JP2012022879A - Vacuum valve - Google Patents

Vacuum valve Download PDF

Info

Publication number
JP2012022879A
JP2012022879A JP2010159652A JP2010159652A JP2012022879A JP 2012022879 A JP2012022879 A JP 2012022879A JP 2010159652 A JP2010159652 A JP 2010159652A JP 2010159652 A JP2010159652 A JP 2010159652A JP 2012022879 A JP2012022879 A JP 2012022879A
Authority
JP
Japan
Prior art keywords
electrode
coil
cover
vacuum valve
electrode rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010159652A
Other languages
Japanese (ja)
Other versions
JP5342517B2 (en
Inventor
Toshinori Kimura
俊則 木村
Mitsuru Tsukima
満 月間
Junichi Abe
淳一 安部
Motohiro Sato
基宗 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010159652A priority Critical patent/JP5342517B2/en
Publication of JP2012022879A publication Critical patent/JP2012022879A/en
Application granted granted Critical
Publication of JP5342517B2 publication Critical patent/JP5342517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum valve excellent in voltage resistance and short-circuit breaking performance by optimizing the structure of a cover covering an electrode.SOLUTION: A vacuum valve comprises covers 16a and 16b made of a material having high voltage resistance. The cover 16a covers a coil part 11a of a longitudinal magnetic field electrode which generates a longitudinal magnetic field in parallel to an arc generated when a fixed-side contact 6a and a movable-side contact 6b are opened, and a fixed-side electrode bar 5a. The cover 16b covers a coil part 11b and a movable-side electrode bar 5b. The covers 16a and 16b are respectively attached to coil covers 19a and 19b, which cover respective portions extending from the side face to the bottom of the coil parts 11a and 11b, via a predetermined gap from the coil covers 19a and 19b. The covers 16a and 16b respectively include electrode bottom covers 18a and 18b which cover respective bottoms 12a and 12b of the coil parts 11a and 11b. Respective ends on one side of the coil covers 19a and 19b are fixed between the movable-side contact 6b and the coil part 11a and between the fixed-side contact 6a and the coil part 11b. Respective ends on the other side of the coil covers 19a and 19b have an inner diameter larger than an outer diameter of the coil parts 11a and 11b.

Description

この発明は、真空遮断器に組み込まれる真空バルブに係り、特に、耐電圧性並びに遮断性に優れた真空バルブに関するものである。   The present invention relates to a vacuum valve incorporated in a vacuum circuit breaker, and more particularly, to a vacuum valve excellent in voltage resistance and blocking performance.

従来、真空遮断器に組み込まれる真空バルブとして、例えば、特許文献1に開示された真空バルブがある。この特許文献1に開示された真空バルブは、固定電極棒と可動電極棒のそれぞれの接点側端部に鍋底形の窪み部を設け、この窪み部の内径面に沿って非磁性材からなるコイル補強部材を固着している。そして、コイル補強部材を固着した後、固定電極棒と可動電極棒の接点側端部をクランク状に加工することによって、固定電極棒と可動電極棒のそれぞれに接合される接点間にアークと平行な縦磁界を発生するコイルを形成している。これにより、電極棒とコイルとの間に存在していた縦磁界電極の腕の部分を無くし、通電経路を短くして電気抵抗を下げ、温度上昇を抑制する真空バルブを得ることができる。   Conventionally, as a vacuum valve incorporated in a vacuum circuit breaker, for example, there is a vacuum valve disclosed in Patent Document 1. The vacuum valve disclosed in Patent Document 1 is a coil made of a non-magnetic material along the inner diameter surface of the recess portion provided with a pot bottom-shaped recess portion at each contact side end of the fixed electrode rod and the movable electrode rod. The reinforcing member is fixed. Then, after fixing the coil reinforcing member, the contact-side end portions of the fixed electrode rod and the movable electrode rod are processed into a crank shape so that the arc is parallel between the contacts joined to the fixed electrode rod and the movable electrode rod. A coil that generates a longitudinal magnetic field is formed. Thereby, the arm part of the vertical magnetic field electrode which existed between the electrode rod and the coil can be eliminated, and the vacuum valve which suppresses the temperature rise by shortening the energization path and reducing the electric resistance can be obtained.

また、例えば、特許文献2には、固定電極棒と可動電極棒の双方、又は一方を中空管のような軸とし、熱放散を良くして通電性能を向上させる真空バルブが開示されている。   In addition, for example, Patent Document 2 discloses a vacuum valve that uses both or one of a fixed electrode rod and a movable electrode rod as a shaft like a hollow tube to improve heat dissipation and improve energization performance. .

更に、例えば、特許文献3には、固定電極と可動電極の周囲をこれらの電極より耐電圧の高い材料、例えばステンレスからなる電界緩和シールドで覆って電界を緩和し、耐電圧性能を向上する真空インタラプタの電極が開示されている。この特許文献3には、遮断の際に生じるアークが電界緩和シールドに移って、電流の一部が電界緩和シールドを流れてアークに至ることでコイル電極に流れる電流が減少し、アークと平行な縦磁界の磁束密度が減少することを防止するために、アーク電極の外周部表面から電界緩和シールドまでの距離を最適化する技術が開示されている。   Furthermore, for example, Patent Document 3 discloses a vacuum that improves the withstand voltage performance by covering the periphery of the fixed electrode and the movable electrode with an electric field relaxation shield made of a material having a higher withstand voltage than these electrodes, for example, stainless steel. An interrupter electrode is disclosed. In Patent Document 3, the arc generated at the time of interruption is transferred to the electric field relaxation shield, and a part of the current flows through the electric field relaxation shield to reach the arc, so that the current flowing through the coil electrode is reduced and parallel to the arc. In order to prevent the magnetic flux density of the longitudinal magnetic field from decreasing, a technique for optimizing the distance from the outer peripheral surface of the arc electrode to the electric field relaxation shield is disclosed.

また、電界緩和シールドの別の例として、特許文献4には、シールドカバーに加えて挟み込み部材を電極板の裏に設け、挟み込み部材の端部のふくらみによってシールドカバーの端部と電極端部の電界緩和を行う真空バルブが開示されている。   As another example of the electric field relaxation shield, Patent Document 4 discloses that a sandwiching member is provided on the back of the electrode plate in addition to the shield cover, and the end of the shield cover and the end of the electrode are formed by swelling of the end of the sandwiching member. A vacuum valve that performs electric field relaxation is disclosed.

特開2000-57913号公報(要約の欄、図2)JP 2000-57913 A (summary column, FIG. 2) 特開昭60−91517号公報(特許請求の範囲、第2図)JP-A-60-91517 (Claims, Fig. 2) 特開昭62−12021号公報(特許請求の範囲、第1図)JP 62-12021 (Claims, Fig. 1) 特開昭58−82431号公報(3頁左上欄15行〜右上欄15行、第5図)JP-A-58-82431 (page 3, upper left column, line 15 to upper right column, line 15; FIG. 5)

ところで、現在、真空バルブは高電圧化、短絡遮断電流の増大、通電電流の増大の傾向にあり、これらを満足した上で真空バルブを小形、軽量化する技術の開発が求められている。高耐圧、大容量の真空バルブでは、短絡遮断性能を確保するために必要な接点径、および縦磁界電極のコイル径が、通電電流性能を確保するために必要な電極棒の径より大きい場合がほとんどである。このため、上記特許文献1の真空バルブのように、接点径、および縦磁界電極のコイル径を電極棒の径と等しくすると、電極棒の径が必要以上に大きくなるため真空バルブの重量が増える問題がある。また、真空バルブの重量が増えると開閉機構の負担が増えるため、開閉機構部が大型化してしまうことになる。   Now, vacuum valves tend to have higher voltages, increased short circuit cut-off currents, and increased energization currents, and development of technology for reducing the size and weight of vacuum valves while satisfying these requirements is required. In a vacuum valve with high pressure resistance and large capacity, the contact diameter required to ensure short-circuit breaking performance and the coil diameter of the longitudinal magnetic field electrode may be larger than the electrode rod diameter required to ensure current carrying performance. Is almost. For this reason, if the contact diameter and the coil diameter of the longitudinal magnetic field electrode are made equal to the diameter of the electrode rod as in the vacuum valve of Patent Document 1, the diameter of the electrode rod becomes larger than necessary, and the weight of the vacuum valve increases. There's a problem. Moreover, since the burden of the opening / closing mechanism increases as the weight of the vacuum valve increases, the opening / closing mechanism becomes larger.

そこで、軽量化のため、例えば電極棒を必要な径に削り込むと、加工工程が増える上に材料の損失も増加する。また、電極棒の径とコイルの径とが異なるため、電極棒とコイルとの間を通電する経路が生じて電流路が長くなるため、電気抵抗が増大することになる。   Therefore, for example, when the electrode rod is cut to a required diameter for weight reduction, the number of processing steps is increased and material loss is also increased. In addition, since the diameter of the electrode rod and the diameter of the coil are different, a path for energization between the electrode rod and the coil is generated and the current path is lengthened, so that the electric resistance is increased.

上記特許文献2に開示された真空バルブでは、電極棒を中空構造として中空電極棒と平板電極を直接接合している。しかし、短絡遮断性能を向上させるために縦磁界電極を適用した場合、コイル部にスリットが形成されるために真空バルブ内を真空に保つことができない。なお、上記特許文献1に開示された真空バルブの縦磁界電極に適用した場合も、コイル補強部材を電極棒端部にロウ付けした後にクランク状に加工するため、コイル補強部材にはスリットが入り、真空を維持できない。   In the vacuum valve disclosed in Patent Document 2, the electrode rod has a hollow structure, and the hollow electrode rod and the plate electrode are directly joined. However, when the longitudinal magnetic field electrode is applied to improve the short circuit interruption performance, the inside of the vacuum valve cannot be kept in a vacuum because a slit is formed in the coil portion. In addition, when applied to the longitudinal magnetic field electrode of the vacuum valve disclosed in Patent Document 1, the coil reinforcing member is processed into a crank shape after being brazed to the end of the electrode rod, so that the coil reinforcing member has a slit. Can't maintain the vacuum.

また、上記特許文献3では、アーク電極の外周部表面から電界緩和シールドまでの距離Hを最適化して遮断性能と耐電圧性能の両立を達成したと述べられている。しかし、アーク電極の外径寸法Dが、例えば100mmである場合、H/D=0.1〜0.25とするためには、H=10mm〜25mmとする必要があるため、アーク電極の外周面との距離が離れ、アーク電極周辺部の電界が高くなり、また、コイル電極のスリット(特許文献3の第6図参照)が露出してくるため、このスリットの電界が高くなる。この結果、耐電圧性能が低下する問題がある。   Moreover, in the said patent document 3, it is said that the distance H from the outer peripheral part surface of an arc electrode to the electric field relaxation shield was optimized, and coexistence of interruption | blocking performance and withstand voltage performance was achieved. However, when the outer diameter D of the arc electrode is 100 mm, for example, in order to set H / D = 0.1 to 0.25, it is necessary to set H = 10 mm to 25 mm. The distance from the surface is increased, the electric field around the arc electrode is increased, and the slit of the coil electrode (see FIG. 6 of Patent Document 3) is exposed, so the electric field of the slit is increased. As a result, there is a problem that the withstand voltage performance is lowered.

また、上記特許文献4に開示された真空バルブにおいては、電極の端部における電界を緩和するために、挟み込み部材のふくらみ部が電極の端部を覆い、かつ、電極の表面側に突出するように構成されている。このため、固定電極と可動電極のそれぞれのふくらみ部間の距離が電極間の距離(開極距離)と近く、遮断時のアークがこのふくらみ部に移行しやすい。また、ふくらみ部自体の電界緩和のために曲率を大きくする必要があり、挟み込み部材の外径は大きくなって、ふくらみ部に移行したアークと縦磁界電極との距離が離れる。この結果、ふくらみ部に移行したアークに作用する縦磁界強度が弱まってアークを拡散させる効果が小さくなる。このため、アークのエネルギーでふくらみ部の温度が上昇し、金属蒸気の発生量が増加したり、更にはアークがシールドカバーに移行することによって、遮断性能が低下する問題がある。   Further, in the vacuum valve disclosed in Patent Document 4, in order to reduce the electric field at the end portion of the electrode, the bulge portion of the sandwiching member covers the end portion of the electrode and protrudes to the surface side of the electrode. It is configured. For this reason, the distance between each bulge part of a fixed electrode and a movable electrode is near the distance (opening distance) between electrodes, and the arc at the time of interruption | blocking tends to transfer to this bulge part. Further, it is necessary to increase the curvature in order to relax the electric field of the bulge portion itself, the outer diameter of the sandwiching member increases, and the distance between the arc that has moved to the bulge portion and the longitudinal magnetic field electrode is increased. As a result, the strength of the longitudinal magnetic field acting on the arc transferred to the bulge portion is weakened and the effect of diffusing the arc is reduced. For this reason, the temperature of a bulging part rises with the energy of an arc, the amount of generation | occurrence | production of metal vapor | steam increases, and also there exists a problem that interruption | blocking performance falls because an arc transfers to a shield cover.

この発明は、上記の課題を解決するためになされたもので、電極を覆うカバーの構造を最適化することにより、耐電圧性並びに遮断性に優れた真空バルブを得るものである。   The present invention has been made in order to solve the above-described problems. By optimizing the structure of the cover that covers the electrodes, a vacuum valve excellent in withstand voltage and interruption is obtained.

この発明に係る真空バルブは、密封状態に保持された絶縁筒内に、上記絶縁筒の軸方向に対向して接離可能に配置された可動側接点および固定側接点と、上記両接点を包囲するように取り付けられたアークシールドと、上記可動側接点に固着された可動側電極棒をべローズを介して上記絶縁筒に取り付け、上記固定側接点に固着された固定側電極棒を上記絶縁筒に取り付けた真空バルブであって、上記両接点の開離時に生じるアークと平行な縦磁界を発生する縦磁界電極のコイル部と上記可動側電極棒、および上記コイル部と上記固定側電極棒のそれぞれを覆う高耐圧材料で形成されたカバーを備え、上記カバーは、上記コイル部の側面から底部に至る部位を覆うコイルカバーと、上記コイルカバーと所定のギャップを介して取り付けられ、上記縦磁界電極のコイル部の底部を覆う電極底部カバーを含み、上記コイルカバーの一端を上記可動側接点と上記固定側接点のそれぞれと上記コイル部との間に固定すると共に、他端の内径を上記コイル部の外径より大きくしたものである。   A vacuum valve according to the present invention encloses a movable side contact and a fixed side contact, which are disposed in an insulating cylinder held in a sealed state so as to be opposed to and away from each other in the axial direction of the insulating cylinder, and both the contacts. The arc shield attached to the movable side electrode and the movable side electrode rod fixed to the movable side contact are attached to the insulating cylinder via a bellows, and the fixed side electrode rod fixed to the fixed side contact is attached to the insulating cylinder. A vacuum valve attached to the coil portion of the longitudinal magnetic field electrode that generates a longitudinal magnetic field parallel to the arc generated when the two contacts are separated, the movable side electrode rod, and the coil portion and the fixed side electrode rod. The cover is formed of a high pressure resistant material that covers each, the cover is attached via a coil cover and a predetermined gap from the coil cover that covers a portion from the side surface to the bottom of the coil portion, An electrode bottom cover that covers the bottom of the coil portion of the longitudinal magnetic field electrode, and fixes one end of the coil cover between each of the movable side contact and the fixed side contact and the coil portion, and an inner diameter of the other end Is larger than the outer diameter of the coil portion.

この発明によれば、固定側接点と可動側接点の開離時に生じるアークと平行な縦磁界を発生する縦磁界電極のコイル部を高耐圧材料で形成されたコイルカバーと電極底部カバーで覆ったため、銅製のコイル部より耐圧が向上し、アークシールドの径を小さくできるので、真空バルブの径を小さくすることができる。また、カバーをコイルカバーと電極底部カバーに分けたため、アークがコイルカバーに移行してもコイル部の発生する縦磁界が弱くならず、遮断性能の高い真空バルブを得ることができる。   According to the present invention, the coil portion of the longitudinal magnetic field electrode that generates a longitudinal magnetic field parallel to the arc generated when the fixed side contact and the movable side contact are separated is covered with the coil cover and the electrode bottom cover formed of a high pressure resistant material. Since the pressure resistance is improved and the diameter of the arc shield can be reduced as compared with the copper coil portion, the diameter of the vacuum valve can be reduced. Further, since the cover is divided into the coil cover and the electrode bottom cover, the longitudinal magnetic field generated by the coil portion does not become weak even when the arc moves to the coil cover, and a vacuum valve with high blocking performance can be obtained.

この発明の実施の形態1に係る真空バルブを示す断面図である。It is sectional drawing which shows the vacuum valve which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る真空バルブの固定側電極の要部を示す斜視図である。It is a perspective view which shows the principal part of the stationary-side electrode of the vacuum valve which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る真空バルブの可動側電極の近傍を示す断面図である。It is sectional drawing which shows the vicinity of the movable side electrode of the vacuum valve which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る真空バルブの可動側電極の近傍を示す断面図である。It is sectional drawing which shows the vicinity of the movable side electrode of the vacuum valve which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る真空バルブの可動側電極の近傍を示す断面図である。It is sectional drawing which shows the vicinity of the movable side electrode of the vacuum valve which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る真空バルブの可動側電極の近傍を示す断面図である。It is sectional drawing which shows the vicinity of the movable side electrode of the vacuum valve which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係る真空バルブの可動側電極の近傍を示す断面図である。It is sectional drawing which shows the vicinity of the movable side electrode of the vacuum valve which concerns on Embodiment 5 of this invention.

以下、添付の図面を参照して、この発明に係る真空バルブについて好適な実施の形態を説明する。なお、この実施の形態により発明が限定されるものではなく、諸種の設計的変更をも包摂するものである。   Preferred embodiments of a vacuum valve according to the present invention will be described below with reference to the accompanying drawings. Note that the present invention is not limited to this embodiment, and includes various design changes.

実施の形態1.
図1は、この発明の実施の形態1に係る真空バルブを示す断面図である。図1において、真空バルブ100は絶縁筒1を備えており、絶縁筒1の両端に固定側端板2と可動側端板3がそれぞれ配置されている。絶縁筒1の内面にはアークシールド4が設けられ、このアークシールド4の両端部4a,4bの径は、中央部の径より小さく絞り込まれている。
Embodiment 1 FIG.
1 is a cross-sectional view showing a vacuum valve according to Embodiment 1 of the present invention. In FIG. 1, a vacuum valve 100 includes an insulating cylinder 1, and a fixed side end plate 2 and a movable side end plate 3 are disposed at both ends of the insulating cylinder 1, respectively. An arc shield 4 is provided on the inner surface of the insulating cylinder 1, and the diameters of both end portions 4a and 4b of the arc shield 4 are narrowed down to be smaller than the diameter of the central portion.

固定側端板2には固定側電極棒5aが配置され、固定側電極棒5aの先端に固定側接点6aが取り付けられている。そして、固定側電極棒5aの後端はブロック7により固定側端板2に固定することで真空バルブ内部を密閉している。また、可動側端板3にはベローズ8とベローズ8を覆うベローズカバー9を介して可動側電極棒5bが配置され、可動側電極棒5bの先端に可動側接点6bが取り付けられている。そして、可動側電極棒5bの後端は可動側端板3に取り付けられたガイド10により、密封状態を保持してスライドできるように構成されている。これにより、固定側接点6aと可動側接点6bは対向し、ベローズ8の伸縮により接離可能となっている。なお、固定側接点6aと可動側接点6bは、アークシールド4により包囲されている。   A fixed-side electrode rod 5a is disposed on the fixed-side end plate 2, and a fixed-side contact 6a is attached to the tip of the fixed-side electrode rod 5a. The rear end of the fixed side electrode rod 5a is fixed to the fixed side end plate 2 by the block 7, thereby sealing the inside of the vacuum valve. The movable side end plate 3 is provided with a movable side electrode rod 5b via a bellows 8 and a bellows cover 9 covering the bellows 8, and a movable side contact 6b is attached to the tip of the movable side electrode rod 5b. The rear end of the movable electrode bar 5b is configured to be slidable while maintaining a sealed state by a guide 10 attached to the movable end plate 3. Thereby, the fixed side contact 6a and the movable side contact 6b face each other and can be contacted and separated by expansion and contraction of the bellows 8. The fixed contact 6a and the movable contact 6b are surrounded by the arc shield 4.

固定側電極棒5aと可動側電極棒5bはそれぞれ中空状に構成され、中央部に空洞を有している。固定側電極棒5aの可動側電極棒5bとの対向端部は、コイル部11aと底部12aから成り、コイル部11aには縦磁界を発生させるための後述する斜めのスリットが形成されている。なお、コイル部11aと底部12aによりコントレート電極13aを形成している。同様に、可動側電極棒5bの固定側電極棒5aとの対向端部は、コイル部11bと底部12bから成り、コイル部11bには縦磁界を発生させる斜めのスリットが形成されている。そして、コイル部11bと底部12bによりコントレート電極13bを形成している。   The fixed electrode bar 5a and the movable electrode bar 5b are each formed in a hollow shape and have a cavity in the center. An end portion of the fixed side electrode bar 5a facing the movable side electrode bar 5b is composed of a coil part 11a and a bottom part 12a. The coil part 11a is formed with an oblique slit to be described later for generating a longitudinal magnetic field. In addition, the control electrode 13a is formed by the coil part 11a and the bottom part 12a. Similarly, the end portion of the movable electrode rod 5b facing the fixed electrode rod 5a is composed of a coil portion 11b and a bottom portion 12b, and an oblique slit for generating a longitudinal magnetic field is formed in the coil portion 11b. The control electrode 13b is formed by the coil portion 11b and the bottom portion 12b.

固定側電極棒5aおよび可動側電極棒5bは次の方法により形成される。即ち、銅管の端部をプレス加工、または鍛造加工によって径を広げて底部12a,12bとコイル部11a,11bを形成する。その後、コイル部11a,11bに斜めのスリットをメタルソー、バンドソー、ダイヤモンドソー、チップソー、ワイヤーカット、ドリル、ミーリング加工などで加工し、コントレート電極13a,13bとする。   The fixed electrode bar 5a and the movable electrode bar 5b are formed by the following method. That is, the end portions of the copper pipe are expanded by pressing or forging to form the bottom portions 12a and 12b and the coil portions 11a and 11b. Thereafter, the slits in the coil portions 11a and 11b are processed by a metal saw, a band saw, a diamond saw, a tip saw, a wire cut, a drill, a milling process, or the like to obtain control electrodes 13a and 13b.

固定側接点6a、可動側接点6bの裏側にはそれぞれ、裏板14a,14bと補強部材15a,15bが配置されている。電流の一部が補強部材15a,15bに流れることでコイル部11a,11bで発生する磁界強度が下がらないようにするために、補強部材15a,15bを長くして電気抵抗を増加させている。この結果、補強部材15a,15bと電極棒5a,5bのロウ付け部位が、コイル部11a,11bより接点6a,6bから離れた位置になる。なお、ロウ付け箇所を減らすために補強部材15a,15bと裏板14a,14bとはそれぞれ一体に形成しても良い。また、後述のコイルカバー19a,19bと裏板14a,14bとをそれぞれ一体化してもよい。   Back plates 14a and 14b and reinforcing members 15a and 15b are disposed on the back side of the fixed contact 6a and the movable contact 6b, respectively. In order to prevent a magnetic field intensity generated in the coil portions 11a and 11b from being lowered by a part of the current flowing through the reinforcing members 15a and 15b, the reinforcing members 15a and 15b are lengthened to increase the electric resistance. As a result, the brazed portions of the reinforcing members 15a and 15b and the electrode rods 5a and 5b are positioned away from the contacts 6a and 6b from the coil portions 11a and 11b. In addition, in order to reduce brazing locations, the reinforcing members 15a and 15b and the back plates 14a and 14b may be integrally formed. Further, coil covers 19a and 19b described later and back plates 14a and 14b may be integrated respectively.

カバー16a,16bは、それぞれ電極棒5a,5bの側部を覆う電極棒カバー17a,17bと、電極棒5a,5bの底部12a,12bを覆う電極底部カバー18a,18bと、コイル部11a,11bを覆うコイルカバー19a,19bとで構成されている。なお、カバー16a,16bは、高耐圧で非磁性材料である材料、例えばオーステナイト系ステンレス鋼(SUS304、SUS316等)が望ましい。   The covers 16a and 16b include electrode rod covers 17a and 17b that cover the sides of the electrode rods 5a and 5b, electrode bottom covers 18a and 18b that cover the bottom portions 12a and 12b of the electrode rods 5a and 5b, and coil portions 11a and 11b, respectively. And coil covers 19a and 19b covering the. Note that the covers 16a and 16b are preferably made of a material having a high pressure resistance and a nonmagnetic material, such as austenitic stainless steel (SUS304, SUS316, etc.).

上記特許文献3、4に開示されている電界緩和シールドの場合、ロウ付けの際に通常は真空バルブを縦に設置するので、固定電極または可動電極のどちらかが下方になり、電界緩和シールド固定のためのロウ材が流れて電界緩和シールド自身に付着したり、電極棒に付着する可能性がある。このため、高電界部位までロウ材が流れて付着すると、ロウ材は耐電圧の低い金属、例えば銀を含んでおり耐電圧性能が低下する。そこで、本実施形態では電極棒カバー17a,17bと電極底部カバー18a,18bを一体とし、ロウ材がカバー16a,16b表面に流出しないように構成している。   In the case of the electric field relaxation shields disclosed in Patent Documents 3 and 4 above, since the vacuum valve is usually installed vertically during brazing, either the fixed electrode or the movable electrode is positioned downward, and the electric field relaxation shield is fixed. The brazing material may flow and adhere to the electric field relaxation shield itself or to the electrode rod. For this reason, when the brazing material flows and adheres to the high electric field site, the brazing material contains a metal having a low withstand voltage, such as silver, and the withstand voltage performance is lowered. Therefore, in this embodiment, the electrode rod covers 17a and 17b and the electrode bottom covers 18a and 18b are integrated so that the brazing material does not flow out to the surfaces of the covers 16a and 16b.

また、電極棒5a,5bは、アークシールド4の径の小さくなった両端部4a,4bに対向する部分の電界が高くなる。従って、電極棒カバー17a,17bはこのアークシールド4の両端部4a,4bに対向する高電界部位を越えて電界の低くなる固定側端板2およびベローズカバー9付近まで覆うのが好ましい。   Moreover, the electric field of the part which opposes both ends 4a and 4b in which the electrode bars 5a and 5b became small in the diameter of the arc shield 4 becomes high. Therefore, it is preferable that the electrode rod covers 17a and 17b cover the fixed side end plate 2 and the bellows cover 9 where the electric field is lowered beyond the high electric field portions facing both ends 4a and 4b of the arc shield 4.

実施の形態1に係る真空バルブ100は上記のように構成されているが、通電電流が増大しても電極棒5a,5bや縦磁界電極の径を大きくせずにすむように、次のように構成されている。即ち、電極棒5a,5bの中央の空洞部に、接点6a,6bとその周辺部を冷却する媒体が入れられている。この冷媒は、図示しない外部の冷媒供給手段により供給される。冷媒としては、空気、あるいはSF6といった絶縁性ガスなどを用いて、自然対流や強制循環させたり、あるいは絶縁油、フロリナートなどの絶縁性液体を用いて循環させている。この冷却構造により電極棒5a,5bや、接点6a,6bとその周辺部の発熱が抑制され通電性能が向上する。その結果、真空バルブ100の発熱を減らすために電極径、電極棒の径を大きくして抵抗を下げる必要がなくなり、真空バルブ100の小型化が達成される。また、電極棒5a,5bを空洞とすることで重量の抑制が可能となり、開閉機構が小型化する。   Although the vacuum valve 100 according to the first embodiment is configured as described above, it is possible to avoid increasing the diameters of the electrode rods 5a and 5b and the longitudinal magnetic field electrodes even when the energization current is increased as follows. It is configured. That is, a medium for cooling the contacts 6a, 6b and the peripheral portion thereof is placed in the central cavity of the electrode rods 5a, 5b. This refrigerant is supplied by an external refrigerant supply means (not shown). As the refrigerant, air or an insulating gas such as SF6 is used, and natural convection or forced circulation is used, or an insulating liquid such as insulating oil or fluorinate is used for circulation. Due to this cooling structure, heat generation at the electrode rods 5a, 5b and the contacts 6a, 6b and their peripheral portions is suppressed, and the energization performance is improved. As a result, in order to reduce the heat generation of the vacuum valve 100, it is not necessary to increase the electrode diameter and the electrode rod diameter to lower the resistance, and the vacuum valve 100 can be reduced in size. Further, by making the electrode rods 5a and 5b hollow, weight can be suppressed, and the opening / closing mechanism is downsized.

また、真空バルブ100の内部は真空に保つ必要があるため、特に冷媒が触れる部品である裏板14a,14b、補強部材15a,15b、電極棒5a,5bのロウ付けを確実に行い強固に封止する必要がある。そのため、次のように構成されている。即ち、接点6a,6bは、粉状の材料を焼結等で形成したものであって、微小な穴があいている可能性があり、裏板14a,14bを接点6a,6bの裏側に配置している。裏板14a,14bは補強部材15a,15bからの力を受ける必要もあるので、機械的強度が高く、また、コイル部11a,11bの発生する磁場の影響を受けない非磁性材料のオーステナイト系ステンレス鋼(例えばSUS304、SUS316等)が望ましい。例えば、板材から打ち抜いた材料を使用するとよい。なお、補強部材15a,15bと裏板14a,14bは、真空バルブ100内の真空を維持するためにも穴があってはいけない。   Further, since the inside of the vacuum valve 100 needs to be kept in vacuum, the back plates 14a and 14b, the reinforcing members 15a and 15b, and the electrode rods 5a and 5b, which are parts that are particularly in contact with the refrigerant, are securely brazed and securely sealed. It is necessary to stop. Therefore, it is configured as follows. That is, the contacts 6a and 6b are formed by sintering powdery material and may have a minute hole, and the back plates 14a and 14b are arranged on the back side of the contacts 6a and 6b. is doing. Since the back plates 14a and 14b also need to receive force from the reinforcing members 15a and 15b, the mechanical strength is high, and the austenitic stainless steel is a non-magnetic material that is not affected by the magnetic field generated by the coil portions 11a and 11b. Steel (for example, SUS304, SUS316, etc.) is desirable. For example, a material punched from a plate material may be used. The reinforcing members 15a and 15b and the back plates 14a and 14b should not have holes in order to maintain the vacuum in the vacuum valve 100.

実施の形態1に係る真空バルブ100は更に、次のように構成されている。即ち、上記特許文献3、4に開示されている電界緩和シールドは電極を覆ってしまうため、隠される部分、例えば本実施形態であれば、接点6a,6bとコイル部11a,11b、および裏板14a,14b、補強部材15a,15b、電極棒5a,5bの接合部のロウ付け状態の確認が困難となる。電極棒5a,5bを中空状に構成した構造では、これらの部位のロウ付けを確実に行うことが真空バルブ内を高真空に維持するために重要である。   The vacuum valve 100 according to the first embodiment is further configured as follows. That is, since the electric field relaxation shields disclosed in Patent Documents 3 and 4 cover the electrodes, hidden portions, for example, in this embodiment, the contacts 6a and 6b, the coil portions 11a and 11b, and the back plate It becomes difficult to confirm the brazed state of the joint portions of 14a and 14b, the reinforcing members 15a and 15b, and the electrode rods 5a and 5b. In the structure in which the electrode rods 5a and 5b are formed in a hollow shape, it is important to securely braze these parts in order to maintain a high vacuum inside the vacuum valve.

そこで、本実施形態では、電極底部カバー18a,18bと底部12a,12bを貫通するロウ付け確認穴20a,20bを形成している。但し、ロウ付け確認穴20a,20bを通してカバー16a,16bの表面にロウ材が流出しないように、底部12a,12bの穴よりカバー16a,16bの穴が小さくされている。従って、耐電圧の低い銀を含むロウ材を使用してもロウ材の流出がないため耐電圧性能が維持される。   Therefore, in the present embodiment, the brazing confirmation holes 20a and 20b penetrating the electrode bottom covers 18a and 18b and the bottom portions 12a and 12b are formed. However, the holes in the covers 16a and 16b are made smaller than the holes in the bottom portions 12a and 12b so that the brazing material does not flow out to the surfaces of the covers 16a and 16b through the brazing confirmation holes 20a and 20b. Therefore, even if a brazing material containing silver having a low withstand voltage is used, the brazing material does not flow out, so that the withstand voltage performance is maintained.

ところで、ロウ付け確認穴20a,20bは、形成位置によっては遮断性能を低下させることになる。そこで、本実施形態は次のように構成されている。即ち、図2は、図1のコイルカバー19aと電極底部カバー18aを外した固定側電極のコイル部11a、底部12aを示す斜視図である。図2に示すように、コントレート電極13aのスリット21の略延長線上に位置するように、底部12aにロウ付け確認穴20aを形成する。但し、ロウ付け確認穴20aの形成は、電界の低い電極棒5aに近い部位が望ましい。ロウ付け確認穴20aの穴形状は円形でも長方形のような矩形でもよく、円形とすればドリルで簡単にあけることができ、長方形として電流の流れる向きを制御するようにしてもよい。この結果、縦磁界を発生する電流パスを長くしたことと同等の効果があり、縦磁界強度が上がって遮断性能が高くなる効果がある。なお、可動側電極のコイル部11b、底部12bにおいても同様である。   By the way, the brazing confirmation holes 20a and 20b reduce the blocking performance depending on the formation position. Therefore, the present embodiment is configured as follows. That is, FIG. 2 is a perspective view showing the coil portion 11a and the bottom portion 12a of the fixed electrode with the coil cover 19a and the electrode bottom cover 18a of FIG. 1 removed. As shown in FIG. 2, a brazing confirmation hole 20a is formed in the bottom portion 12a so as to be positioned substantially on the extension line of the slit 21 of the control electrode 13a. However, the formation of the brazing confirmation hole 20a is desirably a portion close to the electrode rod 5a having a low electric field. The shape of the brazing confirmation hole 20a may be a circle or a rectangle such as a rectangle, and if it is a circle, it can be easily drilled with a drill, and the current flowing direction may be controlled as a rectangle. As a result, there is an effect equivalent to increasing the current path for generating the longitudinal magnetic field, and there is an effect that the longitudinal magnetic field strength is increased and the interruption performance is increased. The same applies to the coil part 11b and the bottom part 12b of the movable electrode.

図1に戻り、底部12a,12bに形成されるロウ付け確認穴20a,20bの少なくとも一部は、電極底部カバー18a,18bのロウ付け確認穴20a,20bと重なるようにする。ロウ付け確認穴20a,20bの電界緩和のために、ロウ付け確認穴20a,20bは電界の低い位置、即ち、電極棒5a,5bに近い部位とする。更に、カバー16a,16bの表面にロウ材が流出しないように、底部12a,12bに形成されるロウ付け確認穴20a,20bと電極底部カバー18a,18bに形成されるロウ付け確認穴20a,20bとの重なり部では、電極底部カバー18a,18bに形成されるロウ付け確認穴20a,20bの径を小さく形成する。   Returning to FIG. 1, at least a part of the brazing confirmation holes 20a and 20b formed in the bottom portions 12a and 12b overlap with the brazing confirmation holes 20a and 20b of the electrode bottom covers 18a and 18b. In order to relax the electric field in the brazing confirmation holes 20a and 20b, the brazing confirmation holes 20a and 20b are located at positions where the electric field is low, that is, near the electrode rods 5a and 5b. Further, the brazing confirmation holes 20a and 20b formed in the bottom portions 12a and 12b and the brazing confirmation holes 20a and 20b formed in the electrode bottom covers 18a and 18b so that the brazing material does not flow out to the surfaces of the covers 16a and 16b. In the overlapping portion, the diameters of the brazing confirmation holes 20a and 20b formed in the electrode bottom covers 18a and 18b are formed to be small.

製造工程では、ロウ付けの後にロウ付け確認穴20a,20bから、補強部材15a,15bと裏板14a,14bの接合部のロウ付け状態を確認する。補強部材15a,15bと電極棒5a,5bの接合部についても、例えば光ファイバーを用いてロウ付け確認穴20a,20bおよび電極棒5a,5bの中央の空洞部からロウ付け状態を確認することができる。その結果、電極棒5a,5bと補強部材15a,15b、および裏板14a,14bの三者のロウ付けを確実に行うことができる。   In the manufacturing process, after brazing, the brazing state of the joint between the reinforcing members 15a and 15b and the back plates 14a and 14b is confirmed from the brazing confirmation holes 20a and 20b. For the joints between the reinforcing members 15a and 15b and the electrode rods 5a and 5b, the brazed state can be confirmed from the brazing confirmation holes 20a and 20b and the central hollow portion of the electrode rods 5a and 5b using, for example, an optical fiber. . As a result, the brazing of the electrode rods 5a and 5b, the reinforcing members 15a and 15b, and the back plates 14a and 14b can be reliably performed.

次に、図3により真空バルブ100の電極部分の詳細構造について説明する。図3は、真空バルブ100の可動側電極部分の近傍を示す断面図である。なお、固定側電極部分については、可動側電極部分と同様であり、図示説明を省略している。
図3において、コイルカバー19bは、接点6bとコイル部11bの間に挟み込んでロウ付け固定されている。このような構造とするとコイルカバー(SUS)はコイル(Cu)に比べて抵抗が大きいのでコイル部11bから接点6bへの通電を妨げる。そこで、各コイル部11bと接点6bとの接触部の一部のみを挟み込み部とし、残りは通電部22を設け抵抗を抑える構造とする。
Next, the detailed structure of the electrode part of the vacuum valve 100 will be described with reference to FIG. FIG. 3 is a cross-sectional view showing the vicinity of the movable electrode portion of the vacuum valve 100. The fixed-side electrode portion is the same as the movable-side electrode portion, and the illustration and description are omitted.
In FIG. 3, the coil cover 19b is clamped and fixed between the contact 6b and the coil portion 11b. With such a structure, since the coil cover (SUS) has a larger resistance than the coil (Cu), it prevents the coil portion 11b from energizing the contact 6b. Therefore, only a part of the contact part between each coil part 11b and the contact 6b is used as a sandwiching part, and the rest is provided with a current-carrying part 22 to suppress the resistance.

コイル部11bには斜めのスリット21(図2参照)が設けられているため、スリットの切れ込み端の電界が高くなる。更に、コイル部11b、底部12b、電極棒5bは電気抵抗を下げるために銅で形成されるが、銅は耐電圧が低い欠点がある。従って、高耐圧材料のコイルカバー19bでコイル部11bのスリット21を覆うことにより電界緩和と高耐圧化が行なわれている。底部12bは高耐圧材料の電極底部カバー18bで覆い、電極棒5bは高耐圧材料の電極棒カバー17bで覆うことで耐電圧性能の向上を図っている。
コイルカバー19bを設けることで、B部が接点端部(C部)付近の等電位線を持ち上げるため、接点端部(C部)の電界も緩和する。このため接点の耐電圧性能を向上させる効果がある。
Since the coil part 11b is provided with the diagonal slit 21 (refer FIG. 2), the electric field of the slit notch end becomes high. Furthermore, although the coil part 11b, the bottom part 12b, and the electrode rod 5b are made of copper in order to lower the electric resistance, copper has a drawback that the withstand voltage is low. Therefore, electric field relaxation and high breakdown voltage are achieved by covering the slit 21 of the coil portion 11b with the coil cover 19b made of a high pressure resistant material. The bottom 12b is covered with an electrode bottom cover 18b made of a high withstand voltage material, and the electrode rod 5b is covered with an electrode rod cover 17b made of a high withstand voltage material to improve the withstand voltage performance.
By providing the coil cover 19b, the B portion lifts the equipotential line near the contact end portion (C portion), so that the electric field at the contact end portion (C portion) is also relaxed. For this reason, there is an effect of improving the withstand voltage performance of the contact.

真空バルブ100を真空遮断器に組み込んだ後、開極状態では固定側接点6aと可動側接点6bが規定の距離だけ開く。この状態でのコイルカバー19bと電極底部カバー18bの表面の電界分布は、アークシールド4の端部4bとの距離が短い場合、図3のA部に示すギャップ23を挟んだカバー端部付近と電極底部カバー18bが最大電界部位となる。
真空遮断器の耐電圧試験をクリアするためには、真空バルブのコンディショニング工程で耐電圧試験時より大きな電界を印加する必要がある。通常の設計では規定の開極状態よりさらに開極距離を開いて、A部とアークシールド4の端部4bとの距離を縮めることができない。真空バルブ単体でも、A部とアークシールド4の端部4bとの距離をあまり縮めることができない。このため、A部に最大電界があると、コンディショニング工程でアークシールド4の端部4bとの距離を縮めて大きな電界を印加することができない。無理に印加電圧を上げると接点間やセラミックなど他の部位で放電してしまいA部のコンディショニングにならない。
そこで、コイルカバー19bのB部あるいは側面部(AとBの間の部分)が最大電界部位となるようにするとよい。これは、コイルカバー、電極底部カバーの曲率やアークシールドとの距離を調節することで実現できる。この場合は、コンディショニングの際に開極距離を縮めて電圧を印加することで、B部とAとBの間の部分に耐電圧試験時の電界より十分高い電界を印加できる。
After the vacuum valve 100 is incorporated in the vacuum circuit breaker, the fixed contact 6a and the movable contact 6b are opened by a specified distance in the open state. In this state, the electric field distribution on the surfaces of the coil cover 19b and the electrode bottom cover 18b is, when the distance between the end 4b of the arc shield 4 is short and the vicinity of the end of the cover with the gap 23 shown in part A of FIG. The electrode bottom cover 18b is the maximum electric field site.
In order to clear the withstand voltage test of the vacuum circuit breaker, it is necessary to apply a larger electric field during the withstand voltage test in the conditioning process of the vacuum valve. In a normal design, the distance between the portion A and the end 4b of the arc shield 4 cannot be shortened by further increasing the opening distance from the prescribed opening state. Even with a single vacuum valve, the distance between the portion A and the end 4b of the arc shield 4 cannot be reduced too much. For this reason, if there is a maximum electric field in the portion A, a large electric field cannot be applied by reducing the distance from the end 4b of the arc shield 4 in the conditioning process. If the applied voltage is increased forcibly, electric discharge will occur between the contacts and other parts such as ceramics, and the A part will not be conditioned.
Therefore, it is preferable that the B part or the side part (the part between A and B) of the coil cover 19b is the maximum electric field part. This can be realized by adjusting the curvature of the coil cover and the electrode bottom cover and the distance from the arc shield. In this case, an electric field sufficiently higher than the electric field in the withstand voltage test can be applied to the portion B and the portion between A and B by applying a voltage with the opening distance shortened during conditioning.

また、コイルカバー19bのギャップ側端部は、内径がコイル部11bより大きくなっている。これは、組立の際にコイルカバー19bの裏側からコイル部11bを入れるためである。   Further, the gap-side end portion of the coil cover 19b has an inner diameter larger than that of the coil portion 11b. This is because the coil portion 11b is inserted from the back side of the coil cover 19b during assembly.

コイルカバー19bと電極底部カバー18bのギャップ側端部は、糸面取り加工(R0.2程度)もしくはバリ取り加工が施される。この部位は、図1に示すように、アークシールド4の径が小さくなって内側に絞り込まれている部位4bと対向しているため、放電防止のために電界緩和が必要である。そこで、カバーの曲率を調整し、両カバー端部をコイル部11b側に窪ませてハの字とする。この構成により、上記特許文献3で開示された電界緩和カバーの先端のように絞り加工で大きな曲率をつける必要がなく、端面の糸面取り加工もしくはバリ取り加工程度の簡単な加工で済み、また、絞り加工で大きな曲率をつけるとコイルカバー19bの外径が大きくなるので、本構造のほうがの外径が抑制され真空バルブを小形化できるという効果がある。   The gap side end of the coil cover 19b and the electrode bottom cover 18b is subjected to thread chamfering (about R0.2) or deburring. As shown in FIG. 1, this portion faces the portion 4 b that is narrowed inward because the diameter of the arc shield 4 is reduced, and thus electric field relaxation is necessary to prevent discharge. Therefore, the curvature of the cover is adjusted, and both ends of the cover are recessed toward the coil portion 11b to form a letter C. With this configuration, it is not necessary to apply a large curvature by drawing as in the tip of the electric field relaxation cover disclosed in Patent Document 3, and it is possible to perform simple processing such as thread chamfering processing or deburring processing of the end surface, If a large curvature is applied in the drawing process, the outer diameter of the coil cover 19b becomes larger, so that the outer diameter of this structure is suppressed and the vacuum valve can be downsized.

電極棒カバー17bと電極底部カバー18bとは、保持部24で底部12にロウ付け固定されている。保持部24以外に電極棒カバー17bと電極棒5bが接触する部位があると、電極棒カバー17bを通る電流路が生成され、表皮効果により表面に近いカバーの方が電極棒5bより電流密度が高くなる。こうなると、カバーは電極棒5bよりも導電率の低いSUS製なので高温となり発熱源となってしまう。そこで、電極棒カバー17bと電極棒5bは保持部24以外で接触しないように隙間をあける。電極底部カバー18bと底部12bも同様に保持部24以外は隙間をあける。これらの隙間は、部材の加工公差を考慮して0.5mm〜1.5mm程度が望ましい。   The electrode bar cover 17b and the electrode bottom cover 18b are brazed and fixed to the bottom 12 by a holding part 24. If there is a part where the electrode bar cover 17b and the electrode bar 5b are in contact with each other other than the holding part 24, a current path passing through the electrode bar cover 17b is generated, and the current density of the cover closer to the surface is higher than that of the electrode bar 5b due to the skin effect. Get higher. In this case, since the cover is made of SUS having a lower conductivity than the electrode bar 5b, the cover becomes a high temperature and becomes a heat source. Therefore, a gap is made between the electrode rod cover 17b and the electrode rod 5b so that they do not come in contact with any other than the holding portion 24. Similarly, the electrode bottom cover 18b and the bottom 12b are spaced apart from the holding portion 24. These gaps are preferably about 0.5 mm to 1.5 mm in consideration of processing tolerances of members.

また、コイルカバー19bと電極底部カバー18bは、遮断性能を向上させるために、次のように構成されている。
(1)コイルカバー19bと電極底部カバー18bのギャップ23が、開閉による衝撃やコイル部11bの縮みによって狭くなり通電しないように適当な距離を設ける必要がある。一方で、ギャップ23が大きすぎると等電位線がギャップ23に入り込み、カバー端部の電界が高くなる。そこで、ギャップ23は、0.3mm〜2.5mm程度の範囲としている。
The coil cover 19b and the electrode bottom cover 18b are configured as follows in order to improve the blocking performance.
(1) It is necessary to provide an appropriate distance so that the gap 23 between the coil cover 19b and the electrode bottom cover 18b becomes narrow due to an impact due to opening and closing or the coil portion 11b is contracted and is not energized. On the other hand, if the gap 23 is too large, equipotential lines enter the gap 23 and the electric field at the end of the cover increases. Therefore, the gap 23 is set to a range of about 0.3 mm to 2.5 mm.

(2)一般に、真空遮断器の入出力端子に繋がれた外部電流パスの発生する磁界により、アークに対して大きなローレンツ力が作用し、アークを接点の外に押し出す力を発生する場合がある。しかし、本実施形態ではギャップ23が設けられているので、アーク25がコイルカバー19bに移行しても電流はコイル部11bを流れ、縦磁界は弱まらずに発生し続ける。アーク25は縦磁界の強い部位に移行する性質があるため、最終的には接点6bに戻りコイル部11bの発生する縦磁界によって拡散状態となる。このため、遮断性能が高い効果がある。 (2) Generally, a magnetic field generated by an external current path connected to the input / output terminal of the vacuum circuit breaker may cause a large Lorentz force to act on the arc and generate a force that pushes the arc out of the contact. . However, since the gap 23 is provided in this embodiment, even if the arc 25 moves to the coil cover 19b, the current flows through the coil portion 11b and the longitudinal magnetic field continues to be generated without being weakened. Since the arc 25 has a property of moving to a portion having a strong longitudinal magnetic field, the arc 25 finally returns to the contact 6b and becomes a diffusion state by the longitudinal magnetic field generated by the coil portion 11b. For this reason, there exists an effect with high interruption | blocking performance.

本実施形態の電極構造にて遮断試験を実施した結果、アーク25が一旦コイルカバー19bに移行し、コイル部11bの側面を底部12b近くまで移動する場合があったが、アーク25は電極底部カバー18Bには移行せずに接点6bに戻り、遮断性能は維持されることが判明した。従って、コイルカバー19bは、図1あるいは図3に示すように、コイル部11bの側面を覆い底部12b近くまで伸びている必要がある。このため、例えば特許文献3、4のように、コイルの側面が電極棒側から伸びるカバー(本実施形態で言えば、電極底部カバー18bがコイル部11bの側面まで伸びていて、コイルカバー19bがコイル部11bの残りの一部のみを覆っている状態に相当)で覆われていると、アークがこのカバーに移行し、前述のように電流がカバーを流れ、コイルを流れる電流が減少するため遮断性能が低下する。   As a result of conducting the interruption test with the electrode structure of the present embodiment, the arc 25 once moved to the coil cover 19b and the side surface of the coil part 11b might move to the vicinity of the bottom part 12b. It turned out that it did not transfer to 18B, but returned to the contact 6b, and the interruption | blocking performance was maintained. Therefore, as shown in FIG. 1 or FIG. 3, the coil cover 19b needs to cover the side surface of the coil portion 11b and extend to the vicinity of the bottom portion 12b. For this reason, for example, as in Patent Documents 3 and 4, a cover in which the side surface of the coil extends from the electrode rod side (in this embodiment, the electrode bottom cover 18b extends to the side surface of the coil portion 11b, and the coil cover 19b If it is covered with only the remaining part of the coil portion 11b), the arc moves to this cover, and as described above, the current flows through the cover and the current flowing through the coil decreases. The blocking performance is reduced.

次に、本実施形態の電極構造と上記特許文献3と4を組み合わせた場合の構造との比較について説明する。先ず、特許文献3と4を組み合わせた場合の構造について、特許文献3の第1図に特許文献4の挟み込み部材を適用すると考える。挟み込み部材の厚さは特許文献4の図5(b)から接点の1/3程度とする。   Next, a comparison between the electrode structure of the present embodiment and the structure in the case where the above-described Patent Documents 3 and 4 are combined will be described. First, regarding the structure in which Patent Documents 3 and 4 are combined, it is considered that the sandwiching member of Patent Document 4 is applied to FIG. The thickness of the sandwiching member is about 程度 of the contact point from FIG.

上記特許文献3の第1図に示されたアーク電極の裏側に、上記特許文献4の挟み込み部材を固着し、その裏側に高抵抗体を取り付ける。高抵抗体は、電流が高抵抗体に流れずコイル電極に流れるようにするために抵抗値が大きく、かつ、開閉時に可動リート棒とアーク電極との間に働く力に耐えるために機械的強度が大きいことが求められる。このため、高抵抗体の長さや厚みはほぼ元の形を保って、挟み込み部材の厚さの分だけアーク電極から離れた位置に移動する。特許文献3では高抵抗体をコイル電極の基部に設けた横板で受ける構造で、リードパイプとコイル電極の接触面積も通電性能から決まっているので、可動リード棒とコイル電極の位置関係もそのまま維持されなければならない。この結果、高抵抗体がずれた分だけリードパイプとコイル電極がアーク電極から離れる。その結果として、アークに作用する縦磁界の強度が低下し、遮断性能が低下する問題がある。   The pinching member of Patent Document 4 is fixed to the back side of the arc electrode shown in FIG. 1 of Patent Document 3, and a high resistance body is attached to the back side. The high resistance body has a large resistance value so that current does not flow to the high resistance body but to the coil electrode, and mechanical strength to withstand the force acting between the movable reed bar and the arc electrode during opening and closing Is required to be large. For this reason, the length and thickness of the high-resistance element keep their original shapes and move to a position away from the arc electrode by the thickness of the sandwiching member. In Patent Document 3, the structure is such that the high resistance is received by a horizontal plate provided at the base of the coil electrode, and the contact area between the lead pipe and the coil electrode is also determined by the current-carrying performance. Must be maintained. As a result, the lead pipe and the coil electrode are separated from the arc electrode by the amount of displacement of the high resistance body. As a result, there is a problem that the strength of the longitudinal magnetic field acting on the arc is lowered and the interruption performance is lowered.

これに対し、本実施形態では、補強部材15b(高抵抗体に相当)を電極棒5bの内径側に設けた段差で受ける構造としている。このため、裏板14bを設けて補強部材15bの端部の位置が接点6bから離れても、縦磁界を発生するコイル部11bを接点6bの近くに設置することができ、遮断性能を維持することができる。   In contrast, in the present embodiment, the reinforcing member 15b (corresponding to a high resistance body) is received by a step provided on the inner diameter side of the electrode rod 5b. For this reason, even if the back plate 14b is provided and the position of the end of the reinforcing member 15b is separated from the contact 6b, the coil portion 11b that generates a longitudinal magnetic field can be installed near the contact 6b, and the interruption performance is maintained. be able to.

また、上記特許文献3では縦磁界電極のコイル電極が2分割であるため円弧部が変形しやすい。そこで裏側に補強体を設置して腕や円弧部の変形を防いでいる。
本実施形態では、補強部材15bで電極棒5bの力を受ける構造としコイル部の変形を防止している。また、コントレート電極13bは穴(ロウ付け確認穴20b)が小さいので強度が高く、裏に補強体を設ける必要がない。
Moreover, in the said patent document 3, since the coil electrode of a longitudinal magnetic field electrode is divided into two, a circular arc part tends to deform | transform. Therefore, a reinforcing body is installed on the back side to prevent deformation of the arm and the arc portion.
In the present embodiment, the reinforcing member 15b receives the force of the electrode bar 5b to prevent the coil portion from being deformed. Further, since the control electrode 13b has a small hole (the brazing confirmation hole 20b), the strength is high and it is not necessary to provide a reinforcing body on the back.

更に、上記特許文献3ではコイル電極の基部に設けた横板とアーク電極との間の空間が高抵抗体の穴(特許文献3の第1図参照)によって真空状態となっている。このため、この構造では可動リード棒を中空としても、アーク電極の裏面に冷媒を接触させることができず、放熱効率が上がらない。これに対し、本実施形態では接点6bの裏面を、裏板14bを介して冷媒で冷却するので放熱効率が高い。   Further, in Patent Document 3, the space between the horizontal plate provided at the base of the coil electrode and the arc electrode is in a vacuum state by a hole of a high resistance (see FIG. 1 of Patent Document 3). For this reason, even if the movable lead bar is hollow in this structure, the refrigerant cannot be brought into contact with the back surface of the arc electrode, and the heat dissipation efficiency does not increase. On the other hand, in this embodiment, since the back surface of the contact 6b is cooled by the refrigerant via the back plate 14b, the heat radiation efficiency is high.

以上詳述したように、実施の形態1に係る真空バルブ100は、コイルカバー19a,19bでコイル部11a,11bを覆い、底部12a,12b付近まで伸ばしたため、アーク25がコイルカバー19a,19bに移行しても電極底部カバー18a,18bまで移行することがない。従って、コイル部11a,11bを流れる電流の一部が、電極底部カバー18a,18bからコイルカバー19a、19bを介して流れることが無く、縦磁界強度が維持されるため、アーク25は最終的に接点6a,6bに戻り遮断性能は維持される。   As described above in detail, since the vacuum valve 100 according to the first embodiment covers the coil portions 11a and 11b with the coil covers 19a and 19b and extends to the vicinity of the bottom portions 12a and 12b, the arc 25 is applied to the coil covers 19a and 19b. Even if it shifts, it does not shift to the electrode bottom cover 18a, 18b. Accordingly, part of the current flowing through the coil portions 11a and 11b does not flow from the electrode bottom covers 18a and 18b via the coil covers 19a and 19b, and the longitudinal magnetic field strength is maintained. Returning to the contacts 6a and 6b, the breaking performance is maintained.

また、補強部材15a,15bが高抵抗体と縦磁界電極の補強体を兼ね、電極棒5a,5bの内径側に設けた段差で保持する構造としたため、裏板14a,14bを設けて補強部材15a,15bの端部位置が接点から離れても、縦磁界を発生するコイル部11a,11bを接点6a,6bの近くに設置することができて遮断性能が維持され、また接点6a,6bの裏面を裏板14a,14bを介して冷媒で冷却できるので、放熱効率が高い。その結果、真空バルブ100のコントレート電極13a,13bの径、電極棒5a,5bの径を小さくできるので真空バルブ100の小型化が達成できる。   Further, since the reinforcing members 15a and 15b serve as a high resistance body and a longitudinal magnetic field electrode reinforcing body and are held by the step provided on the inner diameter side of the electrode rods 5a and 5b, the back plates 14a and 14b are provided to provide the reinforcing member. Even if the end positions of 15a and 15b are separated from the contacts, the coil portions 11a and 11b that generate the longitudinal magnetic field can be installed near the contacts 6a and 6b, so that the breaking performance is maintained, and the contacts 6a and 6b Since the back surface can be cooled with the refrigerant via the back plates 14a and 14b, the heat radiation efficiency is high. As a result, the diameters of the control electrodes 13a and 13b of the vacuum valve 100 and the diameters of the electrode rods 5a and 5b can be reduced, so that the vacuum valve 100 can be reduced in size.

なお、実施の形態1に係る真空バルブ100ではコントレート電極13a,13bを適用したが、それに限定しない。但し、コントレート電極13a,13bは、直線状のスリット21を入れるだけなので加工が簡単になるメリットがある。   Although the control electrodes 13a and 13b are applied to the vacuum valve 100 according to the first embodiment, the present invention is not limited to this. However, the control electrodes 13a and 13b have a merit that the processing is simple because only the straight slit 21 is inserted.

また、カバー16a、16bは、真空バルブ100の定格電圧が比較的低い場合には銅(無酸素銅、黄銅、タフピッチ銅等)、Cu−Cr系材料としてもよい。銅であってもスリット21を覆うことで電界緩和効果があり、加工しやすいメリットがある。Cu−Cr系材料は遮断性能が高い効果がある。電極底部カバー18a,18bの保持部24を底部12a,12bに設けたが、電極棒5a,5bに設けてもよい。   Further, the covers 16a and 16b may be made of copper (oxygen-free copper, brass, tough pitch copper, etc.) or a Cu—Cr based material when the rated voltage of the vacuum valve 100 is relatively low. Even if it is copper, there is an electric field relaxation effect by covering the slit 21, and there is an advantage that it is easy to process. A Cu—Cr-based material has an effect of high barrier performance. The holding portions 24 of the electrode bottom covers 18a and 18b are provided on the bottom portions 12a and 12b, but may be provided on the electrode rods 5a and 5b.

実施の形態1に係る真空バルブ100では、コントレート電極13a,13bの周囲(側面および裏面)を高耐圧材料製のカバー16a,16bで覆ったため、銅製のコイル部11a,11bより耐圧が向上し、アークシールド4の径を小さくすることができる。   In the vacuum valve 100 according to the first embodiment, since the periphery (side surface and back surface) of the control electrodes 13a and 13b is covered with the high-pressure-resistant material covers 16a and 16b, the withstand voltage is improved as compared with the copper coil portions 11a and 11b. The diameter of the arc shield 4 can be reduced.

また、カバー16a,16bを接点6a,6bの裏側で固定し、コントレート電極13a,13bのコイル部11a,11bを覆うコイルカバー19a,19bと、電極底部カバー18a,18bに分けたため、アーク25がコイルカバー19a,19bに移行してもコイル部11a,11bの発生する縦磁界が弱くならないので、遮断性能が高く、電極径を小さくすることができる。このため、真空バルブ100の周囲の電流パスが発生する磁界の影響を受けないので、真空遮断器全体を小型化することができる。   Further, the cover 16a, 16b is fixed on the back side of the contacts 6a, 6b, and is divided into coil covers 19a, 19b covering the coil portions 11a, 11b of the control electrodes 13a, 13b and electrode bottom covers 18a, 18b. Since the longitudinal magnetic field generated by the coil portions 11a and 11b does not become weak even when the coil covers 19a and 19b are transferred, the blocking performance is high and the electrode diameter can be reduced. For this reason, since it is not influenced by the magnetic field which the electric current path around the vacuum valve 100 generates, the whole vacuum circuit breaker can be reduced in size.

また、コイルカバー19bと電極底部カバー18bのギャップ側端部は、糸面取り加工もしくはバリ取り加工程度のみであり、部品加工が容易である。   Further, the gap side end portions of the coil cover 19b and the electrode bottom cover 18b are only thread chamfering or deburring, and parts processing is easy.

また、電極棒5a,5bとコントレート電極13a,13bを銅管で一体に形成したので、電極棒5a,5bとコントレート電極13a,13bのロウ付け部がなくなり、組立とロウ付け工程が簡易化される。   Further, since the electrode rods 5a, 5b and the control electrodes 13a, 13b are integrally formed of a copper tube, there is no brazing portion between the electrode rods 5a, 5b and the control electrodes 13a, 13b, and the assembly and brazing process is simplified. It becomes.

更に、電極棒5a,5bを中空とすることにより、接点6a,6bの発熱を効率的に冷却でき、通電電流を増してもコントレート電極13a,13bの径、電極棒5a,5bの径を大きくする必要がなくなる。また、電極棒5a,5bの径を小さくできるので、アークシールド4の両端4,4bの径を絞ることができ、遮断持の金属蒸気の捕集効果が上がり、セラミック内沿面への金属蒸気付着量が減るので遮断回数を増やすことができる。   Furthermore, by making the electrode rods 5a and 5b hollow, the heat generation of the contacts 6a and 6b can be efficiently cooled, and the diameter of the control electrodes 13a and 13b and the diameter of the electrode rods 5a and 5b can be increased even when the energizing current is increased. There is no need to make it bigger. In addition, since the diameters of the electrode rods 5a and 5b can be reduced, the diameters of both ends 4 and 4b of the arc shield 4 can be reduced, and the effect of collecting the intercepted metal vapor is improved, and the metal vapor adheres to the inner surface of the ceramic. Since the amount is reduced, the number of interruptions can be increased.

また、ロウ付け確認穴20a,20bでロウ付け状態を確認できるので、冷却用媒体が触れる部位のロウ付けを確実に行うことができる。コントレート電極13a,13bの底部にはロウ付け確認穴を設ける。ロウ付け確認穴の位置はコントレート電極13a,13bのスリット21の略延長線上としたので、縦磁界を発生する電流パスを長くしたことと同等の効果があり、縦磁界強度が上がり遮断性能が高くなる。   In addition, since the brazing state can be confirmed through the brazing confirmation holes 20a and 20b, brazing of the portion touched by the cooling medium can be performed reliably. A brazing confirmation hole is provided at the bottom of the control electrodes 13a and 13b. Since the position of the brazing confirmation hole is substantially on the extension line of the slit 21 of the control electrodes 13a and 13b, it has the same effect as extending the current path for generating the longitudinal magnetic field, and the longitudinal magnetic field strength is increased and the blocking performance is improved. Get higher.

また、カバー16a,16bの表面にはロウ材が付着しない構造としたので、耐電圧の低い銀を含むロウ材を使用しても耐電圧性能が維持される。   Further, since the brazing material does not adhere to the surfaces of the covers 16a and 16b, the withstand voltage performance is maintained even when a brazing material containing silver having a low withstand voltage is used.

実施の形態2.
次に、この発明の実施の形態2に係る真空バルブについて説明する。図4は、実施の形態2に係る真空バルブの可動側電極部分の近傍を示す断面図である。なお、固定側電極部分については、可動側電極部分と同様であり、図示説明を省略する。
図4において、実施の形態2に係る真空バルブ200は、電極底部カバー18bの先端とコイルカバー19bの先端の両方、または一方にリング40を取り付ける。リング40の取り付けは、溶接、ロウ付けなどで行う。リング40の位置決めのために、リング40または電極底部カバー18bあるいはコイルカバー19bの先端部に嵌め合わせ部が設けられている。例えば、リング40を電極底部カバー18bの先端だけに取り付けた場合でも、リング40の径を調整することによってコイルカバー18bの先端の電界も緩和されるので、ギャップ23を大きく取ることができる。なお、その他の構成については、実施の形態1と同様であり、同一符号を付して説明を省略する。
Embodiment 2. FIG.
Next, a vacuum valve according to Embodiment 2 of the present invention will be described. FIG. 4 is a cross-sectional view showing the vicinity of the movable electrode portion of the vacuum valve according to the second embodiment. The fixed side electrode portion is the same as the movable side electrode portion, and the illustration and description thereof will be omitted.
4, in the vacuum valve 200 according to the second embodiment, a ring 40 is attached to both or one of the tip of the electrode bottom cover 18b and the tip of the coil cover 19b. The ring 40 is attached by welding, brazing, or the like. In order to position the ring 40, a fitting portion is provided at the tip of the ring 40, the electrode bottom cover 18b, or the coil cover 19b. For example, even when the ring 40 is attached only to the tip of the electrode bottom cover 18b, the electric field at the tip of the coil cover 18b is also reduced by adjusting the diameter of the ring 40, so that the gap 23 can be made large. In addition, about another structure, it is the same as that of Embodiment 1, and attaches | subjects the same code | symbol and abbreviate | omits description.

真空バルブ200には例えば数万回の開閉寿命が求められる。このため、開閉衝撃によりコイル部11bが縮むことを考慮した設計が必要になる。実施の形態2に係る真空バルブ200は、上記のように構成されているので、ギャップ23を大きく取ることができ、コイルカバー19bと電極底部カバー18bが接触してコイル部11bに流れるべき電流の一部が電極底部カバー18bを経由してアークに流れ込むことが無い。このため、コイル部11bの発生する縦磁界強度が維持され遮断性能が高まる効果がある。   The vacuum valve 200 is required to have an opening / closing life of tens of thousands of times, for example. For this reason, the design which considers that the coil part 11b shrinks by an opening / closing impact is needed. Since the vacuum valve 200 according to the second embodiment is configured as described above, the gap 23 can be made large, and the coil cover 19b and the electrode bottom cover 18b come into contact with each other and the current that should flow through the coil portion 11b. A part does not flow into the arc via the electrode bottom cover 18b. For this reason, there is an effect that the longitudinal magnetic field intensity generated by the coil portion 11b is maintained and the interruption performance is improved.

また、リング40の径とコイルカバー19bの曲率を調整して、電極底部カバー18bを曲げの無い円板にすることができ、加工が容易となる。   Moreover, the diameter of the ring 40 and the curvature of the coil cover 19b can be adjusted, and the electrode bottom cover 18b can be made into a disk without a bend, and processing becomes easy.

なお、実施の形態1で説明したように、アークが一旦コイルカバー19bに移行すると、コイル部11bの側面を底部12b近くまで移動する場合があるため、実施の形態2においてもコイルカバー19bはコイル部11bの側面を覆い、底部12b近くまで伸びた構造になっている。   As described in the first embodiment, once the arc moves to the coil cover 19b, the side surface of the coil portion 11b may move to the vicinity of the bottom portion 12b. Therefore, also in the second embodiment, the coil cover 19b is a coil The side surface of the portion 11b is covered and the structure extends to the vicinity of the bottom portion 12b.

以上のように、実施の形態2に係る真空バルブ200によれば、電極底部カバー18bの先端とコイルカバー19bの先端の両方、または一方にリング40を取り付けたので、電極底部カバー18bとコイルカバー19bの先端の電界が緩和され、かつ、ギャップ23が大きく取れることで電極底部カバー18bからコイルカバー19bを経由した通電を確実に防止するため遮断性能が高まる。   As described above, according to the vacuum valve 200 according to the second embodiment, since the ring 40 is attached to both or one of the tip of the electrode bottom cover 18b and the tip of the coil cover 19b, the electrode bottom cover 18b and the coil cover are attached. Since the electric field at the tip of 19b is relaxed and the gap 23 can be made large, the current passing through the coil cover 19b from the electrode bottom cover 18b is surely prevented, so that the interruption performance is enhanced.

実施の形態3.
次に、この発明の実施の形態3に係る真空バルブについて説明する。図5は、実施の形態3に係る真空バルブの可動側電極部分の近傍を示す断面図である。なお、固定側電極部分については、可動側電極部分と同様であり、図示説明を省略する。
図5において、実施の形態2に係る真空バルブ300は、電極底部カバー50を円板形状とし、その先端部となる外周円部に、厚み方向に円弧を有する円弧状部を形成する。なお、その他の構成については、実施の形態1と同様であり、同一符号を付して説明を省略する。
Embodiment 3 FIG.
Next, a vacuum valve according to Embodiment 3 of the present invention will be described. FIG. 5 is a cross-sectional view showing the vicinity of the movable electrode portion of the vacuum valve according to the third embodiment. The fixed side electrode portion is the same as the movable side electrode portion, and the illustration and description thereof will be omitted.
In FIG. 5, the vacuum valve 300 according to the second embodiment has an electrode bottom cover 50 having a disc shape, and an arcuate portion having an arc in the thickness direction is formed on the outer peripheral circular portion serving as the tip. In addition, about another structure, it is the same as that of Embodiment 1, and attaches | subjects the same code | symbol and abbreviate | omits description.

実施の形態3に係る真空バルブ300は、上記のように円板形状の電極底部カバー50の外周円部に、厚み方向の円弧状部を形成したので、厚み方向の円弧状部における円弧の大きさを調整することにより、コイルカバー19bの先端の電界も緩和される。   In the vacuum valve 300 according to the third embodiment, since the arc-shaped portion in the thickness direction is formed on the outer peripheral circular portion of the disc-shaped electrode bottom cover 50 as described above, the size of the arc in the arc-shaped portion in the thickness direction is increased. By adjusting the height, the electric field at the tip of the coil cover 19b is also relaxed.

以上のように、実施の形態3に係る真空バルブ300によれば、円板形状に構成された電極底部カバー50とコイルカバー19bの先端の電界が緩和され、かつ、図5で明らかなように、ギャップ23を大きく取ることができ、電極底部カバーからコイルカバーカバーを経由した通電を確実の防止し、遮断性能が高まる。なお、本実施形態においても、コイルカバー19bはコイル部11bの側面を覆い、底部12b近くまで伸びた構造になっている。   As described above, according to the vacuum valve 300 according to the third embodiment, the electric fields at the tips of the electrode bottom cover 50 and the coil cover 19b configured in a disc shape are alleviated, and as is apparent in FIG. The gap 23 can be made large, energization from the electrode bottom cover through the coil cover cover is reliably prevented, and the shutoff performance is enhanced. Also in this embodiment, the coil cover 19b covers the side surface of the coil part 11b and has a structure extending to the vicinity of the bottom part 12b.

実施の形態4.
次に、この発明の実施の形態4に係る真空バルブについて説明する。図6は、実施の形態4に係る真空バルブの可動側電極部分の近傍を示す断面図である。なお、固定側電極部分については、可動側電極部分と同様であり、図示説明を省略する。
図6において、実施の形態4に係る真空バルブ400は、電極底部カバー60を電極棒カバー17bと分離し、コイルカバー19bに取り付ける構造とする。コイルカバー19bに嵌め合わせ部を設け、電極底部カバー60を溶接、ロウ付けなどで取り付ける。電極底部カバー60の中央には穴をあけ、コントレート電極13bの底部や電極棒カバー17bと接触しないようにギャップ23を形成する。ギャップ23は、電極棒カバー17bの端部との距離が0.3mm以上とする。なお、その他の構成については、実施の形態1と同様であり、同一符号を付して説明を省略する。
Embodiment 4 FIG.
Next, a vacuum valve according to Embodiment 4 of the present invention will be described. FIG. 6 is a cross-sectional view showing the vicinity of the movable electrode portion of the vacuum valve according to the fourth embodiment. The fixed side electrode portion is the same as the movable side electrode portion, and the illustration and description thereof will be omitted.
In FIG. 6, the vacuum valve 400 according to the fourth embodiment has a structure in which the electrode bottom cover 60 is separated from the electrode rod cover 17b and attached to the coil cover 19b. A fitting portion is provided on the coil cover 19b, and the electrode bottom cover 60 is attached by welding, brazing or the like. A hole is formed in the center of the electrode bottom cover 60, and a gap 23 is formed so as not to contact the bottom of the control electrode 13b or the electrode bar cover 17b. The distance between the gap 23 and the end of the electrode rod cover 17b is 0.3 mm or more. In addition, about another structure, it is the same as that of Embodiment 1, and attaches | subjects the same code | symbol and abbreviate | omits description.

コイルカバー19bと電極底部カバー60の接続位置は、図6に示すようにコントレート電極13bの側面でもよいが、接点6bから更に離れた底部12b側の位置でもよい。但し、コントレート電極13bを入れて組み立てるため、コイルカバー19bの端部の内径はコイル外径より大きくする。   The connection position between the coil cover 19b and the electrode bottom cover 60 may be the side surface of the control electrode 13b as shown in FIG. 6, or may be a position on the bottom 12b side further away from the contact 6b. However, since the control electrode 13b is inserted and assembled, the inner diameter of the end of the coil cover 19b is made larger than the outer diameter of the coil.

また、カバー表面の最大電界が、図6のD部にあることが望ましい。そのために、電極底部カバー60の曲率を大きくする。D部に最大電界があれば、コンディショニングの際に開極距離を縮めて電圧を印加することで、この最大電界部付近に耐電圧試験時の電界より十分高い電界を印加できる。   Further, it is desirable that the maximum electric field on the cover surface be in the D part of FIG. For this purpose, the curvature of the electrode bottom cover 60 is increased. If there is a maximum electric field in the D part, an electric field sufficiently higher than the electric field in the withstand voltage test can be applied in the vicinity of the maximum electric field part by applying a voltage while reducing the opening distance during conditioning.

以上のように、実施の形態4に係る真空バルブ400によれば、コイル部11bを流れるべき電流が電極底部カバー60からコイルカバー19bを経由し分流することがないため、発生する縦磁界強度が高く遮断性能が高まる。また、電極底部カバー60とコイルカバー19bの高さH2を、コイル部11bの高さH1より大きく取ることができるので、電極底部カバー60あるいはコイルカバー19bの曲率の大きさや、コイル部11bの高さH1の大きさに自由度が増し、電界設計が容易になる効果がある。   As described above, according to the vacuum valve 400 according to the fourth embodiment, since the current that should flow through the coil portion 11b is not shunted from the electrode bottom cover 60 via the coil cover 19b, the generated longitudinal magnetic field strength is reduced. High shut-off performance. Further, since the height H2 of the electrode bottom cover 60 and the coil cover 19b can be made larger than the height H1 of the coil portion 11b, the size of the curvature of the electrode bottom cover 60 or the coil cover 19b, the height of the coil portion 11b, and the like. There is an effect that the degree of freedom increases in the size of the height H1, and the electric field design becomes easy.

実施の形態5.
次に、この発明の実施の形態5に係る真空バルブについて説明する。図7は、実施の形態5に係る真空バルブの可動側電極部分の近傍を示す断面図である。なお、固定側電極部分については、可動側電極部分と同様であり、図示説明を省略する。
図7において、実施の形態5に係る真空バルブ500は、コントレート電極13bを形成する底部12bと電極棒5bとを分離し、接合部70で両者を接合するもので、その他の構成については、実施の形態1と同様であり、同一符号を付して説明を省略する。
Embodiment 5 FIG.
Next, a vacuum valve according to Embodiment 5 of the present invention will be described. FIG. 7 is a cross-sectional view showing the vicinity of the movable electrode portion of the vacuum valve according to the fifth embodiment. The fixed side electrode portion is the same as the movable side electrode portion, and the illustration and description thereof will be omitted.
In FIG. 7, the vacuum valve 500 according to the fifth embodiment separates the bottom portion 12b and the electrode rod 5b forming the control electrode 13b, and joins them at the joint portion 70. For other configurations, Since it is the same as that of Embodiment 1, it attaches | subjects the same code | symbol and abbreviate | omits description.

実施の形態5に係る真空バルブ500は上記のように構成されており、その電極部は、銅管の端部をプレス加工、または鍛造加工によって径を広げ底部12bとコイル部11bを形成する。電極棒5bには銅管の端部に嵌め合わせ構造を加工する。   The vacuum valve 500 according to the fifth embodiment is configured as described above, and the electrode portion of the vacuum tube 500 is expanded in diameter by pressing or forging the end portion of the copper tube to form the bottom portion 12b and the coil portion 11b. The electrode rod 5b is fitted into the end of the copper tube to process the structure.

また、実施の形態1と同様に、コントレート電極13bの変形を防止するために電極棒5bの内面に段部を設け、補強部材15bを固定する。補強部材15bの抵抗を高くして電流が流れないようにするため、電極棒5bとの接合位置と裏板14bの間の距離を長く取る。このために、底部12bの内径と補強部材15bの外径の間には隙間を設ける。   As in the first embodiment, a step is provided on the inner surface of the electrode bar 5b to prevent deformation of the control electrode 13b, and the reinforcing member 15b is fixed. In order to prevent the current from flowing by increasing the resistance of the reinforcing member 15b, the distance between the joining position with the electrode rod 5b and the back plate 14b is increased. For this purpose, a gap is provided between the inner diameter of the bottom 12b and the outer diameter of the reinforcing member 15b.

実施の形態1のように、コントレート電極13bと電極棒5bを一体とすると、電極棒5bが長い場合にコントレート電極加工の作業性が悪い問題があるが、本実施形態であればコントレート電極13bを形成する底部12bと電極棒5bとを分離し、接合部70で両者を接合するので作業性が向上する。そして、電極棒5bと底部12bのロウ付け部からロウ材が流出しても電極棒カバー17bと電極底部カバー18bは一体なので、ロウ材が表面に現れず耐電圧性能が維持される。なお、電極構造は縦磁界電極であればよい。   When the control electrode 13b and the electrode rod 5b are integrated as in the first embodiment, there is a problem that the workability of the control electrode processing is poor when the electrode rod 5b is long. The bottom 12b forming the electrode 13b and the electrode rod 5b are separated, and both are joined by the joining portion 70, so workability is improved. Even if the brazing material flows out from the brazing portion of the electrode rod 5b and the bottom portion 12b, the electrode rod cover 17b and the electrode bottom cover 18b are integrated, so that the brazing material does not appear on the surface and the withstand voltage performance is maintained. The electrode structure may be a longitudinal magnetic field electrode.

また、図示は省略しているが、この実施の形態5の真空バルブ500に、実施の形態2と同様に電極底部カバー18bの先端とコイルカバー19bの先端の両方、または一方に溶接、あるいはロウ付けによりリングを取り付け、実施の形態2で説明した効果を得ることもできる。   Although not shown, the vacuum valve 500 of the fifth embodiment is welded or brazed to both or one of the tip of the electrode bottom cover 18b and the tip of the coil cover 19b, as in the second embodiment. The effect described in the second embodiment can be obtained by attaching the ring by attaching.

1 絶縁筒、2 固定側端板、3 可動側端板、4 アークシールド
5a 固定側電極棒、5b 可動側電極棒、6a 固定側接点、6b 可動側接点
7 ブロック、8 ベローズ、9 ベローズカバー、10 ガイド
11a,11b コイル部、12a,12b 底部
13a,13b コントレート電極、14a,14b 裏板
15a,15b 補強部材、16a,16b カバー、17a,17b 電極棒カバー
18a,18b,50,60 電極底部カバー、19a,19b コイルカバー
20a,20b ロウ付け確認穴、21 スリット、22 通電部、23 ギャップ
24 保持部、25 アーク、40 リング、70 接合部
100,200,300,400,500 真空バルブ
DESCRIPTION OF SYMBOLS 1 Insulation cylinder, 2 Fixed side end plate, 3 Movable side end plate, 4 Arc shield 5a Fixed side electrode rod, 5b Movable side electrode rod, 6a Fixed side contact, 6b Movable side contact 7 Block, 8 Bellows, 9 Bellows cover, 10 Guide 11a, 11b Coil part, 12a, 12b Bottom part 13a, 13b Control electrode, 14a, 14b Back plate 15a, 15b Reinforcing member, 16a, 16b Cover, 17a, 17b Electrode bar cover 18a, 18b, 50, 60 Electrode bottom part Cover, 19a, 19b Coil cover 20a, 20b Brazing confirmation hole, 21 slit, 22 energizing part, 23 gap 24 holding part, 25 arc, 40 ring, 70 joint part 100, 200, 300, 400, 500 Vacuum valve

Claims (16)

密封状態に保持された絶縁筒内に、上記絶縁筒の軸方向に対向して接離可能に配置された可動側接点および固定側接点と、上記両接点を包囲するように取り付けられたアークシールドと、上記可動側接点に固着された可動側電極棒をべローズを介して上記絶縁筒に取り付け、上記固定側接点に固着された固定側電極棒を上記絶縁筒に取り付けた真空バルブであって、
上記両接点の開離時に生じるアークと平行な縦磁界を発生する縦磁界電極のコイル部と上記可動側電極棒、および上記コイル部と上記固定側電極棒のそれぞれを覆う高耐圧材料で形成されたカバーを備え、
上記カバーは、上記コイル部の側面から底部に至る部位を覆うコイルカバーと、上記コイルカバーと所定のギャップを介して取り付けられ、上記コイル部の底部を覆う電極底部カバーを含み、
上記コイルカバーの一端を上記可動側接点と上記固定側接点のそれぞれと上記コイル部との間に固定すると共に、他端の内径を上記コイル部の外径より大きくしたことを特徴とする真空バルブ。
A movable side contact and a fixed side contact disposed in an insulating tube held in a sealed state so as to be able to contact and separate in the axial direction of the insulating tube, and an arc shield attached so as to surround both the contacts A vacuum valve in which a movable electrode rod fixed to the movable contact is attached to the insulating tube via a bellows, and a fixed electrode rod fixed to the fixed contact is attached to the insulating tube. ,
The coil portion of the longitudinal magnetic field electrode that generates a longitudinal magnetic field parallel to the arc generated when the two contacts are separated, the movable electrode rod, and the high pressure resistant material that covers each of the coil portion and the fixed electrode rod. Cover
The cover includes a coil cover that covers a portion from the side surface to the bottom of the coil part, and an electrode bottom cover that is attached to the coil cover via a predetermined gap and covers the bottom part of the coil part,
One end of the coil cover is fixed between each of the movable contact and the fixed contact and the coil portion, and the inner diameter of the other end is made larger than the outer diameter of the coil portion. .
上記ギャップを介して対向する上記コイルカバーと上記電極底部カバーのそれぞれの端部を、糸面取り加工もしくはバリ取り加工すると共に、上記コイルカバーと上記電極底部カバーの上記対向端部が上記コイル部側に窪ませた形状であることを特徴とする請求項1に記載の真空バルブ。   The ends of the coil cover and the electrode bottom cover facing each other through the gap are thread chamfered or deburred, and the opposing ends of the coil cover and the electrode bottom cover are on the coil section side. The vacuum valve according to claim 1, wherein the vacuum valve has a shape recessed. 上記カバーの表面の最大電界は、上記コイルカバーの上記ギャップ付近以外に位置することを特徴とする請求項1又は請求項2に記載の真空バルブ。   3. The vacuum valve according to claim 1, wherein the maximum electric field on the surface of the cover is located outside the vicinity of the gap of the coil cover. 上記電極底部カバーと上記電極棒を覆うカバーを一体化して上記コイル部の底部に固定すると共に、上記固定部を除いて上記電極棒の表面と上記電極棒を覆うカバーとの間に隙間を設けたことを特徴とする請求項1〜3の何れか一項に記載の真空バルブ。   The electrode bottom cover and the cover covering the electrode rod are integrated and fixed to the bottom portion of the coil portion, and a gap is provided between the surface of the electrode rod and the cover covering the electrode rod except for the fixing portion. The vacuum valve according to any one of claims 1 to 3, wherein: 上記電極棒を覆うカバーは、上記アークシールドの先端と対向する高電界部位より先まで上記電極棒を覆うものであることを特徴とする請求項1〜4の何れか一項に記載の真空バルブ。   The vacuum valve according to any one of claims 1 to 4, wherein the cover covering the electrode rod covers the electrode rod beyond a high electric field portion facing the tip of the arc shield. . 上記コイル部と上記電極棒とを銅管から一体に形成すると共に、上記電極棒を中空状に構成することを特徴とする請求項1〜5の何れか一項に記載の真空バルブ。   The vacuum valve according to any one of claims 1 to 5, wherein the coil portion and the electrode rod are integrally formed from a copper tube, and the electrode rod is formed in a hollow shape. 上記コイル部と上記電極棒とを嵌め合わせにより一体化すると共に、上記電極棒を中空状に構成することを特徴とする請求項1〜5の何れか一項に記載の真空バルブ。   The vacuum valve according to any one of claims 1 to 5, wherein the coil portion and the electrode rod are integrated by fitting and the electrode rod is formed in a hollow shape. 上記コイル部の強度を補う補強部材を上記電極棒の中空部にロウ付け固定すると共に、上記接点の裏側に裏板を設け、上記コイル部の内部を密閉構造にすることを特徴とする請求項6又は7に記載の真空バルブ。   The reinforcing member that supplements the strength of the coil portion is brazed and fixed to the hollow portion of the electrode rod, and a back plate is provided on the back side of the contact, and the inside of the coil portion is sealed. The vacuum valve according to 6 or 7. 上記コイル部の底部と上記電極底部カバーとを貫通するロウ付け確認穴を形成したことを特徴とする請求項8に記載の真空バルブ。   The vacuum valve according to claim 8, wherein a brazing confirmation hole penetrating the bottom portion of the coil portion and the electrode bottom portion cover is formed. 上記ロウ付け確認穴は、上記電極棒に近い部位で、上記コイル部に縦磁界を発生させるスリットの略延長線上に形成したことを特徴とする請求項9に記載の真空バルブ。   The vacuum valve according to claim 9, wherein the brazing confirmation hole is formed on a substantially extended line of a slit that generates a longitudinal magnetic field in the coil portion at a portion close to the electrode rod. 上記ギャップを介して対向する上記コイルカバーの先端と上記電極底部カバーの先端の両方、または一方にリングを取り付けたことを特徴とする請求項1〜10の何れか一項に記載の真空バルブ。   The vacuum valve according to any one of claims 1 to 10, wherein a ring is attached to both or one of the front end of the coil cover and the front end of the electrode bottom cover that face each other through the gap. 上記電極底部カバーを円板形状とし、その外周円部に厚み方向に円弧を有する円弧状部を形成したことを特徴とする請求項1〜11の何れか一項に記載の真空バルブ。   The vacuum valve according to any one of claims 1 to 11, wherein the electrode bottom cover has a disc shape, and an arcuate portion having an arc in the thickness direction is formed on an outer peripheral circular portion thereof. 密封状態に保持された絶縁筒内に、上記絶縁筒の軸方向に対向して接離可能に配置された可動側接点および固定側接点と、上記両接点を包囲するように取り付けられたアークシールドと、上記可動側接点に固着された可動側電極棒をべローズを介して上記絶縁筒に取り付け、上記固定側接点に固着された固定側電極棒を上記絶縁筒に取り付けた真空バルブであって、
上記両接点の開離時に生じるアークと平行な縦磁界を発生する縦磁界電極のコイル部と上記可動側電極棒、および上記コイル部と上記固定側電極棒のそれぞれを覆う高耐圧材料で形成されたカバーを備え、
上記カバーは、上記縦磁界電極のコイル部の側面を覆うコイルカバーと、上記コイルカバーに取り付けられ、上記コイル部の側面から底部に至る部位を覆う電極底部カバーと、上記電極底部カバーと所定のギャップを介して取り付けられ、上記電極棒を覆う電極棒カバーにより構成されることを特徴とする真空バルブ。
A movable side contact and a fixed side contact disposed in an insulating tube held in a sealed state so as to be able to contact and separate in the axial direction of the insulating tube, and an arc shield attached so as to surround both the contacts A vacuum valve in which a movable electrode rod fixed to the movable contact is attached to the insulating tube via a bellows, and a fixed electrode rod fixed to the fixed contact is attached to the insulating tube. ,
The coil portion of the longitudinal magnetic field electrode that generates a longitudinal magnetic field parallel to the arc generated when the two contacts are separated, the movable electrode rod, and the high pressure resistant material that covers each of the coil portion and the fixed electrode rod. Cover
The cover includes a coil cover that covers a side surface of the coil portion of the longitudinal magnetic field electrode, an electrode bottom cover that is attached to the coil cover and covers a portion from the side surface to the bottom portion of the coil portion, the electrode bottom cover, and a predetermined cover A vacuum valve comprising an electrode rod cover attached via a gap and covering the electrode rod.
上記カバーの表面の最大電界は、上記コイルの側面に位置するように上記電極底部カバーの曲率を形成することを特徴とする請求項13に記載の真空バルブ。   14. The vacuum valve according to claim 13, wherein the curvature of the electrode bottom cover is formed such that the maximum electric field on the surface of the cover is located on a side surface of the coil. 上記コイル部と上記電極棒とを銅管から一体に形成すると共に、上記電極棒を中空状に構成することを特徴とする請求項13又は14に記載の真空バルブ。   The vacuum valve according to claim 13 or 14, wherein the coil portion and the electrode rod are integrally formed from a copper tube, and the electrode rod is formed in a hollow shape. 上記コイル部の強度を補う補強部材を上記電極棒の中空部にロウ付け固定すると共に、上記接点の裏側に裏板を設け、上記コイル部の内部を密閉構造にすることを特徴とする請求項15に記載の真空バルブ。   The reinforcing member that supplements the strength of the coil portion is brazed and fixed to the hollow portion of the electrode rod, and a back plate is provided on the back side of the contact, and the inside of the coil portion is sealed. 15. The vacuum valve according to 15.
JP2010159652A 2010-07-14 2010-07-14 Vacuum valve Active JP5342517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010159652A JP5342517B2 (en) 2010-07-14 2010-07-14 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010159652A JP5342517B2 (en) 2010-07-14 2010-07-14 Vacuum valve

Publications (2)

Publication Number Publication Date
JP2012022879A true JP2012022879A (en) 2012-02-02
JP5342517B2 JP5342517B2 (en) 2013-11-13

Family

ID=45776994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010159652A Active JP5342517B2 (en) 2010-07-14 2010-07-14 Vacuum valve

Country Status (1)

Country Link
JP (1) JP5342517B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082412A (en) * 2013-10-23 2015-04-27 三菱電機株式会社 Vacuum valve
EP2884517A1 (en) * 2013-12-11 2015-06-17 ABB Technology AG AMF contact for vacuum interrupter with inforcement element
JP2015125838A (en) * 2013-12-26 2015-07-06 三菱電機株式会社 Vacuum breaker
CN106653466A (en) * 2016-10-17 2017-05-10 西安交通大学 Vacuum interrupter contact through combination of cup-shaped transverse magnetic fields and longitudinal magnetic fields
WO2021255869A1 (en) * 2020-06-17 2021-12-23 三菱電機株式会社 Vacuum valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450883A (en) * 1977-09-29 1979-04-21 Tokyo Shibaura Electric Co Vacuum valve
JPS5882431A (en) * 1981-11-10 1983-05-18 株式会社東芝 Vacuum valve
JPS6212021A (en) * 1985-07-10 1987-01-21 株式会社明電舎 Electrode for vacuum interrupter
JP2000164084A (en) * 1998-11-27 2000-06-16 Toshiba Corp Vacuum switchgear
JP2004235121A (en) * 2003-02-03 2004-08-19 Japan Ae Power Systems Corp Vacuum circuit breaker
JP2011096482A (en) * 2009-10-29 2011-05-12 Mitsubishi Electric Corp Vacuum valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450883A (en) * 1977-09-29 1979-04-21 Tokyo Shibaura Electric Co Vacuum valve
JPS5882431A (en) * 1981-11-10 1983-05-18 株式会社東芝 Vacuum valve
JPS6212021A (en) * 1985-07-10 1987-01-21 株式会社明電舎 Electrode for vacuum interrupter
JP2000164084A (en) * 1998-11-27 2000-06-16 Toshiba Corp Vacuum switchgear
JP2004235121A (en) * 2003-02-03 2004-08-19 Japan Ae Power Systems Corp Vacuum circuit breaker
JP2011096482A (en) * 2009-10-29 2011-05-12 Mitsubishi Electric Corp Vacuum valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015082412A (en) * 2013-10-23 2015-04-27 三菱電機株式会社 Vacuum valve
EP2884517A1 (en) * 2013-12-11 2015-06-17 ABB Technology AG AMF contact for vacuum interrupter with inforcement element
JP2015125838A (en) * 2013-12-26 2015-07-06 三菱電機株式会社 Vacuum breaker
CN106653466A (en) * 2016-10-17 2017-05-10 西安交通大学 Vacuum interrupter contact through combination of cup-shaped transverse magnetic fields and longitudinal magnetic fields
WO2021255869A1 (en) * 2020-06-17 2021-12-23 三菱電機株式会社 Vacuum valve

Also Published As

Publication number Publication date
JP5342517B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5342517B2 (en) Vacuum valve
US7721428B2 (en) Method for making an electrode assembly
US6867385B2 (en) Self-fixturing system for a vacuum interrupter
US5777287A (en) Axial magnetic field coil for vacuum interrupter
JPWO2011104751A1 (en) Vacuum valve
KR101309458B1 (en) Vacuum valve
JP5020164B2 (en) Vacuum valve
JP5394886B2 (en) Vacuum valve
US20220104314A1 (en) Coupling box hairpin replacement for high voltage heating element
JP5610995B2 (en) Vacuum valve
JP7118765B2 (en) Vacuum valve and its manufacturing method
JP2001006501A (en) Vacuum valve
JP6861915B1 (en) Vacuum valve
JP6138601B2 (en) Electrode for vacuum circuit breaker and vacuum valve using the same
JP5556596B2 (en) Vacuum valve
JP4707974B2 (en) Vacuum valve
JPS6166324A (en) Vacuum interrupter
JPH0427650B2 (en)
JPH0547274A (en) Vacuum valve
JPS6313219A (en) Vacuum interruptor
JPH05282972A (en) Vacuum valve
JPS58209832A (en) Vacuum interrupter
JPH0719512B2 (en) Vacuum interrupter
JP2002279869A (en) Vacuum valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130809

R151 Written notification of patent or utility model registration

Ref document number: 5342517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250