインの補正量の配分を制御することを特徴とする請求項1に記載の無線機。   The control unit refers to the correction table, and according to the distance from another radio device that has transmitted the radio signal and the reception quality of the received radio signal, the amount of correction of each gain of the AGC amplifier 2. The radio apparatus according to claim 1, wherein distribution of correction amounts of gains of the AGC amplifiers is controlled while keeping a sum of the AGC amplifiers substantially constant. 前記制御部は、前記受信回路の温度補正を行うとともに前記AGCアンプのそれぞれのゲインの補正量の配分を制御することを特徴とする請求項1または2に記載の無線機。   The radio apparatus according to claim 1, wherein the control unit performs temperature correction of the receiving circuit and controls distribution of correction amounts of gains of the AGC amplifiers. 前記受信品質を受信SNRとすることを特徴とする請求項1乃至3のいずれか1項に記載の無線機。   The radio apparatus according to any one of claims 1 to 3, wherein the reception quality is a reception SNR.
JP2010157561A 2010-07-12 2010-07-12 Radio Pending JP2012023422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010157561A JP2012023422A (en) 2010-07-12 2010-07-12 Radio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010157561A JP2012023422A (en) 2010-07-12 2010-07-12 Radio

Publications (1)

Publication Number Publication Date
JP2012023422A true JP2012023422A (en) 2012-02-02

Family

ID=45777342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010157561A Pending JP2012023422A (en) 2010-07-12 2010-07-12 Radio

Country Status (1)

Country Link
JP (1) JP2012023422A (en)

Similar Documents

Publication Publication Date Title
US10243600B2 (en) Receiver and wireless communications apparatus
US8145167B2 (en) Automatic gain control of radio devices
KR100818002B1 (en) Automatic gain control circuit and method for automatic gain control
EP1517440B1 (en) Variable gain control circuit and receiver apparatus using the circuit
JP4891888B2 (en) Radio communication circuit and radio communication system
JPWO2006093012A1 (en) Diversity receiving apparatus and gain adjustment method thereof
US7496163B2 (en) AGC system, AGC method, and receiver using the AGC system
US9392551B2 (en) Apparatus and method for matching antenna impedance in wireless communication system
EP2151062B1 (en) Increasing sensitivity of radio receiver
JP2012023422A (en) Radio
US9473186B2 (en) Method of controlling receiver gain automatically and apparatus for automatic gain control in receiver
US20070147554A1 (en) Receiver and transmitter/receiver
JP2010045706A (en) Diversity reception device and electronic apparatus using the same
JP4170081B2 (en) Interference wave detection device, reception device, and communication device
US20160336985A1 (en) Method, system and apparatus for automatic gain control in direct-conversion receiver
JP2007295472A (en) Agc circuit and radio unit using the same
JP2010278527A (en) Agc circuit and radio device including the same, and method of controlling the agc circuit
JP2005151250A (en) Agc circuit and switching method of att
JP5297487B2 (en) Receiver and gain control method
KR101161030B1 (en) Apparatus and method for controlling a gain in a receiver
JPH1155138A (en) Receiver
JP5381802B2 (en) Mobile phone terminal, mobile communication system, and LNA low gain mode switching control method used therefor
JPWO2012120804A1 (en) Radio and receiving method
JP2009290276A (en) Mobile terminal device and power consumption control method therefor
JP2007150949A (en) Receiver