JP2012023257A - Manufacturing method of integral thin film photoelectric conversion device - Google Patents

Manufacturing method of integral thin film photoelectric conversion device Download PDF

Info

Publication number
JP2012023257A
JP2012023257A JP2010161202A JP2010161202A JP2012023257A JP 2012023257 A JP2012023257 A JP 2012023257A JP 2010161202 A JP2010161202 A JP 2010161202A JP 2010161202 A JP2010161202 A JP 2010161202A JP 2012023257 A JP2012023257 A JP 2012023257A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
electrode layer
layer
thin film
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010161202A
Other languages
Japanese (ja)
Other versions
JP5539081B2 (en
Inventor
Toshiaki Sasaki
敏明 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2010161202A priority Critical patent/JP5539081B2/en
Publication of JP2012023257A publication Critical patent/JP2012023257A/en
Application granted granted Critical
Publication of JP5539081B2 publication Critical patent/JP5539081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide an integral thin film photoelectric conversion device having excellent high temperature and high humidity resistance.SOLUTION: The manufacturing method of the integral thin film photoelectric conversion device in which a transparent electrode layer, a semiconductor layer having one or more photoelectric conversion unit, a backside transparent electrode layer and backside metal electrode layer are stacked in succession on a transparent insulating substrate and are divided respectively by a plurality of transparent electrode separation trench, a connection trench and a backside electrode separation trench, which are straight and mutually parallel, so as to form a plurality of photoelectric conversion cells, and a plurality of photoelectric conversion cells are electrically and serially connected each other via the semiconductor layer separation trench, comprises a step for processing the device with the atmospheric-pressure plasma by introducing mixed gas consisting of oxygen-containing vapor, nitrogen or inert gas after formation of the semiconductor layer and before formation of the connection trench.

Description

本発明は集積型薄膜光電変換装置の製造方法に関し、特に裏面電極層の密着性と信頼性の向上に関する。なお、本発明における「結晶質」および「微結晶」の用語は、当該技術分野において用いられているように、部分的に非晶質を含む場合も包含する。   The present invention relates to a method for manufacturing an integrated thin film photoelectric conversion device, and more particularly to improvement in adhesion and reliability of a back electrode layer. Note that the terms “crystalline” and “microcrystal” in the present invention also include a case where the material partially contains amorphous as used in the art.

光電変換装置は、受光センサー、太陽電池など様々な分野で用いられている。なかでも、太陽電池は、地球に優しいエネルギー源の一つとして脚光を浴びており、近年の環境問題に対する関心の高まりと、各国の導入加速政策によって、太陽電池の普及が急速に進んでいる。   Photoelectric conversion devices are used in various fields such as light receiving sensors and solar cells. In particular, solar cells are in the limelight as one of the earth-friendly energy sources, and the spread of solar cells is rapidly progressing due to the recent interest in environmental problems and the introduction acceleration policies of each country.

光電変換装置のなかで、太陽電池を含む光電変換装置の低コスト化、高効率化を両立するために原材料が少なくてすむ薄膜光電変換装置が注目され、開発が精力的に行われている。特に、ガラス等の安価な基板上に低温プロセスを用いて良質の半導体層を形成する方法が低コストを実現可能な方法として期待されている。   Among photoelectric conversion devices, thin film photoelectric conversion devices that require less raw materials in order to achieve both low cost and high efficiency of photoelectric conversion devices including solar cells have attracted attention and are being energetically developed. In particular, a method of forming a high-quality semiconductor layer on an inexpensive substrate such as glass using a low-temperature process is expected as a method capable of realizing low cost.

このような薄膜光電変換装置を、電力用として高電圧で高出力を生じ得る大面積の薄膜光電変換装置として製造する場合、基板上に形成された薄膜光電変換装置の複数個を配線で直列接続して用いるのではなく、歩留りを良くするために大きな基板上に形成された薄膜太陽電池を複数の光電変換セルに分割し、それらの光電変換セルをパターニングによって直列接続して集積化するのが一般的である。特に、基板としてガラス板を用いて、ガラス基板側から光を入射させるタイプの薄膜光電変換装置においては、ガラス基板上の透明電極層の抵抗による損失を低減するために、レーザスクライブ法でその透明電極を所定幅の短冊状に加工する分離溝を設け、その短冊状の長手方向に直行する方向に各セルを直列接続して集積化するのが一般的である。   When manufacturing such a thin film photoelectric conversion device as a large area thin film photoelectric conversion device capable of producing high output at high voltage for power, a plurality of thin film photoelectric conversion devices formed on a substrate are connected in series by wiring. In order to improve the yield, a thin film solar cell formed on a large substrate is divided into a plurality of photoelectric conversion cells, and these photoelectric conversion cells are integrated in series by patterning. It is common. In particular, in a thin-film photoelectric conversion device of the type that uses a glass plate as the substrate and makes light incident from the glass substrate side, the laser scribe method is used to reduce the loss due to the resistance of the transparent electrode layer on the glass substrate. In general, a separation groove for processing an electrode into a strip shape having a predetermined width is provided, and the cells are generally connected in series in a direction perpendicular to the longitudinal direction of the strip shape to be integrated.

図4は、このような集積型薄膜光電変換装置の一例を概念的な平面図で示している。集積型薄膜光電変換装置は、分離溝102によって、短冊状の光電変換セル101に分割されている。そして、図1(a)〜(h)は、積層構造の製造工程の一例を模式的な断面図で示している。図1(a)から順に製造工程が進み、図1(h)で完成する積層構造は、図4中の楕円4Pで囲まれた領域の積層構造に相当する。さらに、図3は、図1(h)中の楕円1Pで囲まれた領域の積層構造のより詳細な一例を模式的な断面図で示している。なお、本願の図面において、長さ、幅、厚さなどの寸法関係は、図面の明瞭化と簡略化のために適宜に変更されており、実際の寸法関係を表してはいない。また、本願の図面において、同一の参照符号は同一部分または相当部分を表している。   FIG. 4 is a conceptual plan view showing an example of such an integrated thin film photoelectric conversion device. The integrated thin film photoelectric conversion device is divided into strip-shaped photoelectric conversion cells 101 by separation grooves 102. 1A to 1H are schematic cross-sectional views showing an example of a manufacturing process of a laminated structure. The manufacturing process proceeds sequentially from FIG. 1A, and the stacked structure completed in FIG. 1H corresponds to the stacked structure in the region surrounded by the ellipse 4P in FIG. Further, FIG. 3 is a schematic cross-sectional view showing a more detailed example of the laminated structure of the region surrounded by the ellipse 1P in FIG. In the drawings of the present application, dimensional relationships such as length, width, and thickness are appropriately changed for clarity and simplification of the drawings, and do not represent actual dimensional relationships. In the drawings of the present application, the same reference numerals represent the same or corresponding parts.

図1と図4に図解されているような集積型薄膜光電変換装置の製造においては、透明基板1として一般にガラス基板が用いられる(図1(a))。ガラス基板上には透明電極層2として、例えば厚さ700nmのSnO2膜が熱CVD(化学気相堆積)法にて形成される(図1(b))。透明電極層2は、レーザスクライブで形成される幅約100μmの透明電極分離溝6によって、各々が約10mmの幅Xを有する複数の短冊状透明電極に分離される(図1(c))。スクライブ後の残滓は、水または有機溶媒を用いた超音波洗浄で除去される。なお、洗浄方法としては、粘着剤や噴射ガスなどを用いて残滓を除去することも可能である。 In the manufacture of an integrated thin film photoelectric conversion device as illustrated in FIGS. 1 and 4, a glass substrate is generally used as the transparent substrate 1 (FIG. 1A). On the glass substrate, as the transparent electrode layer 2, for example, a SnO 2 film having a thickness of 700 nm is formed by a thermal CVD (chemical vapor deposition) method (FIG. 1B). The transparent electrode layer 2 is separated into a plurality of strip-shaped transparent electrodes each having a width X of about 10 mm by a transparent electrode separation groove 6 having a width of about 100 μm formed by laser scribing (FIG. 1C). The residue after scribing is removed by ultrasonic cleaning using water or an organic solvent. In addition, as a cleaning method, it is also possible to remove residues using an adhesive or a jet gas.

透明電極層2上には、1以上の非晶質光電変換ユニットおよび/または結晶質光電変換ユニットを含む半導体層3を形成する(図1(d))。この半導体層3は、レーザースクライブによって形成される接続溝7によって、複数の短冊状半導体領域に分割される(図1(e))。なお、接続溝7は互いに隣接するセル9間で透明電極2と裏面電極40を電気的に接続するために利用されるものなので、その溝内で部分的にスクライブの残滓が残っていても問題とならず、超音波洗浄は省略されてもよい。引き続いて裏面電極層40として、裏面透明電極層4、および裏面金属電極層5を形成する(図1(f)、(g))。裏面電極層40が形成されれば、接続溝7は裏面電極層40の導電性材料で埋め込まれ、隣り合う光電変換セル9間で一方のセルの裏面電極40と他方のセルの透明電極2とが接続溝7を介して電気的に直列接続される。   A semiconductor layer 3 including one or more amorphous photoelectric conversion units and / or crystalline photoelectric conversion units is formed on the transparent electrode layer 2 (FIG. 1D). The semiconductor layer 3 is divided into a plurality of strip-shaped semiconductor regions by connection grooves 7 formed by laser scribing (FIG. 1 (e)). The connection groove 7 is used to electrically connect the transparent electrode 2 and the back electrode 40 between the cells 9 adjacent to each other. Therefore, even if a scribe residue remains partially in the groove, there is a problem. However, the ultrasonic cleaning may be omitted. Subsequently, as the back electrode layer 40, the back transparent electrode layer 4 and the back metal electrode layer 5 are formed (FIGS. 1 (f) and (g)). If the back electrode layer 40 is formed, the connection groove 7 is filled with the conductive material of the back electrode layer 40, and the back electrode 40 of one cell and the transparent electrode 2 of the other cell between the adjacent photoelectric conversion cells 9. Are electrically connected in series via the connection groove 7.

裏面電極層40は半導体層3の場合と同様のレーザスクライブによってパターニングされる(図1(h))。すなわち、レーザビームによって半導体層3とともに裏面電極層40を局所的に吹き飛ばすことによって複数の裏面電極層分離溝8が形成され、その後に超音波洗浄が行なわれる。これによって複数の短冊状光電変換セル9が形成され、それらのセルは接続溝7を介して互いに電気的に直列接続されていることになる。最後に、薄膜光電変換装置の裏面側は、封止樹脂(図示せず)によって保護される。   The back electrode layer 40 is patterned by laser scribing similar to that of the semiconductor layer 3 (FIG. 1 (h)). That is, a plurality of back electrode layer separation grooves 8 are formed by locally blowing the back electrode layer 40 together with the semiconductor layer 3 with a laser beam, and thereafter ultrasonic cleaning is performed. Thus, a plurality of strip-shaped photoelectric conversion cells 9 are formed, and these cells are electrically connected in series with each other through the connection grooves 7. Finally, the back side of the thin film photoelectric conversion device is protected by a sealing resin (not shown).

透明電極層2にはSnO2やZnOなどの透明導電酸化物(TCO)が用いられ、それは一般にCVD、スパッタ、蒸着などの方法で形成される。透明電極層2は、その表面に微細な凹凸を有することによって、入射光の散乱を増大させる効果を有することが好ましい。 The transparent electrode layer 2 is made of a transparent conductive oxide (TCO) such as SnO 2 or ZnO, which is generally formed by a method such as CVD, sputtering or vapor deposition. The transparent electrode layer 2 preferably has an effect of increasing the scattering of incident light by having fine irregularities on its surface.

一つの光電変換ユニットは、pn接合またはpin接合を含む半導体層からなる。シリコン系薄膜光電変換装置の場合、光電変換ユニットは、p型層、実質的に真性のi型光電変換層、およびn型層で形成されるpin接合を含んでいる。そして、非晶質シリコンのi型層光電変換層を含むユニットは非晶質シリコン光電変換ユニットと称され、結晶質シリコンのi型光電変換層を含むユニットは結晶質シリコン光電変換ユニットと称される。なお、非晶質または結晶質のシリコン系材料としては、主要元素としてシリコンのみを含む材料だけでなく、炭素、酸素、窒素、ゲルマニウムなどの元素をも含む合金材料を用いることもできる。また、導電型層は、必ずしもi型層と同質の半導体材料で形成される必要はない。例えば、i型層が非晶質シリコンである場合に、p型層に非晶質シリコンカーバイドを用い得るし、n型層に微結晶含有シリコン層(μc−Si層とも呼ばれる)を用いることもできる。   One photoelectric conversion unit includes a semiconductor layer including a pn junction or a pin junction. In the case of a silicon-based thin film photoelectric conversion device, the photoelectric conversion unit includes a pin junction formed by a p-type layer, a substantially intrinsic i-type photoelectric conversion layer, and an n-type layer. The unit including the amorphous silicon i-type photoelectric conversion layer is referred to as an amorphous silicon photoelectric conversion unit, and the unit including the crystalline silicon i-type photoelectric conversion layer is referred to as a crystalline silicon photoelectric conversion unit. The Note that as the amorphous or crystalline silicon-based material, not only a material containing only silicon as a main element but also an alloy material containing elements such as carbon, oxygen, nitrogen, and germanium can be used. Further, the conductive type layer is not necessarily formed of the same semiconductor material as the i-type layer. For example, when the i-type layer is amorphous silicon, amorphous silicon carbide can be used for the p-type layer, and a microcrystal-containing silicon layer (also referred to as a μc-Si layer) can be used for the n-type layer. it can.

半導体層3上に形成される裏面電極層40としては、例えば、Al、Agなどの裏面金属電極層がスパッタ法または蒸着法により形成され得る。また、図5に示されているように、ITO(インジュウム錫酸化物)、SnO2、ZnOなどの裏面透明電極層4、裏面金属電極層5が順次積層された構造でも良い。 As the back electrode layer 40 formed on the semiconductor layer 3, for example, a back metal electrode layer such as Al or Ag can be formed by a sputtering method or a vapor deposition method. Further, as shown in FIG. 5, a back surface transparent electrode layer 4 made of ITO (Indium Tin Oxide), SnO 2 , ZnO or the like, and a back surface metal electrode layer 5 may be sequentially stacked.

非晶質シリコン薄膜光電変換装置においては、バルクの単結晶や多結晶の太陽電池に比べて初期光電変換効率が低く、光劣化現象(Staebler-Wronsky効果)によって変換効率が低下するという問題もある。そこで、多結晶や微結晶を含む結晶質シリコン薄膜を光電変換層に利用した結晶質シリコン薄膜光電変換装置が、低コスト化と高効率化とを両立させ得る太陽電池として期待されて検討されている。なぜならば、結晶質シリコン薄膜光電変換装置は非晶質シリコン薄膜光電変換装置と同様にプラズマCVD法にて比較的低温で作製でき、ほとんど光劣化現象を生じることもないからである。また、非晶質シリコン光電変換層が長波長側において800nm程度の波長までの光を光電変換し得るのに対し、結晶質シリコン光電変換層はそれより長い約1200nm程度の波長までの光を光電変換することができる。   In the amorphous silicon thin film photoelectric conversion device, the initial photoelectric conversion efficiency is lower than that of bulk single crystal or polycrystalline solar cells, and there is also a problem that the conversion efficiency decreases due to the photodegradation phenomenon (Staebler-Wronsky effect). . Therefore, a crystalline silicon thin film photoelectric conversion device using a crystalline silicon thin film containing polycrystals and microcrystals as a photoelectric conversion layer is expected and studied as a solar cell that can achieve both low cost and high efficiency. Yes. This is because the crystalline silicon thin film photoelectric conversion device can be manufactured at a relatively low temperature by the plasma CVD method as in the case of the amorphous silicon thin film photoelectric conversion device, and hardly causes a photodegradation phenomenon. In addition, the amorphous silicon photoelectric conversion layer can photoelectrically convert light up to a wavelength of about 800 nm on the long wavelength side, whereas the crystalline silicon photoelectric conversion layer photoelectrically converts light up to a wavelength of about 1200 nm. Can be converted.

さらに、薄膜光電変換装置の変換効率を向上させる方法として、2以上の積層された光電変換ユニットを含む積層型薄膜光電変換装置が知られている。この積層型薄膜光電変換装置においては、光入射側に大きなエネルギバンドギャップを有する光電変換層を含む前方光電変換ユニットを配置し、その後ろに順に小さなバンドギャップを有する光電変換層を含む後方光電変換ユニットを配置する。これによって、入射光の広い波長範囲にわたる光電変換を可能にして、積層型薄膜光電変換装置全体としての変換効率の向上が図られている。積層型薄膜光電変換装置の中でも、非晶質光電変換ユニットと結晶質光電変換ユニットを積層したものはハイブリッド型薄膜光電変換装置と称される。   Furthermore, as a method for improving the conversion efficiency of a thin film photoelectric conversion device, a stacked thin film photoelectric conversion device including two or more stacked photoelectric conversion units is known. In this stacked thin film photoelectric conversion device, a front photoelectric conversion unit including a photoelectric conversion layer having a large energy band gap is disposed on the light incident side, and a rear photoelectric conversion including a photoelectric conversion layer having a small band gap in order behind the photoelectric conversion layer. Place the unit. Thus, photoelectric conversion over a wide wavelength range of incident light is enabled, and the conversion efficiency of the entire laminated thin film photoelectric conversion device is improved. Among stacked thin film photoelectric conversion devices, a stack of an amorphous photoelectric conversion unit and a crystalline photoelectric conversion unit is referred to as a hybrid thin film photoelectric conversion device.

非晶質シリコン単層の光電変換装置にせよ、前述のハイブリッド型光電変換装置にせよ、光電変換層の厚さをできるだけ小さく保つことが生産性すなわち低コスト化の点からは望ましい。このため、光入射側から見て光電変換層の後方に光電変換層よりも屈折率の小さな層を配置して特定波長の光を有効に反射させる、いわゆる光閉じ込め効果を利用した構造が一般的に用いられている。光入射側から見て光電変換層の後方に配置するとは、光電変換層に接してその裏面側にあってもよいし、光電変換層の裏面に他の層を配置し、その層の裏面側にあってもよい。   Whether it is an amorphous silicon single layer photoelectric conversion device or the hybrid photoelectric conversion device described above, it is desirable from the viewpoint of productivity, that is, cost reduction, to keep the thickness of the photoelectric conversion layer as small as possible. For this reason, a structure using a so-called light confinement effect that effectively reflects light of a specific wavelength by arranging a layer having a smaller refractive index than the photoelectric conversion layer behind the photoelectric conversion layer when viewed from the light incident side is common. It is used for. Arranging behind the photoelectric conversion layer as viewed from the light incident side may be in contact with the photoelectric conversion layer on the back side thereof, or another layer is arranged on the back side of the photoelectric conversion layer, and the back side of the layer May be.

ところで、薄膜光電変換装置は屋外での使用を前提としているため、長期間の信頼性が重要である。信頼性に関わる要件として、光照射耐性と並んで、高温あるいは高温高湿環境における耐性が重要である。
(先行例1)
特許文献1に、光閉じ込め効果の向上を目的とした低屈折率層の材料として、n型シリコンオキサイド層を用いる例が開示されている。具体的には、光入射側から、ガラス基板/透明電極層/p型シリコンカーバイド層/i型非晶質シリコン光電変換層/n型シリコン層/p型結晶質シリコン層/i型結晶質シリコン光電変換装層/n型シリコンオキサイドの低屈折率層/n型結晶質シリコンの界面層/ZnOの金属酸化物層/Agの金属層の構造が開示されている。このとき、n型シリコンオキサイドの低屈折率層は導電性と低屈折率を両立するために、25原子%以上の酸素を含んでいて波長600nmにおける2.5以下の屈折率を有し、かつ結晶シリコン相を含んでいる。また、n型微結晶シリコンの界面層はシリコンオキサイド低屈折率層と金属酸化物層との間の接触抵抗を改善するように作用することを特徴としている。
(先行例2)
特許文献2に非晶質シリコン太陽電池の耐熱性を向上するために、n型層を2層にした薄膜光電変換装置が開示されている。光入射側から、ガラス基板/透明電極層/p型シリコンカーバイド層/i型非晶質シリコン光電変換層/n型非晶質シリコン層/n型非晶質シリコン合金層/裏面電極層の構造で、n型非晶質シリコン合金層は非晶質シリコンナイトライド、非晶質シリコンオキサイド、非晶質シリコンカーバイドのいずれかとすることを特徴としている。非晶質シリコン合金層のSi−N結合、Si−O結合、Si−C結合が、Si−Si結合より強いことによって、裏面電極材料が高温で拡散することを防止して、非晶質シリコン太陽電池の耐熱性を向上すると説明している。
By the way, since the thin film photoelectric conversion device is assumed to be used outdoors, long-term reliability is important. As requirements related to reliability, resistance in a high temperature or high temperature and high humidity environment is important along with light irradiation resistance.
(Prior Example 1)
Patent Document 1 discloses an example in which an n-type silicon oxide layer is used as a material for a low refractive index layer for the purpose of improving the light confinement effect. Specifically, from the light incident side, glass substrate / transparent electrode layer / p-type silicon carbide layer / i-type amorphous silicon photoelectric conversion layer / n-type silicon layer / p-type crystalline silicon layer / i-type crystalline silicon The structure of a photoelectric conversion layer / a low refractive index layer of n-type silicon oxide / an interface layer of n-type crystalline silicon / a metal oxide layer of ZnO / a metal layer of Ag is disclosed. At this time, the low refractive index layer of n-type silicon oxide contains 25 atomic% or more of oxygen and has a refractive index of 2.5 or less at a wavelength of 600 nm in order to achieve both conductivity and low refractive index, and Contains crystalline silicon phase. In addition, the interface layer of n-type microcrystalline silicon functions to improve the contact resistance between the silicon oxide low refractive index layer and the metal oxide layer.
(Prior Example 2)
Patent Document 2 discloses a thin film photoelectric conversion device having two n-type layers in order to improve the heat resistance of an amorphous silicon solar cell. From the light incident side, glass substrate / transparent electrode layer / p-type silicon carbide layer / i-type amorphous silicon photoelectric conversion layer / n-type amorphous silicon layer / n-type amorphous silicon alloy layer / back electrode layer structure The n-type amorphous silicon alloy layer is characterized by being made of any one of amorphous silicon nitride, amorphous silicon oxide, and amorphous silicon carbide. Since the Si—N bond, Si—O bond, and Si—C bond of the amorphous silicon alloy layer are stronger than the Si—Si bond, the back electrode material is prevented from diffusing at a high temperature, and amorphous silicon It is described that the heat resistance of the solar cell is improved.

国際公開WO2005/011002号公報International Publication WO2005 / 011002 特開昭63−84075号公報JP-A-63-84075

集積型薄膜光電変換装置において、高温高湿環境における耐性が不十分である課題がある。また、裏面電極層の密着性が高温高湿環境で低下する課題がある。   In the integrated thin film photoelectric conversion device, there is a problem that resistance in a high temperature and high humidity environment is insufficient. In addition, there is a problem that the adhesion of the back electrode layer is lowered in a high temperature and high humidity environment.

さらに、発明者らが検討したところ、先行例1あるいは先行例2に示されるシリコンオキサイド層を裏面電極層の近傍に含む場合に、特に高温高湿環境で裏面電極層の密着性の低下、太陽電池特性の低下が大きい課題があることを見出した。   Furthermore, when the inventors examined, when the silicon oxide layer shown in the preceding example 1 or the preceding example 2 is included in the vicinity of the back electrode layer, the adhesiveness of the back electrode layer is lowered particularly in a high temperature and high humidity environment. It has been found that there is a problem that the battery characteristics are greatly deteriorated.

上記を鑑み、本発明は高温高湿耐性の高い集積型薄膜光電変換装置を提供することを目的とする。   In view of the above, an object of the present invention is to provide an integrated thin film photoelectric conversion device having high resistance to high temperature and high humidity.

本発明による集積型薄膜光電変換装置の製造方法は、透明絶縁基板上に順次積層された透明電極層、1以上光電変換ユニットを含む半導体層、および裏面透明電極層、裏面金属電極層が、複数の光電変換セルを形成するように直線状で互いに平行な複数の透明電極層分離溝、接続溝、および裏面電極層分離溝によってそれぞれ分割され、かつそれらの複数の光電変換セルが前記接続溝を介して互いに電気的に直列接続されている集積型薄膜光電変換層の製造方法であって、前記半導体層を形成後でかつ接続溝形成前に、酸素含有蒸気と、窒素または希ガスからなる希釈ガスの混合ガスを導入した大気圧プラズマで処理する工程を有することを特徴とすることによって、課題を解決する。   The manufacturing method of the integrated thin film photoelectric conversion device according to the present invention includes a transparent electrode layer, a semiconductor layer including one or more photoelectric conversion units, a back surface transparent electrode layer, and a back surface metal electrode layer sequentially stacked on a transparent insulating substrate. Are divided by a plurality of transparent electrode layer separation grooves, connection grooves, and back electrode layer separation grooves that are linear and parallel to each other so as to form a photoelectric conversion cell, and the plurality of photoelectric conversion cells define the connection grooves. A method of manufacturing an integrated thin film photoelectric conversion layer electrically connected in series to each other, wherein the semiconductor layer is formed and before the connection groove is formed, and diluted with oxygen-containing vapor and nitrogen or a rare gas. The problem is solved by having a step of processing with atmospheric pressure plasma into which a mixed gas of gas is introduced.

あるいは、本発明による集積型薄膜光電変換装置の製造方法は、透明絶縁基板上に順次積層された透明電極層、1以上光電変換ユニットを含む半導体層、および裏面透明電極層、裏面金属電極層が、複数の光電変換セルを形成するように直線状で互いに平行な複数の透明電極層分離溝、接続溝、および裏面電極層分離溝によってそれぞれ分割され、かつそれらの複数の光電変換セルが前記半導体層分離溝を介して互いに電気的に直列接続されている集積型薄膜光電変換層の製造方法であって、裏面透明電極層を形成後でかつ裏面金属層形成前に、酸素含有蒸気と、窒素または希ガスからなる希釈ガスの混合ガスを導入した大気圧プラズマで処理する工程を有することを特徴とすることによって、課題を解決する。   Alternatively, the manufacturing method of the integrated thin film photoelectric conversion device according to the present invention includes a transparent electrode layer, a semiconductor layer including one or more photoelectric conversion units, a back surface transparent electrode layer, and a back surface metal electrode layer sequentially stacked on a transparent insulating substrate. Each of the plurality of photoelectric conversion cells is divided by a plurality of transparent electrode layer separation grooves, connection grooves, and back surface electrode layer separation grooves that are linear and parallel to each other so as to form a plurality of photoelectric conversion cells, A method of manufacturing an integrated thin film photoelectric conversion layer electrically connected in series with each other through a layer separation groove, wherein an oxygen-containing vapor and nitrogen are formed after forming a back transparent electrode layer and before forming a back metal layer Alternatively, the problem is solved by including a step of treating with atmospheric pressure plasma into which a mixed gas of a rare gas composed of a rare gas is introduced.

前記混合ガスの酸素含有蒸気に酸素または乾燥空気を用い、希釈ガスに窒素を用いることが好ましい。また、前記混合ガスの酸素の窒素に対する流量比が10ppm以上300ppm以下であることが特に好ましい。   It is preferable to use oxygen or dry air for the oxygen-containing vapor of the mixed gas and nitrogen for the diluent gas. Moreover, it is especially preferable that the flow rate ratio of oxygen to nitrogen in the mixed gas is 10 ppm or more and 300 ppm or less.

集積型薄膜光電変換装置の半導体層を形成後でかつ接続溝形成前に、酸素含有蒸気と、窒素または希ガスからなる希釈ガスの混合ガスを導入した大気圧プラズマで処理することによって、裏面電極層の密着性が向上し、集積型薄膜光電変換装置の高温高湿耐性が向上する。   After forming the semiconductor layer of the integrated thin film photoelectric conversion device and before forming the connection groove, the back surface electrode is processed by treatment with atmospheric pressure plasma into which a mixed gas of oxygen-containing vapor and nitrogen or a rare gas is introduced. The adhesion of the layers is improved, and the high temperature and high humidity resistance of the integrated thin film photoelectric conversion device is improved.

あるいは、裏面透明電極層を形成後でかつ裏面金属層形成前に、酸素含有蒸気と、窒素または希ガスからなる希釈ガスの混合ガスを導入した大気圧プラズマで処理する工程を有することによって、裏面電極層の密着性が向上し、集積型薄膜光電変換装置の高温高湿耐性が向上する。   Alternatively, after the back surface transparent electrode layer is formed and before the back surface metal layer is formed, the back surface is treated by atmospheric pressure plasma in which a mixed gas of oxygen-containing vapor and a diluent gas composed of nitrogen or a rare gas is introduced. The adhesion of the electrode layer is improved, and the high temperature and high humidity resistance of the integrated thin film photoelectric conversion device is improved.

本発明の1つの実施形態に係る集積型薄膜光電変換装置の模式的断面図および製造工程である。1 is a schematic cross-sectional view and a manufacturing process of an integrated thin film photoelectric conversion device according to one embodiment of the present invention. 本発明の別の実施形態に係る集積型薄膜光電変換装置の模式的断面図および製造工程である。It is a typical sectional view and a manufacturing process of an integrated type thin film photoelectric conversion device concerning another embodiment of the present invention. 本発明の1つの実施形態に係る集積型薄膜光電変換装置の詳細な模式的断面図である。。It is a detailed typical sectional view of an integrated type thin film photoelectric conversion device concerning one embodiment of the present invention. . 本発明の1つの実施形態に係る集積型薄膜光電変換装置の模式的平面図である。1 is a schematic plan view of an integrated thin film photoelectric conversion device according to one embodiment of the present invention.

以下において本発明の好ましい実施の形態について図面を参照しつつ説明する。なお本願の各図において、厚さや長さなどの寸法関係については図面の明瞭化と簡略化のため適宜変更されており、実際の寸法関係を表してはいない。また、各図において、同一の参照符号は同一部分または相当部分を表している。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each drawing of the present application, dimensional relationships such as thickness and length are appropriately changed for clarity and simplification of the drawings, and do not represent actual dimensional relationships. Moreover, in each figure, the same referential mark represents the same part or an equivalent part.

集積型薄膜光電変換装置において、裏面電極層の密着性を向上することは重要である。また、実際の使用に際して高温高湿耐性が高いことが重要である。特に、発明者は、光閉じ込め効果の向上を目的とした酸化シリコンの低屈折率層を裏面電極層の近傍に配置した薄膜光電変換装置において、特に裏面電極層の密着性が低く、高温高湿耐性も低い問題を見出した。そこで、発明者は、集積型薄膜光電変換装置の裏面電極層の密着性および高温高湿耐性の向上について、大気圧プラズマ処理を用いた工程の適用を鋭意検討した。   In the integrated thin film photoelectric conversion device, it is important to improve the adhesion of the back electrode layer. In actual use, it is important that the high temperature and high humidity resistance is high. In particular, the inventor, in a thin-film photoelectric conversion device in which a low refractive index layer of silicon oxide for the purpose of improving the light confinement effect is disposed in the vicinity of the back electrode layer, has particularly low adhesion to the back electrode layer, high temperature and high humidity We found a problem with low tolerance. In view of this, the inventors diligently studied the application of a process using atmospheric pressure plasma treatment for improving the adhesion of the back electrode layer and the high temperature and high humidity resistance of the integrated thin film photoelectric conversion device.

酸素含有蒸気を含む混合ガスを用いた大気圧プラズマ処理による表面改質は、例えば特許第3040358公報などに示されるように、よく知られている。しかし、その対象は樹脂フィルムやガラス、金属に対して行われ、半導体層には一般に用いない。なぜなら、半導体層に酸素含有蒸気を含む混合ガスを用いた大気圧プラズマ処理を行うと、表面が酸化されて絶縁物が形成され、抵抗が増加して半導体特性が損なわれることが、当業者に容易に想定されるからである。   Surface modification by atmospheric pressure plasma treatment using a mixed gas containing oxygen-containing vapor is well known as disclosed in, for example, Japanese Patent No. 3040358. However, the object is applied to a resin film, glass, or metal, and is not generally used for a semiconductor layer. This is because, when an atmospheric pressure plasma treatment using a mixed gas containing oxygen-containing vapor is performed on the semiconductor layer, the surface is oxidized to form an insulator, which increases resistance and impairs semiconductor characteristics. This is because it is assumed easily.

しかしながら、発明者は集積型薄膜光電変換装置の製造工程への酸素含有蒸気を含む混合ガスを用いた大気圧プラズマ処理について詳細に検討したところ、意外にも、半導体層の接触抵抗増加の問題を抑制しながら、裏面電極層の密着性の向上、あるいは高温高湿耐性を向上する製造方法を見出した。すなわち、集積型薄膜光電変換装置の半導体層を形成後でかつ接続溝形成前に、大気圧プラズマ処理を行うことで、半導体層の接触抵抗を増加させること無く、裏面電極層の密着性の向上、あるいは高温高湿耐性の向上を実現できることを見出した。酸素含有蒸気を含む混合ガスを用いた大気圧プラズマで処理することによって、半導体層の最表面を改質し、半導体層と裏面透明電極層および裏面金属電極層の密着性が向上したと考えられる。検討の過程で、大気圧プラズマの処理を半導体層および接続溝形成後に行うと、集積型薄膜光電変換装置の特性が低くなることが見出され、接続溝形成前に大気圧プラズマの処理を行うことが重要であることがわかった。これは、均一な層の半導体層への大気圧プラズマ処理は抵抗の問題を余り発生しないが、接続溝の中の半導体層の残渣または変質物が酸素含有蒸気を含む混合ガスを用いた大気圧プラズマで処理すると、酸化されて絶縁物となって接触抵抗が増加するためと考えられる。   However, the inventors have studied in detail the atmospheric pressure plasma treatment using a mixed gas containing oxygen-containing vapor to the manufacturing process of the integrated thin film photoelectric conversion device. The present inventors have found a production method for improving the adhesion of the back electrode layer or improving the high temperature and high humidity resistance while suppressing. That is, after the semiconductor layer of the integrated thin film photoelectric conversion device is formed and before the connection groove is formed, the atmospheric pressure plasma treatment is performed, thereby improving the adhesion of the back electrode layer without increasing the contact resistance of the semiconductor layer. Or, it has been found that the high temperature and high humidity resistance can be improved. It is thought that the outermost surface of the semiconductor layer was modified by treatment with atmospheric pressure plasma using a mixed gas containing oxygen-containing vapor, and the adhesion between the semiconductor layer, the back surface transparent electrode layer, and the back surface metal electrode layer was improved. . In the course of the study, it was found that the characteristics of the integrated thin film photoelectric conversion device are lowered when the atmospheric pressure plasma treatment is performed after the semiconductor layer and the connection groove are formed, and the atmospheric pressure plasma treatment is performed before the connection groove formation. I found it important. This is because atmospheric pressure plasma treatment on a uniform semiconductor layer does not cause much resistance problems, but the residue or alteration of the semiconductor layer in the connection groove uses a mixed gas containing oxygen-containing vapor. This is considered to be because, when treated with plasma, it is oxidized to become an insulating material and the contact resistance increases.

あるいは、裏面透明電極層を形成後でかつ裏面金属層形成前に、酸素含有蒸気と、窒素または希ガスからなる希釈ガスの混合ガスを導入した大気圧プラズマで処理する工程を有することによって、裏面電極層の密着性が向上し、高温高湿耐性が向上することを見出した。酸素含有蒸気を含む混合ガスを用いた大気圧プラズマで処理することによって、裏面透明電極層と裏面金属電極層の密着性が向上したと考えられる。裏面透明電極層と裏面金属電極層の工程間で大気圧プラズマ処理を行う場合、接続溝形成前でも後でも良好な効果が得られることを見出した。これは、裏面透明電極の後に形成した接続溝は、接続溝内に裏面透明電極層の残渣または変質物があると考えられが、酸素含有蒸気を含む混合ガスを用いた大気圧プラズマで処理して、裏面透明電極層材料が酸化されたとしても、抵抗の増加が小さいためと考えられる。   Alternatively, after the back surface transparent electrode layer is formed and before the back surface metal layer is formed, the back surface is treated by atmospheric pressure plasma in which a mixed gas of oxygen-containing vapor and a diluent gas composed of nitrogen or a rare gas is introduced. It has been found that the adhesion of the electrode layer is improved and the high temperature and high humidity resistance is improved. It is considered that the adhesion between the back surface transparent electrode layer and the back surface metal electrode layer was improved by treating with atmospheric pressure plasma using a mixed gas containing oxygen-containing vapor. It has been found that when atmospheric pressure plasma treatment is performed between the steps of the back transparent electrode layer and the back metal electrode layer, a good effect can be obtained both before and after the formation of the connection groove. This is because the connection groove formed after the back transparent electrode is considered to be a residue or altered material of the back transparent electrode layer in the connection groove, but is treated with atmospheric pressure plasma using a mixed gas containing oxygen-containing vapor. Even if the back surface transparent electrode layer material is oxidized, it is considered that the increase in resistance is small.

図1に、本発明の実施形態の一例による集積型薄膜光電変換装置の断面図および製造工程を示す。また、図3に図1の楕円1Pで囲まれた領域のより詳細な断面図を示す。透明絶縁基板1上に、順次、透明電極層2、半導体層3、裏面透明電極層4および裏面金属電極層5からなる裏面電極層40が配置され、集積型薄膜光電変換装置10を形成している。また、半導体層3は、前方光電変換ユニット3A、中間透過反射層3B、後方光電変換ユニット3Cから形成されている。   FIG. 1 shows a cross-sectional view and a manufacturing process of an integrated thin film photoelectric conversion device according to an example of an embodiment of the present invention. FIG. 3 shows a more detailed cross-sectional view of the region surrounded by the ellipse 1P of FIG. On the transparent insulating substrate 1, a back electrode layer 40 composed of a transparent electrode layer 2, a semiconductor layer 3, a back transparent electrode layer 4 and a back metal electrode layer 5 is sequentially arranged to form an integrated thin film photoelectric conversion device 10. Yes. The semiconductor layer 3 is formed of a front photoelectric conversion unit 3A, an intermediate transmission / reflection layer 3B, and a rear photoelectric conversion unit 3C.

基板側から光を入射するタイプの光電変換装置にて用いられる透明基板1には、ガラス、透明樹脂等から成る板状部材やシート状部材が用いられる。特に、透明基板1としてガラス板を用いれば、それが高い透過率を有しかつ安価であるので好ましい。   A plate-like member or a sheet-like member made of glass, transparent resin or the like is used for the transparent substrate 1 used in a photoelectric conversion device of a type in which light enters from the substrate side. In particular, it is preferable to use a glass plate as the transparent substrate 1 because it has a high transmittance and is inexpensive.

すなわち、透明基板1は薄膜光電変換装置の光入射側に位置するので、より多くの太陽光を透過させて光電変換ユニットに吸収させるために、できるだけ透明であることが好ましい。同様の意図から、太陽光の入射面における光反射ロスを低減させるために、透明基板1の光入射面上に無反射コーティングを設けることが好ましい。   That is, since the transparent substrate 1 is located on the light incident side of the thin film photoelectric conversion device, it is preferable that the transparent substrate 1 be as transparent as possible so that more sunlight is transmitted and absorbed by the photoelectric conversion unit. From the same intention, it is preferable to provide a non-reflective coating on the light incident surface of the transparent substrate 1 in order to reduce the light reflection loss on the sunlight incident surface.

透明電極層2はSnO、ZnO等の導電性金属酸化物から成ることが好ましく、CVD、スパッタ、蒸着等の方法を用いて形成されることが好ましい。透明電極層2はその表面に微細な凹凸を有することにより、入射光の散乱を増大させる効果を有することが望ましい。 The transparent electrode layer 2 is preferably made of a conductive metal oxide such as SnO 2 or ZnO, and is preferably formed using a method such as CVD, sputtering, or vapor deposition. The transparent electrode layer 2 desirably has the effect of increasing the scattering of incident light by having fine irregularities on its surface.

半導体層3は1以上の光電変換ユニットを含む。前方光電変換ユニット3Aとして非晶質シリコン系材料を選べば、約360〜800nmの光に対して感度を有し、後方光電変換ユニット3Cに結晶質シリコン系材料を選べばそれより長い約1200nmまでの光に対して感度を有する。したがって、光入射側から非晶質シリコン系材料の前方光電変換ユニット3A、結晶質シリコン系材料の後方光電変換ユニット3Cの順で配置される薄膜光電変換装置は、入射光をより広い範囲で有効利用可能となる。ただし、「シリコン系」の材料には、シリコンに加え、シリコンカーバイドやシリコンゲルマニウムなど、シリコンを含むシリコン合金半導体材料も含む。   The semiconductor layer 3 includes one or more photoelectric conversion units. If an amorphous silicon-based material is selected as the front photoelectric conversion unit 3A, it has sensitivity to light of about 360 to 800 nm, and if a crystalline silicon-based material is selected for the rear photoelectric conversion unit 3C, it is longer than about 1200 nm. Sensitivity to light. Therefore, the thin-film photoelectric conversion device arranged in this order from the light incident side to the front photoelectric conversion unit 3A of the amorphous silicon-based material and the rear photoelectric conversion unit 3C of the crystalline silicon-based material is effective in a wider range. Be available. However, “silicon-based” materials include silicon alloy semiconductor materials containing silicon such as silicon carbide and silicon germanium in addition to silicon.

上述した薄膜光電変換ユニットを複数積層する方法のほかに、薄膜光電変換装置の変換効率の向上には、薄膜光電変換ユニット間に、導電性を有しかつ薄膜光電変換ユニットを形成する材料よりも低い屈折率を有する材料からなる中間透過反射層3Bを形成する方法がある。このような中間透過反射層3Bを有することで、短波長側の光は反射し、長波長側の光は透過させる設計が可能となり、より有効に各薄膜光電変換ユニットでの光電変換が可能となる。   In addition to the method of laminating a plurality of thin film photoelectric conversion units as described above, the conversion efficiency of the thin film photoelectric conversion device can be improved by using a conductive material between the thin film photoelectric conversion units rather than the material forming the thin film photoelectric conversion unit. There is a method of forming the intermediate transmission / reflection layer 3B made of a material having a low refractive index. By having such an intermediate transmission / reflection layer 3B, it is possible to design light to reflect light on the short wavelength side and transmit light on the long wavelength side, and more effectively perform photoelectric conversion in each thin film photoelectric conversion unit. Become.

たとえば、前方の非晶質シリコン光電変換ユニットと後方の結晶質シリコン光電変換ユニットからなるハイブリッド型薄膜光電変換装置に中間透過反射層を挿入した場合、非晶質シリコン光電変換層の膜厚を増やすことなく、その前方光電変換ユニットによって発生する電流を増加させることができる。また、中間透過反射層を含む場合には、それを含まない場合に比べて、同一の電流値を得るために必要な非晶質シリコン光電変換層の厚さを小さくし得ることから、非晶質シリコン層の厚さの増加に応じて顕著となる光劣化(Sraebler-Wronsky効果)による非晶質シリコン光電変換ユニットの特性低下を抑制することが可能となる。   For example, when an intermediate transmission / reflection layer is inserted into a hybrid thin film photoelectric conversion device composed of a front amorphous silicon photoelectric conversion unit and a rear crystalline silicon photoelectric conversion unit, the thickness of the amorphous silicon photoelectric conversion layer is increased. Without increasing the current generated by the front photoelectric conversion unit. In addition, when the intermediate transmission / reflection layer is included, the amorphous silicon photoelectric conversion layer necessary for obtaining the same current value can be made thinner than when the intermediate transmission / reflection layer is not included. It is possible to suppress the deterioration of the characteristics of the amorphous silicon photoelectric conversion unit due to the photodegradation (Sraebler-Wronsky effect) that becomes remarkable as the thickness of the porous silicon layer increases.

中間透過反射層は、前方光電変換ユニットと後方光電変換ユニットの間に挿入してもよいが、前方光電変換ユニットの逆導電形層の一部に中間透過反射層を設けても良く、また、後方光電変換ユニットの一導電形層の一部に中間透過反射層を設けても良い。   The intermediate transmission / reflection layer may be inserted between the front photoelectric conversion unit and the rear photoelectric conversion unit, but an intermediate transmission / reflection layer may be provided on a part of the reverse conductivity type layer of the front photoelectric conversion unit, An intermediate transmission / reflection layer may be provided on a part of one conductivity type layer of the rear photoelectric conversion unit.

前方光電変換ユニット3Aは、例えばpin層の順にプラズマCVD法により各半導体層を積層して形成される。具体的には、例えば導電型決定不純物原子であるボロンが0.01原子%以上ドープされたp型非晶質シリコンカーバイド層を一導電型層3A1とし、真性非晶質シリコン層を光電変換層3A2とし、導電型決定不純物原子であるリンが0.01原子%以上ドープされたn型微結晶シリコン層を逆導電型層3A3として、この順に堆積すればよい。この例の場合、非晶質シリコン光電変換ユニットが形成される。   The front photoelectric conversion unit 3A is formed by stacking semiconductor layers by plasma CVD, for example, in the order of pin layers. Specifically, for example, a p-type amorphous silicon carbide layer doped with 0.01 atom% or more of boron, which is a conductivity-determining impurity atom, is used as one conductivity type layer 3A1, and an intrinsic amorphous silicon layer is a photoelectric conversion layer. The n-type microcrystalline silicon layer doped with 0.01 atomic% or more of phosphorus, which is a conductivity type determining impurity atom, may be deposited as the reverse conductivity type layer 3A3 in this order. In this example, an amorphous silicon photoelectric conversion unit is formed.

中間透過反射層3Bの材料としては、酸化亜鉛、ITOなどの導電性金属酸化物が挙げられる。また、非晶質シリコンや結晶質シリコンと同様にプラズマCVDで作製可能な、結晶シリコン相が非晶質酸化シリコン母相に分散した層であるシリコン複合層を用いることができる。集積型モジュールの場合、導電性酸化物を中間透過反射層3Bに用いると後方光電変換ユニットの短絡の問題が発生するが、シリコン複合層ではその問題が無いので、中間透過反射層3Bとしてはシリコン複合層がより望ましい。シリコン複合層の形成は、例えば、反応ガスとして、SiH、CO、H、PHを用い、H/SiH比が大きい、いわゆる微結晶作製条件で、かつCO/SiH比が2以上の範囲を用いてプラズマCVD法で作製することが好ましい。このときのプラズマCVDの条件は、例えば容量結合型の平行平板電極を用いて、電源周波数10〜100MHz、高周波パワー密度0.01〜0.5W/cm、圧力50〜1500Pa、基板温度150〜250℃が好ましい。CO/SiH比を増加させると膜中酸素濃度が単調に増加し、中間透過反射層の屈折率を下げることができる。具体的には、シリコン複合層の波長600nmの光に対する屈折率は1.7以上2.5以下が好ましい。 Examples of the material of the intermediate transmission / reflection layer 3B include conductive metal oxides such as zinc oxide and ITO. In addition, a silicon composite layer which is a layer in which a crystalline silicon phase is dispersed in an amorphous silicon oxide parent phase, which can be manufactured by plasma CVD as in the case of amorphous silicon or crystalline silicon, can be used. In the case of an integrated module, if a conductive oxide is used for the intermediate transmission / reflection layer 3B, there is a problem of short circuit of the rear photoelectric conversion unit. However, since there is no such problem in the silicon composite layer, the intermediate transmission / reflection layer 3B is made of silicon. A composite layer is more desirable. The formation of the silicon composite layer uses, for example, SiH 4 , CO 2 , H 2 , and PH 3 as a reaction gas, a so-called microcrystal production condition with a large H 2 / SiH 4 ratio, and a CO 2 / SiH 4 ratio. Is preferably formed by plasma CVD using a range of 2 or more. The plasma CVD conditions at this time are, for example, using a capacitively coupled parallel plate electrode, a power frequency of 10 to 100 MHz, a high frequency power density of 0.01 to 0.5 W / cm 2 , a pressure of 50 to 1500 Pa, and a substrate temperature of 150 to 250 ° C. is preferred. When the CO 2 / SiH 4 ratio is increased, the oxygen concentration in the film increases monotonously, and the refractive index of the intermediate transmission / reflection layer can be lowered. Specifically, the refractive index of the silicon composite layer with respect to light having a wavelength of 600 nm is preferably 1.7 or more and 2.5 or less.

後方光電変換ユニット3Cは、例えばpin層の順にプラズマCVD法により各半導体層を積層して形成される。具体的には、例えば導電型決定不純物原子であるボロンが0.01原子%以上ドープされたp型微結晶シリコン層を一導電型層3C1とし、真性結晶質シリコン層を光電変換層3C2とし、導電型決定不純物原子であるリンが0.01原子%以上ドープされたn型微結晶シリコン層を逆導電型層としてこの順に堆積すればよい。この例の場合、結晶質シリコン光電変換ユニットが形成される。   The rear photoelectric conversion unit 3C is formed, for example, by laminating semiconductor layers by plasma CVD in the order of pin layers. Specifically, for example, a p-type microcrystalline silicon layer doped with 0.01 atomic% or more of boron, which is a conductivity type determining impurity atom, is defined as one conductivity type layer 3C1, and an intrinsic crystalline silicon layer is defined as a photoelectric conversion layer 3C2. An n-type microcrystalline silicon layer doped with 0.01 atomic% or more of phosphorus which is a conductivity type determining impurity atom may be deposited in this order as a reverse conductivity type layer. In this example, a crystalline silicon photoelectric conversion unit is formed.

さらに、光閉じ込め効果を高めるために、裏面電極層に隣接した光電変換ユニットの逆導電型層の一部に低屈折率層を用いて、裏面側の反射率を高めることが望ましい。この場合、後方光電変換ユニット3Cは、プラズマCVD法を用いて導電型決定不純物原子であるボロンが0.01原子%以上ドープされたp型微結晶シリコン層を一導電型層3C1とし、真性結晶質シリコン層を光電変換層3C2とし、さらに、逆導電型層を逆導電型のシリコン複合層からなる低屈折率層3C3と逆導電型のn型微結晶シリコン層からなる界面接合層3C4とすることが好ましい。シリコン複合層の低屈折率層3C3は、前述の中間透過反射層の場合と同様の製造方法で作製することができる。また、裏面電極層との接触抵抗を低減するためにn型微結晶シリコン層からなる界面接合層3C4を配置することが好ましい
裏面電極層40は裏面透明電極層4と裏面金属電極層5からなる。裏面透明電極層4は、ITO、SnO、ZnO等の導電性酸化物層を、スパッタ法または蒸着法により形成することが好ましい。この裏面透明電極層4は、光反射率を高め、さらに、光電変換ユニットの化学変化を防止する機能を有する。裏面金属電極層5は、Al、Ag、Au、Cu、PtおよびCrから選ばれる少なくとも一つの材料を、スパッタ法または蒸着法により形成することが好ましい。
Furthermore, in order to enhance the light confinement effect, it is desirable to increase the back side reflectance by using a low refractive index layer as a part of the reverse conductivity type layer of the photoelectric conversion unit adjacent to the back electrode layer. In this case, the rear photoelectric conversion unit 3C uses a p-type microcrystalline silicon layer doped with 0.01 atomic% or more of boron, which is a conductivity type-determining impurity atom, using a plasma CVD method as a single conductivity type layer 3C1, The porous silicon layer is the photoelectric conversion layer 3C2, and the reverse conductivity type layer is the low refractive index layer 3C3 composed of the reverse conductivity type silicon composite layer and the interface junction layer 3C4 composed of the reverse conductivity type n-type microcrystalline silicon layer. It is preferable. The low refractive index layer 3 </ b> C <b> 3 of the silicon composite layer can be manufactured by the same manufacturing method as that of the above-described intermediate transmission / reflection layer. In order to reduce the contact resistance with the back electrode layer, it is preferable to dispose the interface bonding layer 3C4 made of an n-type microcrystalline silicon layer. The back electrode layer 40 is made of the back transparent electrode layer 4 and the back metal electrode layer 5. . The back transparent electrode layer 4 is preferably formed of a conductive oxide layer such as ITO, SnO 2 , ZnO or the like by sputtering or vapor deposition. This back surface transparent electrode layer 4 has a function of increasing the light reflectance and further preventing chemical change of the photoelectric conversion unit. The back metal electrode layer 5 is preferably formed by sputtering or vapor deposition of at least one material selected from Al, Ag, Au, Cu, Pt and Cr.

光電変換ユニットは図1に示した様に2つでもよいが、光電変換ユニットを1つ備える薄膜光電変換装置、いわゆるシングルセルでも良い。また、光電変換ユニットを3つ備える薄膜光電変換装置、いわゆるトリプルセルでも良く、さらに3つ以上の光電変換ユニットを積層してもよい。例えば、図1の前方光電変換ユニットに相当する非晶質シリコン光電変換ユニットのみを形成し、中間透過反射層6と後方光電変換ユニット3がない非晶質シングルセルでもかまわない。また、透明電極層の上に直接、結晶質シリコン光電変換ユニットを形成することも可能である。この場合、透明電極層はZnOまたはSnO2に薄くZnOを積層したものが、SnOに比べて耐プラズマ性が高いので好ましい。例えば、結晶質シリコン光電変換ユニットを1つ備える、図1の前方光電変換ユニット2と中間透過反射層6がない結晶質シングルセルでも良い。また、トリプルセルの例として、非晶質シリコン光電変換ユニット/実質的なi層に非晶質シリコンゲルマニウムを用いた非晶質シリコンゲルマニウム光電変換ユニット/結晶質シリコン光電変換ユニットの順に3つの光電変換ユニットを積層しても良い。また、非晶質シリコン光電変換ユニット/結晶質シリコン光電変換ユニット/結晶質シリコン光電変換ユニットの順に3つの光電変換ユニットを積層しても良い。 As shown in FIG. 1, two photoelectric conversion units may be used, but a thin film photoelectric conversion device including one photoelectric conversion unit, a so-called single cell may be used. In addition, a thin film photoelectric conversion device including three photoelectric conversion units, a so-called triple cell may be used, and three or more photoelectric conversion units may be stacked. For example, only an amorphous silicon photoelectric conversion unit corresponding to the front photoelectric conversion unit in FIG. 1 may be formed, and an amorphous single cell without the intermediate transmission / reflection layer 6 and the rear photoelectric conversion unit 3 may be used. It is also possible to form a crystalline silicon photoelectric conversion unit directly on the transparent electrode layer. In this case, the transparent electrode layer is a laminate of a thin ZnO in ZnO or SnO2 are preferred because of the high plasma resistance as compared with SnO 2. For example, a crystalline single cell having one crystalline silicon photoelectric conversion unit and having no front photoelectric conversion unit 2 and no intermediate transmission / reflection layer 6 in FIG. 1 may be used. As an example of a triple cell, there are three photoelectrics in the order of amorphous silicon photoelectric conversion unit / amorphous silicon germanium photoelectric conversion unit using amorphous silicon germanium in a substantial i layer / crystalline silicon photoelectric conversion unit. Conversion units may be stacked. Further, three photoelectric conversion units may be stacked in the order of amorphous silicon photoelectric conversion unit / crystalline silicon photoelectric conversion unit / crystalline silicon photoelectric conversion unit.

図2は、本発明の別の実施形態の一例による集積型薄膜光電変換装置の断面構造および製造工程を概略的に示す図である。図2に示す集積型薄膜光電変換装置10Aは、透明基板1の上に、透明電極層2を形成し、非晶質シリコン光電ユニットである前方光電変換ユニット3A、中間透過反射層3B、結晶質シリコン光電変換ユニットである後方光電変換ユニット3Cからなる半導体層3、及び裏面透明電極層4と裏面金属電極層5からなる裏面電極層40を順次積層した構造を有している。   FIG. 2 is a diagram schematically showing a cross-sectional structure and a manufacturing process of an integrated thin film photoelectric conversion device according to an example of another embodiment of the present invention. An integrated thin film photoelectric conversion device 10A shown in FIG. 2 has a transparent electrode layer 2 formed on a transparent substrate 1, a front photoelectric conversion unit 3A that is an amorphous silicon photoelectric unit, an intermediate transflective layer 3B, a crystalline material. It has a structure in which a semiconductor layer 3 composed of a back photoelectric conversion unit 3C, which is a silicon photoelectric conversion unit, and a back electrode layer 40 composed of a back transparent electrode layer 4 and a back metal electrode layer 5 are sequentially laminated.

図2に示すように、集積型薄膜光電変換装置10Aには、上記薄膜を分割する透明電極層分離溝6、接続溝7A、裏面電極層分離溝8とが設けられている。これら透明電極層分離溝6、接続溝7A、および裏面電極層分離溝8は、互いに平行であって、紙面に対して垂直な方向に延在している。なお、隣り合う光電変換セル9間の境界は、透明電極層分離溝6、裏面電極層分離溝8によって規定されている。   As shown in FIG. 2, the integrated thin film photoelectric conversion device 10A is provided with a transparent electrode layer separation groove 6, a connection groove 7A, and a back electrode layer separation groove 8 for dividing the thin film. The transparent electrode layer separation groove 6, the connection groove 7A, and the back electrode layer separation groove 8 are parallel to each other and extend in a direction perpendicular to the paper surface. The boundary between adjacent photoelectric conversion cells 9 is defined by the transparent electrode layer separation groove 6 and the back electrode layer separation groove 8.

透明電極層分離溝6は、透明電極層2をそれぞれの光電変換セル9に対応して分割しており、透明電極層2と非晶質シリコン光電変換ユニット3Aとの界面に開口を有し且つ透明基板1の表面を底面としている。この透明電極層分離溝6は、非晶質シリコン光電変換ユニット3Aを構成する非晶質によって埋め込まれており、隣り合う透明電極膜2同士を電気的に絶縁している。   The transparent electrode layer separation groove 6 divides the transparent electrode layer 2 corresponding to each photoelectric conversion cell 9, has an opening at the interface between the transparent electrode layer 2 and the amorphous silicon photoelectric conversion unit 3A, and The surface of the transparent substrate 1 is the bottom surface. The transparent electrode layer separation groove 6 is filled with an amorphous material constituting the amorphous silicon photoelectric conversion unit 3A, and electrically insulates the adjacent transparent electrode films 2 from each other.

裏面電極層分離溝8は、透明電極層分離溝6から離れた位置に設けられている。裏面電極層分離溝8は、前方光電変換ユニット3A、中間透過反射層3B、後方光電変換ユニット3C、裏面透明電極層4、裏面金属電極層5をそれぞれの光電変換セル9に対応して分割しており、裏面金属電極層5の上面に開口を有し且つ透明電極層2と前方光電変換ユニット3Aの界面を底面としている。この裏面電極層分離溝8は、隣り合う光電変換セル9間で裏面電極層40同士を電気的に絶縁している。   The back electrode layer separation groove 8 is provided at a position away from the transparent electrode layer separation groove 6. The back electrode layer separation groove 8 divides the front photoelectric conversion unit 3A, the intermediate transmission / reflection layer 3B, the rear photoelectric conversion unit 3C, the back transparent electrode layer 4, and the back metal electrode layer 5 corresponding to the respective photoelectric conversion cells 9. The back surface metal electrode layer 5 has an opening on the top surface, and the interface between the transparent electrode layer 2 and the front photoelectric conversion unit 3A is the bottom surface. The back electrode layer separation grooves 8 electrically insulate the back electrode layers 40 between the adjacent photoelectric conversion cells 9.

接続溝7Aは、透明電極層分離溝6と裏面電極層分離溝8との間に設けられている。接続溝7Aは、前方光電変換ユニット3A、中間透過反射層3B、後方光電変換ユニット3Cおよび裏面透明電極層4を分割しており、裏面透明電極層4と裏面金属電極層5の界面に開口を有し且つ透明電極層2と前方光電変換ユニット3Aの界面を底面としている。この接続溝7Aは、裏面金属電極層5を構成する金属材料で埋め込まれており、隣り合う光電変換セル9の一方の裏面電極層40と他方の透明電極層2とを電気的に接続している。すなわち、接続溝7A及びそれを埋め込む金属材料は、透明絶縁基板1上に並置された光電変換セル9同士を直列接続する役割を担っている。   The connection groove 7 </ b> A is provided between the transparent electrode layer separation groove 6 and the back electrode layer separation groove 8. The connection groove 7A divides the front photoelectric conversion unit 3A, the intermediate transmission reflection layer 3B, the rear photoelectric conversion unit 3C, and the back surface transparent electrode layer 4, and has an opening at the interface between the back surface transparent electrode layer 4 and the back surface metal electrode layer 5. And the bottom surface is an interface between the transparent electrode layer 2 and the front photoelectric conversion unit 3A. The connection groove 7A is embedded with a metal material constituting the back surface metal electrode layer 5, and electrically connects one back surface electrode layer 40 and the other transparent electrode layer 2 of the adjacent photoelectric conversion cells 9. Yes. That is, the connection groove 7 </ b> A and the metal material filling the connection groove 7 serve to connect the photoelectric conversion cells 9 juxtaposed on the transparent insulating substrate 1 in series.

本発明による集積型薄膜太陽電池の製造方法において、分離溝および接続溝はレーザビームをパルス的に照射することによって形成され得る。レーザ装置としては、容易に市販品を入手し得るYAGレーザを用いることができる。その場合、透明電極層分離溝6の形成にはYAGレーザの基本波である波長1064nmのレーザ光を用い、接続溝7、7Aおよび裏面電極層分離溝8の形成にはYAGレーザの第二高調波である波長532nmのレーザ光を用いる。レーザビーム照射スポットと基板との相対的位置を変化させながらレーザ光をパルス的に照射することによって、略同形状のピットが一定ピッチで連なった分離溝が形成され得る。   In the method for manufacturing an integrated thin film solar cell according to the present invention, the separation groove and the connection groove can be formed by irradiating a laser beam in a pulsed manner. As the laser device, a YAG laser that can be easily obtained as a commercial product can be used. In this case, laser light having a wavelength of 1064 nm, which is a fundamental wave of a YAG laser, is used to form the transparent electrode layer separation groove 6, and the second harmonic of the YAG laser is used to form the connection grooves 7, 7A and the back electrode layer separation groove 8. A laser beam having a wavelength of 532 nm is used. By irradiating the laser beam in a pulse manner while changing the relative position between the laser beam irradiation spot and the substrate, a separation groove in which pits having substantially the same shape are connected at a constant pitch can be formed.

YAGレーザのパルスの周波数としては、典型的には3〜15kHzが用いられ得る。また、YAGレーザと同じ波長1064nmのレーザ光を射出し得るYVO4(イットリウム・バナデート)レーザも分離溝の形成に用いることができ、その場合はパルス周波数を30kHzまで増加させることができる。なお、分離溝の形成方法は、レーザビーム照射に限定されず、その他のエネルギビーム照射などであってもよい。   As the frequency of the YAG laser pulse, typically 3 to 15 kHz can be used. In addition, a YVO4 (yttrium vanadate) laser that can emit laser light having the same wavelength of 1064 nm as that of the YAG laser can also be used for forming the separation groove. In this case, the pulse frequency can be increased to 30 kHz. Note that the method of forming the separation groove is not limited to laser beam irradiation, but may be other energy beam irradiation.

本発明の実施形態において、半導体層を形成後でかつ接続溝形成前に、酸素含有蒸気と、窒素または希ガスからなる希釈ガスの混合ガスを導入した大気圧プラズマで処理する工程を有することを特徴とする。   In the embodiment of the present invention, after the semiconductor layer is formed and before the connection groove is formed, the method includes a step of processing with an atmospheric pressure plasma into which a mixed gas of oxygen-containing vapor and a dilution gas composed of nitrogen or a rare gas is introduced. Features.

すなわち、図1に示す第一の実施形態の集積型薄膜光電変換装置の製造工程において、図1(d)の半導体層3形成後、大気圧プラズマ処理し、その後図1(e)の接続溝7を形成する。酸素含有蒸気としては酸素または乾燥空気が、安全性が高く、また、安価であるため望ましい。希釈ガスとしては、窒素が安全性が高く、また、低価格であるため望ましい。酸化剤蒸気として酸素、希釈ガスとして窒素を用いた場合、酸素の濃度は10から300ppmが望ましく、50から150ppmがさらに望ましい。酸素濃度を10ppm以上にすると、裏面電極層40の密着性の改善効果が十分現れるので望ましい。また、酸素濃度を300ppm以下にすると、半導体層3と裏面透明電極層4との接触抵抗が低く抑制されるので望ましい。大気圧プラズマは、微小な間隔の平行平板電極間にパルス状の高電圧を引加して発生させることが望ましい。電圧をパルス状にすることにより、アーク放電の発生を抑制することが出来る。   That is, in the manufacturing process of the integrated thin film photoelectric conversion device of the first embodiment shown in FIG. 1, after forming the semiconductor layer 3 in FIG. 1D, atmospheric pressure plasma treatment is performed, and then the connection groove in FIG. 7 is formed. As the oxygen-containing steam, oxygen or dry air is desirable because it is highly safe and inexpensive. As a diluent gas, nitrogen is desirable because it is highly safe and inexpensive. When oxygen is used as the oxidant vapor and nitrogen is used as the diluent gas, the oxygen concentration is preferably 10 to 300 ppm, and more preferably 50 to 150 ppm. It is desirable that the oxygen concentration be 10 ppm or more because the effect of improving the adhesion of the back electrode layer 40 appears sufficiently. Further, it is desirable that the oxygen concentration is 300 ppm or less because the contact resistance between the semiconductor layer 3 and the back transparent electrode layer 4 is suppressed low. The atmospheric pressure plasma is desirably generated by applying a pulsed high voltage between parallel plate electrodes with a minute interval. By making the voltage pulse, the occurrence of arc discharge can be suppressed.

大気圧プラズマ処理をした半導体層3の表面は、純水による接触角が20°以下になることが望ましく、10°以下になることがさらに望ましい。接触角によって、大気圧プラズマによる表面改質の目安となるためである。   The surface of the semiconductor layer 3 subjected to the atmospheric pressure plasma treatment preferably has a contact angle with pure water of 20 ° or less, and more preferably 10 ° or less. This is because the contact angle is a measure of surface modification by atmospheric pressure plasma.

裏面電極層40の密着性の向上、高温高湿耐性の向上の機構は明確ではないが、半導体層表面にOH基などの極性をもつ官能基が形成されて、半導体層3と裏面透明電極層4あるいは裏面金属電極層5との間の密着性が向上すると考えられる。半導体層に薄膜シリコン系材料を用いた場合、膜中に5〜30原子%の水素が含まれており、このため、OH基が形成されうると考えられる。このため半導体層3の表面は大気圧プラズマ処理でSiO2絶縁膜が形成されにくいと考えられる。   Although the mechanism for improving the adhesion of the back electrode layer 40 and the resistance to high temperature and high humidity is not clear, a functional group having a polarity such as an OH group is formed on the surface of the semiconductor layer, and the semiconductor layer 3 and the back transparent electrode layer 4 or the back metal electrode layer 5 is considered to be improved in adhesion. When a thin film silicon-based material is used for the semiconductor layer, 5 to 30 atomic% of hydrogen is contained in the film, and it is considered that OH groups can be formed. For this reason, it is considered that the SiO 2 insulating film is hardly formed on the surface of the semiconductor layer 3 by the atmospheric pressure plasma treatment.

しかし、接続溝形成後に大気圧プラズマ処理をすると集積型薄膜光電変換装置の抵抗成分が増加して特性が低下するので望ましくない。これはレーザースクライブによって接続溝7を形成する際に、溝の中に半導体層の残渣や変質物があるためと考えられる。レーザースクライブをすると、半導体層は瞬間的に高温になって昇華するので、膜中水素も高温で脱離して、残渣や変質物中に水素は無いと考えられる。このため、接続溝7を形成後に、酸素含有蒸気を含む混合ガスを用いて大気圧プラズマ処理をすると、接続溝7の残渣や変質物が酸化されて絶縁物となって、集積型薄膜光電変換装置の抵抗成分が増加して、特性が低下すると考えられる。   However, if the atmospheric pressure plasma treatment is performed after the connection groove is formed, the resistance component of the integrated thin film photoelectric conversion device increases and the characteristics deteriorate, which is not desirable. This is presumably because when the connection groove 7 is formed by laser scribing, there is a residue or denatured material of the semiconductor layer in the groove. When laser scribing is performed, the semiconductor layer instantaneously becomes high temperature and sublimates, so that hydrogen in the film is also desorbed at high temperature, and it is considered that there is no hydrogen in the residue or altered material. For this reason, when the atmospheric pressure plasma treatment is performed using the mixed gas containing oxygen-containing vapor after the connection groove 7 is formed, the residue and the altered material in the connection groove 7 are oxidized to become an insulating material, and the integrated thin film photoelectric conversion It is considered that the resistance component of the device increases and the characteristics deteriorate.

図2に本発明の別の実施形態の集積型薄膜光電変換装置およびその製造工程を示す。図1の実施形態と異なる点は、図2(d)で半導体層3形成後に、続けて図2(e)で裏面透明電極層4を形成し、その後、図2(f)で接続溝7Aを形成したことが異なる。   FIG. 2 shows an integrated thin film photoelectric conversion device according to another embodiment of the present invention and a manufacturing process thereof. 1 is different from the embodiment of FIG. 1 in that after forming the semiconductor layer 3 in FIG. 2D, the back transparent electrode layer 4 is formed in FIG. 2E, and then the connection groove 7A in FIG. 2F. It is different that formed.

接続溝7Aは、前方光電変換ユニット3A、中間透過反射層3B、後方光電変換ユニット3C、および裏面透明電極層4を分割しており、裏面透明電極層4と裏面金属電極層5との界面に開口を有し且つ透明電極層2と前方光電変換ユニット3Aの界面を底面としている。この接続溝7Aは、裏面金属電極層5を構成する金属材料で埋め込まれており、隣り合う光電変換セル9の一方の裏面電極層40と他方の透明電極層2とを電気的に接続している。すなわち、接続溝7A及びそれを埋め込む金属材料は、透明基板1上に並置された光電変換セル9同士を直列接続する役割を担っている。   The connection groove 7 </ b> A divides the front photoelectric conversion unit 3 </ b> A, the intermediate transmission / reflection layer 3 </ b> B, the rear photoelectric conversion unit 3 </ b> C, and the back transparent electrode layer 4, and at the interface between the back transparent electrode layer 4 and the back metal electrode layer 5. It has an opening and the interface between the transparent electrode layer 2 and the front photoelectric conversion unit 3A is the bottom surface. The connection groove 7A is embedded with a metal material constituting the back surface metal electrode layer 5, and electrically connects one back surface electrode layer 40 and the other transparent electrode layer 2 of the adjacent photoelectric conversion cells 9. Yes. That is, the connection groove 7 </ b> A and the metal material filling the connection groove 7 serve to connect the photoelectric conversion cells 9 juxtaposed on the transparent substrate 1 in series.

図2の第二実施形態の場合、大気圧プラズマ処理は、図2(e)の裏面透明電極層4形成後で、図2(f)の接続溝7A形成前に行う。あるいは、図2(f)の接続溝7A形成後で、図2(g)の裏面金属電極層5を形成前に行う。発明者らが鋭意検討したところ、裏面電極層40の密着性の低下は、裏面透明電極層4と裏面金属電極層5の界面で発生する場合、すなわち裏面金属電極層5が剥離する場合が多いことがわかった。このため、裏面透明電極層を形成後で、裏面金属電極層を形成前に大気圧プラズマ処理をすることが、密着性の向上に有効であるといえる。接続溝7Aを形成前と形成後いずれでも大気圧プラズマ処理が有効である理由は、接続溝7Aの溝の中の残渣は裏面透明電極層材料あるいはその変質物と考えられ、酸素含有蒸気を含む混合ガスで大気圧プラズマ処理を行っても絶縁物が形成されないためと考えられる。例えば裏面透明電極層材料が酸化亜鉛の場合、もともと酸化物なので、酸化による抵抗変化は少ないと考えられる。   In the case of the second embodiment of FIG. 2, the atmospheric pressure plasma treatment is performed after the formation of the back surface transparent electrode layer 4 of FIG. 2 (e) and before the formation of the connection groove 7A of FIG. 2 (f). Alternatively, after the formation of the connection groove 7A of FIG. 2 (f), it is performed before the formation of the back surface metal electrode layer 5 of FIG. 2 (g). As a result of intensive studies by the inventors, a decrease in the adhesion of the back electrode layer 40 occurs at the interface between the back transparent electrode layer 4 and the back metal electrode layer 5, that is, the back metal electrode layer 5 often peels off. I understood it. For this reason, after forming the back surface transparent electrode layer, it can be said that the atmospheric pressure plasma treatment is effective for improving the adhesion before the back surface metal electrode layer is formed. The reason why the atmospheric pressure plasma treatment is effective before and after the formation of the connection groove 7A is that the residue in the connection groove 7A is considered to be a back transparent electrode layer material or a modified material thereof and contains oxygen-containing vapor. It is considered that an insulator is not formed even when atmospheric pressure plasma treatment is performed with a mixed gas. For example, when the back surface transparent electrode layer material is zinc oxide, it is considered that there is little change in resistance due to oxidation because it is originally an oxide.

図2の実施形態の場合、大気圧プラズマ処理後の裏面透明電極層4の純水の接触角は20°以下が望ましく、10°以下がさらに望ましい。接触角によって、大気圧プラズマによる表面改質の目安となるためである。   In the case of the embodiment of FIG. 2, the contact angle of pure water of the back transparent electrode layer 4 after the atmospheric pressure plasma treatment is preferably 20 ° or less, and more preferably 10 ° or less. This is because the contact angle is a measure of surface modification by atmospheric pressure plasma.

以下、本発明による実施例と、従来技術による比較例に基づいて詳細に説明する。各図において同様の部材には同一の参照符号を付し、重複する説明は省略する。また、本発明はその趣旨を超えない限り以下の実施例に限定されるものではない。   Hereinafter, examples according to the present invention and comparative examples according to the prior art will be described in detail. In the drawings, the same members are denoted by the same reference numerals, and redundant description is omitted. Moreover, this invention is not limited to a following example, unless the meaning is exceeded.

(実施例1)
本発明の実施例1として、集積型薄膜太陽電池を作製した。この実施例1の集積型薄膜太陽電池に関しても、図1、図3および図4を参照することができる。透明基板1は、4mm×360mm×465mmのガラス基板を用いた。透明基板1の上に、透明電極層2を形成した。透明電極層2は微小なピラミッド状の表面凹凸を含みかつ平均厚さ700nmのSnO膜が透明基板1の上に熱CVD法にて形成された。得られた透明電極層2のシート抵抗は約9Ω/□であった。またC光源で測定したヘイズ率は12%であり、表面凹凸の平均高低差dは約100nmであった。ヘイズ率はJISK7136に基づき測定した。
Example 1
As Example 1 of the present invention, an integrated thin film solar cell was produced. Regarding the integrated thin film solar cell of Example 1, FIG. 1, FIG. 3 and FIG. 4 can also be referred to. As the transparent substrate 1, a 4 mm × 360 mm × 465 mm glass substrate was used. A transparent electrode layer 2 was formed on the transparent substrate 1. The transparent electrode layer 2 was formed on the transparent substrate 1 by a thermal CVD method with a SnO 2 film having minute pyramidal surface irregularities and an average thickness of 700 nm. The sheet resistance of the obtained transparent electrode layer 2 was about 9Ω / □. The haze ratio measured with a C light source was 12%, and the average height difference d of the surface irregularities was about 100 nm. The haze ratio was measured based on JISK7136.

上述のような透明電極層2上に、半導体層3として、非晶質シリコン光電変換ユニット3A、中間透過反射層3B、結晶質シリコン光電変換ユニット3Cが形成された。さらに、裏面電極層40として裏面透明電極層4および裏面金属電極層5をを順次形成することによって、図1に示すような積層型薄膜太陽電池が作製された。ただし、この薄膜太陽電池は、レーザースクライブを利用することによって、図1に示すような集積型薄膜太陽電池10として作製された。本実施例1の集積型薄膜太陽電池10においては、50段の光電変換セルが直列接続された。   An amorphous silicon photoelectric conversion unit 3A, an intermediate transmission / reflection layer 3B, and a crystalline silicon photoelectric conversion unit 3C were formed as the semiconductor layer 3 on the transparent electrode layer 2 as described above. Furthermore, the back surface transparent electrode layer 4 and the back surface metal electrode layer 5 were formed in this order as the back surface electrode layer 40, thereby producing a stacked thin film solar cell as shown in FIG. However, this thin film solar cell was produced as an integrated thin film solar cell 10 as shown in FIG. 1 by using laser scribing. In the integrated thin film solar cell 10 of Example 1, 50 stages of photoelectric conversion cells were connected in series.

具体的には、波長1064nmのYAGレーザビームを用いて、透明電極層2において、幅70umの透明電極層分離溝6を形成した。この際に、レーザビームのエネルギ密度は13J/cm2に設定され、加工速度は600mm/sに設定された。透明電極層分離溝6の形成後に、薄膜太陽電池用基板1は、洗浄されて乾燥された。 Specifically, the transparent electrode layer separation groove 6 having a width of 70 μm was formed in the transparent electrode layer 2 using a YAG laser beam having a wavelength of 1064 nm. At this time, the energy density of the laser beam was set to 13 J / cm 2 and the processing speed was set to 600 mm / s. After the formation of the transparent electrode layer separation groove 6, the thin film solar cell substrate 1 was washed and dried.

透明電極層2上には、厚さ15nmのp型非晶質シリコンカーバイド層のp型層3A1、厚さ300nmの真性非晶質シリコン光電変換層3A2、および厚さ15nmのn型微結晶シリコン層3A3からなる非晶質光電変換ユニット3AがプラズマCVDによって形成された。つづけて、プラズマCVDによって、厚さ50nmのシリコン複合層からなる中間透過反射層3Bを形成した。さらに、厚さ15nmのp型微結晶シリコン層3C1、厚さ2.5μmの真性結晶質シリコン層3C2、厚さ60nmのシリコン複合層からなる低屈折率層3C3および厚さ15nmのn型微結晶シリコン層3C4からなる結晶質シリコン光電変換層ユニット3CをプラズマCVDで形成した。すなわち、半導体層3は、前方光電変換ユニット3A、中間透過反射層3B、および後方光電変換ユニット3Cを含んでいる。   On the transparent electrode layer 2, a p-type layer 3A1 of a p-type amorphous silicon carbide layer having a thickness of 15 nm, an intrinsic amorphous silicon photoelectric conversion layer 3A2 having a thickness of 300 nm, and an n-type microcrystalline silicon having a thickness of 15 nm. An amorphous photoelectric conversion unit 3A composed of the layer 3A3 was formed by plasma CVD. Subsequently, an intermediate transmission / reflection layer 3B made of a silicon composite layer having a thickness of 50 nm was formed by plasma CVD. Further, a p-type microcrystalline silicon layer 3C1 having a thickness of 15 nm, an intrinsic crystalline silicon layer 3C2 having a thickness of 2.5 μm, a low refractive index layer 3C3 made of a silicon composite layer having a thickness of 60 nm, and an n-type microcrystal having a thickness of 15 nm. A crystalline silicon photoelectric conversion layer unit 3C composed of the silicon layer 3C4 was formed by plasma CVD. That is, the semiconductor layer 3 includes a front photoelectric conversion unit 3A, an intermediate transmission / reflection layer 3B, and a rear photoelectric conversion unit 3C.

その後、酸素および窒素の混合ガスを用いた大気圧プラズマ処理を行った。酸素の濃度は250ppmとした。大気圧プラズマは、パルス状電圧を引加し、1kWのパワーを用いた。大気圧プラズマ後に、半導体層3の表面に純水を滴下して接触角を測定したところ、6.3°であった。   Thereafter, atmospheric pressure plasma treatment using a mixed gas of oxygen and nitrogen was performed. The concentration of oxygen was 250 ppm. Atmospheric pressure plasma applied a pulsed voltage and used a power of 1 kW. After the atmospheric pressure plasma, pure water was dropped on the surface of the semiconductor layer 3 and the contact angle was measured to be 6.3 °.

その後、YAGレーザの第二高調波(波長532nm)を用いるレーザースクライブによって、半導体層3を貫通する幅100umの接続溝7を形成した。この際に、レーザビームのエネルギ密度は0.7J/cm2に設定され、加工速度は600mm/sに設定された。 Thereafter, a connection groove 7 having a width of 100 μm penetrating the semiconductor layer 3 was formed by laser scribing using a second harmonic (wavelength: 532 nm) of a YAG laser. At this time, the energy density of the laser beam was set to 0.7 J / cm 2 and the processing speed was set to 600 mm / s.

接続溝7が形成された半導体層3上には、裏面電極層40として、Alドープされた厚さ90nmのZnO層の裏面透明電極層4と厚さ200nmのAg層の裏面金属電極層5スパッタ法にて順次形成された。   On the semiconductor layer 3 in which the connection groove 7 is formed, as a back electrode layer 40, a back transparent electrode layer 4 of a ZnO layer with a thickness of 90 nm doped with Al and a back metal electrode layer 5 of an Ag layer with a thickness of 200 nm are sputtered. It was formed sequentially by the method.

さらに、YAGレーザの第二高調波(波長532nm)を用いるレーザースクライブによって、前方光電変換ユニット3A、中間透過反射層3B、後方光電変換ユニット3C、および裏面電極層40を貫通する幅70umの裏面電極層分離溝8を形成した。この際に、レーザビームのエネルギ密度は0.7J/cm2設定され、加工速度は600mm/sに設定された。 Further, a back electrode having a width of 70 μm that penetrates the front photoelectric conversion unit 3A, the intermediate transmission / reflection layer 3B, the rear photoelectric conversion unit 3C, and the back electrode layer 40 by laser scribing using the second harmonic (wavelength of 532 nm) of the YAG laser. A layer separation groove 8 was formed. At this time, the energy density of the laser beam was set to 0.7 J / cm 2 and the processing speed was set to 600 mm / s.

こうして得られた本実施例1の集積型薄膜光電変換装置にエアマス(AM)1.5の光を100mW/cm2の光強度で照射して出力特性を測定したところ、1セルの1cm2あたりに開放電圧(Voc)が1.395V、短絡電流密度(Jsc)が11.13mA/cm2、曲線因子(FF)が0.709、そして変換効率(Eff)が11.0%であった。 When the output characteristics were measured by irradiating the integrated thin film photoelectric conversion device of Example 1 thus obtained with light of air mass (AM) 1.5 at a light intensity of 100 mW / cm 2 , the output characteristics were measured per 1 cm 2 of one cell. The open circuit voltage (Voc) was 1.395 V, the short circuit current density (Jsc) was 11.13 mA / cm 2 , the fill factor (FF) was 0.709, and the conversion efficiency (Eff) was 11.0%.

本実施例1の集積型薄膜光電変換装置を保護用の樹脂封止をせずに、高温高湿試験を行った。このとき、85℃、湿度85%Rhで、100時間の試験後に、前述と同様に出力特性を測定したところ、Vocが1.400V、Jscが11.50mA/cm2、FFが0.635、そしてEffが10.23%であった。Effの初期値を100%としたときの高温高湿試験後のEffである保持率は93%を示した。 The integrated thin film photoelectric conversion device of Example 1 was subjected to a high temperature and high humidity test without sealing the protective resin. At this time, when the output characteristics were measured in the same manner as described above after testing for 100 hours at 85 ° C. and humidity of 85% Rh, Voc was 1.400 V, Jsc was 11.50 mA / cm 2 , FF was 0.635, And Eff was 10.23%. When the initial value of Eff was 100%, the retention rate as Eff after the high temperature and high humidity test was 93%.

また、高温高湿試験後に実施例1の集積型薄膜光電変換装置の裏面電極層のテープ剥離試験を行った。具体的には、裏面電極層に10mm幅のテープを約20mm貼り付けてから、テープを剥がして裏面電極層の剥離の有無を調べた。その結果、10箇所測定中3箇所が剥離した。   Moreover, the tape peeling test of the back surface electrode layer of the integrated thin film photoelectric conversion device of Example 1 was performed after the high temperature and high humidity test. Specifically, about 20 mm of a 10 mm wide tape was applied to the back electrode layer, and then the tape was peeled off to examine whether the back electrode layer was peeled off. As a result, 3 places peeled off during 10 places measurement.

(比較例1)
比較例1においても、実施例1に類似の集積型薄膜太陽電池が作製された。すなわち、大気圧プラズマ処理を行わなかったことのみにおいて、実施例1と異なっていた。比較例1の集積型薄膜太陽電池の出力特性を実施例1の場合と同様に測定したところ、Vocが1.392V、Jscが11.21mA/cm2、FFが0.700、そしてEffが10.92%であった。
(Comparative Example 1)
Also in Comparative Example 1, an integrated thin film solar cell similar to Example 1 was produced. That is, it was different from Example 1 only in that the atmospheric pressure plasma treatment was not performed. When the output characteristics of the integrated thin film solar cell of Comparative Example 1 were measured in the same manner as in Example 1, Voc was 1.392 V, Jsc was 11.21 mA / cm 2 , FF was 0.700, and Eff was 10 92%.

比較例1の集積型薄膜光電変換装置を実施例1と同様の高温高湿試験後に、出力測定したところ、Vocが1.283V、Jscが11.13mA/cm2、FFが0.513、そしてEffが7.33%であった。Effの保持率は67%であった。 When the output of the integrated thin film photoelectric conversion device of Comparative Example 1 was measured after the same high-temperature and high-humidity test as in Example 1, Voc was 1.283 V, Jsc was 11.13 mA / cm 2 , FF was 0.513, and Eff was 7.33%. The retention rate of Eff was 67%.

また、高温高湿試験後に比較例1の集積型薄膜光電変換装置の裏面電極層のテープ剥離試験を行ったところ、10箇所測定中9箇所が剥離した。   Moreover, when the tape peeling test of the back surface electrode layer of the integrated thin film photoelectric conversion device of Comparative Example 1 was performed after the high temperature and high humidity test, 9 spots were peeled during 10 measurements.

比較例1は、初期のEffは実施例1とほぼ同等であるが、高温高湿試験後のEffの保持率が67%と実施例1に比べて高温高湿耐性が低くなった。比較例1の裏面電極層の密着性は、実施例1に比べて低くなった。   In Comparative Example 1, the initial Eff was almost the same as that of Example 1, but the retention rate of Eff after the high temperature and high humidity test was 67%, and the high temperature and high humidity resistance was lower than that of Example 1. The adhesion of the back electrode layer of Comparative Example 1 was lower than that of Example 1.

(比較例2)
比較例2においても、実施例1に類似の集積型薄膜太陽電池が作製された。すなわち、図2(e)の接続溝7形成後で、図2(f)の裏面透明電極層4形成前に大気圧プラズマ処理を行ったことのみにおいて、実施例1と異なっていた。比較例2の集積型薄膜太陽電池の出力特性を実施例1の場合と同様に測定したところ、Vocが1.383V、Jscが11.20mA/cm2、FFが0.588、そしてEffが9.12%であった。
(Comparative Example 2)
Also in Comparative Example 2, an integrated thin film solar cell similar to Example 1 was produced. That is, it was different from Example 1 only in that the atmospheric pressure plasma treatment was performed after the formation of the connection groove 7 in FIG. 2 (e) and before the formation of the back transparent electrode layer 4 in FIG. 2 (f). When the output characteristics of the integrated thin film solar cell of Comparative Example 2 were measured in the same manner as in Example 1, Voc was 1.383 V, Jsc was 11.20 mA / cm 2 , FF was 0.588, and Eff was 9 .12%.

比較例2の集積型薄膜光電変換装置を実施例1と同様の高温高湿試験後に、出力測定したところ、Vocが1.209V、Jscが7.68mA/cm2、FFが0.163、そしてEffが1.52%であった。Effの保持率は17%であった。 When the output of the integrated thin film photoelectric conversion device of Comparative Example 2 was measured after the same high-temperature and high-humidity test as in Example 1, Voc was 1.209 V, Jsc was 7.68 mA / cm 2 , FF was 0.163, and Eff was 1.52%. The retention rate of Eff was 17%.

また、高温高湿試験後に比較例2の集積型薄膜光電変換装置の裏面電極層のテープ剥離試験を行ったところ、10箇所測定中4箇所が剥離した。   Moreover, when the tape peeling test of the back surface electrode layer of the integrated thin film photoelectric conversion device of Comparative Example 2 was performed after the high-temperature and high-humidity test, 4 spots were peeled during 10 measurements.

比較例2は、初期Effが実施例1に比べて低くなった。また、高温高湿試験後のEffの保持率が17%と実施例1に比べて高温高湿耐性が著しく低くなった。   In Comparative Example 2, the initial Eff was lower than that in Example 1. Further, the retention rate of Eff after the high-temperature and high-humidity test was 17%, and the high-temperature and high-humidity resistance was significantly lower than that of Example 1.

(実施例2)
実施例2においても、実施例1に類似の集積型薄膜太陽電池が作製された。すなわち、裏面透明電極層4形成後に接続溝7Aを形成する図3の構造としたこと、および図3(e)の裏面透明電極層4形成後で、図3(f)の接続溝7A形成前に大気圧プラズマ処理を行ったことのみにおいて、実施例1と異なっていた。実施例2の集積型薄膜太陽電池の出力特性を実施例1の場合と同様に測定したところ、Vocが1.398V、Jscが11.45mA/cm2、FFが0.724、そしてEffが11.58%であった。
(Example 2)
Also in Example 2, an integrated thin film solar cell similar to Example 1 was produced. That is, the structure shown in FIG. 3 in which the connection groove 7A is formed after the back surface transparent electrode layer 4 is formed, and after the back surface transparent electrode layer 4 is formed in FIG. 3 (e) and before the connection groove 7A is formed in FIG. 3 (f). Example 1 was different from Example 1 only in that atmospheric pressure plasma treatment was performed. When the output characteristics of the integrated thin film solar cell of Example 2 were measured in the same manner as in Example 1, Voc was 1.398 V, Jsc was 11.45 mA / cm 2 , FF was 0.724, and Eff was 11 .58%.

実施例2の集積型薄膜光電変換装置を実施例1と同様の高温高湿試験後に、出力測定したところ、Vocが1.410V、Jscが11.62mA/cm2、FFが0.692、そしてEffが11.33%であった。Effの保持率は98%であった。 When the output of the integrated thin film photoelectric conversion device of Example 2 was measured after the same high-temperature and high-humidity test as in Example 1, Voc was 1.410 V, Jsc was 11.62 mA / cm 2 , FF was 0.692, and Eff was 11.33%. The retention rate of Eff was 98%.

また、高温高湿試験後に実施例2の集積型薄膜光電変換装置の裏面電極層のテープ剥離試験を行ったところ、10箇所測定中に剥離はなかった。   Moreover, when the tape peeling test of the back surface electrode layer of the integrated thin film photoelectric conversion device of Example 2 was performed after the high temperature and high humidity test, there was no peeling during the measurement at 10 points.

実施例2は、実施例1に比べて初期Effが高くなった。さらに、高温高湿試験後のEffは11.33%と、実施例1に比べて高くなった。また、高温高湿試験後のEff保持率は98%と、実施例1に比べて高くなった。   In Example 2, the initial Eff was higher than that in Example 1. Furthermore, Eff after the high temperature and high humidity test was 11.33%, which was higher than that of Example 1. Further, the Eff retention after the high temperature and high humidity test was 98%, which was higher than that of Example 1.

(実施例3)
実施例3において、実施例2に類似の集積型薄膜太陽電池が作製された。すなわち、図3(f)の接続溝7A形成後で、図3(g)の裏面金属電極層5形成前に大気圧プラズマ処理を行ったことのみにおいて、実施例1と異なっていた。実施例3の集積型薄膜太陽電池の出力特性を実施例1の場合と同様に測定したところ、Vocが1.396V、Jscが11.51mA/cm2、FFが0.706、そしてEffが11.35%であった。
(Example 3)
In Example 3, an integrated thin film solar cell similar to Example 2 was produced. That is, it was different from Example 1 only in that the atmospheric pressure plasma treatment was performed after the formation of the connection groove 7A of FIG. 3 (f) and before the formation of the back surface metal electrode layer 5 of FIG. 3 (g). When the output characteristics of the integrated thin film solar cell of Example 3 were measured in the same manner as in Example 1, Voc was 1.396 V, Jsc was 11.51 mA / cm 2 , FF was 0.706, and Eff was 11 .35%.

実施例3の集積型薄膜光電変換装置を実施例1と同様の高温高湿試験後に、出力測定したところ、Vocが1.408V、Jscが11.88mA/cm2、FFが0.666、そしてEffが11.14%であった。Effの保持率は98%であった。 When the output of the integrated thin film photoelectric conversion device of Example 3 was measured after the same high-temperature and high-humidity test as in Example 1, Voc was 1.408 V, Jsc was 11.88 mA / cm 2 , FF was 0.666, and Eff was 11.14%. The retention rate of Eff was 98%.

また、高温高湿試験後に実施例3の集積型薄膜光電変換装置の裏面電極層のテープ剥離試験を行ったところ、10箇所測定中1箇所が剥離した。   Moreover, when the tape peeling test of the back surface electrode layer of the integrated-type thin film photoelectric conversion device of Example 3 was performed after the high temperature and high humidity test, one place was peeled during 10 measurements.

実施例3は、実施例1に比べて初期Effが高くなった。また、高温高湿試験後のEff保持率は98%と、実施例1に比べて高くなった。   In Example 3, the initial Eff was higher than that in Example 1. Further, the Eff retention after the high temperature and high humidity test was 98%, which was higher than that of Example 1.

(実施例4)
実施例4においても、実施例1に類似の集積型薄膜太陽電池が作製された。すなわち、大気圧プラズマ処理の酸素濃度を150ppmとしたことのみにおいて、実施例1と異なっていた。実施例4の集積型薄膜太陽電池の出力特性を実施例1の場合と同様に測定したところ、Vocが1.395V、Jscが11.15mA/cm2、FFが0.703、そしてEffが10.94%であった。
Example 4
Also in Example 4, an integrated thin film solar cell similar to Example 1 was produced. That is, it was different from Example 1 only in that the oxygen concentration in the atmospheric pressure plasma treatment was set to 150 ppm. When the output characteristics of the integrated thin film solar cell of Example 4 were measured in the same manner as in Example 1, Voc was 1.395 V, Jsc was 11.15 mA / cm 2 , FF was 0.703, and Eff was 10 94%.

実施例4の集積型薄膜光電変換装置を実施例1と同様の高温高湿試験後に、出力測定したところ、Vocが1.404V、Jscが11.44mA/cm2、FFが0.71、そしてEffが10.78%であった。Effの保持率は99%であった。 When the output of the integrated thin film photoelectric conversion device of Example 4 was measured after the same high-temperature and high-humidity test as in Example 1, Voc was 1.404 V, Jsc was 11.44 mA / cm 2 , FF was 0.71, and Eff was 10.78%. The retention rate of Eff was 99%.

また、高温高湿試験後に実施例4の集積型薄膜光電変換装置の裏面電極層のテープ剥離試験を行ったところ、10箇所測定中3箇所が剥離した。   Moreover, when the tape peeling test of the back surface electrode layer of the integrated thin film photoelectric conversion device of Example 4 was performed after the high temperature and high humidity test, 3 spots were peeled during 10 spots measurement.

実施例4は、初期Effが実施例1に比べてやや低くなったが、高温高湿試験後のEffは10.78%と高くなった。また、高温高湿試験後のEffの保持率は99%と実施例1に比べて高くなった。   In Example 4, the initial Eff was slightly lower than that in Example 1, but the Eff after the high temperature and high humidity test was as high as 10.78%. Further, the retention rate of Eff after the high temperature and high humidity test was 99%, which was higher than that of Example 1.

(実施例5)
実施例5においても、実施例1に類似の集積型薄膜太陽電池が作製された。すなわち、大気圧プラズマ処理の酸素濃度を75ppmとしたことのみにおいて、実施例1と異なっていた。実施例5の集積型薄膜太陽電池の出力特性を実施例1の場合と同様に測定したところ、Vocが1.396V、Jscが11.17mA/cm2、FFが0.720、そしてEffが11.23%であった。
(Example 5)
Also in Example 5, an integrated thin film solar cell similar to Example 1 was produced. That is, it was different from Example 1 only in that the oxygen concentration in the atmospheric pressure plasma treatment was 75 ppm. When the output characteristics of the integrated thin film solar cell of Example 5 were measured in the same manner as in Example 1, Voc was 1.396 V, Jsc was 11.17 mA / cm 2 , FF was 0.720, and Eff was 11 .23%.

比実施例4の集積型薄膜光電変換装置を実施例1と同様の高温高湿試験後に、出力測定したところ、Vocが1.398V、Jscが11.34mA/cm2、FFが0.656、そしてEffが10.39%であった。Effの保持率は93%であった。 When the output of the integrated thin film photoelectric conversion device of Comparative Example 4 was measured after the same high temperature and high humidity test as in Example 1, Voc was 1.398 V, Jsc was 11.34 mA / cm 2 , FF was 0.656, And Eff was 10.39%. The retention rate of Eff was 93%.

また、高温高湿試験後に実施例5の集積型薄膜光電変換装置の裏面電極層のテープ剥離試験を行ったところ、10箇所測定中4箇所が剥離した。   Moreover, when the tape peeling test of the back surface electrode layer of the integrated-type thin film photoelectric conversion device of Example 5 was performed after the high temperature and high humidity test, 4 places were peeled during 10 places measurement.

実施例5は、初期Effが実施例1にやや高くなった。また、高温高湿試験後のEffの保持率は93%で実施例1と同等だったが、高温高湿試験後のEffは10.39%と実施例1に比べて高くなった。
表1に、実施例1から5、比較例1、2の結果をまとめる。
In Example 5, the initial Eff was slightly higher than that in Example 1. Further, the retention rate of Eff after the high temperature and high humidity test was 93%, which was the same as that of Example 1. However, the Eff after the high temperature and high humidity test was 10.39%, which was higher than that of Example 1.
Table 1 summarizes the results of Examples 1 to 5 and Comparative Examples 1 and 2.

(実施例6)
実施例6においても、実施例1に類似の集積型薄膜太陽電池が作製された。すなわち、シリコン複合層からなる低屈折率層3C3がないこと、およびn型微結晶シリコン層3C4の厚さを30nmにしたことのみにおいて、実施例1と異なっていた。実施例1と同様に、半導体層3を形成後で、接続溝7形成前に、大気圧プラズマ処理を行った。実施例6の集積型薄膜太陽電池の出力特性を実施例1の場合と同様に測定したところ、Vocが1.368V、Jscが10.43mA/cm2、FFが0.747、そしてEffが10.67%であった。
(Example 6)
Also in Example 6, an integrated thin film solar cell similar to Example 1 was produced. That is, it was different from Example 1 only in that there was no low refractive index layer 3C3 made of a silicon composite layer and that the thickness of the n-type microcrystalline silicon layer 3C4 was 30 nm. As in Example 1, the atmospheric pressure plasma treatment was performed after the semiconductor layer 3 was formed and before the connection groove 7 was formed. When the output characteristics of the integrated thin film solar cell of Example 6 were measured in the same manner as in Example 1, Voc was 1.368 V, Jsc was 10.43 mA / cm 2 , FF was 0.747, and Eff was 10 .67%.

実施例6の集積型薄膜光電変換装置を実施例1と同様の高温高湿試験後に、出力測定したところ、Vocが1.372V、Jscが10.54mA/cm2、FFが0.717、そしてEffが10.38%であった。Effの保持率は97%であった。 When the output of the integrated thin film photoelectric conversion device of Example 6 was measured after the same high-temperature and high-humidity test as in Example 1, Voc was 1.372 V, Jsc was 10.54 mA / cm 2 , FF was 0.717, and Eff was 10.38%. The retention rate of Eff was 97%.

また、高温高湿試験後に実施例6の集積型薄膜光電変換装置の裏面電極層のテープ剥離試験を行ったところ、10箇所測定中1箇所が剥離した。   Moreover, when the tape peeling test of the back surface electrode layer of the integrated-type thin film photoelectric conversion device of Example 6 was performed after the high temperature and high humidity test, one place was peeled during 10 places measurement.

実施例6は、シリコン複合層の低屈折率層3C3がないため、初期のJsc、Effが実施例1より低くなっているが、高温高湿試験後のEffの保持率が97%と実施例1に比べて高温高湿耐性が高くなった。実施例6の裏面電極層の密着性は、実施例1に比べて高くなった。裏面電極層40の近傍に、シリコン複合層の低屈折率層3C3がないため、高温高湿耐性が向上するとともに、裏面電極の密着性が高くなっている。   In Example 6, since the low refractive index layer 3C3 of the silicon composite layer is not provided, the initial Jsc and Eff are lower than those in Example 1, but the Eff retention after the high temperature and high humidity test is 97%. High temperature and high humidity resistance was higher than 1. The adhesion of the back electrode layer of Example 6 was higher than that of Example 1. Since there is no low refractive index layer 3C3 of the silicon composite layer in the vicinity of the back electrode layer 40, the high temperature and high humidity resistance is improved and the adhesion of the back electrode is enhanced.

(比較例3)
比較例3においても、実施例6に類似の集積型薄膜太陽電池が作製された。すなわち、大気圧プラズマ処理を行わなかったことのみにおいて、実施例6と異なっていた。比較例3の集積型薄膜太陽電池の出力特性を実施例1の場合と同様に測定したところ、Vocが1.362V、Jscが10.38mA/cm2、FFが0.742、そしてEffが10.49%であった。
(Comparative Example 3)
Also in Comparative Example 3, an integrated thin film solar cell similar to Example 6 was produced. That is, it was different from Example 6 only in that the atmospheric pressure plasma treatment was not performed. When the output characteristics of the integrated thin film solar cell of Comparative Example 3 were measured in the same manner as in Example 1, Voc was 1.362 V, Jsc was 10.38 mA / cm 2 , FF was 0.742, and Eff was 10 49%.

比較例3の集積型薄膜光電変換装置を実施例1と同様の高温高湿試験後に、出力測定したところ、Vocが1.267V、Jscが10.17mA/cm2、FFが0.579、そしてEffが7.46%であった。Effの保持率は71%であった。 When the output of the integrated thin film photoelectric conversion device of Comparative Example 3 was measured after the same high-temperature and high-humidity test as in Example 1, Voc was 1.267 V, Jsc was 10.17 mA / cm 2 , FF was 0.579, and Eff was 7.46%. The retention rate of Eff was 71%.

また、高温高湿試験後に比較例3の集積型薄膜光電変換装置の裏面電極層のテープ剥離試験を行ったところ、10箇所測定中5箇所が剥離した。   Moreover, when the tape peeling test of the back surface electrode layer of the integrated thin film photoelectric conversion device of Comparative Example 3 was performed after the high temperature and high humidity test, 5 spots were peeled during 10 measurements.

比較例3は、初期のEffは実施例6とほぼ同等であるが、高温高湿試験後のEffの保持率が71%と実施例6に比べて高温高湿耐性が低くなった。比較例3の裏面電極層の密着性は、実施例6に比べて低くなった。   In Comparative Example 3, the initial Eff was almost the same as that of Example 6, but the Eff retention after the high temperature and high humidity test was 71%, and the high temperature and high humidity resistance was lower than that of Example 6. The adhesion of the back electrode layer of Comparative Example 3 was lower than that of Example 6.

表2に、実施例6、および比較例3の結果をまとめる。   Table 2 summarizes the results of Example 6 and Comparative Example 3.

1 透明基板
2 透明電極層
3 半導体層
3A 非晶質シリコン光電変換ユニット
3A1 p型非晶質シリコンカーバイドの一導電型層
3A2 真性非晶質シリコン光電変換層
3A3 n型微結晶シリコン層の逆導電型層
3B シリコン複合層の中間透過反射層
3C1 p型微結晶シリコン層の一導電型層
3C2 真性結晶質シリコン層の光電変換層
3C3 シリコン複合層の低屈折率層
3C4 n型微結晶シリコン層の界面接合層
40 裏面電極層
4 裏面透明電極層
5 裏面金属電極層
6 透明電極層分離溝
7 接続溝
7A 接続溝
8 裏面電極層分離溝
9 光電変換セル
10 集積型薄膜光電変換装置
10A 集積型薄膜光電変換装置
101 光電変換セル
102 分離溝
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Transparent electrode layer 3 Semiconductor layer 3A Amorphous silicon photoelectric conversion unit 3A1 One conductivity type layer of p-type amorphous silicon carbide 3A2 Intrinsic amorphous silicon photoelectric conversion layer 3A3 Reverse conductivity of n-type microcrystalline silicon layer Type layer 3B Intermediate transmission reflection layer of silicon composite layer 3C1 One-conductivity type layer of p-type microcrystalline silicon layer 3C2 Photoelectric conversion layer of intrinsic crystalline silicon layer 3C3 Low refractive index layer of silicon composite layer 3C4 n-type microcrystalline silicon layer Interfacial bonding layer 40 Back electrode layer 4 Back transparent electrode layer 5 Back metal electrode layer 6 Transparent electrode layer separation groove 7 Connection groove 7A Connection groove 8 Back electrode layer separation groove 9 Photoelectric conversion cell 10 Integrated thin film photoelectric conversion device 10A Integrated thin film Photoelectric conversion device 101 Photoelectric conversion cell 102 Separation groove

Claims (4)

透明基板上に順次積層された透明電極層、1以上光電変換ユニットを含む半導体層、および裏面透明電極層、裏面金属電極層が、複数の光電変換セルを形成するように直線状で互いに平行な複数の透明電極層分離溝、接続溝、および裏面電極層分離溝によってそれぞれ分割され、かつそれらの複数の光電変換セルが前記接続溝を介して互いに電気的に直列接続されている集積型薄膜光電変換層の製造方法であって、前記半導体層を形成後でかつ接続溝形成前に、酸素含有蒸気と、窒素または希ガスからなる希釈ガスの混合ガスを導入した大気圧プラズマで処理する工程を有することを特徴とする集積型薄膜光電変換装置の製造方法。   A transparent electrode layer sequentially laminated on a transparent substrate, a semiconductor layer including one or more photoelectric conversion units, a back transparent electrode layer, and a back metal electrode layer are linear and parallel to each other so as to form a plurality of photoelectric conversion cells. An integrated thin film photoelectric cell divided by a plurality of transparent electrode layer separation grooves, connection grooves, and back electrode layer separation grooves, and the plurality of photoelectric conversion cells are electrically connected in series to each other through the connection grooves. A method for producing a conversion layer, comprising: a step of treating with atmospheric pressure plasma introduced with a mixed gas of oxygen-containing vapor and a diluent gas composed of nitrogen or a rare gas after the semiconductor layer is formed and before the connection groove is formed. A method of manufacturing an integrated thin film photoelectric conversion device, comprising: 透明基板上に順次積層された透明電極層、1以上光電変換ユニットを含む半導体層、および裏面透明電極層、裏面金属電極層が、複数の光電変換セルを形成するように直線状で互いに平行な複数の透明電極層分離溝、接続溝、および裏面電極層分離溝によってそれぞれ分割され、かつそれらの複数の光電変換セルが前記半導体層分離溝を介して互いに電気的に直列接続されている集積型薄膜光電変換層の製造方法であって、裏面透明電極層を形成後でかつ裏面金属層形成前に、酸素含有蒸気と、窒素または希ガスからなる希釈ガスの混合ガスを導入した大気圧プラズマで処理する工程を有することを特徴とする集積型薄膜光電変換装置の製造方法。   A transparent electrode layer sequentially laminated on a transparent substrate, a semiconductor layer including one or more photoelectric conversion units, a back transparent electrode layer, and a back metal electrode layer are linear and parallel to each other so as to form a plurality of photoelectric conversion cells. An integrated type that is divided by a plurality of transparent electrode layer separation grooves, connection grooves, and back electrode layer separation grooves, and the plurality of photoelectric conversion cells are electrically connected in series to each other through the semiconductor layer separation grooves. A method for producing a thin film photoelectric conversion layer, comprising: an atmospheric pressure plasma into which a mixed gas of oxygen-containing vapor and a dilution gas composed of nitrogen or a rare gas is introduced after the formation of the back surface transparent electrode layer and before the formation of the back surface metal layer. A method of manufacturing an integrated thin film photoelectric conversion device, comprising a step of processing. 請求項1または2に記載の集積型薄膜光電変換装置の製造方法であって、前記混合ガスの酸素含有蒸気に酸素または乾燥空気を用い、希釈ガスに窒素を用いることを特徴とする集積型薄膜光電変換装置の製造方法。   3. The integrated thin film photoelectric conversion device manufacturing method according to claim 1, wherein oxygen or dry air is used for the oxygen-containing vapor of the mixed gas, and nitrogen is used for the dilution gas. A method for manufacturing a photoelectric conversion device. 請求項3に記載の集積型薄膜光電変換装置の製造方法であって、前記混合ガスの酸素の窒素に対する流量比が10ppm以上300ppm以下であることを特徴とする集積型薄膜光電変換装置の製造方法。   4. The method of manufacturing an integrated thin film photoelectric conversion device according to claim 3, wherein a flow ratio of oxygen to nitrogen of the mixed gas is 10 ppm or more and 300 ppm or less. .
JP2010161202A 2010-07-16 2010-07-16 Manufacturing method of integrated thin film photoelectric conversion device Active JP5539081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010161202A JP5539081B2 (en) 2010-07-16 2010-07-16 Manufacturing method of integrated thin film photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010161202A JP5539081B2 (en) 2010-07-16 2010-07-16 Manufacturing method of integrated thin film photoelectric conversion device

Publications (2)

Publication Number Publication Date
JP2012023257A true JP2012023257A (en) 2012-02-02
JP5539081B2 JP5539081B2 (en) 2014-07-02

Family

ID=45777255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010161202A Active JP5539081B2 (en) 2010-07-16 2010-07-16 Manufacturing method of integrated thin film photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP5539081B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121817A1 (en) * 2012-02-15 2013-08-22 シャープ株式会社 Integrated photoelectric conversion apparatus, method for manufacturing same, and solar cell
US10236401B2 (en) 2016-08-03 2019-03-19 Panasonic Corporation Solar cell module and method of producing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098337A (en) * 1995-06-15 1997-01-10 Kanegafuchi Chem Ind Co Ltd Integrated thin film solar cell and fabrication thereof
JP2004335991A (en) * 2003-04-14 2004-11-25 Fuji Electric Holdings Co Ltd Forming method for conductive light-reflecting film and thin-film solar cell applied with the same
JP2005260150A (en) * 2004-03-15 2005-09-22 Sanyo Electric Co Ltd Photovoltaic device and method of manufacturing the same
JPWO2004075279A1 (en) * 2003-02-18 2006-06-01 コニカミノルタホールディングス株式会社 Organic thin film transistor element and method for manufacturing the same
JP2008034683A (en) * 2006-07-31 2008-02-14 Sekisui Chem Co Ltd Method for preprocessing of metal bonding
JP2008112848A (en) * 2006-10-30 2008-05-15 Shin Etsu Chem Co Ltd Process for manufacturing single crystal silicon solar cell and single crystal silicon solar cell
JP2010153184A (en) * 2008-12-25 2010-07-08 Mitsuboshi Belting Ltd Electrode forming composition, method of manufacturing conductive base material, and the conductive base material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098337A (en) * 1995-06-15 1997-01-10 Kanegafuchi Chem Ind Co Ltd Integrated thin film solar cell and fabrication thereof
JPWO2004075279A1 (en) * 2003-02-18 2006-06-01 コニカミノルタホールディングス株式会社 Organic thin film transistor element and method for manufacturing the same
JP2004335991A (en) * 2003-04-14 2004-11-25 Fuji Electric Holdings Co Ltd Forming method for conductive light-reflecting film and thin-film solar cell applied with the same
JP2005260150A (en) * 2004-03-15 2005-09-22 Sanyo Electric Co Ltd Photovoltaic device and method of manufacturing the same
JP2008034683A (en) * 2006-07-31 2008-02-14 Sekisui Chem Co Ltd Method for preprocessing of metal bonding
JP2008112848A (en) * 2006-10-30 2008-05-15 Shin Etsu Chem Co Ltd Process for manufacturing single crystal silicon solar cell and single crystal silicon solar cell
JP2010153184A (en) * 2008-12-25 2010-07-08 Mitsuboshi Belting Ltd Electrode forming composition, method of manufacturing conductive base material, and the conductive base material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121817A1 (en) * 2012-02-15 2013-08-22 シャープ株式会社 Integrated photoelectric conversion apparatus, method for manufacturing same, and solar cell
US10236401B2 (en) 2016-08-03 2019-03-19 Panasonic Corporation Solar cell module and method of producing the same

Also Published As

Publication number Publication date
JP5539081B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP4257332B2 (en) Silicon-based thin film solar cell
JP4194468B2 (en) Solar cell and method for manufacturing the same
US6870088B2 (en) Solar battery cell and manufacturing method thereof
JP5180590B2 (en) Stacked photoelectric conversion device
JP5025184B2 (en) Solar cell element, solar cell module using the same, and manufacturing method thereof
JP6360340B2 (en) Manufacturing method of solar cell module
WO2011115206A1 (en) Solar cell, solar cell module using solar cell, and manufacturing method for solar cell
WO2007086521A1 (en) Solar cell and its manufacturing method
US20150270422A1 (en) Method for producing crystalline silicon solar cell, method for producing solar cell module, crystalline silicon solar cell, and solar cell module
WO2006057160A1 (en) Thin film photoelectric converter
KR20100023759A (en) Solar cell substrates and methods of manufacture
JP2006310694A (en) Integrated multi-junction thin film photoelectric conversion device
JP3655025B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JPWO2010103826A1 (en) Solar cell module and manufacturing method thereof
JP5232362B2 (en) A manufacturing method of an integrated thin film photoelectric conversion device, and an integrated thin film photoelectric conversion device obtainable by the manufacturing method.
JP5022341B2 (en) Photoelectric conversion device
JP2007305826A (en) Silicon-based thin film solar cell
JP2008300732A (en) Manufacturing method of thin film solar battery
JP5539081B2 (en) Manufacturing method of integrated thin film photoelectric conversion device
JP2008300872A (en) Method for manufacturing laminated photoelectric conversion device
JP2005135986A (en) Laminated optoelectric transducer
JP4443274B2 (en) Photoelectric conversion device
JP2006121011A (en) Method for processing transparent layer and thin-film photoelectric converting device using same
JP2003298090A (en) Solar cell element and its fabricating method
JP2009259926A (en) Solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140403

R150 Certificate of patent or registration of utility model

Ref document number: 5539081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140430

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250