JP2012021685A - Firing charge - Google Patents

Firing charge Download PDF

Info

Publication number
JP2012021685A
JP2012021685A JP2010158737A JP2010158737A JP2012021685A JP 2012021685 A JP2012021685 A JP 2012021685A JP 2010158737 A JP2010158737 A JP 2010158737A JP 2010158737 A JP2010158737 A JP 2010158737A JP 2012021685 A JP2012021685 A JP 2012021685A
Authority
JP
Japan
Prior art keywords
propellant
main
initial velocity
stabilizing
initial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010158737A
Other languages
Japanese (ja)
Other versions
JP5697373B2 (en
Inventor
Hidehiro Noda
英宏 野田
Hiroyuki Kodama
浩幸 児玉
Tsunesuke Kumagai
恒佑 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2010158737A priority Critical patent/JP5697373B2/en
Publication of JP2012021685A publication Critical patent/JP2012021685A/en
Application granted granted Critical
Publication of JP5697373B2 publication Critical patent/JP5697373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/38Separately-loaded propellant charges, e.g. cartridge bags

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a module type firing charge for howitzer, allowing shooting using one to five or six identical modules for shooting, which does not generate abnormal pressure such as negative differential pressure when the five or six modules are used, and stabilizes an initial speed of a missile when the one module is used.SOLUTION: The firing charge, comprising a main propellant 1, an igniter 2, a burnout container 3, and an igniter cylinder 4 as main components, the firing charge, is characterized by arranging one or more kinds of propellant 5 for initial speed stabilization, which are faster in gas generation speed than the main propellant 1, as propellants together with the main propellant 1 outside the igniter cylinder 4 apart from the main propellant 1.

Description

本発明は、りゅう弾砲のような分離装填弾の射撃に使用される発射装薬に関する。   The present invention relates to a propellant used for shooting separately loaded bullets such as grenades.

以下の特許文献1、特許文献2に記載されるように、同一モジュールで1〜5又は6モジュールを使用して射撃を行うことが可能な、りゅう弾砲用のモジュール式発射装薬やユニット型発射装薬(以下、モジュール式発射装薬という。)は、一般に、図1に示すように、主に、発射薬、焼尽容器、点火薬筒、及び点火薬により構成されている。   As described in the following Patent Document 1 and Patent Document 2, a modular projectile and unit type for a howitzer that can fire using 1 to 5 or 6 modules in the same module As shown in FIG. 1, a propellant (hereinafter referred to as a modular type propellant) is generally mainly composed of a propellant, a burnout container, an ignition cartridge, and an ignition agent.

発射装薬を設計する際の重要な項目の一つとして、発射薬、焼尽部品、点火薬の組成や重量によって決定されるガス発生速度について、5又は6モジュールを使用した射撃時に、図2で示すような燃焼室内の負差圧(燃焼室内後方の圧力から前方の圧力を引いた差圧の内、負になる圧力のこと)等の異常圧力が極力生じないようにガス発生速度を調整することが挙げられる。   One of the important items in designing a propellant is that when firing using 5 or 6 modules, the gas generation rate is determined by the composition and weight of the propellant, burnout parts, and igniter. Adjust the gas generation rate so that abnormal pressure such as the negative pressure in the combustion chamber (the pressure that becomes negative in the differential pressure obtained by subtracting the front pressure from the pressure in the rear of the combustion chamber) does not occur as much as possible. Can be mentioned.

また、1モジュールを使用して射撃を行なう場合には、発生圧力が小さくなるため、飛翔体が砲内で停止する「停弾」を発生させないことも重要である。   In addition, when shooting using one module, the generated pressure becomes small, so it is important not to generate a “stop” in which the flying object stops in the gun.

特許文献1、特許文献2に記載された発射装薬では、5又は6モジュールを使用した射撃時にも負差圧等の異常圧力を極力生じさせないように、発射装薬の構成部品である発射薬として、ガス発生速度の比較的緩やかなものが使用されている。しかしながら、ガス発生速度の比較的緩やかな発射薬を用いた場合には、2モジュール以上を使用して射撃した場合に比べて1モジュールを使用して射撃した場合の飛翔体の初速安定性が悪くなる恐れがある。   In the propellant described in Patent Document 1 and Patent Document 2, the propellant is a component of the propellant so as not to generate an abnormal pressure such as a negative differential pressure as much as possible even when shooting using 5 or 6 modules. As described above, a gas with a relatively slow gas generation rate is used. However, when using a propellant with a relatively slow gas generation rate, the initial velocity stability of the flying object when using one module is worse than when using two or more modules. There is a fear.

特許文献1、特許文献2に記載されたものとは異なる方式のモジュール式装薬として、以下の特許文献3に記載されるようなBi-Modular Charge System (BMCS)がある。かかるシステムでは、1〜2モジュールを使用する場合には、ガス発生速度の速い発射薬を入れた発射装薬を用い、3〜6モジュールを使用する場合には、比較的ガス発生速度の緩やかな発射薬を入れた発射装薬を用いるため、該システムは、特許文献1、特許文献2に記載された同一の1〜5又はは6モジュールを発射装薬として使用することができるものではない。   As a modular charge of a system different from those described in Patent Document 1 and Patent Document 2, there is a Bi-Modular Charge System (BMCS) as described in Patent Document 3 below. In such a system, when using 1 to 2 modules, a propellant charged with a propellant having a high gas generation rate is used, and when using 3 to 6 modules, a relatively slow gas generation rate is used. Since the propellant containing the propellant is used, the system cannot use the same 1 to 5 or 6 modules described in Patent Document 1 and Patent Document 2 as the propellant.

以下の特許文献4には、粗い粒子の発射薬の隙間に小粒発射薬を混合して充填された2種類の発射薬を用いた発射装薬に係る発明が開示されている。該発明は、発射薬の高充填化を目的としたものであり、飛翔体の初速安定化については何ら言及されていない。また、特許文献4に記載されたように2種類の発射薬を混合した場合、小粒発射薬の分布は、粗い粒子の発射薬の量や保管・運搬時の状況に依存するため一定ではない。そのため、点火薬から全ての小粒発射薬へ点火する状況も毎回一定ではないと考えられる。   The following Patent Document 4 discloses an invention related to a projectile charge using two types of propellants mixed and filled with a small particle propellant in a gap between coarse particles. The invention is aimed at increasing the filling of the propellant, and there is no mention of the initial speed stabilization of the flying object. In addition, when two types of propellants are mixed as described in Patent Document 4, the distribution of small propellants is not constant because it depends on the amount of coarse particles and the conditions during storage and transportation. For this reason, it is considered that the situation of igniting all the small propellants from the igniter is not constant every time.

以下の特許文献5には、発射装薬の点火薬筒外周に発火性硬質発泡層を巻くことにより、該発火性硬質発泡層が火管からの火炎により燃焼し、より短い時間で発射薬に点火することを目的とした発明が開示されている。該発火性硬質発泡層は、特許文献5の図1に記載されるように、点火薬筒内面に点火薬が配置されていないことや、該発火性硬質発泡層には一般的に点火薬用途で使用される黒色火薬を用いていることから、特許文献1で示す点火薬と同様の働きをするものである。よって特許文献5に記載される発明は、点火薬を発射薬に近づけることによって発射薬への着火性を改善することを目的としたものであり、飛翔体の初速安定化については何ら言及されていない。   In Patent Document 5 below, an ignitable hard foam layer is wound around the outer periphery of an igniter cylinder of a propellant so that the ignitable hard foam layer is burned by a flame from a fire tube, and becomes a propellant in a shorter time. An invention intended to ignite is disclosed. As described in FIG. 1 of Patent Document 5, the ignitable hard foam layer is generally free of an igniter on the inner surface of the igniter cylinder, and the ignitable hard foam layer is generally used for an igniter. Since the black powder used in No. 1 is used, it functions in the same manner as the ignition powder shown in Patent Document 1. Therefore, the invention described in Patent Document 5 aims to improve the ignitability of the propellant by bringing the igniter close to the propellant, and no mention is made of the initial speed stabilization of the flying object. Absent.

特開2005−265352号公報JP 2005-265352 A 特開平5−118793号公報Japanese Patent Laid-Open No. 5-118793 Bi-Modular Charge System(BMCS), Jane's Ammunition Handbook 2006-2007, Edited by Leland Ness and Anthony G Williams, p678Bi-Modular Charge System (BMCS), Jane's Ammunition Handbook 2006-2007, Edited by Leland Ness and Anthony G Williams, p678 特表2004−531441号公報JP-T-2004-531441 特許第3699180号Patent No. 3699180

本発明が解決しようとする課題は、同一モジュールで1〜5又は6モジュールを使用して射撃を行うことが可能な、りゅう弾砲用のモジュール式発射装薬において、5又は6モジュール使用時に燃焼室内に負差圧等の異常圧力の問題が発生しないとともに、1モジュール使用時は飛翔体の初速安定化が図られる発射装薬を提供することである。   The problem to be solved by the present invention is a modular projectile for a howitzer that can fire using 1 to 5 or 6 modules in the same module, and burns when 5 or 6 modules are used. An object is to provide a projectile that does not cause a problem of abnormal pressure such as negative differential pressure in the room and that can stabilize the initial velocity of the flying object when one module is used.

本発明者らは、上記課題を解決すべく、発射装薬のガス発生速度と飛翔体の初速安定化について鋭意研究し、実験を重ねた結果、発射装薬の主に燃焼初期のガス発生速度を高めることにより、前記課題を解決することができることを発見し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors have intensively studied the gas generation rate of the propellant and the initial velocity stabilization of the projectile, and as a result of repeated experiments, the gas generation rate of the propellant mainly at the early stage of combustion As a result, it was discovered that the above-mentioned problems can be solved, and the present invention has been completed.

すなわち、本発明は、以下の[1]〜[6]のとおりのものである。
[1]発射薬、点火薬、焼尽容器、及び点火薬筒を主たる構成品とする発射装薬において、該発射薬として主発射薬とともに、該主発射薬よりもガス発生速度の速い1種類以上の初速安定化用発射薬を、該点火薬筒の外側に主発射薬とは分離して配置したことを特徴とする発射装薬。
That is, the present invention is as described in [1] to [6] below.
[1] In a propellant having a propellant, an igniter, a burnout container, and an igniter cylinder as main components, the main propellant as the propellant and one or more types having a higher gas generation rate than the main propellant The initial charge stabilizing propellant is arranged separately from the main propellant on the outer side of the ignition cartridge, and a projectile charge.

[2]前記初速安定化用発射薬は、シングルベース、ダブルベース、トリプルベース又はマルチベースのいずれかの組成を有する、前記[1]に記載の発射装薬。   [2] The propellant according to [1], wherein the initial velocity stabilizing propellant has a composition of any of a single base, a double base, a triple base, and a multi base.

[3]前記初速安定化用発射薬の組成は、前記主発射薬と同じ組成である、前記[1]又は[2]に記載の発射装薬。   [3] The propellant according to [1] or [2], wherein a composition of the initial velocity stabilizing propellant is the same as that of the main propellant.

[4]前記初速安定化用発射薬の重量は、前記主発射薬と該初速安定化用発射薬を合計した発射薬全体重量の4.0%〜17.0%の範囲である、前記[1]〜[3]のいずれかに記載の発射装薬。   [4] The weight of the propellant for stabilizing the initial speed is in a range of 4.0% to 17.0% of the total weight of the propellant obtained by adding the main propellant and the propellant for stabilizing the initial speed. 1] to [3].

[5]前記初速安定化用発射薬と前記主発射薬を組み合わせた場合の燃焼開始前における単位重量当りの発射薬表面積は、主発射薬のみの場合の燃焼開始前における単位重量当りの発射薬表面積を100%としたとき、120%〜180%の範囲にある、前記[1]〜[4]のいずれかに記載の発射装薬。   [5] The propellant surface area per unit weight before the start of combustion when the initial velocity stabilizing propellant is combined with the main propellant is the propellant per unit weight before the start of combustion when only the main propellant is used. The firing charge according to any one of [1] to [4], in a range of 120% to 180% when the surface area is 100%.

[6]前記初速安定化用発射薬と前記主発射薬を同時に燃焼させたときの、5〜45MPaの範囲における平均ガス発生速度は、4.7〜8.0MPa/msecの範囲である、前記[1]〜[5]のいずれかに記載の発射装薬。   [6] When the initial velocity stabilizing propellant and the main propellant are burned simultaneously, the average gas generation rate in the range of 5 to 45 MPa is in the range of 4.7 to 8.0 MPa / msec. [1]-[5]

本発明により、モジュール式発射装薬の1モジュールを使用した射撃の際に飛翔体の初速安定化が図れ、かつ、5又は6モジュールを使用した射撃の際にも、負差圧等の異常圧力の問題がない射撃を行うことができる。   According to the present invention, the initial velocity of the flying object can be stabilized during the shooting using one module of the modular projectile charge, and the abnormal pressure such as the negative differential pressure is also used in the shooting using the 5 or 6 modules. You can shoot without problems.

特許文献1、特許文献2に記載された一般的なモジュール式発射装薬の断面図。Sectional drawing of the general modular type | formula propellant described in patent document 1 and patent document 2. FIG. 燃焼室後方と前方における負差圧発生を示すグラフ。The graph which shows the negative differential pressure generation | occurrence | production in a combustion chamber back and front. 初速安定化用発射薬を点火薬筒の外側に主発射薬とは分離して配置した本発明に係る発射装薬の1例の断面図。Sectional drawing of one example of the propellant which concerns on this invention which has arrange | positioned the propellant for initial velocity stabilization separately from the main propellant on the outer side of the ignition cartridge. 初速安定化用発射薬を点火薬筒の外側に主発射薬とは分離して配置した本発明に係る発射装薬の他の例の断面図。Sectional drawing of the other example of the propellant which concerns on this invention which has arrange | positioned the propellant for initial velocity stabilization separately from the main propellant on the outer side of the ignition cartridge. 初速安定化用発射薬を点火薬筒の外側に主発射薬とは分離して配置した本発明に係る発射装薬の他の例の断面図。Sectional drawing of the other example of the propellant which concerns on this invention which has arrange | positioned the propellant for initial velocity stabilization separately from the main propellant on the outer side of the ignition cartridge. 初速安定化用発射薬を点火薬筒の外側に主発射薬とは分離して配置した本発明に係る発射装薬の他の例の断面図。Sectional drawing of the other example of the propellant which concerns on this invention which has arrange | positioned the propellant for initial velocity stabilization separately from the main propellant on the outer side of the ignition cartridge. 密閉ボンブによる各種発射薬のガス発生速度の圧力−時間履歴を示すグラフ。The graph which shows the pressure-time log | history of the gas generation rate of various propellants by a sealing bomb. 図6に示す発射装薬を6モジュール使用した場合の発射装薬編合の1例の模式図。FIG. 7 is a schematic diagram of an example of projectile charge combination when 6 modules of the projectile charge shown in FIG. 6 are used.

以下、本発明について詳細に説明する。
本発明に係る発射装薬は、りゅう弾砲などの重火器用の発射装薬として用いることができ、同一モジュールにて1〜5又は6モジュールの射撃を行なうために使用されることができる。
本発明の一実施形態である発射装薬の断面図を図3に示す。本発明の発射装薬は、図1に示す従来技術の発射装薬の構成部材である発射薬を主発射薬とし、その主発射薬よりもガス発生速度の速い1種類以上の初速安定化用発射薬を付加した構成を有する。
Hereinafter, the present invention will be described in detail.
The firing charge according to the present invention can be used as a firing charge for heavy weapons such as grenades, and can be used to fire 1-5 or 6 modules in the same module.
FIG. 3 shows a cross-sectional view of a projectile charge that is one embodiment of the present invention. The propellant of the present invention uses a propellant as a component of the prior art propellant shown in FIG. 1 as a main propellant, and stabilizes one or more kinds of initial speeds having a gas generation rate faster than the main propellant. It has a configuration with a propellant added.

該初速安定化用発射薬は、主に燃焼初期のガス発生速度を向上させる目的で追加する。全ての該初速安定化用発射薬はできるだけ同時に点火する必要があるため、該初速安定化用発射薬は、主発射薬の中に混合して配置するのではなく、点火薬筒の外側に主発射薬とは分離して配置する必要がある。そのため、本発明においては、該初速安定化用発射薬を配置する位置は、図3、図4、図5又は図6に示すように、点火薬筒の外側に主発射薬とは分離して配置させる必要がある。但し、その配置方法は、該初速安定化用発射薬が点火薬筒の外側に配置する限り任意でよい。例えば、該初速安定化用発射薬は、絹製等の袋又は焼尽性の容器に入れた状態で点火薬筒の外側に配置することができる。さらに、該初速安定化用発射薬を点火薬筒の外側に隣接して配置すれば、該初速安定化用発射薬への点火遅れをより軽減することができる。   The initial velocity stabilizing propellant is added mainly for the purpose of improving the gas generation rate at the initial stage of combustion. Since all the initial speed stabilizing propellants need to be ignited at the same time as possible, the initial speed stabilizing propellants are not placed in the main propellant, but are placed in the main It must be placed separately from the propellant. Therefore, in the present invention, the position at which the initial velocity stabilizing propellant is arranged is separated from the main propellant on the outside of the ignition cartridge as shown in FIG. 3, FIG. 4, FIG. 5 or FIG. Must be placed. However, the arrangement method may be arbitrary as long as the initial velocity stabilizing propellant is arranged outside the ignition cartridge. For example, the propellant for stabilizing the initial speed can be disposed outside the ignition cartridge in a state of being put in a bag made of silk or a burnable container. Further, if the initial speed stabilizing propellant is disposed adjacent to the outside of the ignition cartridge, the ignition delay to the initial speed stabilizing propellant can be further reduced.

該初速安定化用発射薬の組成としては、ニトロセルロースを基剤とする発射薬であるシングルベース、ニトロセルロース及びニトログリセリンを基剤とする発射薬であるダブルベース、ニトロセルロース、ニトログリセリン、及びニトログアニジンを基剤とする発射薬であるトリプルベース、又はRDXなどの爆薬成分やその他高エネルギー物質を含有する発射薬であるマルチベースなどの一般に主発射薬に用いられる組成であればどのようなものでも構わない。   As the composition of the propellant for stabilizing the initial speed, a single base which is a propellant based on nitrocellulose, a double base which is a propellant based on nitrocellulose and nitroglycerin, nitrocellulose, nitroglycerin, and What is the composition that is generally used for main propellants such as triple base that is a propellant based on nitroguanidine, or multibase that is a propellant containing explosive components such as RDX and other high energy substances It does n’t matter.

該初速安定化用発射薬の重量については、主発射薬と初速安定化用発射薬を合計した発射薬全体重量(以下、単に「発射薬全体重量」ともいう。)の4.0%〜17.0%の範囲とすることが好ましい。4.0%未満であると、負差圧等の異常圧力発生は抑制できるものの、初速安定化用発射薬のガス発生量が少なすぎて1モジュール使用時の飛翔体の初速安定化効果が低くなる。一方、17.0%を超えると、1モジュール使用時の飛翔体の初速安定化効果は高くなるものの、負差圧等の異常圧力発生を抑制することが困難になる。さらに、1モジュール使用時の飛翔体の初速安定化と、5又は6モジュール使用時の負差圧等の異常圧力抑制との両者のバランスを考慮した場合に、該初速安定化用発射薬の重量は、発射薬全体重量の9.0%〜13.0%の範囲とすることがより好ましい。   The weight of the propellant for stabilizing the initial speed is 4.0% to 17% of the total weight of the propellant obtained by adding the main propellant and the propellant for stabilizing the initial speed (hereinafter, also simply referred to as “total propellant weight”). A range of 0.0% is preferable. If it is less than 4.0%, the generation of abnormal pressure such as negative differential pressure can be suppressed, but the gas generation amount of the initial velocity stabilization propellant is too small and the initial velocity stabilization effect of the flying object when using one module is low. Become. On the other hand, if it exceeds 17.0%, the initial speed stabilization effect of the flying object when using one module is enhanced, but it becomes difficult to suppress the occurrence of abnormal pressure such as negative differential pressure. Further, when considering the balance between the initial speed stabilization of the flying object when using one module and the suppression of abnormal pressure such as negative differential pressure when using five or six modules, the weight of the propellant for stabilizing the initial speed Is more preferably in the range of 9.0% to 13.0% of the total weight of the propellant.

燃焼初期のガス発生速度を速くするためには、一般的には、初速安定化用発射薬を主発射薬よりも小さくことや、同一体積で比較して発射薬表面積を大きくさせること、ポーラス状にするなど嵩密度を軽くすることなどの手段がある。
該初速安定化用発射薬の具体的な形状としては、球状、棒状、円柱状、単孔管状、7孔管状、19孔管状、6角19孔など、主発射薬よりも燃焼初期のガス発生速度が速くなる形状であればどのようなものであってもよい。
該初速安定化用発射薬と主発射薬を組み合わせた場合の燃焼開始前の単位重量あたりの発射薬表面積は、主発射薬のみの場合の燃焼開始前の単位重量あたりの発射薬表面積を100%とするとき、120〜180%の範囲とする。ここで、該初速安定化用発射薬と主発射薬を組み合わせた場合の燃焼開始前の単位重量あたりの発射薬表面積とは、1つのモジュール内に配置した該初速安定化用発射薬と主発射薬の全発射薬表面積を、全発射薬重量で除した表面積のことをいう。
In order to increase the gas generation rate at the initial stage of combustion, in general, it is necessary to make the initial velocity stabilizing propellant smaller than the main propellant, to increase the propellant surface area compared with the same volume, There are means such as lightening the bulk density.
Specific shapes of the propellant for stabilizing the initial speed include spherical, rod-shaped, cylindrical, single-hole tubular, seven-hole tubular, 19-hole tubular, hexagonal 19-hole, etc. Any shape can be used as long as the speed increases.
The propellant surface area per unit weight before the start of combustion when the initial velocity stabilizing propellant and the main propellant are combined is 100% of the propellant surface area per unit weight before the start of combustion when only the main propellant is used. In this case, the range is 120 to 180%. Here, when the initial velocity stabilizing propellant and the main propellant are combined, the propellant surface area per unit weight before the start of combustion is the initial velocity stabilizing propellant and the main firing arranged in one module. The surface area obtained by dividing the total propellant surface area of the drug by the total propellant weight.

本発明の発射装薬から発生するガス発生速度は、主に、主発射薬と1種類以上の該初速安定化用発射薬の複数発射薬を組み合わせて燃焼させた場合のガス発生速度となる。その合計されたガス発生速度のうち、主に燃焼初期のガス発生速度が、飛翔体の初速を安定化させるために必要なガス発生速度の範囲に入っていることが重要であり、主発射薬のガス発生速度に応じて該初速安定化用発射薬が有すべきガス発生速度は変化する。
そのため、飛翔体の初速を安定化させるために本発明の発射装薬が有すべきガス発生速度の範囲は、主発射薬と該初速安定化用発射薬それぞれのガス発生速度の範囲ではなく、主発射薬と該初速安定化用発射薬を組み合わせて燃焼させた際に発生する燃焼ガスのガス発生速度として規定する必要がある。
以下、飛翔体の初速を安定化させるために必要な、主発射薬と該初速安定化用発射薬を組み合わせて燃焼させた場合のガス発生速度の範囲の求め方を説明する。
The gas generation rate generated from the propellant of the present invention is mainly the gas generation rate when a combination of the main propellant and one or more propellants for stabilizing the initial speed is burned. Of the total gas generation speed, it is important that the gas generation speed in the initial stage of combustion is within the range of gas generation speed necessary to stabilize the initial speed of the flying object. Depending on the gas generation rate, the gas generation rate that the initial velocity stabilizing propellant should have varies.
Therefore, in order to stabilize the initial speed of the flying object, the range of gas generation speed that the propellant of the present invention should have is not the range of the gas generation speed of each of the main propellant and the propellant for stabilizing the initial speed, It is necessary to specify the gas generation rate of the combustion gas generated when the main propellant and the initial velocity stabilizing propellant are combined and burned.
Hereinafter, a description will be given of how to obtain the range of the gas generation speed when the main propellant and the initial speed stabilization propellant are combined and burned in order to stabilize the initial velocity of the flying object.

本発明に係る発射装薬において、主発射薬と該初速安定化用発射薬を組み合わせて燃焼させた場合のガス発生速度としては、密閉空間の中で発射薬を燃焼させて発射薬のガス発生速度を測定する密閉ボンブ装置を用いて、発射薬の装てん密度0.2g/ccの条件下、燃焼初期を5〜45MPa間とし、その間の平均ガス発生速度を算出する場合に、4.7〜8.0MPa/msecの範囲に該当するものが好ましい。平均ガス発生速度が4.7MPa/msec未満であると、ガス発生速度が遅すぎて初速安定化効果がほとんど得られず、一方、8.0MPa/msecを超えると、負差圧等の異常圧力を抑制することが困難になる。さらに、1モジュール使用時の飛翔体の初速安定化と、5又は6モジュール使用時の負差圧等の異常圧力との両者のバランスを考慮した場合には、同条件において、平均ガス発生速度が5.5〜6.5MPa/secの範囲のものがより好ましい。   In the propellant charge according to the present invention, the gas generation rate when the main propellant and the initial velocity stabilizing propellant are combined and burned is such that the propellant gas is generated by burning the propellant in an enclosed space. When calculating the average gas generation rate during the initial period of combustion between 5 and 45 MPa using a sealed bomb device for measuring the velocity under the condition of a propellant loading density of 0.2 g / cc. What corresponds to the range of 8.0 MPa / msec is preferable. If the average gas generation rate is less than 4.7 MPa / msec, the gas generation rate is too slow to obtain the effect of stabilizing the initial velocity. On the other hand, if the average gas generation rate exceeds 8.0 MPa / msec, abnormal pressure such as negative differential pressure is obtained. It becomes difficult to suppress. Furthermore, when considering the balance between the initial velocity stabilization of the flying object when using one module and the abnormal pressure such as negative differential pressure when using five or six modules, the average gas generation rate is the same under the same conditions. The thing of the range of 5.5-6.5 MPa / sec is more preferable.

以下に、実施例、比較例により、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(発射装薬の製造方法)
初速安定化用発射薬を含む発射装薬を、以下の方法で製造した。
主発射薬については、その組成はトリプルベース、組成比率は代表的なM30組成(ニトロセルロース(28.00重量%)、ニトログリセリン(22.50重量%)、ニトログアニジン(47.70重量%)、安定剤(1.5重量%)、消炎剤(0.3重量%))とし、形状及び寸法は、6角19孔、外径は13.5mm、長さは13.5mm、孔径は0.5mmとした。製造方法は、原材料を溶剤とともに捏和機に仕込み均質になるまで混合、捏和し、それ以降は公知の溶剤圧伸方法を用いて製造した。
初速安定化用発射薬についても、その組成は主発射薬同様トリプルベース、組成比率もM30とした。形状及び寸法は、単孔管状、外径は1.2mm、長さは8.0mm、孔径は0.2mmとした。製造方法については主発射薬同様であった。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these.
(Production method of projectile charge)
A propellant containing a propellant for stabilizing the initial speed was manufactured by the following method.
For the main propellant, the composition is triple base, the composition ratio is a typical M30 composition (nitrocellulose (28.00 wt%), nitroglycerin (22.50 wt%), nitroguanidine (47.70 wt%) , Stabilizer (1.5% by weight), flame retardant (0.3% by weight)), shape and dimensions: hexagonal 19 holes, outer diameter 13.5 mm, length 13.5 mm, hole diameter 0 0.5 mm. In the production method, the raw materials were charged into a kneader together with a solvent and mixed and kneaded until homogeneous, and thereafter, production was performed using a known solvent drawing method.
The propellant for stabilizing the initial speed was also composed of a triple base as in the main propellant, and the composition ratio was M30. The shape and dimensions were a single hole tube, the outer diameter was 1.2 mm, the length was 8.0 mm, and the hole diameter was 0.2 mm. The manufacturing method was the same as the main propellant.

焼尽部品については、ニトロセルロース(56重量%)とクラフトパルプ(28重量%)、汎用樹脂(15重量%)、安定剤(1重量%)を、水に懸濁してスラリーとし、それを吸引してフェルト状の筒体とし、金型で加温プレスして硬化させ、外径155mm、長さ150mm、端部内径d1=20mm中心部内径d2=35mmの中空点火薬筒を含む、柱状のものを製造した。
点火薬については、黒色火薬(等級1)5g、CBI(多孔質又はフレーク状のシングルベース火薬)5gを使用し、それらを絹製の袋に入れて点火薬筒の内側に設けた。
初速安定化用発射薬は、絹製の袋に充填した後、点火薬筒の外側に主発射薬と分離して配置し、その後、焼尽部品の内部に主発射薬を充填することで、本発明の発射装薬を製造した。
図3に、このようにして得た発射装薬の断面図を示す。
For burned-out parts, nitrocellulose (56% by weight), kraft pulp (28% by weight), general-purpose resin (15% by weight), and stabilizer (1% by weight) are suspended in water to form a slurry, which is sucked. A columnar shape including a hollow ignition cartridge having an outer diameter of 155 mm, a length of 150 mm, an end inner diameter d 1 = 20 mm, and a central inner diameter d 2 = 35 mm. Manufactured.
As for the igniting powder, 5 g of black powder (grade 1) and 5 g of CBI (porous or flaky single base gunpowder) were used, and these were placed in a silk bag and provided inside the igniter cylinder.
The initial-velocity stabilization propellant is placed in a silk bag, placed separately from the main propellant on the outside of the igniter cartridge, and then the main propellant is filled inside the burn-out part. The inventive propellant was manufactured.
FIG. 3 shows a sectional view of the propellant thus obtained.

(密閉ボンブによるガス発生速度確認)
次に、発射薬および初速安定化用発射薬の基本的なガス発生速度を確認するために、密閉ボンブ装置を用いて燃焼試験を行なった。この密閉ボンブ装置(燃焼室容積249cc)を用い、密閉空間の中で発射薬を燃焼させた際に発生するガスの圧力−時間履歴を求めた。
密閉ボンブ試験で使用した発射薬量は、主発射薬と初速安定化用発射薬を合計した発射薬全体重量が0.2g/ccとなるようにし、初速安定化用発射薬の重量は、主発射薬と初速安定化用発射薬を合計した発射薬全体重量の0質量%、4質量%、9質量%、13質量%、17質量%とした。密閉ボンブ試験で得られた圧力−時間履歴の結果を図7に示し、燃焼初期を5〜45MPa間として、その間の平均ガス発生速度を算出した結果を、以下の表1に示す。
(Confirmation of gas generation rate by sealed bomb)
Next, in order to confirm the basic gas generation rate of the propellant and the propellant for stabilizing the initial speed, a combustion test was performed using a sealed bomb device. Using this sealed bomb device (combustion chamber volume 249 cc), the pressure-time history of gas generated when the propellant was burned in the sealed space was determined.
The amount of propellant used in the sealed bomb test was such that the total weight of the propellant combined with the main propellant and the initial velocity stabilizing propellant was 0.2 g / cc. The total amount of the propellant and the propellant for stabilizing the initial speed was 0% by mass, 4% by mass, 9% by mass, 13% by mass, and 17% by mass. The results of pressure-time history obtained in the sealed bomb test are shown in FIG. 7, and the results of calculating the average gas generation rate during the initial stage of combustion between 5 and 45 MPa are shown in Table 1 below.

(実施例1)
主発射薬と初速安定化用発射薬の重量をそれぞれ発射薬全体重量の96質量%、4質量%とし、その他は前述した製造方法に基づき発射装薬を試作した。
次に、本発明の効果を確認するため試験装置を用いて射撃試験を行った。試験装置は、155mm火砲に模して作られた短砲身を用い(砲身長約3m)、先ず飛翔体を燃焼室前方に装填した。飛翔体の質量は約43kgであった。次いで、発射装薬を1モジュール燃焼室に装填した。砲尾に付設されている閉鎖装置を閉鎖した後、火管を発火させ発射装薬を燃焼させた。
その際に、短砲身から飛翔する飛翔体の初速計測、及び燃焼室内の圧力−時間曲線の計測を行った。飛翔体の初速については、短砲身から3ヶ所の一定位置に設置した金属箔を塗した箔的より飛翔体の存速を算出し、そこから砲口離脱時の飛翔体の初速を算出した。また、燃焼室内の圧力−時間曲線の計測は、ピエゾセンサーを用いて燃焼室後方及び燃焼室前方での圧力を測定した。
Example 1
The weight of the main propellant and the propellant for stabilizing the initial velocity was 96% by mass and 4% by mass of the total weight of the propellant, respectively.
Next, in order to confirm the effect of the present invention, a shooting test was performed using a test apparatus. The test apparatus used a short barrel simulating a 155 mm gun (cannon length of about 3 m). First, the flying object was loaded in front of the combustion chamber. The mass of the flying object was about 43 kg. The propellant was then loaded into a one module combustion chamber. After closing the closing device attached to the turret, the fire tube was ignited and the propellant was burned.
At that time, the initial velocity of the flying object flying from the short barrel and the pressure-time curve in the combustion chamber were measured. As for the initial velocity of the flying object, the speed of the flying object was calculated from the shape of a short gun barrel coated with metal foil placed at three fixed positions, and the initial velocity of the flying object when the muzzle was released was calculated therefrom. The pressure-time curve in the combustion chamber was measured by measuring the pressure behind the combustion chamber and the front of the combustion chamber using a piezo sensor.

以下に記載する比較例1で得られた飛翔体の初速ばらつきの標準偏差を100%として、実施例1で得られた飛翔体の初速ばらつきの標準偏差を比較した結果を、以下の表2に示す。表2から、実施例1の飛翔体の初速ばらつきの標準偏差は、比較例1の標準偏差の43%であり、飛翔体の初速ばらつきが軽減されたことが分かる。   Table 2 below shows the results of comparing the standard deviation of the initial velocity variation of the flying object obtained in Example 1 with the standard deviation of the initial velocity variation of the flying object obtained in Comparative Example 1 described below as 100%. Show. From Table 2, it can be seen that the standard deviation of the initial velocity variation of the flying object of Example 1 is 43% of the standard deviation of Comparative Example 1, and the initial velocity variation of the flying object is reduced.

(実施例2)
主発射薬及び初速安定化用発射薬の重量をそれぞれ発射薬全体重量の91質量%、9質量%とし、その他は実施例1と同様に発射装薬を試作して飛翔体の射撃試験を行なった。実施例2で得られた飛翔体の初速ばらつきの標準偏差についても、実施例1と同様に、比較例1の場合に対する割合で、表2に示す。表2から、実施例2の飛翔体の初速ばらつきの標準偏差は、比較例1の標準偏差の25%であった。
(Example 2)
The weight of the main propellant and the propellant for stabilizing the initial velocity was 91% by mass and 9% by mass of the total weight of the propellant, respectively. It was. The standard deviation of the initial velocity variation of the flying object obtained in Example 2 is also shown in Table 2 as a ratio to the case of Comparative Example 1 as in Example 1. From Table 2, the standard deviation of the initial velocity variation of the flying object of Example 2 was 25% of the standard deviation of Comparative Example 1.

(実施例3)
主発射薬及び初速安定化用発射薬の重量をそれぞれ発射薬全体重量の87質量%、13質量%とし、その他は実施例1と同様に発射装薬を試作して飛翔体の射撃試験を行なった。実施例3で得られた飛翔体の初速ばらつきの標準偏差についても、実施例1と同様に、比較例1の場合に対する割合で、表2に示す。表2から、実施例3の飛翔体の初速ばらつきの標準偏差は、比較例1の標準偏差の20%であり、実施例2の場合よりも若干ではあるが初速ばらつきが軽減されることが確認された。
(Example 3)
The weight of the main propellant and the propellant for stabilizing the initial velocity was set to 87% by mass and 13% by mass of the total weight of the propellant, respectively. It was. The standard deviation of the initial velocity variation of the flying object obtained in Example 3 is also shown in Table 2 as a ratio to the case of Comparative Example 1 as in Example 1. From Table 2, it is confirmed that the standard deviation of the initial speed variation of the flying object of Example 3 is 20% of the standard deviation of Comparative Example 1, which is slightly smaller than that of Example 2 but the initial speed variation is reduced. It was done.

(実施例4)
主発射薬及び初速安定化用発射薬の重量をそれぞれ発射薬全体重量の83質量%、17質量%とし、その他は実施例1と同様に発射装薬を試作して飛翔体の射撃試験を行なった。実施例4で得られた飛翔体の初速ばらつきの標準偏差についても、実施例1と同様に、比較例1の場合に対する割合で、表2に示す。表2から、実施例4の飛翔体の初速ばらつきの標準偏差は、比較例1の標準偏差の22%であり、実施例3とほぼ同等の初速ばらつきであることが確認された。
Example 4
The weight of the main propellant and the propellant for stabilizing the initial velocity was 83% by mass and 17% by mass of the total weight of the propellant, respectively. It was. The standard deviation of the initial velocity variation of the flying object obtained in Example 4 is also shown in Table 2 as a ratio to the case of Comparative Example 1 as in Example 1. From Table 2, the standard deviation of the initial velocity variation of the flying object of Example 4 was 22% of the standard deviation of Comparative Example 1, and it was confirmed that the initial velocity variation was almost equivalent to Example 3.

実施例1〜4を実施した結果、初速安定化用発射薬の重量が発射薬全体重量の9質量%以上であれば、1モジュール使用時の飛翔体初速について、より高い安定性が得られることが確認された。さらに、複数モジュール使用時に負差圧等の異常圧力をできるだけ生じさせないことを考慮する場合には、初速安定化用発射薬の重量はできるだけ少ない方が良いため、初速安定化用発射薬の重量を発射薬全体重量の9質量%とし、次の実施例5、実施例6を実施した。   As a result of carrying out Examples 1 to 4, if the weight of the propellant for stabilizing the initial speed is 9% by mass or more of the total weight of the propellant, higher stability can be obtained with respect to the initial velocity of the flying object when using one module. Was confirmed. In addition, when considering not to cause abnormal pressure such as negative differential pressure as much as possible when using multiple modules, the initial speed stabilization propellant should be as small as possible. The following Example 5 and Example 6 were carried out by setting the total weight of the propellant to 9% by mass.

(実施例5)
実施例5として、初速安定化用発射薬の配置位置を変更した場合の効果を確認するための試験を行なった。
実施例5では、前記(発射装薬の製造方法)に従って得られた主発射薬、焼尽部品、点火薬筒、点火薬、及び初速安定化用発射薬を用いた。
実施例5では、初速安定化用発射薬の位置を、図6に示すように、点火薬から離れた位置に配置した。表2に示すように、初速安定化用発射薬の重量は、実施例2と同様に発射薬全体重量の9質量%とした。
実施例5の飛翔体の初速ばらつきの標準偏差は、比較例1の標準偏差の30%であり、初速安定化用発射薬の配置位置を変更しても初速ばらつきを抑制する効果があることが確認された。
(Example 5)
As Example 5, the test for confirming the effect at the time of changing the arrangement position of the propellant for stabilizing the initial speed was conducted.
In Example 5, the main propellant, the burnout part, the igniter barrel, the igniter, and the initial velocity stabilizing propellant obtained according to the above (method for producing the propellant charge) were used.
In Example 5, the position of the propellant for stabilizing the initial speed was arranged at a position away from the ignition powder as shown in FIG. As shown in Table 2, the weight of the propellant for stabilizing the initial speed was 9% by mass of the total weight of the propellant as in Example 2.
The standard deviation of the initial velocity variation of the flying object of Example 5 is 30% of the standard deviation of Comparative Example 1, and there is an effect of suppressing the initial velocity variation even if the arrangement position of the initial velocity stabilizing propellant is changed. confirmed.

(実施例6)
実施例5で使用した発射装薬を用いて、図8に示すような6モジュールを使用した飛翔体の射撃試験を実施例5と同様に行なった。
実施例6で得られた飛翔体の初速ばらつきの標準偏差についても、実施例1と同様に、比較例1の場合に対する割合で、表2に示す。表2から、実施例6の飛翔体の初速ばらつきの標準偏差は、比較例1の標準偏差の28%であり、高い初速安定性があることが確認された。また、負差圧等の異常圧力については、比較例2と同程度の10MPa以下であり、問題のないことが確認された。
(Example 6)
Using the launch charge used in Example 5, a shooting test of the flying object using 6 modules as shown in FIG.
The standard deviation of the initial velocity variation of the flying object obtained in Example 6 is also shown in Table 2 as a ratio to the case of Comparative Example 1 as in Example 1. From Table 2, the standard deviation of the initial speed variation of the flying object of Example 6 was 28% of the standard deviation of Comparative Example 1, and it was confirmed that there was high initial speed stability. Further, the abnormal pressure such as a negative differential pressure was 10 MPa or less, which was the same as that in Comparative Example 2, and it was confirmed that there was no problem.

(比較例1)
比較例1では、前記(発射装薬の製造方法)に従って得られた主発射薬、焼尽部品、点火薬筒、及び点火薬を用いて、図1に示す従来技術の発射装薬を試作した。表2に示すように、比較例1の発射装薬は、初速安定化用発射薬を使用しないものであった。比較例1で用いた主発射薬の重量は、実施例1の主発射薬と初速安定化発射薬の合計重量と同じとし、比較例1についても実施例1同様に射撃を実施した。
(Comparative Example 1)
In Comparative Example 1, the prior art propellant shown in FIG. 1 was prototyped using the main propellant, the burnout component, the igniter cylinder, and the igniter obtained in accordance with the above (Method for Producing Projectile Charge). As shown in Table 2, the propellant in Comparative Example 1 did not use the initial velocity stabilizing propellant. The weight of the main propellant used in Comparative Example 1 was set to be the same as the total weight of the main propellant and the initial speed stabilized propellant of Example 1, and firing was performed for Comparative Example 1 as in Example 1.

(比較例2)
比較例1で用いた発射装薬と同じものを6モジュール使用して、実施例1と同様に射撃を実施した。
(Comparative Example 2)
Shooting was carried out in the same manner as in Example 1 using 6 modules that were the same as those used in Comparative Example 1.

本発明に係る発射装薬を用いると、モジュール式発射装薬の1モジュールを使用した射撃の際に飛翔体の初速安定化が図れ、かつ、5又は6モジュールを使用した射撃の際にも、負差圧等の異常圧力の問題がない射撃を行うことができる。したがって、本発明に係る発射装薬は、りゅう弾砲のような分離装填弾の射撃に好適に利用されうる。   When using the propellant according to the present invention, it is possible to stabilize the initial velocity of the flying object when shooting using one module of the modular type propellant, and also when shooting using five or six modules, Shooting without problems of abnormal pressure such as negative differential pressure can be performed. Therefore, the firing charge according to the present invention can be suitably used for shooting separately loaded bullets such as a howitzer.

1 主発射薬
2 点火薬
3 焼尽容器
4 点火薬筒
5 初速安定化発射薬
DESCRIPTION OF SYMBOLS 1 Main propellant 2 Ignition agent 3 Burnout container 4 Ignition cartridge 5 Initial speed stabilization propellant

Claims (6)

発射薬、点火薬、焼尽容器、及び点火薬筒を主たる構成品とする発射装薬において、該発射薬として主発射薬とともに、該主発射薬よりもガス発生速度の速い1種類以上の初速安定化用発射薬を、該点火薬筒の外側に主発射薬とは分離して配置したことを特徴とする発射装薬。   In a projectile charge mainly composed of a propellant, an igniting agent, a burnout container, and an igniter cylinder, the main propellant is used as the propellant, and one or more initial speed stabilizations that have a higher gas generation rate than the main propellant. The propellant for charging is characterized in that the chemical propellant is disposed outside the ignition cartridge separately from the main propellant. 前記初速安定化用発射薬は、シングルベース、ダブルベース、トリプルベース又はマルチベースのいずれかの組成を有する、請求項1に記載の発射装薬。   The propellant according to claim 1, wherein the initial velocity stabilizing propellant has a composition of a single base, a double base, a triple base, or a multi base. 前記初速安定化用発射薬の組成は、前記主発射薬と同じ組成である、請求項1又は2に記載の発射装薬。   The propellant according to claim 1 or 2, wherein a composition of the initial velocity stabilizing propellant is the same as that of the main propellant. 前記初速安定化用発射薬の重量は、前記主発射薬と該初速安定化用発射薬を合計した発射薬全体重量の4.0%〜17.0%の範囲である、請求項1〜3のいずれか1項に記載の発射装薬。   The weight of the initial velocity stabilizing propellant is in a range of 4.0% to 17.0% of the total weight of the total amount of the main propellant and the initial velocity stabilizing propellant. The firing charge according to any one of the above. 前記初速安定化用発射薬と前記主発射薬を組み合わせた場合の燃焼開始前における単位重量当りの発射薬表面積は、主発射薬のみの場合の燃焼開始前における単位重量当りの発射薬表面積を100%としたとき、120%〜180%の範囲にある、請求項1〜4のいずれか1項に記載の発射装薬。   The propellant surface area per unit weight before the start of combustion when the initial velocity stabilizing propellant is combined with the main propellant is 100% of the propellant surface area per unit weight before the start of combustion when only the main propellant is used. The propellant according to any one of claims 1 to 4, which is in a range of 120% to 180% when%. 前記初速安定化用発射薬と前記主発射薬を同時に燃焼させたときの、5〜45MPaの範囲における平均ガス発生速度は、4.7〜8.0MPa/msecの範囲である、請求項1〜5のいずれか1項に記載の発射装薬。   The average gas generation rate in the range of 5 to 45 MPa when the initial velocity stabilizing propellant and the main propellant are burned simultaneously is in the range of 4.7 to 8.0 MPa / msec. The firing charge according to any one of 5.
JP2010158737A 2010-07-13 2010-07-13 Projectile Active JP5697373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010158737A JP5697373B2 (en) 2010-07-13 2010-07-13 Projectile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010158737A JP5697373B2 (en) 2010-07-13 2010-07-13 Projectile

Publications (2)

Publication Number Publication Date
JP2012021685A true JP2012021685A (en) 2012-02-02
JP5697373B2 JP5697373B2 (en) 2015-04-08

Family

ID=45776101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010158737A Active JP5697373B2 (en) 2010-07-13 2010-07-13 Projectile

Country Status (1)

Country Link
JP (1) JP5697373B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224238A (en) * 2012-04-23 2013-10-31 Nof Corp Triple base propellant composition
JP2014092307A (en) * 2012-11-02 2014-05-19 Nof Corp Gas generating material, emission explosive charge using gas generating material and ammunition
JP2014228167A (en) * 2013-05-20 2014-12-08 日油株式会社 Firing charge
JP2015148365A (en) * 2014-02-05 2015-08-20 日油株式会社 Gas generating material, and firing charge and ammunition using the same
KR101657435B1 (en) * 2016-03-10 2016-09-13 주식회사 한화 Modular charge ignition system and manufacturing method for the same
JP2019049228A (en) * 2017-09-11 2019-03-28 株式会社Ihiエアロスペース Rocket motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0499244A2 (en) * 1991-02-15 1992-08-19 Dynamit Nobel Aktiengesellschaft Modular propellant charge
JPH05105572A (en) * 1991-10-22 1993-04-27 Daicel Chem Ind Ltd Center ignition powder tube
JPH05118793A (en) * 1991-10-28 1993-05-14 Asahi Chem Ind Co Ltd Unit type shooting charge
JPH06317399A (en) * 1992-09-17 1994-11-15 Tech Res & Dev Inst Of Japan Def Agency Composite firing powder charge
JP2004131344A (en) * 2002-10-11 2004-04-30 Asahi Kasei Chemicals Corp Ammunition
JP2007514125A (en) * 2003-12-09 2007-05-31 ユーレンコ ボフォース アーベー Progressive propellant charge with high charge density
JP2009143793A (en) * 2007-11-09 2009-07-02 Nippon Kayaku Co Ltd Pyrogenic gas generator and formed product of gas generating agent composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0499244A2 (en) * 1991-02-15 1992-08-19 Dynamit Nobel Aktiengesellschaft Modular propellant charge
JPH05105572A (en) * 1991-10-22 1993-04-27 Daicel Chem Ind Ltd Center ignition powder tube
JPH05118793A (en) * 1991-10-28 1993-05-14 Asahi Chem Ind Co Ltd Unit type shooting charge
JPH06317399A (en) * 1992-09-17 1994-11-15 Tech Res & Dev Inst Of Japan Def Agency Composite firing powder charge
JP2004131344A (en) * 2002-10-11 2004-04-30 Asahi Kasei Chemicals Corp Ammunition
JP2007514125A (en) * 2003-12-09 2007-05-31 ユーレンコ ボフォース アーベー Progressive propellant charge with high charge density
JP2009143793A (en) * 2007-11-09 2009-07-02 Nippon Kayaku Co Ltd Pyrogenic gas generator and formed product of gas generating agent composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7014003150; 高瀬保典、ほか2名: 'HMX/SB複粒装薬の研究' 工業火薬協会誌 第45巻第6号(通巻219号), 1984, 351-356ページ, 社団法人工業火薬協会 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224238A (en) * 2012-04-23 2013-10-31 Nof Corp Triple base propellant composition
JP2014092307A (en) * 2012-11-02 2014-05-19 Nof Corp Gas generating material, emission explosive charge using gas generating material and ammunition
JP2014228167A (en) * 2013-05-20 2014-12-08 日油株式会社 Firing charge
JP2015148365A (en) * 2014-02-05 2015-08-20 日油株式会社 Gas generating material, and firing charge and ammunition using the same
KR101657435B1 (en) * 2016-03-10 2016-09-13 주식회사 한화 Modular charge ignition system and manufacturing method for the same
JP2019049228A (en) * 2017-09-11 2019-03-28 株式会社Ihiエアロスペース Rocket motor

Also Published As

Publication number Publication date
JP5697373B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5697373B2 (en) Projectile
JP6131711B2 (en) Projectile
US20090266263A1 (en) Advanced muzzle loader ammunition
JP3141092B2 (en) Combined charge
RU2320951C2 (en) Round for medium-and large-caliber guns
JP2004531441A (en) Propellants for artillery weapons
JP5978928B2 (en) Gas generating material and projectile and ammunition using the same
JP4740655B2 (en) Empty package
JP4462975B2 (en) Modular projectile charge
KR102051995B1 (en) PROPELLANT OF LOW ZONE FOR 155mm HOWITZER AND MANUFACTURING METHOD THEREOF
JP3517386B2 (en) Fire tube
JP2003279297A (en) Shooting sound generator
JP5200479B2 (en) Firearms for propellant ignition
RU2449236C2 (en) Propellant charge of mortar round
JP3562870B2 (en) Double stage type closed telescopic bullet
JP2016070625A (en) Initial velocity stabilization shooting charge
JP6252213B2 (en) Gas generating material and projectile and ammunition using the same
Pandey et al. Mathematical modelling of solid propellant grain geometry suitable for multi barrel rocket launcher applications
RU2488067C1 (en) CHARGE FOR 5,6 mm-SPORTING-HUNTING SHOT OF ANNULAR IGNITION
JP4446554B2 (en) Firearms for propellant ignition
JPH07218195A (en) Module type shooting propelling powder
Dahlberg New low-sensitivity modular charge propellant based on GUDN
JP2001311598A (en) Fuse for propellant
JP5516059B2 (en) Combustion container for impact sound generator and impact sound generator
JP5929453B2 (en) Propellant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150210

R150 Certificate of patent or registration of utility model

Ref document number: 5697373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350