JP2012021678A - Combustion device - Google Patents

Combustion device Download PDF

Info

Publication number
JP2012021678A
JP2012021678A JP2010158516A JP2010158516A JP2012021678A JP 2012021678 A JP2012021678 A JP 2012021678A JP 2010158516 A JP2010158516 A JP 2010158516A JP 2010158516 A JP2010158516 A JP 2010158516A JP 2012021678 A JP2012021678 A JP 2012021678A
Authority
JP
Japan
Prior art keywords
air
combustion
oxygen concentration
flame temperature
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010158516A
Other languages
Japanese (ja)
Other versions
JP5345590B2 (en
Inventor
Yoshihiko Takasu
芳彦 高須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2010158516A priority Critical patent/JP5345590B2/en
Publication of JP2012021678A publication Critical patent/JP2012021678A/en
Application granted granted Critical
Publication of JP5345590B2 publication Critical patent/JP5345590B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)

Abstract

PROBLEM TO BE SOLVED: To properly adjust an air-fuel ratio of the air-fuel mixture that is supplied to a burner during any of entire combustion and partial combustion, relating to a combustion device in which the entire combustion which allows a plurality of burners to work or a partial combustion which allows only some of burners to work is selectable at will.SOLUTION: The combustion device includes an oxygen concentration sensor set in an exhaust path of the combustion device and a flame temperature sensor for detecting a flame temperature of the burner which works in partial combustion. During the entire combustion, the air-fuel ratio of air-fuel mixture is adjusted based on a detection oxygen concentration λ of the oxygen concentration sensor. During the entire combustion, a reference flame temperature Ts is calculated based on the detection oxygen concentration λ of the oxygen concentration sensor, and the reference flame Ts is compared with a detection temperature T of the flame temperature sensor to obtain a corrective coefficient K corresponding to a deviation ΔTs between both temperatures. During the partial combustion, the detection temperature T of the flame temperature sensor is corrected with the corrective coefficient K, and based on the corrected detection temperature T', the air-fuel ratio of the air-fuel mixture is adjusted.

Description

本発明は、複数のバーナと、これらバーナに一次空気を供給する燃焼ファンとを備え、これら全てのバーナを燃焼させる全面燃焼と、一部のバーナのみを燃焼させる部分燃焼とに切換え自在な燃焼装置に関する。   The present invention includes a plurality of burners and a combustion fan that supplies primary air to these burners, and is capable of switching between full combustion for burning all of these burners and partial combustion for burning only some of the burners. Relates to the device.

従来、燃焼装置の排気経路に酸素濃度センサを設置し、酸素濃度センサで検出される燃焼排ガス中の酸素濃度に基づいて、バーナに供給する混合気の空燃比を調節するものが知られている(例えば、特許文献1参照)。   Conventionally, an oxygen concentration sensor is installed in an exhaust path of a combustion apparatus, and an air-fuel ratio of an air-fuel mixture supplied to a burner is adjusted based on the oxygen concentration in combustion exhaust gas detected by the oxygen concentration sensor. (For example, refer to Patent Document 1).

ここで、理論空燃比よりも一次空気が過剰になるように混合気の目標空燃比が設定されている場合、酸素濃度センサで検出される燃焼排ガス中の酸素濃度は、混合気に含まれる燃焼に必要な酸素以外の過剰酸素に応じた濃度になる。従って、酸素濃度センサの検出酸素濃度とバーナに供給する混合気の空燃比との間に所定の相関性が成立し、検出酸素濃度に基づいて混合気の空燃比を判定できる。そして、排気閉塞等で一次空気の供給量が減少すると、酸素濃度センサの検出酸素濃度も低下し、この低下分だけ一次空気の供給量を増加し、或いは、燃料ガスの供給量を減少させて、混合気の空燃比を調節することにより、燃焼不良の発生を防止することができる。   Here, when the target air-fuel ratio of the air-fuel mixture is set so that the primary air becomes excessive than the stoichiometric air-fuel ratio, the oxygen concentration in the combustion exhaust gas detected by the oxygen concentration sensor is the combustion contained in the air-fuel mixture. It becomes the concentration according to the excess oxygen other than the oxygen required for. Therefore, a predetermined correlation is established between the detected oxygen concentration of the oxygen concentration sensor and the air-fuel ratio of the air-fuel mixture supplied to the burner, and the air-fuel ratio of the air-fuel mixture can be determined based on the detected oxygen concentration. When the primary air supply amount decreases due to exhaust blockage or the like, the oxygen concentration detected by the oxygen concentration sensor also decreases, and the primary air supply amount increases or the fuel gas supply amount decreases by this decrease. The occurrence of poor combustion can be prevented by adjusting the air-fuel ratio of the air-fuel mixture.

然し、複数のバーナを全て燃焼させる全面燃焼と、一部のバーナのみを燃焼させる部分燃焼とに切換え自在な燃焼装置では、部分燃焼時に、燃焼していないバーナに供給される一次空気が排気経路に流れて、酸素濃度センサの検出酸素濃度が大幅に上昇してしまい、燃焼中の一部のバーナに供給する混合気の空燃比の変化による検出酸素濃度の変化率が微小になってしまう。従って、部分燃焼時には、検出酸素濃度に基づいて混合気の空燃比を適正に調節することが困難になる。   However, in a combustion apparatus that can be switched between full combustion that burns all of a plurality of burners and partial combustion that burns only some of the burners, the primary air supplied to the unburned burner during the partial combustion is an exhaust path. As a result, the detected oxygen concentration of the oxygen concentration sensor significantly increases, and the change rate of the detected oxygen concentration due to the change in the air-fuel ratio of the air-fuel mixture supplied to a part of the burner during combustion becomes minute. Therefore, at the time of partial combustion, it becomes difficult to properly adjust the air-fuel ratio of the air-fuel mixture based on the detected oxygen concentration.

また、従来、バーナの火炎温度を検出する熱電対等の火炎温度センサを設け、火炎温度センサの検出温度に基づいて、バーナに供給する混合気の空燃比を調節するものが知られている(例えば、特許文献2参照)。   Conventionally, a flame temperature sensor such as a thermocouple for detecting the flame temperature of the burner is provided, and the air-fuel ratio of the air-fuel mixture supplied to the burner is adjusted based on the detected temperature of the flame temperature sensor (for example, , See Patent Document 2).

ここで、混合気の空燃比と火炎温度との間には、空燃比が理論空燃比になったときに火炎温度が最大となる、上方に凸の曲線状の相関性(空燃比を横軸、火炎温度を縦軸としてグラフ化した場合)が成立する。従って、理論空燃比よりも一次空気が過剰になるように混合気の目標空燃比が設定されている場合、排気閉塞等で一次空気の供給量が減少すると、火炎温度センサの検出温度が上昇し、この上昇分だけ一次空気の供給量を増加し、或いは、燃料ガスの供給量を減少させて、混合気の空燃比を調節することにより、燃焼不良の発生を防止することができる。   Here, between the air-fuel ratio of the air-fuel mixture and the flame temperature, the flame temperature becomes maximum when the air-fuel ratio becomes the stoichiometric air-fuel ratio. When the graph is shown with the flame temperature as the vertical axis). Therefore, when the target air-fuel ratio of the air-fuel mixture is set so that the primary air becomes excessive than the stoichiometric air-fuel ratio, the detected temperature of the flame temperature sensor rises when the primary air supply amount decreases due to exhaust blockage or the like. By increasing the supply amount of primary air by this amount of increase or decreasing the supply amount of fuel gas and adjusting the air-fuel ratio of the mixture, it is possible to prevent the occurrence of defective combustion.

然し、火炎温度センサは、火炎に晒されるため、劣化し易い。そして、火炎温度センサの劣化によって、その検出温度が実際の火炎温度からずれた場合には、混合気の空燃比を適正に調節することができなくなる。   However, the flame temperature sensor is easily deteriorated because it is exposed to the flame. When the detected temperature deviates from the actual flame temperature due to deterioration of the flame temperature sensor, the air-fuel ratio of the air-fuel mixture cannot be adjusted properly.

特開平7−12333号公報JP 7-12333 A 特開2004−11937号公報JP 2004-11937 A

本発明は、以上の点に鑑み、全面燃焼時と部分燃焼時の何れにおいても混合気の空燃比を適正に調節できるようにした燃焼装置を提供することをその課題としている。   In view of the above points, an object of the present invention is to provide a combustion apparatus in which the air-fuel ratio of an air-fuel mixture can be adjusted appropriately both during full combustion and partial combustion.

上記課題を解決するために、本発明は、複数のバーナと、これらバーナに一次空気を供給する燃焼ファンとを備え、これら全てのバーナを燃焼させる全面燃焼と、一部のバーナのみを燃焼させる部分燃焼とに切換え自在な燃焼装置であって、燃焼装置の排気経路に設置した酸素濃度センサと、部分燃焼時に燃焼するバーナの火炎温度を検出する火炎温度センサとを備え、全面燃焼時には、酸素濃度センサで検出される燃焼排ガス中の酸素濃度に基づいて、バーナに供給する混合気の空燃比を調節し、部分燃焼時には、火炎温度センサの検出温度に基づいて、バーナに供給する混合気の空燃比を調節すると共に、全面燃焼時に、酸素濃度センサで検出される燃焼排ガス中の酸素濃度に基づいて基準火炎温度を算出し、この基準火炎温度と火炎温度センサの検出温度とを比較して、両温度の偏差に応じた補正係数を求め、部分燃焼時の空燃比調節に用いる火炎温度センサの検出温度を補正係数により補正することを特徴とする。   In order to solve the above problems, the present invention includes a plurality of burners and a combustion fan that supplies primary air to these burners, and burns all of the burners and burns only some of the burners. A combustion device that can be switched to partial combustion, comprising an oxygen concentration sensor installed in the exhaust path of the combustion device, and a flame temperature sensor that detects the flame temperature of the burner that burns during partial combustion. The air-fuel ratio of the air-fuel mixture supplied to the burner is adjusted based on the oxygen concentration in the combustion exhaust gas detected by the concentration sensor, and during partial combustion, the air-fuel ratio supplied to the burner is determined based on the detected temperature of the flame temperature sensor. While adjusting the air-fuel ratio, the reference flame temperature is calculated based on the oxygen concentration in the flue gas detected by the oxygen concentration sensor during the entire combustion, and the reference flame temperature and flame temperature are calculated. And it compares the detected temperature of the sensor, obtains a correction coefficient corresponding to both the temperature deviation, and corrects the detected temperature of the flame temperature sensor used in the air-fuel ratio adjustment of the partial combustion by the correction coefficient.

本発明によれば、全面燃焼時には、酸素濃度センサの検出酸素濃度に基づく空燃比調節が行われるため、混合気の空燃比を適正に調節できる。一方、酸素濃度センサの検出酸素濃度では混合気の空燃比の判定が困難になる部分燃焼時には、火炎温度センサの検出温度に基づく空燃比の調節が行われる。   According to the present invention, the air-fuel ratio adjustment based on the oxygen concentration detected by the oxygen concentration sensor is performed during the entire combustion, so that the air-fuel ratio of the air-fuel mixture can be adjusted appropriately. On the other hand, at the time of partial combustion where it becomes difficult to determine the air-fuel ratio of the air-fuel mixture with the oxygen concentration detected by the oxygen concentration sensor, the air-fuel ratio is adjusted based on the temperature detected by the flame temperature sensor.

ここで、基準火炎温度は、酸素濃度センサの検出酸素濃度から判定される混合気の空燃比に対応する火炎温度として算出される。全面燃焼時には、酸素濃度センサの検出酸素濃度から混合気の空燃比を正確に判定できるから、検出酸素濃度に基づいて算出される基準火炎温度は実際の火炎温度に極近い温度になる。従って、火炎温度センサの劣化でその検出温度が実際の火炎温度からずれても、基準火炎温度と火炎温度センサの検出温度との偏差から、検出温度を実際の火炎温度に一致させるのに必要な補正係数を求めることができる。そして、この補正係数で検出温度を補正することにより実際の火炎温度からのずれを可及的に小さくすることができ、部分燃焼時も混合気の空燃比を適正に調節できる。   Here, the reference flame temperature is calculated as the flame temperature corresponding to the air-fuel ratio of the air-fuel mixture determined from the oxygen concentration detected by the oxygen concentration sensor. During full-surface combustion, the air-fuel ratio of the air-fuel mixture can be accurately determined from the oxygen concentration detected by the oxygen concentration sensor, so that the reference flame temperature calculated based on the detected oxygen concentration is close to the actual flame temperature. Therefore, even if the detected temperature deviates from the actual flame temperature due to deterioration of the flame temperature sensor, the difference between the reference flame temperature and the detected temperature of the flame temperature sensor is necessary to make the detected temperature coincide with the actual flame temperature. A correction coefficient can be obtained. By correcting the detected temperature with this correction coefficient, the deviation from the actual flame temperature can be made as small as possible, and the air-fuel ratio of the air-fuel mixture can be adjusted appropriately even during partial combustion.

ところで、火炎温度センサの劣化が進行すると、所要の検出精度が確保できなくなり、火炎温度センサの検出温度を補正係数で補正しても、実際の火炎温度からかなりずれてしまう。そのため、補正係数が所定の上限値を超えた場合には、表示手段によりエラー表示を行うことが望ましい。これによれば、火炎温度センサの劣化が進行した場合、エラー表示により修理を促すことができ、安全である。   By the way, if the deterioration of the flame temperature sensor progresses, the required detection accuracy cannot be ensured, and even if the detection temperature of the flame temperature sensor is corrected with the correction coefficient, it will deviate considerably from the actual flame temperature. Therefore, when the correction coefficient exceeds a predetermined upper limit value, it is desirable to display an error by the display means. According to this, when deterioration of the flame temperature sensor progresses, repair can be promoted by an error display, which is safe.

本発明の実施形態の燃焼装置を示す模式的断面図。The typical sectional view showing the combustion device of the embodiment of the present invention. 実施形態の燃焼装置のコントローラが行う空燃比制御を示すフロー図。The flowchart which shows the air fuel ratio control which the controller of the combustion apparatus of embodiment performs.

図1に示す本発明の実施形態の燃焼装置は、燃焼筐1を備えており、燃焼筐1の下部に、横方向中央の第1バーナ2と、第1バーナ2の右側の第2バーナ2と、第1バーナ2の左側の第3バーナ2との3個のバーナが収納されている。また、燃焼筐1の上部には、給湯用の熱交換器3が収納されており、各バーナ2,2,2の燃焼排ガスが熱交換器3を経由して燃焼筐1の上端の排気筒4に流れる。 Combustion apparatus of an embodiment of the present invention shown in FIG. 1, the combustion housing 1 includes a combustion in the lower part of the housing 1, a first burner 2 1 transverse center, the second first burner 2 1 of the right a burner 2 2, three burners with third burner 2 3 of the first burner 2 1 left is housed. Further, the upper portion of the combustion housing 1, which is the heat exchanger 3 for hot water storage, the upper end of the combustion housing 1 each burner 2 1, 2 2, 2 3 of the combustion exhaust gas through the heat exchanger 3 The exhaust pipe 4 flows.

各バーナ2,2,2は、多数の炎孔(図示せず)を有する燃焼プレート2aを上面に装着した全一次燃焼式バーナで構成されている。そして、単一の燃焼ファン5からの空気が一次空気として各バーナ2,2,2に供給されるようにしている。 Each of the burners 2 1 , 2 2 , 2 3 is composed of an all primary combustion burner having a combustion plate 2 a having a number of flame holes (not shown) mounted on the upper surface. And the air from the single combustion fan 5 is supplied to each burner 2 1 , 2 2 , 2 3 as primary air.

また、これらバーナ2,2,2に燃料ガスを供給するガス供給路6には比例弁7が介設されている。更に、比例弁7の下流側には、第1バーナ2に燃料ガスを供給する第1能力切換え弁8と、第2バーナ2に燃料ガスを供給する第2能力切換え弁8と、第3バーナに燃料ガスを供給する第3能力切換え弁8とが設けられている。 A proportional valve 7 is interposed in the gas supply path 6 for supplying fuel gas to the burners 2 1 , 2 2 , 2 3 . Further, on the downstream side of the proportional valve 7, the first and capability switching valves 8 1 that supplies a fuel gas to the first burner 2 1, for supplying fuel gas to the second burner 2 2 second capacity switching valve 82 and a third capacity switching valve 8 3 for supplying fuel gas are provided in the third burner.

燃焼ファン5、比例弁7、各能力切換え弁8,8,8は燃焼装置に設けたコントローラ9により制御される。コントローラ9は、給湯負荷に応じた要求燃焼量を演算し、要求燃焼量が小さな場合には、第1能力切換え弁8を開弁させて第1バーナ2のみを燃焼させ、その燃焼量を比例弁7により制御する。要求燃焼量が第1バーナ2の最大燃焼量以上になった場合には、第2能力切換え弁8を開弁させて、第1バーナ2に加え第2バーナ2も燃焼させ、第1と第2の両バーナ2,2の合計燃焼量が要求燃焼量になるように比例弁7を制御する。要求燃焼量が第1と第2の両バーナ2,2の合計最大燃焼量以上になった場合には、第3能力切換え弁8を開弁させて、第1と第2の両バーナ2,2に加え第3バーナ2も燃焼させ、第1乃至第3バーナ2,2,2の合計燃焼量が要求燃焼量になるように比例弁7を制御する。 The combustion fan 5, the proportional valve 7, and the capacity switching valves 8 1 , 8 2 , and 8 3 are controlled by a controller 9 provided in the combustion apparatus. The controller 9 calculates the required combustion amount corresponding to the hot water supply load, when the required combustion amount is small, the first capacity control valve 81 is burned only the first burner 2 1 is opened, the combustion quantity Is controlled by the proportional valve 7. If the request combustion amount becomes first or maximum combustion amount of burners 2 1, a second capacity control valve 82 by opening, also by burning the second burner 2 2 In addition to the first burner 2 1, The proportional valve 7 is controlled so that the total combustion amount of the first and second burners 2 1 and 2 2 becomes the required combustion amount. If the request combustion amount becomes both the first and second burners 2 1, 2 2 of total maximum combustion amount or more, the third capacity switching valve 8 3 is opened, both the first and second In addition to the burners 2 1 and 2 2 , the third burner 2 3 is combusted, and the proportional valve 7 is controlled so that the total combustion amount of the first to third burners 2 1 , 2 2 and 2 3 becomes the required combustion amount.

また、コントローラ9は、各バーナ2,2,2に供給される混合気(燃料ガスと一次空気との混合ガス)の空燃比が、理論空燃比よりも一次空気が過剰になるように設定される所定の目標空燃比になるように、燃焼ファン5の回転数を制御する。具体的には、混合気の空気過剰率(一次空気量/理論空燃比の一次空気量)が1を上回る所定の目標値(例えば1.3程度)になるように、燃焼ファン5の回転数を制御する。 In addition, the controller 9 sets the air-fuel ratio of the air-fuel mixture (mixed gas of fuel gas and primary air) supplied to each burner 2 1 , 2 2 , 2 3 so that the primary air is excessive than the stoichiometric air-fuel ratio. The number of revolutions of the combustion fan 5 is controlled so that the predetermined target air-fuel ratio is set. Specifically, the rotational speed of the combustion fan 5 is set so that the excess air ratio of the air-fuel mixture (primary air amount / primary air amount of the primary air / fuel ratio) becomes a predetermined target value (for example, about 1.3) exceeding 1. To control.

ところで、熱交換器3のフィン詰りや排気筒4のごみ詰りといった排気閉塞等で一次空気の供給量が減少して、混合気の空気過剰率が目標値よりも減少してしまうことがある。そこで、本実施形態では、熱交換器3よりも上方の排気経路の部分に酸素濃度センサ10を設置すると共に、第1バーナ2上に臨ませて、第1バーナ2の火炎温度を検出する熱電対等から成る火炎温度センサ11を設けている。これらセンサ10,11の検出出力はコントローラ9に入力される。そして、コントローラ9は、酸素濃度センサ10で検出される燃焼排ガス中の酸素濃度λと火炎温度センサ11で検出される火炎温度Tとに基づいて、混合気の空燃比を調節する空燃比制御を行う。以下、空燃比制御について図2を参照して説明する。 By the way, the supply amount of the primary air may decrease due to exhaust blockage such as fin clogging of the heat exchanger 3 or clogging of the exhaust cylinder 4, and the excess air ratio of the air-fuel mixture may decrease below the target value. Therefore, in the present embodiment, the installing the oxygen concentration sensor 10 to the portion of the upper exhaust passage than the heat exchanger 3, so as to face the first burner 2 1 above, detecting a first burner 2 1 flame temperature A flame temperature sensor 11 comprising a thermocouple or the like is provided. Detection outputs of these sensors 10 and 11 are input to the controller 9. Then, the controller 9 performs air-fuel ratio control for adjusting the air-fuel ratio of the mixture based on the oxygen concentration λ in the combustion exhaust gas detected by the oxygen concentration sensor 10 and the flame temperature T detected by the flame temperature sensor 11. Do. Hereinafter, the air-fuel ratio control will be described with reference to FIG.

空燃比制御では、先ず、燃焼開始前のプリパージ中に、STEP1で酸素濃度センサ10の初期チェックを行うと共に、STEP2で火炎温度センサ11の断線、短絡等の故障の有無を判別する初期チェックを行う。酸素濃度センサ10の初期チェックに際しては、酸素濃度センサ10の検出酸素濃度λと大気中の酸素濃度とを比較し、検出酸素濃度λと大気中の酸素濃度との偏差に応じた補正係数を求める。そして、以後、酸素濃度センサ10の検出酸素濃度λに補正係数を乗算して、検出酸素濃度λを補正する。このように補正した検出酸素濃度λと実際の酸素濃度とのずれは可及的に小さくなる。尚、以下の説明において、検出酸素濃度λは補正した値を意味する。   In the air-fuel ratio control, first, during the pre-purge before the start of combustion, an initial check of the oxygen concentration sensor 10 is performed at STEP 1 and an initial check is performed at STEP 2 to determine whether there is a failure such as disconnection or short circuit of the flame temperature sensor 11. . In the initial check of the oxygen concentration sensor 10, the detected oxygen concentration λ of the oxygen concentration sensor 10 is compared with the oxygen concentration in the atmosphere, and a correction coefficient corresponding to the deviation between the detected oxygen concentration λ and the oxygen concentration in the atmosphere is obtained. . Thereafter, the detected oxygen concentration λ of the oxygen concentration sensor 10 is multiplied by a correction coefficient to correct the detected oxygen concentration λ. The deviation between the corrected detected oxygen concentration λ and the actual oxygen concentration is as small as possible. In the following description, the detected oxygen concentration λ means a corrected value.

プリパージが完了して燃焼が開始されると、STEP3に進み、第1乃至第3バーナ2,2,2を全て燃焼させる全面燃焼であるか否かを判別する。全面燃焼であれば、STEP4に進んで、混合気の空燃比が目標空燃比であるときの燃焼排ガス中の酸素濃度を目標酸素濃度λmとして算出する。次に、STEP5に進んで、酸素濃度センサ10の検出酸素濃度λに基づく混合気の空燃比調整を行う。 When the pre-purge is completed and the combustion is started, the process proceeds to STEP 3 and it is determined whether or not the entire combustion is performed to burn all the first to third burners 2 1 , 2 2 , and 2 3 . If it is the whole surface combustion, the process proceeds to STEP 4 and the oxygen concentration in the combustion exhaust gas when the air-fuel ratio of the air-fuel mixture is the target air-fuel ratio is calculated as the target oxygen concentration λm. Next, proceeding to STEP 5, the air-fuel ratio adjustment of the air-fuel mixture based on the oxygen concentration λ detected by the oxygen concentration sensor 10 is performed.

この空燃比調節に際しては、先ず、目標酸素濃度λmと酸素濃度センサ10の検出酸素濃度λとの偏差Δλmを求める。ここで、排気閉塞等による一次空気の供給量の減少で混合気の空気過剰率が減少すると、偏差Δλmが大きくなる。そこで、偏差Δλmに応じて燃焼ファン5の回転数を増加或いは比例弁7の開度を減少(燃焼量を減少)させ、混合気の空燃比が目標空燃比になるように調節する。   In adjusting the air-fuel ratio, first, a deviation Δλm between the target oxygen concentration λm and the detected oxygen concentration λ of the oxygen concentration sensor 10 is obtained. Here, when the excess air ratio of the air-fuel mixture decreases due to a decrease in the supply amount of primary air due to exhaust blockage or the like, the deviation Δλm increases. Therefore, the rotational speed of the combustion fan 5 is increased or the opening degree of the proportional valve 7 is decreased (the amount of combustion is decreased) in accordance with the deviation Δλm, so that the air-fuel ratio of the air-fuel mixture is adjusted to the target air-fuel ratio.

次に、STEP6に進み、酸素濃度センサ10の検出酸素濃度λに基づいて基準火炎温度Tsを算出する。基準火炎温度Tsは、酸素濃度センサ10の検出酸素濃度λから判定される混合気の空燃比に対応する火炎温度として算出される。全面燃焼時には、酸素濃度センサ10の検出酸素濃度λから混合気の空燃比を正確に判定できるから、検出酸素濃度λに基づいて算出される基準火炎温度Tsは実際の火炎温度に極近い温度になる。   Next, proceeding to STEP 6, the reference flame temperature Ts is calculated based on the detected oxygen concentration λ of the oxygen concentration sensor 10. The reference flame temperature Ts is calculated as the flame temperature corresponding to the air-fuel ratio of the air-fuel mixture determined from the oxygen concentration λ detected by the oxygen concentration sensor 10. Since the air-fuel ratio of the air-fuel mixture can be accurately determined from the detected oxygen concentration λ of the oxygen concentration sensor 10 during the entire surface combustion, the reference flame temperature Ts calculated based on the detected oxygen concentration λ is close to the actual flame temperature. Become.

次に、STEP7に進み、基準火炎温度Tsと火炎温度センサ11の検出温度Tとの偏差ΔTsが所定の閾値Y以上であるか否かを判別する。ΔTs<Yであれば、STEP8で温度補正係数Kの値を1にして、STEP3に戻る。   Next, proceeding to STEP 7, it is determined whether or not a deviation ΔTs between the reference flame temperature Ts and the detected temperature T of the flame temperature sensor 11 is equal to or greater than a predetermined threshold Y. If ΔTs <Y, the value of the temperature correction coefficient K is set to 1 in STEP8, and the process returns to STEP3.

一方、火炎温度センサ11の劣化でΔTs≧Yになったときは、STEP9に進んで、火炎温度センサ11の検出温度Tを実際の火炎温度に一致させるのに必要な温度補正係数Kを偏差ΔTsから求める。具体的には、温度補正係数Kを次式、K=1+ΔTs/Tで算出する。次に、STEP10で補正係数Kが所定の上限値LimKを超えたか否かを判別する。そして、K≦LimKの場合は、STEP3に戻る。   On the other hand, when ΔTs ≧ Y due to deterioration of the flame temperature sensor 11, the process proceeds to STEP 9 where the temperature correction coefficient K necessary for making the detected temperature T of the flame temperature sensor 11 coincide with the actual flame temperature is expressed by the deviation ΔTs. Ask from. Specifically, the temperature correction coefficient K is calculated by the following equation, K = 1 + ΔTs / T. Next, in STEP 10, it is determined whether or not the correction coefficient K has exceeded a predetermined upper limit value LimK. If K ≦ LimK, the process returns to STEP3.

また、K>LimKの場合は、STEP11に進み、表示手段たる図外のリモコンの表示画面でエラー表示を行い、使用者に警告する。尚、エラー表示は、表示画面に加え、リモコンのスピーカで音声により行ってもよい。   If K> LimK, the process proceeds to STEP 11 where an error is displayed on the display screen of a remote controller (not shown) serving as a display means to warn the user. In addition to the display screen, the error display may be performed by sound using a speaker of a remote controller.

STEP3で全面燃焼でないと判別されたとき、即ち、部分燃焼であると判別されたときは、STEP12に進んで、火炎温度センサ11の検出温度Tを温度補正係数Kにより補正する。具体的には、検出温度Tに補正係数Kを乗算して補正検出温度T´を算出する。ここで、火炎温度センサ11の劣化により検出温度Tが実際の火炎温度からずれても、補正検出温度T´は、実際の火炎温度に極近い温度になる。   When it is determined in STEP 3 that the combustion is not complete combustion, that is, when it is determined that the combustion is partial combustion, the process proceeds to STEP 12 where the detected temperature T of the flame temperature sensor 11 is corrected by the temperature correction coefficient K. Specifically, the corrected detected temperature T ′ is calculated by multiplying the detected temperature T by the correction coefficient K. Here, even if the detected temperature T deviates from the actual flame temperature due to the deterioration of the flame temperature sensor 11, the corrected detected temperature T ′ becomes a temperature very close to the actual flame temperature.

次に、STEP13に進んで、混合気の空燃比が目標空燃比であるときの火炎温度を目標火炎温度Tmとして算出する。そして、STEP14で補正検出温度T´に基づく空燃比調節を行った後、STEP3に戻る。   Next, proceeding to STEP 13, the flame temperature when the air-fuel ratio of the air-fuel mixture is the target air-fuel ratio is calculated as the target flame temperature Tm. Then, after the air-fuel ratio adjustment based on the corrected detected temperature T ′ is performed in STEP14, the process returns to STEP3.

この空燃比調節に際しては、先ず、補正検出温度T´と目標火炎温度Tmとの偏差ΔTmを求める。ここで、排気閉塞等による一次空気の供給量の減少で混合気の空燃比が理論空燃比に近づくと、火炎温度が上昇して偏差ΔTmが大きくなる。そこで、偏差ΔTmに応じて燃焼ファン5の回転数を増加或いは比例弁7の開度を減少(燃焼量を減少)させ、混合気の空燃比が目標空燃比になるように調節する。   In adjusting the air-fuel ratio, first, a deviation ΔTm between the corrected detected temperature T ′ and the target flame temperature Tm is obtained. Here, when the air-fuel ratio of the air-fuel mixture approaches the stoichiometric air-fuel ratio due to a decrease in the primary air supply amount due to exhaust blockage or the like, the flame temperature rises and the deviation ΔTm increases. Therefore, the rotational speed of the combustion fan 5 is increased or the opening degree of the proportional valve 7 is decreased (the amount of combustion is decreased) according to the deviation ΔTm, and the air / fuel ratio of the mixture is adjusted so as to become the target air / fuel ratio.

尚、火炎温度は、主として混合気の空燃比に応じて変化するが、燃焼量によっても変化する。従って、基準火炎温度Tsや目標火炎温度Tmの算出及び偏差ΔTmに応じた空燃比の調節は、燃焼量による火炎温度の変化分を加味して行う。   The flame temperature changes mainly according to the air-fuel ratio of the air-fuel mixture, but also changes depending on the combustion amount. Therefore, the calculation of the reference flame temperature Ts and the target flame temperature Tm and the adjustment of the air-fuel ratio according to the deviation ΔTm are performed in consideration of the change in the flame temperature due to the combustion amount.

上述したように、本実施形態によれば、全面燃焼時には、酸素濃度センサ10の検出酸素濃度λに基づく空燃比調節が行われるため、混合気の空燃比を目標空燃比になるように適正に調節できる。尚、部分燃焼時には、燃焼していないバーナに供給される一次空気が排気経路に流れて、酸素濃度センサ10の検出酸素濃度λが大幅に上昇する。そのため、燃焼中の一部のバーナに供給する混合気の空燃比の変化による検出酸素濃度λの変化率が微小になって、検出酸素濃度λに基づいて混合気の空燃比を適正に調節することが困難になる。   As described above, according to the present embodiment, the air-fuel ratio is adjusted based on the detected oxygen concentration λ of the oxygen concentration sensor 10 during the entire combustion, so that the air-fuel ratio of the air-fuel mixture is properly adjusted to the target air-fuel ratio. Can be adjusted. At the time of partial combustion, the primary air supplied to the non-burning burner flows into the exhaust path, and the oxygen concentration λ detected by the oxygen concentration sensor 10 increases significantly. Therefore, the rate of change of the detected oxygen concentration λ due to the change in the air-fuel ratio of the air-fuel mixture supplied to a part of the burner during combustion becomes minute, and the air-fuel ratio of the air-fuel mixture is adjusted appropriately based on the detected oxygen concentration λ. It becomes difficult.

これに対し、本実施形態では、部分燃焼時は、火炎温度センサ11の検出温度Tに基づく空燃比の調節が行われるため、上記の不具合は生じない。一方、火炎温度センサ11は劣化し易いという問題がある。然し、本実施形態では、火炎温度センサ11の劣化でその検出温度Tが実際の火炎温度からずれても、上記の如く求める補正係数Kで検出温度Tを補正することにより、実際の火炎温度からのずれを可及的に小さくすることができ、部分燃焼時も混合気の空燃比を適正に調節できる。   On the other hand, in the present embodiment, at the time of partial combustion, the air-fuel ratio is adjusted based on the detected temperature T of the flame temperature sensor 11, so that the above-described problem does not occur. On the other hand, there is a problem that the flame temperature sensor 11 is easily deteriorated. However, in the present embodiment, even if the detected temperature T deviates from the actual flame temperature due to deterioration of the flame temperature sensor 11, the detected temperature T is corrected by the correction coefficient K obtained as described above, so that the detected temperature T can be obtained from the actual flame temperature. Can be made as small as possible, and the air-fuel ratio of the air-fuel mixture can be adjusted appropriately even during partial combustion.

尚、火炎温度センサ11の劣化が進行すると、所要の検出精度が確保できなくなり、火炎温度センサ11の検出温度Tを温度補正係数Kで補正しても、実際の火炎温度からかなりずれてしまう。そのため、部分燃焼時の混合気の空燃比を適正に調節することができなり、燃焼不良が発生してしまう。然し、本実施形態では、火炎温度センサ11の劣化が進行して、温度補正係数Kが上限値LimKを超えた場合には、エラー表示を行って修理を促すことができ、安全である。   As the deterioration of the flame temperature sensor 11 progresses, the required detection accuracy cannot be ensured, and even if the detection temperature T of the flame temperature sensor 11 is corrected with the temperature correction coefficient K, it will deviate considerably from the actual flame temperature. For this reason, the air-fuel ratio of the air-fuel mixture at the time of partial combustion cannot be adjusted appropriately, and combustion failure occurs. However, in the present embodiment, when the deterioration of the flame temperature sensor 11 progresses and the temperature correction coefficient K exceeds the upper limit value LimK, an error can be displayed to prompt repair, which is safe.

以上、本発明の実施形態について図面を参照して説明したが、本発明はこれに限定されない。例えば、上記実施形態では、燃焼状態を、第1バーナ2のみを燃焼させる部分燃焼状態と、第1と第2の両バーナ2,2を燃焼させる部分燃焼状態と、第1乃至第3の全てのバーナ2,2,2を燃焼させる全面燃焼状態との3段階に切換え自在としているが、第2バーナ2のみを燃焼させる部分燃焼状態を含めて4段階に切換え自在とすることも可能である。この場合、第1バーナ2の火炎温度を検出する上記火炎温度センサ11に加えて第2バーナ2の火炎温度を検出する火炎温度センサを設ける。そして、全面燃焼時に後者の火炎温度センサの補正係数も算出し、第2バーナ2のみを燃焼させる部分燃焼時に、後者の火炎温度センサの検出温度を補正係数で補正して、補正検出温度に基づく混合気の空燃比調節を行う。また、バーナの本数は2本或いは4本以上であってもよい。 As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to this. For example, in the above embodiment, the combustion state, and the partial combustion state to burn only the first burner 2 1, and the partial combustion state to burn first and both burners 2 1 second, 2 2, first to all burners 2 1 3 2 2, 2 3 and freely switched to three stages of the entire combustion state of burning are but freely switched in four steps, including the partial combustion conditions for burning only the second burner 2 2 It is also possible. In this case, providing the flame temperature sensor for detecting a second burner 2 2 flame temperature in addition to the flame temperature sensor 11 for detecting a first burner 2 1 flame temperature. Even calculated correction coefficient of the latter flame temperature sensor during the entire surface combustion, when partial combustion for burning only the second burner 2 2, the latter detected temperature of the flame temperature sensor is corrected by the correction factor, the correction detection temperature Based on the air-fuel ratio adjustment of the air-fuel mixture. Further, the number of burners may be two or four or more.

,2,2…バーナ、5…燃焼ファン、9…コントローラ、10…酸素濃度センサ、11…火炎温度センサ、λ…酸素濃度センサの検出酸素濃度、T…火炎温度センサの検出温度、T´…補正検出温度、Ts…基準火炎温度、ΔTs…火炎温度センサの検出温度と基準火炎温度との偏差、K…補正係数。 2 1 , 2 2 , 2 3 ... burner, 5 ... combustion fan, 9 ... controller, 10 ... oxygen concentration sensor, 11 ... flame temperature sensor, λ ... oxygen concentration detected by oxygen concentration sensor, T ... temperature detected by flame temperature sensor , T ′: correction detection temperature, Ts: reference flame temperature, ΔTs: deviation between detection temperature of flame temperature sensor and reference flame temperature, K: correction coefficient.

Claims (2)

複数のバーナと、これらバーナに一次空気を供給する燃焼ファンとを備え、これら全てのバーナを燃焼させる全面燃焼と、一部のバーナのみを燃焼させる部分燃焼とに切換え自在な燃焼装置であって、
燃焼装置の排気経路に設置した酸素濃度センサと、部分燃焼時に燃焼するバーナの火炎温度を検出する火炎温度センサとを備え、
全面燃焼時には、酸素濃度センサで検出される燃焼排ガス中の酸素濃度に基づいて、バーナに供給する混合気の空燃比を調節し、
部分燃焼時には、火炎温度センサの検出温度に基づいて、バーナに供給する混合気の空燃比を調節すると共に、
全面燃焼時に、酸素濃度センサで検出される燃焼排ガス中の酸素濃度に基づいて基準火炎温度を算出し、この基準火炎温度と火炎温度センサの検出温度とを比較して、両温度の偏差に応じた補正係数を求め、
部分燃焼時の空燃比調節に用いる火炎温度センサの検出温度を補正係数により補正することを特徴とする燃焼装置。
A combustion apparatus comprising a plurality of burners and a combustion fan for supplying primary air to the burners, and capable of switching between full combustion for burning all of these burners and partial combustion for burning only some of the burners. ,
An oxygen concentration sensor installed in the exhaust path of the combustion device, and a flame temperature sensor for detecting the flame temperature of the burner that burns during partial combustion,
During the entire combustion, the air-fuel ratio of the air-fuel mixture supplied to the burner is adjusted based on the oxygen concentration in the combustion exhaust gas detected by the oxygen concentration sensor,
During partial combustion, the air-fuel ratio of the air-fuel mixture supplied to the burner is adjusted based on the temperature detected by the flame temperature sensor,
The reference flame temperature is calculated based on the oxygen concentration in the flue gas detected by the oxygen concentration sensor during full-surface combustion, and the reference flame temperature is compared with the temperature detected by the flame temperature sensor, and the difference between the two temperatures is determined. Correction factor
A combustion apparatus characterized in that a temperature detected by a flame temperature sensor used for air-fuel ratio adjustment during partial combustion is corrected by a correction coefficient.
前記補正係数が所定の上限値を超えた場合には、表示手段によりエラー表示を行うことを特徴とする請求項1記載の燃焼装置。   2. The combustion apparatus according to claim 1, wherein when the correction coefficient exceeds a predetermined upper limit value, an error is displayed by a display means.
JP2010158516A 2010-07-13 2010-07-13 Combustion device Expired - Fee Related JP5345590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010158516A JP5345590B2 (en) 2010-07-13 2010-07-13 Combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010158516A JP5345590B2 (en) 2010-07-13 2010-07-13 Combustion device

Publications (2)

Publication Number Publication Date
JP2012021678A true JP2012021678A (en) 2012-02-02
JP5345590B2 JP5345590B2 (en) 2013-11-20

Family

ID=45776095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010158516A Expired - Fee Related JP5345590B2 (en) 2010-07-13 2010-07-13 Combustion device

Country Status (1)

Country Link
JP (1) JP5345590B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014009840A (en) * 2012-06-28 2014-01-20 Purpose Co Ltd Combustion device, combustion control method, and hot water supply device
WO2016068638A1 (en) * 2014-10-31 2016-05-06 한국생산기술연구원 Air-to-fuel ratio control system and method using composite sensor
US10281173B2 (en) 2012-06-28 2019-05-07 Purpose Co., Ltd. Burner, combustion apparatus, method for combustion, method for controlling combustion, recording medium, and water heater
JP2021046969A (en) * 2019-09-18 2021-03-25 三浦工業株式会社 Combustion device
CN114963566A (en) * 2022-05-05 2022-08-30 广东万和热能科技有限公司 Control method of full-premix wall-hanging stove and full-premix wall-hanging stove

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107222A (en) * 1991-10-17 1993-04-27 Osaka Gas Co Ltd Combustion apparatus
JPH06257742A (en) * 1993-03-09 1994-09-16 Matsushita Electric Ind Co Ltd Combustion control device
JPH0712333A (en) * 1993-06-25 1995-01-17 Matsushita Electric Ind Co Ltd Combustion control device
JP2000179847A (en) * 1998-12-16 2000-06-27 Paloma Ind Ltd Combustor
JP2000274678A (en) * 1999-03-26 2000-10-03 Noritz Corp Abnormality judging unit for combination combustor
JP2004011937A (en) * 2002-06-03 2004-01-15 Rinnai Corp Combustion apparatus
JP2008215658A (en) * 2007-02-28 2008-09-18 Rinnai Corp Combustion apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05107222A (en) * 1991-10-17 1993-04-27 Osaka Gas Co Ltd Combustion apparatus
JPH06257742A (en) * 1993-03-09 1994-09-16 Matsushita Electric Ind Co Ltd Combustion control device
JPH0712333A (en) * 1993-06-25 1995-01-17 Matsushita Electric Ind Co Ltd Combustion control device
JP2000179847A (en) * 1998-12-16 2000-06-27 Paloma Ind Ltd Combustor
JP2000274678A (en) * 1999-03-26 2000-10-03 Noritz Corp Abnormality judging unit for combination combustor
JP2004011937A (en) * 2002-06-03 2004-01-15 Rinnai Corp Combustion apparatus
JP2008215658A (en) * 2007-02-28 2008-09-18 Rinnai Corp Combustion apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014009840A (en) * 2012-06-28 2014-01-20 Purpose Co Ltd Combustion device, combustion control method, and hot water supply device
US10281173B2 (en) 2012-06-28 2019-05-07 Purpose Co., Ltd. Burner, combustion apparatus, method for combustion, method for controlling combustion, recording medium, and water heater
US11346580B2 (en) 2012-06-28 2022-05-31 Purpose Co., Ltd. Burner, combustion apparatus, method for combustion, method for controlling combustion, recording medium, and water heater
WO2016068638A1 (en) * 2014-10-31 2016-05-06 한국생산기술연구원 Air-to-fuel ratio control system and method using composite sensor
KR101759217B1 (en) * 2014-10-31 2017-08-01 한국생산기술연구원 A air-fuel ratio control system using complex sensor and control method the therefore
CN107208890A (en) * 2014-10-31 2017-09-26 韩国生产技术研究院 Utilize the auxiliary fuel supply-system and control method of compound sensor
JP2021046969A (en) * 2019-09-18 2021-03-25 三浦工業株式会社 Combustion device
JP7379981B2 (en) 2019-09-18 2023-11-15 三浦工業株式会社 combustion device
CN114963566A (en) * 2022-05-05 2022-08-30 广东万和热能科技有限公司 Control method of full-premix wall-hanging stove and full-premix wall-hanging stove

Also Published As

Publication number Publication date
JP5345590B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5345590B2 (en) Combustion device
US8821154B2 (en) Combustion apparatus and method for combustion control thereof
CN112682946A (en) Gas water heating equipment and start control method and readable storage medium thereof
CN112682947A (en) Gas water heating equipment and disturbance compensation control method and readable storage medium thereof
EP3309473B1 (en) Gas water heater and security control system and method therefor
JP5508300B2 (en) Combined combustion device
JP2003042444A (en) Water heater
JP5850304B2 (en) Combustion device
JP4551265B2 (en) Thermal equipment that adjusts the air supply for combustion
WO2018040447A1 (en) Gas water heater and security control system and method therefor
JP2004226035A (en) Combustion apparatus and hot-water supply device
JP2003185260A (en) Water heater
KR102391611B1 (en) Combustion apparatus capable of flame measurement and the method thereof
JP4605656B2 (en) Thermal power generation boiler and combustion air supply control method
JP2016057045A (en) Combustion device
JP2020118430A (en) Combustion device
US20240247804A1 (en) Connected combustion system
JP4081030B2 (en) Combined combustion device
JP2014122763A (en) Hot water supply device
JP7257898B2 (en) Oxygen ratio control system
JP2023057744A (en) Premixing device
US11525575B2 (en) Controllers for burner appliances and methods thereof
JP5819795B2 (en) Combustion device
JP2001090940A (en) Control device for automatic switching of kind of combustion gas
JP2021025722A (en) Premixing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130814

R150 Certificate of patent or registration of utility model

Ref document number: 5345590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees