JP2012021238A - Method for producing carbon fiber bundle - Google Patents

Method for producing carbon fiber bundle Download PDF

Info

Publication number
JP2012021238A
JP2012021238A JP2010157823A JP2010157823A JP2012021238A JP 2012021238 A JP2012021238 A JP 2012021238A JP 2010157823 A JP2010157823 A JP 2010157823A JP 2010157823 A JP2010157823 A JP 2010157823A JP 2012021238 A JP2012021238 A JP 2012021238A
Authority
JP
Japan
Prior art keywords
fiber bundle
carbon fiber
carbonized
flameproofing
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010157823A
Other languages
Japanese (ja)
Inventor
Takayuki Kiriyama
孝之 桐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2010157823A priority Critical patent/JP2012021238A/en
Publication of JP2012021238A publication Critical patent/JP2012021238A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a carbon fiber bundle which can be more easily stretch-broken than a conventional carbon fiber bundle and can reduce the production cost of a short carbon fiber bundle.SOLUTION: The method for producing a carbon fiber bundle includes: a flameproofing step of flameproofing a polyacrylonitrile-based precursor fiber bundle to obtain a flameproofed fiber bundle; a pre-carbonizing step of pre-carbonizing the flameproofed fiber bundle to obtain a pre-carbonized fiber bundle; and a carbonizing step of carbonizing the pre-carbonized fiber bundle to obtain a carbonized fiber bundle. In the method, a decomposition promoting substance is applied to the flameproofed fiber bundle at regular intervals in a longitudinal direction of the flameproofed fiber bundle after the flameproofing step before the pre-carbonizing step.

Description

本発明は炭素繊維束の製造方法に関する。   The present invention relates to a method for producing a carbon fiber bundle.

繊維配向が制御された繊維強化樹脂の代表的な中間体として、強化用連続繊維束を一方向に引揃えたシート状物に、常温で流動性を示さないマトリックス樹脂を含浸した一方向プリプレグがある。この一方向プリプレグは成形品に要求される性能に従って積層して用いられるが、従来のプリプレグには次のような課題がある。
(1)マトリックス樹脂が常温で流動性を示さないため、完全に層間が密着した積層体を形成することができない。
(2)シート状物が連続繊維束を引揃えたシート状物であるため、前記(1)を回避するために常温で流動性を有する樹脂を含浸させると、バッキングシートの除去又は僅かな外力の存在により連続繊維束が集束してプリプレグにスプリットが生じる。
(3)連続繊維束が一方向に引揃えられているため、長手方向には伸縮せず曲面積層が不可能である。
(4)連続繊維束が集束しやすいため、常温で流動性を示さないマトリックス樹脂を用いても厚さ斑が生じ易い。
As a typical intermediate of fiber reinforced resin with controlled fiber orientation, a unidirectional prepreg impregnated with a matrix resin that does not exhibit fluidity at room temperature in a sheet-like material in which continuous reinforcing fiber bundles are aligned in one direction. is there. This unidirectional prepreg is used by being laminated according to the performance required for the molded product, but the conventional prepreg has the following problems.
(1) Since the matrix resin does not exhibit fluidity at room temperature, it is not possible to form a laminate in which the layers are completely adhered.
(2) Since the sheet-like material is a sheet-like material in which continuous fiber bundles are arranged, if the resin having fluidity at room temperature is impregnated in order to avoid (1), the backing sheet is removed or a slight external force is applied. As a result, the continuous fiber bundle converges and splits occur in the prepreg.
(3) Since the continuous fiber bundles are aligned in one direction, they cannot expand and contract in the longitudinal direction and cannot be curvedly stacked.
(4) Since continuous fiber bundles tend to converge, even if a matrix resin that does not exhibit fluidity at room temperature is used, thickness spots are likely to occur.

一方、FRP用補強材料に用いられる繊維には、長繊維と短繊維とがある。長繊維はその性質を最大限に利用するために一方向に引き揃えられた(配向された)トウ状物又はシート状物として使用される。短繊維は配向の制御が困難であることからランダム配向として、繊維の物性利用率を犠牲にした上で主として賦型性に利点が認められて用いられている。また、前記長繊維と短繊維の長所を両方具備した補強材料として、長繊維トウを牽切し、短繊維が一方向に配向したスライバーが提案されている。   On the other hand, the fibers used for the reinforcing material for FRP include long fibers and short fibers. Long fibers are used as tows or sheets that are aligned (oriented) in one direction to take full advantage of their properties. Since short fibers are difficult to control the orientation, they are used as random orientations, mainly at the advantage of formability after sacrificing the utilization of the physical properties of the fibers. Further, as a reinforcing material having the advantages of both the long fibers and the short fibers, a sliver in which the long fiber tows are checked and the short fibers are oriented in one direction has been proposed.

特許文献1には一方向に配向した強化用短繊維からなるシート状物に、常温で流動性を有する樹脂が含浸されたプリプレグが提案されている。この中で短繊維は、強化用連続繊維束を2対のロール間でドラフトをかけて牽切する、又は強化用連続繊維束を一方向に引揃えたシート状物に樹脂を含浸させプレプリグを作製した後、樹脂を凍結させ、樹脂が凍結した状態で多数の刃で切断して作製されている。   Patent Document 1 proposes a prepreg obtained by impregnating a sheet-like product made of reinforcing short fibers oriented in one direction with a resin having fluidity at room temperature. Among these, the short fibers are prepared by drafting a reinforcing continuous fiber bundle between two pairs of rolls, or impregnating a resin into a sheet-like material in which the reinforcing continuous fiber bundle is aligned in one direction. After the production, the resin is frozen and cut with a large number of blades while the resin is frozen.

また、特許文献2にはピッチ系炭素繊維ロービングに、バックローラとフロントローラとの間に設置されたダメージデバイスでダメージを与え、バックローラとフロントローラとの間でドラフトし牽切後、加撚して紡績糸とする、ピッチ系炭素繊維の紡績方法が提案されている。   Patent Document 2 discloses that the pitch-based carbon fiber roving is damaged by a damage device installed between the back roller and the front roller, drafted between the back roller and the front roller, checked, and twisted. A method of spinning pitch-based carbon fibers, which is used as a spun yarn, has been proposed.

特開平07−118412号公報Japanese Patent Application Laid-Open No. 07-118412 特開平08−92824号公報Japanese Patent Laid-Open No. 08-92824

しかしながら、特許文献1、2に記載された方法では、炭素繊維束を牽切する工程が煩雑であり加工費がかかる。そこで、本発明では従来の炭素繊維束の牽切よりも容易に牽切することができ、短繊維炭素繊維束の製造コストを低減することが可能な炭素繊維束の製造方法を提供することを目的とする。   However, in the methods described in Patent Documents 1 and 2, the process of checking the carbon fiber bundle is complicated and processing costs are required. Accordingly, the present invention provides a method for producing a carbon fiber bundle that can be checked more easily than a conventional carbon fiber bundle and can reduce the production cost of a short fiber carbon fiber bundle. Objective.

本発明に係る炭素繊維束の製造方法は、ポリアクリロニトリル系前駆体繊維束に耐炎化処理を施し耐炎化繊維束とする耐炎化工程と、前記耐炎化繊維束に前炭素化処理を施し前炭素化繊維束とする前炭素化工程と、前記前炭素化繊維束に炭素化処理を施し炭素化繊維束とする炭素化工程と、を含む炭素繊維束の製造方法において、前記耐炎化工程後、前記前炭素化工程前に、前記耐炎化繊維束に対し耐炎化繊維束の長さ方向に一定間隔で分解促進物質を付与する方法である。   The method for producing a carbon fiber bundle according to the present invention includes a flameproofing step in which a polyacrylonitrile-based precursor fiber bundle is subjected to flameproofing treatment to form a flameproofed fiber bundle, and the flameproofed fiber bundle is subjected to precarbonization treatment before carbonization. In the method for producing a carbon fiber bundle, including a pre-carbonization step to make a carbonized fiber bundle, and a carbonization step to carbonize the pre-carbonized fiber bundle to make a carbonized fiber bundle, after the flameproofing step, Before the pre-carbonization step, a decomposition promoting substance is applied to the flame-resistant fiber bundle at regular intervals in the length direction of the flame-resistant fiber bundle.

また、本発明に係る炭素繊維束の製造方法は、ポリアクリロニトリル系前駆体繊維束に耐炎化処理を施し耐炎化繊維束とする耐炎化工程と、前記耐炎化繊維束に前炭素化処理を施し前炭素化繊維束とする前炭素化工程と、前記前炭素化繊維束に炭素化処理を施し炭素化繊維束とする炭素化工程と、前記炭素化繊維束に電解液中で電圧を付与し電解酸化処理を施す表面処理工程と、を含む炭素繊維束の製造方法において、前記表面処理工程において前記炭素化繊維束に対し炭素化繊維束の長さ方向に一定間隔で、前記電解酸化処理の際に付与する電圧より高い電圧を付与する方法である。   The carbon fiber bundle manufacturing method according to the present invention includes a flameproofing step in which a polyacrylonitrile-based precursor fiber bundle is flameproofed to form a flameproofed fiber bundle, and a precarbonization treatment is performed on the flameproofed fiber bundle. A pre-carbonization step for preparing a pre-carbonized fiber bundle, a carbonization step for carbonizing the pre-carbonized fiber bundle to obtain a carbonized fiber bundle, and applying a voltage to the carbonized fiber bundle in an electrolytic solution. A surface treatment step of performing an electrolytic oxidation treatment, wherein the electrolytic oxidation treatment is performed at regular intervals in the length direction of the carbonized fiber bundle with respect to the carbonized fiber bundle in the surface treatment step. This is a method of applying a voltage higher than the voltage applied at the time.

本発明によれば、予め炭素繊維束に一定間隔で欠陥又は傷が付与されているため、従来の炭素繊維束の牽切よりも容易に牽切することができ、短繊維炭素繊維束の製造において製造コストを低くすることができる。   According to the present invention, since defects or scratches are given to the carbon fiber bundle at a predetermined interval in advance, the carbon fiber bundle can be checked more easily than the conventional carbon fiber bundle, and the short fiber carbon fiber bundle can be manufactured. The manufacturing cost can be reduced.

本発明における炭素化繊維束の電解酸化処理の一例を示す模式図である。It is a schematic diagram which shows an example of the electrolytic oxidation process of the carbonized fiber bundle in this invention.

本発明に係る炭素繊維束の製造方法は、ポリアクリロニトリル系前駆体繊維束に耐炎化処理を施し耐炎化繊維束とする耐炎化工程と、前記耐炎化繊維束に前炭素化処理を施し前炭素化繊維束とする前炭素化工程と、前記前炭素化繊維束に炭素化処理を施し炭素化繊維束とする炭素化工程と、を含む炭素繊維束の製造方法において、前記耐炎化工程後、前記前炭素化工程前に、前記耐炎化繊維束に対し耐炎化繊維束の長さ方向に一定間隔で分解促進物質を付与する方法である。   The method for producing a carbon fiber bundle according to the present invention includes a flameproofing step in which a polyacrylonitrile-based precursor fiber bundle is subjected to flameproofing treatment to form a flameproofed fiber bundle, and the flameproofed fiber bundle is subjected to precarbonization treatment before carbonization. In the method for producing a carbon fiber bundle, including a pre-carbonization step to make a carbonized fiber bundle, and a carbonization step to carbonize the pre-carbonized fiber bundle to make a carbonized fiber bundle, after the flameproofing step, Before the pre-carbonization step, a decomposition promoting substance is applied to the flame-resistant fiber bundle at regular intervals in the length direction of the flame-resistant fiber bundle.

前記方法において、耐炎化繊維束に分解促進物質が付与されると、その後の前炭素化工程において繊維束の分解促進物質が付与された部分に欠陥が生じる。分解促進物質は耐炎化繊維束の長さ方向に対し一定間隔で付与されるため、製造される炭素繊維束には一定間隔で欠陥が存在し、該炭素繊維束を牽切した際に容易に牽切でき、簡便に短繊維炭素繊維を製造することができる。   In the above method, when the decomposition promoting substance is applied to the flame resistant fiber bundle, a defect occurs in a portion of the fiber bundle to which the decomposition promoting substance is applied in the subsequent pre-carbonization step. Since the decomposition promoting substance is given at regular intervals in the length direction of the flame-resistant fiber bundle, there are defects at regular intervals in the produced carbon fiber bundle, and it is easy when the carbon fiber bundle is checked. A short fiber carbon fiber can be produced easily.

また、本発明に係る炭素繊維束の製造方法は、ポリアクリロニトリル系前駆体繊維束に耐炎化処理を施し耐炎化繊維束とする耐炎化工程と、前記耐炎化繊維束に前炭素化処理を施し前炭素化繊維束とする前炭素化工程と、前記前炭素化繊維束に炭素化処理を施し炭素化繊維束とする炭素化工程と、前記炭素化繊維束に電解液中で電圧を付与し電解酸化処理を施す表面処理工程と、を含む炭素繊維束の製造方法において、前記表面処理工程において前記炭素化繊維束に対し炭素化繊維束の長さ方向に一定間隔で、前記電解酸化処理の際に付与する電圧より高い電圧を付与する方法である。   The carbon fiber bundle manufacturing method according to the present invention includes a flameproofing step in which a polyacrylonitrile-based precursor fiber bundle is flameproofed to form a flameproofed fiber bundle, and a precarbonization treatment is performed on the flameproofed fiber bundle. A pre-carbonization step for preparing a pre-carbonized fiber bundle, a carbonization step for carbonizing the pre-carbonized fiber bundle to obtain a carbonized fiber bundle, and applying a voltage to the carbonized fiber bundle in an electrolytic solution. A surface treatment step of performing an electrolytic oxidation treatment, wherein the electrolytic oxidation treatment is performed at regular intervals in the length direction of the carbonized fiber bundle with respect to the carbonized fiber bundle in the surface treatment step. This is a method of applying a voltage higher than the voltage applied at the time.

前記方法では、炭素化繊維束への表面処理工程において、炭素化繊維束が電解液中を通過する際に一定間隔で電圧を上昇させることで、一定間隔で炭素化繊維束にダメージを与えることができる。これにより、該炭素繊維束を牽切した際に容易に牽切でき、簡便に短繊維炭素繊維を製造することができる。   In the method, in the surface treatment step for the carbonized fiber bundle, the carbonized fiber bundle is damaged at regular intervals by increasing the voltage at regular intervals when the carbonized fiber bundle passes through the electrolytic solution. Can do. Thereby, when this carbon fiber bundle is checked, it can be checked easily and a short fiber carbon fiber can be manufactured simply.

(ポリアクリロニトリル系前駆体繊維束)
本発明に係るポリアクリロニトリル系(PAN系)前駆体繊維束は、ポリアクリロニトリルの単独重合体又は共重合体を含む紡糸原液を紡糸することで製造することができる。PAN系前駆体繊維束の繊維径としては特に制限されないが、4〜10μmのものを用いることができる。また、繊維束を構成する繊維数についても特に制限されないが、1000〜175000本とすることができる。また、単繊維繊度も特に制限されないが、0.6〜3.0dtexとすることができる。
(Polyacrylonitrile-based precursor fiber bundle)
The polyacrylonitrile-based (PAN-based) precursor fiber bundle according to the present invention can be produced by spinning a spinning dope containing a polyacrylonitrile homopolymer or copolymer. Although it does not restrict | limit especially as a fiber diameter of a PAN-type precursor fiber bundle, A thing of 4-10 micrometers can be used. Moreover, although it does not restrict | limit especially about the number of fibers which comprise a fiber bundle, it can be 1000-175000 pieces. Further, the single fiber fineness is not particularly limited, but can be 0.6 to 3.0 dtex.

(耐炎化工程)
耐炎化工程では、PAN系前駆体繊維束を200〜300℃の酸化性雰囲気中で加熱して耐炎化処理し、耐炎化繊維束を得る。酸化性雰囲気としては、空気、酸素、二酸化窒素等公知の酸化性雰囲気を採用できるが、経済性の面から空気が好ましい。耐炎化処理の時間は、炭素繊維の生産性及び性能を高める観点から30〜120分が好ましい。耐炎化処理の時間を30分以上とすることで耐炎化反応が十分となり、斑を生じにくくなり、また後に行われる炭素化工程で毛羽、束切れを生じにくくなり、結果的に生産性が向上する。一方、耐炎化処理の時間を120分以下とすることで、耐炎化装置を大型化したり耐炎化処理速度を下げたりする必要がなくなり、生産性が向上する。
(Flame resistance process)
In the flameproofing step, the PAN-based precursor fiber bundle is heated in an oxidizing atmosphere at 200 to 300 ° C. to perform flameproofing to obtain a flameproof fiber bundle. As the oxidizing atmosphere, known oxidizing atmospheres such as air, oxygen and nitrogen dioxide can be adopted, but air is preferable from the viewpoint of economy. The flameproofing treatment time is preferably 30 to 120 minutes from the viewpoint of improving the productivity and performance of the carbon fiber. By setting the flameproofing treatment time to 30 minutes or more, the flameproofing reaction becomes sufficient, and it becomes difficult to produce spots, and it becomes difficult to cause fluff and bundle breakage in the subsequent carbonization process, resulting in improved productivity. To do. On the other hand, by setting the flameproofing treatment time to 120 minutes or less, it is not necessary to increase the size of the flameproofing device or reduce the flameproofing treatment speed, thereby improving productivity.

(分解促進物質付与工程)
本発明に係る方法では、前記耐炎化工程終了後、前炭素化工程前に、前記耐炎化繊維束に対し分解促進物質を一定間隔で付与する。
(Degradation promoting substance application process)
In the method according to the present invention, after the completion of the flameproofing step, the decomposition promoting substance is applied to the flameproofed fiber bundle at regular intervals before the precarbonization step.

分解促進物質とは前記耐炎化繊維束と反応し、前炭素化工程及び炭素化工程を施した後に容易に牽切可能となる物質を示す。本発明において分解促進物質は、硫酸カリウム、塩化カリウム、カーボンブラック及び二酸化珪素からなる群から選択される少なくとも1種であることが、得られる炭素繊維をより容易に牽切できる観点から好ましい。   The decomposition promoting substance refers to a substance that reacts with the flameproof fiber bundle and can be easily checked after the pre-carbonization step and the carbonization step. In the present invention, the decomposition promoting substance is preferably at least one selected from the group consisting of potassium sulfate, potassium chloride, carbon black and silicon dioxide, from the viewpoint that the obtained carbon fiber can be checked more easily.

分解促進物質として硫酸カリウム、塩化カリウムを付与した場合には、後述する前炭素化工程において耐炎化繊維が温度300℃以上、1000℃未満の不活性雰囲気中で前炭素化処理される際に、硫酸カリウム、塩化カリウムが溶融する。これにより、一部炭素化された耐炎化繊維中の炭素と反応することで欠陥点を形成する。また、分解促進物質としてカーボンブラック、二酸化珪素を用いた場合には、不活性雰囲気中で前炭素化処理される際、熱エネルギーによって耐炎化された繊維束の環化反応が起こるが、カーボンブラック、二酸化珪素によって該環化反応が阻害されるため欠陥点を形成すると推測される。   When potassium sulfate and potassium chloride are added as decomposition promoting substances, the flameproof fiber is pre-carbonized in an inert atmosphere at a temperature of 300 ° C. or higher and lower than 1000 ° C. in the pre-carbonization step described below. Potassium sulfate and potassium chloride melt. Thereby, a defect point is formed by reacting with carbon in the flameproof fiber partially carbonized. In addition, when carbon black or silicon dioxide is used as a decomposition promoting substance, a cyclization reaction of a fiber bundle that has been made flame resistant by thermal energy occurs when pre-carbonization is performed in an inert atmosphere. It is presumed that defect points are formed because the cyclization reaction is inhibited by silicon dioxide.

耐炎化繊維束に対し分解促進物質を付与する方法としては特に限定されないが、例えば、分解促進物質を耐炎化繊維束に直接付与(接触付与)する方法が挙げられる。また、無機塩を用いる場合には無機塩の水溶液を付与する方法、カーボンブラック、二酸化珪素を用いる場合にはこれらを水に懸濁させて付与する方法等が挙げられる。   The method of applying the decomposition promoting substance to the flame resistant fiber bundle is not particularly limited, and examples thereof include a method of directly applying (contact applying) the decomposition promoting substance to the flame resistant fiber bundle. Moreover, when using an inorganic salt, the method of providing the aqueous solution of an inorganic salt, The method of suspending these in water, and using carbon black and silicon dioxide, etc. are mentioned.

耐炎化繊維束に対する分解促進物質の付与量は10〜100質量%が好ましい。10質量%未満の場合は耐炎化繊維束との反応性が低い場合がある。一方、100質量%を超える場合には耐炎化繊維束と著しく反応するため耐炎化繊維束が完全に切断され、工程通過性が低下する場合がある。耐炎化繊維束に分解促進物質を付与する際の耐炎化繊維束長さ方向の間隔としては、25〜500mmの間隔で付与することが好ましい。   The amount of the decomposition promoting substance applied to the flame resistant fiber bundle is preferably 10 to 100% by mass. When the amount is less than 10% by mass, the reactivity with the flameproof fiber bundle may be low. On the other hand, when it exceeds 100% by mass, the flame-resistant fiber bundle reacts remarkably, so that the flame-resistant fiber bundle is completely cut and the process passability may be lowered. As an interval in the flame resistant fiber bundle length direction when applying the decomposition promoting substance to the flame resistant fiber bundle, it is preferable to apply at an interval of 25 to 500 mm.

なお、耐炎化工程前、或いは炭素化工程以降に分解促進物質を付与しても炭素繊維への牽切効果はなく、目的の短繊維炭素繊維を製造することはできない。また、短繊維炭素繊維を製造するために、耐炎化工程中に耐炎化繊維束に傷を付け欠陥点を生じさせる等の加工を行うことは、耐炎化繊維束にダメージを大きく与えるため安全上問題となる場合があり、工程を停止することになる場合もあるため好ましくない。   In addition, even if the decomposition promoting substance is added before the flameproofing process or after the carbonization process, there is no check effect on the carbon fiber, and the target short fiber carbon fiber cannot be manufactured. In addition, in order to produce short carbon fibers, it is important to perform processing such as scratching the flame-resistant fiber bundle during the flame-proofing process to cause defect points. This may be a problem and is not preferable because the process may be stopped.

(前炭素化工程)
前炭素化工程では、前記耐炎化繊維束を第1の炭素化炉に投入して前炭素化処理し、前炭素化繊維束を得る。第1の炭素化炉内には温度が300℃以上、1000℃未満の不活性雰囲気が循環しており、耐炎化処理されたPAN系前駆体繊維束は、前記不活性雰囲気中を走行する間に前炭素化処理される。なお、第1の炭素化炉内を循環する不活性雰囲気の流れは、走行する被処理繊維に対して平行方向でも垂直方向でもよく、特に限定されない。不活性雰囲気としては、窒素、アルゴン、ヘリウム等公知の不活性雰囲気を採用できるが、経済性の面から窒素が好ましい。前炭素化工程における前炭素化処理時間としては、0.5〜3分であることが好ましい。
(Pre-carbonization process)
In the pre-carbonization step, the flame-resistant fiber bundle is put into a first carbonization furnace and pre-carbonized to obtain a pre-carbonized fiber bundle. An inert atmosphere having a temperature of 300 ° C. or more and less than 1000 ° C. is circulated in the first carbonization furnace, and the PAN-based precursor fiber bundle subjected to the flame resistance treatment travels in the inert atmosphere. Pre-carbonized. In addition, the flow of the inert atmosphere which circulates in the 1st carbonization furnace may be a parallel direction or a perpendicular direction with respect to the to-be-processed fiber, and is not specifically limited. As the inert atmosphere, a known inert atmosphere such as nitrogen, argon, or helium can be adopted, but nitrogen is preferable from the viewpoint of economy. The precarbonization treatment time in the precarbonization step is preferably 0.5 to 3 minutes.

(炭素化工程)
炭素化工程では、前記前炭素化繊維束を第2の炭素化炉に投入して炭素化処理し、炭素化繊維束を得る。第2の炭素化炉内には最高温度が1000℃以上、3000℃以下の不活性雰囲気が循環しており、前炭素化繊維束は該不活性雰囲気中を走行する間に炭素化処理される。なお、第2の炭素化炉内を循環する不活性雰囲気の流れは、走行する被処理繊維に対して平行方向でも垂直方向でもよく、特に限定されない。不活性雰囲気としては、先に例示した公知の不活性雰囲気の中から選択して用いることができるが、経済性の面から窒素が好ましい。炭素化工程における炭素化処理時間としては、0.5〜3分であることが好ましい。
(Carbonization process)
In the carbonization step, the pre-carbonized fiber bundle is put into a second carbonization furnace and carbonized to obtain a carbonized fiber bundle. An inert atmosphere having a maximum temperature of 1000 ° C. or higher and 3000 ° C. or lower circulates in the second carbonization furnace, and the pre-carbonized fiber bundle is carbonized while traveling in the inert atmosphere. . In addition, the flow of the inert atmosphere circulating in the second carbonization furnace may be parallel or perpendicular to the traveling fiber to be processed, and is not particularly limited. The inert atmosphere can be selected from the known inert atmospheres exemplified above, but nitrogen is preferable from the viewpoint of economy. The carbonization treatment time in the carbonization step is preferably 0.5 to 3 minutes.

(表面処理工程)
分解促進物質付与工程が行われ、前炭素化工程、炭素化工程が行われた前記炭素化繊維束は、後述するサイジング剤付与工程の前に表面処理が行われても良い。例えば、該炭素化繊維束に対し電解液中で電解酸化処理を施したり、気相又は液相での酸化処理を施したりすることによって、複合材料における炭素繊維とマトリックス樹脂との親和性や接着性を向上させることが好ましい。この中でも表面処理として電解液中で電解酸化処理を行うことがより好ましい。
(Surface treatment process)
The carbonized fiber bundle that has been subjected to the decomposition promoting substance application step and subjected to the pre-carbonization step and the carbonization step may be subjected to a surface treatment before the sizing agent application step described later. For example, by subjecting the carbonized fiber bundle to electrolytic oxidation treatment in an electrolytic solution or oxidation treatment in a gas phase or a liquid phase, the affinity and adhesion between the carbon fiber and the matrix resin in the composite material It is preferable to improve the property. Among these, it is more preferable to perform electrolytic oxidation treatment in the electrolytic solution as the surface treatment.

ここで、図1を用いて炭素化繊維束の電解酸化処理の一例について説明する。図1に示す電解酸化装置1は、炭素化繊維束21の走行方向に沿って、電解液が充填された3つの電解槽22a、22b、22cが直列に設置されている。この3つの電解槽のうち、中央の電解槽22bは中に陰極23が配されており、陰極槽となっている。また、電解槽22bの上流側及び下流側の電解槽22a、22cは中に陽極24、25がそれぞれ配されており、陽極槽となっている。陽極24、25と陰極23とは直流電源26に接続されている。さらに、電解槽22aの上流側、電解槽22cの下流側には、それぞれ炭素化繊維束21、電解酸化処理された炭素繊維束28を搬送する搬送ロール27が設置されている。   Here, an example of the electrolytic oxidation treatment of the carbonized fiber bundle will be described with reference to FIG. In the electrolytic oxidation apparatus 1 shown in FIG. 1, three electrolytic tanks 22 a, 22 b, 22 c filled with an electrolytic solution are installed in series along the traveling direction of the carbonized fiber bundle 21. Of these three electrolytic cells, the central electrolytic cell 22b has a cathode 23 disposed therein, which is a cathode cell. Moreover, the anodes 24 and 25 are each arrange | positioned in the electrolytic cell 22a, 22c of the upstream and downstream of the electrolytic cell 22b, and it is an anode cell. The anodes 24 and 25 and the cathode 23 are connected to a DC power source 26. Further, on the upstream side of the electrolytic cell 22a and the downstream side of the electrolytic cell 22c, conveyance rolls 27 for conveying the carbonized fiber bundle 21 and the carbon fiber bundle 28 subjected to electrolytic oxidation treatment are installed.

炭素化繊維束21は、搬送ロール27により上流側の電解槽から順に、すなわち電解槽22a、22b、22cの順に導かれて、各電解槽において電解液の液面に接触しながら走行する。炭素化繊維束21は、陽極槽である電解槽22aにおいて電解液の液面に接触しながら通過するときに、電解液を介して間接的に電気が付与される。そして、陰極槽である電解槽22bに導かれて電解液の液面に接触しながら走行する。電解槽22bを走行の際、炭素化繊維束21は陽極として作用し、炭素化繊維束21自身には電解酸化処理が施される。すなわち、電解槽22bにおいて電解酸化処理が行われる。その後、陽極槽である電解槽22cを通過し、電解酸化処理された炭素繊維束28が得られる。   The carbonized fiber bundle 21 is guided in order from the upstream electrolytic bath by the transport roll 27, that is, in the order of the electrolytic baths 22a, 22b, and 22c, and travels while contacting the liquid surface of the electrolytic solution in each electrolytic bath. When the carbonized fiber bundle 21 passes through the electrolytic cell 22a which is an anode cell while contacting the liquid surface of the electrolytic solution, electricity is indirectly applied through the electrolytic solution. And it guide | induces to the electrolytic cell 22b which is a cathode cell, and it drive | works, contacting the liquid level of electrolyte solution. When traveling through the electrolytic cell 22b, the carbonized fiber bundle 21 acts as an anode, and the carbonized fiber bundle 21 itself is subjected to electrolytic oxidation. That is, the electrolytic oxidation process is performed in the electrolytic bath 22b. Thereafter, it passes through the electrolytic cell 22c, which is an anode cell, and the carbon fiber bundle 28 subjected to electrolytic oxidation treatment is obtained.

前記電解液の種類は特に限定されず、公知の電解液を用いることができる。炭素化繊維束21に付与される電圧としては、1V以上、24V未満であることが好ましい。また、炭素化繊維束21に通電される電気量としては、1C/g以上、50C/g未満であることが好ましい。   The kind of the electrolytic solution is not particularly limited, and a known electrolytic solution can be used. The voltage applied to the carbonized fiber bundle 21 is preferably 1 V or more and less than 24 V. Further, the amount of electricity supplied to the carbonized fiber bundle 21 is preferably 1 C / g or more and less than 50 C / g.

また、本発明に係る別の方法としては、前記分解促進物質付与工程を行う代わりに、前記電解液中で電解酸化処理を行う表面処理工程において、炭素化繊維束の長さ方向に対し一定間隔で、前記電解酸化処理の際に付与する電圧より高い電圧を付与する。一定間隔に電解酸化処理の際に付与する電圧より高い電圧(以下、高電圧と示す場合有)を付与することにより一定間隔で炭素化繊維束に対してダメージを与え、容易に短繊維炭素繊維を製造することが可能になる。一定間隔で付与する高電圧は、24V以上、40V以下であることが好ましい。該高電圧がこの範囲であると、炭素化繊維束にダメージを与えるための処理時間を適正に設定することが可能となる。また、該高電圧付与時に炭素化繊維束に通電する電気量としては、50〜100C/gであることが好ましい。前記高電圧を付与する際の炭素化繊維束長さ方向の間隔としては、25〜500mmの間隔で付与することが好ましい。なお、前述した分解促進物質付与工程の行われた炭素化繊維束に対し、表面処理工程において更に前記一定間隔で高電圧を付与する処理を行ってもよい。   Further, as another method according to the present invention, instead of performing the decomposition promoting substance application step, in the surface treatment step of performing electrolytic oxidation treatment in the electrolytic solution, a constant interval with respect to the length direction of the carbonized fiber bundle Thus, a voltage higher than the voltage applied during the electrolytic oxidation treatment is applied. By applying a voltage higher than the voltage applied at the time of electrolytic oxidation treatment at regular intervals (hereinafter sometimes referred to as high voltage), the carbonized fiber bundle is damaged at regular intervals, and short fiber carbon fibers are easily obtained. Can be manufactured. The high voltage applied at regular intervals is preferably 24 V or more and 40 V or less. When the high voltage is within this range, it is possible to appropriately set the processing time for damaging the carbonized fiber bundle. Moreover, it is preferable that it is 50-100 C / g as an electric quantity which energizes a carbonization fiber bundle at the time of this high voltage provision. As an interval in the carbonized fiber bundle length direction when applying the high voltage, it is preferable to apply at an interval of 25 to 500 mm. In addition, you may perform the process which provides a high voltage with the said fixed space | interval further in a surface treatment process with respect to the carbonized fiber bundle in which the decomposition promotion substance provision process mentioned above was performed.

(サイジング剤付与工程)
サイジング剤付与工程では、サイジング剤付与処理と乾燥処理とを行う。サイジング剤付与処理の方法は特に限定されず、炭素化繊維束に所望のサイジング剤を付与することができればよい。付与する方法としては、例えばローラーサイジング法、ローラー浸漬法、スプレー法等を挙げることができる。
(Sizing agent application process)
In the sizing agent application step, a sizing agent application process and a drying process are performed. The method for applying the sizing agent is not particularly limited as long as a desired sizing agent can be applied to the carbonized fiber bundle. Examples of the imparting method include a roller sizing method, a roller dipping method, and a spray method.

サイジング剤付与処理において炭素化繊維束に付与するサイジング処理液中のサイジング剤の割合は特に限定されないが、0.2〜20質量%が好ましく、3〜10質量%がより好ましい。サイジング処理液中のサイジング剤の割合を0.2質量%以上とすることで、炭素繊維に所望する機能を充分に付与することができる。また、サイジング処理液中のサイジング剤の割合を20質量%以下とすることで、サイジング剤の付着量が適切なものとなり、複合材料として利用する際にマトリックス樹脂の含浸性を良好にすることができる。   The ratio of the sizing agent in the sizing treatment liquid to be applied to the carbonized fiber bundle in the sizing agent application treatment is not particularly limited, but is preferably 0.2 to 20% by mass, and more preferably 3 to 10% by mass. By setting the ratio of the sizing agent in the sizing treatment liquid to 0.2% by mass or more, a desired function can be sufficiently imparted to the carbon fiber. Further, by setting the ratio of the sizing agent in the sizing treatment liquid to 20% by mass or less, the amount of the sizing agent attached becomes appropriate, and when used as a composite material, the impregnation property of the matrix resin can be improved. it can.

サイジング処理液に用いる溶媒又は分散媒は特に限定されないが、取り扱い性及び安全性の面から水を用いることが好ましい。サイジング処理液に含まれるサイジング剤としては、特に限定されないが、例えば、エポキシ樹脂、エポキシ変性ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ウレタン変性エポキシ樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、ポリエーテルサルフォン樹脂等が挙げられる。これらは1種のみを用いてもよく、2種以上を併用してもよい。   Although the solvent or dispersion medium used for the sizing treatment liquid is not particularly limited, it is preferable to use water from the viewpoints of handleability and safety. The sizing agent contained in the sizing treatment liquid is not particularly limited. For example, epoxy resin, epoxy-modified polyurethane resin, polyester resin, phenol resin, polyamide resin, polyurethane resin, polycarbonate resin, polyetherimide resin, polyamideimide resin, Examples include polyimide resins, bismaleimide resins, urethane-modified epoxy resins, polyvinyl alcohol resins, polyvinyl pyrrolidone resins, and polyether sulfone resins. These may use only 1 type and may use 2 or more types together.

炭素繊維束に対するサイジング剤の付着量は、0.3〜5質量%が好ましく、0.4〜3質量%がより好ましい。サイジング剤の付着量を0.3質量%以上とすることにより、炭素繊維に所望する機能を十分に付与することができる。また、サイジング剤の付着量を5質量%以下とすることにより、複合材料として利用する際にマトリックス樹脂の含浸性を良好にすることができる。   0.3-5 mass% is preferable and, as for the adhesion amount of the sizing agent with respect to a carbon fiber bundle, 0.4-3 mass% is more preferable. By setting the adhesion amount of the sizing agent to 0.3% by mass or more, a desired function can be sufficiently imparted to the carbon fiber. Moreover, when the amount of the sizing agent attached is 5% by mass or less, the impregnation property of the matrix resin can be improved when it is used as a composite material.

サイジング剤付与処理後の乾燥処理では、サイジング処理液の溶媒又は分散媒を乾燥除去する。乾燥処理の方法は特に限定されず、例えば、蒸気を熱源とするホットロールに接触させて乾燥させる方法や、熱風が循環している装置内で乾燥させる方法が挙げられる。乾燥条件は、120〜300℃の温度で、10秒〜10分間の範囲が好ましく、より好ましくは150〜250℃の温度で、30秒〜4分間の範囲である。乾燥温度を120℃以上とすることで、溶媒を十分に除去することができる。また、乾燥温度を300℃以下とすることで、サイジング剤付与処理された炭素繊維束の品質を維持することができる。   In the drying process after the sizing agent application process, the solvent or dispersion medium of the sizing process liquid is removed by drying. The method of the drying treatment is not particularly limited, and examples thereof include a method of drying by contacting with a hot roll using steam as a heat source, and a method of drying in an apparatus in which hot air circulates. The drying conditions are preferably in the range of 10 to 10 minutes at a temperature of 120 to 300 ° C, more preferably in the range of 30 to 4 minutes at a temperature of 150 to 250 ° C. By setting the drying temperature to 120 ° C. or higher, the solvent can be sufficiently removed. Moreover, the quality of the carbon fiber bundle by which sizing agent provision process was carried out can be maintained by making drying temperature into 300 degrees C or less.

以上の工程により炭素繊維束を製造することができる。該炭素繊維束は容易に牽切することができ、簡便に短繊維炭素繊維を製造することができる。なお、本発明において、長繊維とは、長さが500mm以上の繊維のことであり、短繊維とは長さが500mm未満の繊維のことである。本発明に係る方法において、牽切後の炭素繊維束の繊維長は通常25〜500mm程度である。該繊維長は、補強材料の使用目的により適宜選定される。   A carbon fiber bundle can be manufactured by the above process. The carbon fiber bundle can be easily checked and a short fiber carbon fiber can be easily produced. In the present invention, the long fiber is a fiber having a length of 500 mm or more, and the short fiber is a fiber having a length of less than 500 mm. In the method according to the present invention, the fiber length of the carbon fiber bundle after the check-out is usually about 25 to 500 mm. The fiber length is appropriately selected depending on the purpose of use of the reinforcing material.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらによって限定されるものではない。なお炭素繊維のストランド強度及びストランド弾性率の測定は、JIS R−7601に準拠して炭素繊維にエポキシ樹脂を含浸させたエポキシ樹脂含浸ストランドの引張物性を測定することで行った。また、巻き取り時の張力は、ボビンに巻かれる直前の炭素繊維束にかかる張力をテンションメータで測定し、最大値と最小値から求めた平均値とした。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited by these. The strand strength and strand elastic modulus of the carbon fiber were measured by measuring the tensile properties of the epoxy resin-impregnated strand obtained by impregnating the carbon fiber with the epoxy resin according to JIS R-7601. The tension at the time of winding was an average value obtained from the maximum value and the minimum value by measuring the tension applied to the carbon fiber bundle immediately before being wound around the bobbin with a tension meter.

(実施例1)
単繊維繊度1.2dtex、フィラメント数15000本のPAN系前駆体繊維束を耐炎化処理温度220〜270℃で56分、伸長率−6%で連続的に耐炎化処理を行い、密度1.35g/cm3の耐炎化繊維束を得た。
Example 1
A PAN-based precursor fiber bundle having a single fiber fineness of 1.2 dtex and a filament number of 15,000 is subjected to a flameproofing treatment at a flameproofing treatment temperature of 220 to 270 ° C. for 56 minutes and an elongation rate of −6%, and a density of 1.35 g. A flame resistant fiber bundle of / cm 3 was obtained.

前記耐炎化工程終了後、前炭素化工程に至るまでに耐炎化繊維束に対して粒子径100〜500nmの硫酸カリウムを10秒毎に耐炎化繊維束1g当たり0.2g付与した。この時の耐炎化繊維束の処理速度は3.0m/minであり、耐炎化繊維束の長さ方向に500mm間隔で硫酸カリウムが付与された。なお、硫酸カリウムの耐炎化繊維束への付与は一定間隔で硫酸カリウムに耐炎化繊維束を接触付与させることで行った。   After the completion of the flameproofing step, 0.2 g of potassium sulfate having a particle diameter of 100 to 500 nm was applied to the flameproofed fiber bundle every 10 seconds until the precarbonization step. The processing speed of the flame-resistant fiber bundle at this time was 3.0 m / min, and potassium sulfate was applied at intervals of 500 mm in the length direction of the flame-resistant fiber bundle. The application of potassium sulfate to the flame resistant fiber bundle was performed by bringing the flame resistant fiber bundle into contact with potassium sulfate at regular intervals.

続いて、300〜700℃の温度分布を有する窒素雰囲気からなる炭素化炉中にて、該耐炎化繊維束に対し伸長率+3%、炭素繊維束1束当たり1.0kgの張力を付与し、1.4分間前炭素化処理を行った。これにより前炭素化繊維束を作製した。   Subsequently, in a carbonization furnace composed of a nitrogen atmosphere having a temperature distribution of 300 to 700 ° C., an elongation rate of + 3% is applied to the flameproof fiber bundle, and a tension of 1.0 kg per bundle of carbon fiber bundles is applied, Pre-carbonization treatment was performed for 1.4 minutes. This produced a pre-carbonized fiber bundle.

さらに、最高温度1250℃、窒素雰囲気の炭素化炉中にて、前炭素化繊維束に対し伸長率−3.8%、炭素繊維束1束当たり1.5kgの張力を付与し、1.4分間炭素化処理を施した。これにより炭素化繊維束を作製した。   Further, in a carbonization furnace having a maximum temperature of 1250 ° C. and a nitrogen atmosphere, an elongation of −3.8% was applied to the pre-carbonized fiber bundle, and a tension of 1.5 kg per carbon fiber bundle was applied. Carbonization treatment was performed for a minute. This produced a carbonized fiber bundle.

引き続き、図1に示す電解酸化装置を用いて8質量%硝酸水溶液中に前記炭素化繊維束を通過させ、該炭素化繊維束に8.4Vの電圧を付与し18C/gの電気量で通電して表面処理を施した。   Subsequently, the carbonized fiber bundle is passed through an 8% by mass nitric acid aqueous solution using the electrolytic oxidation apparatus shown in FIG. 1, and a voltage of 8.4 V is applied to the carbonized fiber bundle to conduct electricity at an electric quantity of 18 C / g. Then, surface treatment was performed.

さらに、サイジング剤を付与し、巻取機(製品名:KTW型、神津製作所製)で巻き取り、炭素繊維束を5000m得た。巻取時の張力は、巻始めは0.5kgであり、巻終りは0.4kgであった。   Further, a sizing agent was applied and wound up by a winder (product name: KTW type, manufactured by Kozu Seisakusho) to obtain 5000 m of carbon fiber bundles. The tension at the time of winding was 0.5 kg at the start of winding and 0.4 kg at the end of winding.

得られた炭素繊維束のうち、硫酸カリウムを付与しなかった部分のストランド強度は4900MPa、ストランド弾性率は240GPaであった。該炭素繊維束を一方向に引揃えたシート状物に樹脂を含浸させるプリプレグを作製する工程で用いたところ、2対のロール間でドラフトをかける、あるいは切断刃物等を用いなくとも該炭素繊維束を容易に牽切することができ、平均繊維長500mmの炭素繊維束を含むプリプレグを製造することができた。   Of the obtained carbon fiber bundle, the strand strength of the portion to which potassium sulfate was not applied was 4900 MPa, and the strand elastic modulus was 240 GPa. When the carbon fiber bundle is used in the process of producing a prepreg in which a sheet-like material in which the carbon fiber bundles are aligned in one direction is impregnated with the resin, the carbon fiber is used without drafting between two pairs of rolls or without using a cutting blade or the like. The bundle could be easily checked and a prepreg containing a carbon fiber bundle having an average fiber length of 500 mm could be produced.

(実施例2)
耐炎化工程後、前炭素化工程前に耐炎化繊維束に対して粒子径100〜500nmの塩化カリウムを10秒毎に耐炎化繊維束1g当たり0.2g付与した以外は実施例1と同様にして炭素繊維束を製造した。得られた炭素繊維束のうち、塩化カリウムを付与しなかった部分のストランド強度は4900MPa、ストランド弾性率は240GPaであった。該炭素繊維束を一方向に引揃えたシート状物に樹脂を含浸させるプリプレグを作製する工程で用いたところ、2対のロール間でドラフトをかける、あるいは切断刃物等を用いなくとも該炭素繊維束を容易に牽切することができ、平均繊維長500mmの炭素繊維束を含むプリプレグを製造することができた。
(Example 2)
After the flameproofing step, the same as in Example 1 except that 0.2 g of potassium chloride having a particle size of 100 to 500 nm was applied to the flameproofed fiber bundle every 10 seconds before the precarbonization step. Thus, a carbon fiber bundle was manufactured. Of the obtained carbon fiber bundle, the strand strength of the portion to which potassium chloride was not applied was 4900 MPa, and the strand elastic modulus was 240 GPa. When the carbon fiber bundle is used in the process of producing a prepreg in which a sheet-like material in which the carbon fiber bundles are aligned in one direction is impregnated with the resin, the carbon fiber is used without drafting between two pairs of rolls or without using a cutting blade or the like. The bundle could be easily checked and a prepreg containing a carbon fiber bundle having an average fiber length of 500 mm could be produced.

(実施例3)
耐炎化工程後、前炭素化工程前に耐炎化繊維束に対して粒子径0.022nm以下のカーボンブラック(商品名:MA−100、三菱化学製)を耐炎化繊維束1g当たり0.2g付与した以外は実施例1と同様にして炭素繊維束を製造した。得られた炭素繊維束のうち、カーボンブラックを付与しなかった部分のストランド強度は4900MPa、ストランド弾性率は240GPaであった。該炭素繊維束を一方向に引揃えたシート状物に樹脂を含浸させるプリプレグを作製する工程で用いたところ、2対のロール間でドラフトをかける、あるいは切断刃物等を用いなくとも該炭素繊維束を容易に牽切することができ、平均繊維長500mmの炭素繊維束を含むプリプレグを製造することができた。
(Example 3)
After the flameproofing step, before the precarbonization step, 0.2 g of carbon black (trade name: MA-100, manufactured by Mitsubishi Chemical) having a particle diameter of 0.022 nm or less is imparted to the flameproofing fiber bundle per 1 g of the flameproofing fiber bundle. A carbon fiber bundle was produced in the same manner as in Example 1 except that. Of the obtained carbon fiber bundle, the strand strength of the portion not imparted with carbon black was 4900 MPa, and the strand elastic modulus was 240 GPa. When the carbon fiber bundle is used in the process of producing a prepreg in which a sheet-like material in which the carbon fiber bundles are aligned in one direction is impregnated with the resin, the carbon fiber is used without drafting between two pairs of rolls or without using a cutting blade or the like. The bundle could be easily checked and a prepreg containing a carbon fiber bundle having an average fiber length of 500 mm could be produced.

(実施例4)
耐炎化工程後、前炭素化工程前に耐炎化繊維束に対して粒子径100〜500nmの二酸化珪素を耐炎化繊維束1g当たり0.2g付与した以外は実施例1と同様にして炭素繊維束を製造した。得られた炭素繊維束のうち、二酸化珪素を付与しなかった部分のストランド強度は4900MPa、ストランド弾性率は240GPaであった。該炭素繊維束を一方向に引揃えたシート状物に樹脂を含浸させるプリプレグを作製する工程で用いたところ、2対のロール間でドラフトをかける、あるいは切断刃物等を用いなくとも該炭素繊維束を容易に牽切することができ、平均繊維長500mmの炭素繊維束を含むプリプレグを製造することができた。
Example 4
After the flameproofing step, the carbon fiber bundle was obtained in the same manner as in Example 1 except that 0.2 g of silicon dioxide having a particle diameter of 100 to 500 nm per 1 g of the flameproofed fiber bundle was applied to the flameproofed fiber bundle before the precarbonization step. Manufactured. Of the obtained carbon fiber bundle, the strand strength of the portion to which silicon dioxide was not applied was 4900 MPa, and the strand elastic modulus was 240 GPa. When the carbon fiber bundle is used in the process of producing a prepreg in which a sheet-like material in which the carbon fiber bundles are aligned in one direction is impregnated with the resin, the carbon fiber is used without drafting between two pairs of rolls or without using a cutting blade or the like. The bundle could be easily checked and a prepreg containing a carbon fiber bundle having an average fiber length of 500 mm could be produced.

(実施例5)
耐炎化繊維束への硫酸カリウムの付与を行わなかったこと以外は実施例1と同様に炭素化繊維束を作製した。図1に示す電解酸化装置を用いて8質量%硝酸水溶液中に該炭素化繊維束を通過させ、該炭素化繊維束に8.4Vの電圧を付与し、18C/gの電気量で通電して表面処理を施した。この表面処理工程において、10秒毎に電気量を86C/g、電圧を40Vまで上げた。この時の炭素化繊維束の表面処理速度は3.0m/minであり、炭素化繊維束の長さ方向に500mm間隔で、前記高電圧が付与された。その後、実施例1と同様にサイジング剤付与工程を経て巻取機で巻き取り、炭素繊維束を5000m得た。得られた炭素繊維束のうち、電圧を40Vに上げなかった部分の炭素繊維束のストランド強度は5000MPa、ストランド弾性率は242GPaであった。該炭素繊維束を一方向に引揃えたシート状物に樹脂を含浸させるプリプレグを作製する工程で用いたところ、2対のロール間でドラフトをかける、あるいは切断刃物等を用いなくとも該炭素繊維束を容易に牽切することができ、平均繊維長500mmの炭素繊維束を含むプリプレグを製造することができた。
(Example 5)
A carbonized fiber bundle was produced in the same manner as in Example 1 except that potassium sulfate was not applied to the flame resistant fiber bundle. The carbonized fiber bundle is passed through an 8% by mass nitric acid aqueous solution using the electrolytic oxidation apparatus shown in FIG. 1, a voltage of 8.4 V is applied to the carbonized fiber bundle, and an electric current of 18 C / g is applied. Surface treatment. In this surface treatment step, the amount of electricity was increased to 86 C / g and the voltage to 40 V every 10 seconds. The surface treatment speed of the carbonized fiber bundle at this time was 3.0 m / min, and the high voltage was applied at intervals of 500 mm in the length direction of the carbonized fiber bundle. Then, it wound up with the winder through the sizing agent provision process similarly to Example 1, and obtained 5000 m of carbon fiber bundles. Of the obtained carbon fiber bundle, the strand strength of the carbon fiber bundle at the portion where the voltage was not raised to 40 V was 5000 MPa, and the strand elastic modulus was 242 GPa. When the carbon fiber bundle is used in the process of producing a prepreg in which a sheet-like material in which the carbon fiber bundles are aligned in one direction is impregnated with the resin, the carbon fiber is used without drafting between two pairs of rolls or without using a cutting blade or the like. The bundle could be easily checked and a prepreg containing a carbon fiber bundle having an average fiber length of 500 mm could be produced.

(比較例1)
耐炎化工程後、前炭素化工程前に耐炎化繊維束に対して粒子径100〜500nmの硫酸カルシウムを10秒後毎に耐炎化繊維束1g当たり0.2g付与した以外は実施例1と同様にして炭素繊維束を製造した。得られた炭素繊維束のうち、硫酸カルシウムを付与しなかった部分のストランド強度は5000MPa、ストランド弾性率は243GPaであった。該炭素繊維束を一方向に引揃えたシート状物に樹脂を含浸させるプリプレグを作製する工程で用いたところ、該炭素繊維束を牽切できず、短繊維炭素繊維束を含むプリプレグを製造することができなかった。
(Comparative Example 1)
After the flameproofing step, the same as in Example 1 except that 0.2 g of calcium sulfate having a particle diameter of 100 to 500 nm was applied to the flameproofed fiber bundle every 10 seconds after the flameproofing fiber bundle per 10 g of the flameproofed fiber bundle. Thus, a carbon fiber bundle was manufactured. Of the obtained carbon fiber bundle, the strand strength of the portion to which calcium sulfate was not applied was 5000 MPa, and the strand elastic modulus was 243 GPa. When used in the process of producing a prepreg in which a resin is impregnated with a sheet-like material in which the carbon fiber bundles are aligned in one direction, the carbon fiber bundles cannot be checked, and a prepreg containing short fiber carbon fiber bundles is produced. I couldn't.

(比較例2)
耐炎化工程後、前炭素化工程前に耐炎化繊維束に対して粒子径100〜500nmの硫酸アンモニウムを10秒後毎に耐炎化繊維束1g当たり0.2g付与した以外は実施例1と同様にして炭素繊維束を製造した。得られた炭素繊維束のうち、硫酸アンモニウムを付与しなかった部分のストランド強度は5000MPa、ストランド弾性率は245GPaであった。該炭素繊維束を一方向に引揃えたシート状物に樹脂を含浸させるプリプレグを作製する工程で用いたところ、該炭素繊維束を牽切できず、短繊維炭素繊維束を含むプリプレグを製造することができなかった。
(Comparative Example 2)
After the flameproofing step, the same as in Example 1 except that 0.2 g of ammonium sulfate having a particle diameter of 100 to 500 nm was added to the flameproofed fiber bundle every 10 seconds after the flameproofing fiber bundle per 10 g of the flameproofed fiber bundle. Thus, a carbon fiber bundle was manufactured. Of the obtained carbon fiber bundle, the strand strength of the portion not provided with ammonium sulfate was 5000 MPa, and the strand elastic modulus was 245 GPa. When used in the process of producing a prepreg in which a resin is impregnated with a sheet-like material in which the carbon fiber bundles are aligned in one direction, the carbon fiber bundles cannot be checked, and a prepreg containing short fiber carbon fiber bundles is produced. I couldn't.

(比較例3)
耐炎化工程後、前炭素化工程前に耐炎化繊維束に対して粒子径100〜500nmの硫酸アルミニウムを10秒後毎に耐炎化繊維束1g当たり0.2g付与した以外は実施例1と同様にして炭素繊維束を製造した。得られた炭素繊維束のうち、硫酸アルミニウムを付与しなかった部分のストランド強度は5050MPa、ストランド弾性率は241GPaであった。該炭素繊維束を一方向に引揃えたシート状物に樹脂を含浸させるプリプレグを作製する工程で用いたところ、該炭素繊維束を牽切できず、短繊維炭素繊維束を含むプリプレグを製造することができなかった。
(Comparative Example 3)
After the flameproofing step, the same as in Example 1 except that 0.2 g of aluminum sulfate having a particle diameter of 100 to 500 nm was added to the flameproofed fiber bundle every 10 seconds before the precarbonization step per 10 g of the flameproofed fiber bundle. Thus, a carbon fiber bundle was manufactured. Of the obtained carbon fiber bundle, the strand strength of the portion to which aluminum sulfate was not applied was 5050 MPa, and the strand elastic modulus was 241 GPa. When used in the process of producing a prepreg in which a resin is impregnated with a sheet-like material in which the carbon fiber bundles are aligned in one direction, the carbon fiber bundles cannot be checked, and a prepreg containing short fiber carbon fiber bundles is produced. I couldn't.

(比較例4)
耐炎化工程後、前炭素化工程前に耐炎化繊維束に対して粒子径100〜500nmの硫酸鉄を10秒後毎に耐炎化繊維束1g当たり0.2g付与した以外は実施例1と同様にして炭素繊維束を製造した。得られた炭素繊維束のうち、硫酸鉄を付与しなかった部分のストランド強度は5020MPa、ストランド弾性率は241GPaであった。該炭素繊維束を一方向に引揃えたシート状物に樹脂を含浸させるプリプレグを作製する工程で用いたところ、該炭素繊維束を牽切できず、短繊維炭素繊維束を含むプリプレグを製造することができなかった。
(Comparative Example 4)
After the flameproofing step, the same as in Example 1 except that 0.2 g of iron sulfate having a particle size of 100 to 500 nm was applied to the flameproofed fiber bundle every 10 seconds after the flameproofing fiber bundle per 10 g of the flameproofed fiber bundle. Thus, a carbon fiber bundle was manufactured. Of the obtained carbon fiber bundle, the strand strength of the portion to which iron sulfate was not applied was 5020 MPa, and the strand elastic modulus was 241 GPa. When used in the process of producing a prepreg in which a resin is impregnated with a sheet-like material in which the carbon fiber bundles are aligned in one direction, the carbon fiber bundles cannot be checked, and a prepreg containing short fiber carbon fiber bundles is produced. I couldn't.

(比較例5)
単繊維繊度1.2dtex、フィラメント数15000本のPAN系前駆体繊維束に、粒子径100〜500nmの硫酸カリウムを10秒毎にPAN系前駆体繊維束1gに対し0.2g付与した。この時のPAN系前駆体繊維束の処理速度は3.0m/minであり、PAN系前駆体繊維束の長さ方向に500mm間隔で硫酸カリウムが付与された。硫酸カリウムの付与方法は実施例と同様である。その後、実施例1と同様に耐炎化工程、前炭素化工程、炭素化工程、表面処理工程、サイジング剤付与工程を行い、炭素繊維束を5000m得た。得られた炭素繊維束のうち、硫酸カリウムを付与しなかった部分のストランド強度は5100MPa、ストランド弾性率は240GPaであった。該炭素繊維束を一方向に引揃えたシート状物に樹脂を含浸させるプリプレグを作製する工程で用いたところ、該炭素繊維束を牽切できず、短繊維炭素繊維束を含むプリプレグを製造することができなかった。
(Comparative Example 5)
0.2 g of potassium sulfate having a particle diameter of 100 to 500 nm was applied to 1 g of the PAN-based precursor fiber bundle every 10 seconds to a PAN-based precursor fiber bundle having a single fiber fineness of 1.2 dtex and 15,000 filaments. The processing speed of the PAN-based precursor fiber bundle at this time was 3.0 m / min, and potassium sulfate was applied at intervals of 500 mm in the length direction of the PAN-based precursor fiber bundle. The method for applying potassium sulfate is the same as in the examples. Then, the flame resistance process, the pre-carbonization process, the carbonization process, the surface treatment process, and the sizing agent provision process were performed similarly to Example 1, and 5000 m of carbon fiber bundles were obtained. Of the obtained carbon fiber bundle, the strand strength of the portion to which potassium sulfate was not applied was 5100 MPa, and the strand elastic modulus was 240 GPa. When used in the process of producing a prepreg in which a resin is impregnated with a sheet-like material in which the carbon fiber bundles are aligned in one direction, the carbon fiber bundles cannot be checked, and a prepreg containing short fiber carbon fiber bundles is produced. I couldn't.

(比較例6)
粒子径100〜500nmの塩化カリウムを10秒毎にPAN系前駆体繊維束1gに対し0.2g付与した以外は比較例5と同様にして炭素繊維束を製造した。得られた炭素繊維束のうち、塩化カリウムを付与しなかった部分のストランド強度は5300MPa、ストランド弾性率は241GPaであった。該炭素繊維束を一方向に引揃えたシート状物に樹脂を含浸させるプリプレグを作製する工程で用いたところ、該炭素繊維束を牽切できず、短繊維炭素繊維束を含むプリプレグを製造することができなかった。
(Comparative Example 6)
A carbon fiber bundle was produced in the same manner as in Comparative Example 5 except that 0.2 g of potassium chloride having a particle diameter of 100 to 500 nm was added to 1 g of the PAN-based precursor fiber bundle every 10 seconds. Of the obtained carbon fiber bundle, the strand strength of the portion to which potassium chloride was not applied was 5300 MPa, and the strand elastic modulus was 241 GPa. When used in the process of producing a prepreg in which a resin is impregnated with a sheet-like material in which the carbon fiber bundles are aligned in one direction, the carbon fiber bundles cannot be checked, and a prepreg containing short fiber carbon fiber bundles is produced. I couldn't.

(比較例7)
粒子径100〜500nmの二酸化珪素を10秒毎にPAN系前駆体繊維束1gに対し0.2g付与した以外は比較例5と同様にして炭素繊維束を製造した。得られた炭素繊維束のうち、二酸化珪素を付与しなかった部分のストランド強度は5000MPa、ストランド弾性率は241GPaであった。該炭素繊維束を一方向に引揃えたシート状物に樹脂を含浸させるプリプレグを作製する工程で用いたところ、該炭素繊維束を牽切できず、短繊維炭素繊維束を含むプリプレグを製造することができなかった。
(Comparative Example 7)
A carbon fiber bundle was produced in the same manner as in Comparative Example 5, except that 0.2 g of silicon dioxide having a particle diameter of 100 to 500 nm was added to 1 g of the PAN-based precursor fiber bundle every 10 seconds. Of the obtained carbon fiber bundle, the strand strength of the portion not provided with silicon dioxide was 5000 MPa, and the strand elastic modulus was 241 GPa. When used in the process of producing a prepreg in which a resin is impregnated with a sheet-like material in which the carbon fiber bundles are aligned in one direction, the carbon fiber bundles cannot be checked, and a prepreg containing short fiber carbon fiber bundles is produced. I couldn't.

(比較例8)
耐炎化繊維束への硫酸カリウムの付与を行わなかったこと以外は実施例1と同様に炭素化繊維束を作製した。該炭素化繊維束に対して粒子径100〜500nmの硫酸カリウムを10秒毎に炭素化繊維束1gに対し0.2g付与した。この時の炭素化繊維束の処理速度は3.0m/minであり、炭素化繊維束の長さ方向に500mm間隔で硫酸カリウムが付与された。なお、硫酸カリウムの炭素化繊維束への付与は実施例1と同様に行った。その後、実施例1と同様に表面処理工程、サイジング剤付与工程を行い、炭素繊維束を5000m得た。得られた炭素繊維束のうち、硫酸カリウムを付与しなかった部分のストランド強度は5190MPa、ストランド弾性率は240GPaであった。該炭素繊維束を一方向に引揃えたシート状物に樹脂を含浸させるプリプレグを作製する工程で用いたところ、該炭素繊維束を牽切できず、短繊維炭素繊維束を含むプリプレグを製造することができなかった。
(Comparative Example 8)
A carbonized fiber bundle was produced in the same manner as in Example 1 except that potassium sulfate was not applied to the flame resistant fiber bundle. 0.2 g of potassium sulfate having a particle diameter of 100 to 500 nm was applied to 1 g of the carbonized fiber bundle every 10 seconds. The processing speed of the carbonized fiber bundle at this time was 3.0 m / min, and potassium sulfate was applied at intervals of 500 mm in the length direction of the carbonized fiber bundle. The application of potassium sulfate to the carbonized fiber bundle was performed in the same manner as in Example 1. Then, the surface treatment process and the sizing agent provision process were performed similarly to Example 1, and 5000 m of carbon fiber bundles were obtained. Of the obtained carbon fiber bundle, the strand strength of the portion to which potassium sulfate was not applied was 5190 MPa, and the strand elastic modulus was 240 GPa. When used in the process of producing a prepreg in which a resin is impregnated with a sheet-like material in which the carbon fiber bundles are aligned in one direction, the carbon fiber bundles cannot be checked, and a prepreg containing short fiber carbon fiber bundles is produced. I couldn't.

(比較例9)
粒子径100〜500nmの塩化カリウムを10秒毎に炭素化繊維束1gに対し0.2g付与した以外は比較例8と同様にして炭素繊維束を製造した。得られた炭素繊維束のうち、塩化カリウムを付与しなかった部分のストランド強度は5000MPa、ストランド弾性率は241GPaであった。該炭素繊維束を一方向に引揃えたシート状物に樹脂を含浸させるプリプレグを作製する工程で用いたところ、該炭素繊維束を牽切できず、短繊維炭素繊維束を含むプリプレグを製造することができなかった。
(Comparative Example 9)
A carbon fiber bundle was produced in the same manner as in Comparative Example 8, except that 0.2 g of potassium chloride having a particle diameter of 100 to 500 nm was added to 1 g of the carbonized fiber bundle every 10 seconds. Of the obtained carbon fiber bundle, the strand strength of the portion to which potassium chloride was not applied was 5000 MPa, and the strand elastic modulus was 241 GPa. When used in the process of producing a prepreg in which a resin is impregnated with a sheet-like material in which the carbon fiber bundles are aligned in one direction, the carbon fiber bundles cannot be checked, and a prepreg containing short fiber carbon fiber bundles is produced. I couldn't.

(比較例10)
粒子径100〜500nmの二酸化珪素を10秒毎に炭素繊維束1gに対し0.2g付与した以外は比較例8と同様にして炭素繊維束を製造した。得られた炭素繊維束のうち、二酸化珪素を付与しなかった部分のストランド強度は4900MPa、ストランド弾性率は241GPaであった。該炭素繊維束を一方向に引揃えたシート状物に樹脂を含浸させるプリプレグを作製する工程で用いたところ、該炭素繊維束を牽切できず、短繊維炭素繊維束を含むプリプレグを製造することができなかった。
(Comparative Example 10)
A carbon fiber bundle was produced in the same manner as in Comparative Example 8 except that 0.2 g of silicon dioxide having a particle diameter of 100 to 500 nm was applied to 1 g of the carbon fiber bundle every 10 seconds. Of the obtained carbon fiber bundle, the strand strength of the portion to which silicon dioxide was not applied was 4900 MPa, and the strand elastic modulus was 241 GPa. When used in the process of producing a prepreg in which a resin is impregnated with a sheet-like material in which the carbon fiber bundles are aligned in one direction, the carbon fiber bundles cannot be checked, and a prepreg containing short fiber carbon fiber bundles is produced. I couldn't.

(比較例11)
耐炎化繊維束への硫酸カリウムの付与を行わなかったこと以外は実施例1と同様に耐炎化工程、前炭素化工程、炭素化工程、表面処理工程、サイジング剤付与工程を行い、炭素繊維束を5000m得た。得られた炭素繊維束のストランド強度は5200MPa、ストランド弾性率は242GPaであった。該炭素繊維束を一方向に引揃えたシート状物に樹脂を含浸させるプリプレグを作製する工程で用いたところ、該炭素繊維束を牽切できず、短繊維炭素繊維束を含むプリプレグを製造することができなかった。
(Comparative Example 11)
Except that potassium sulfate was not applied to the flame-resistant fiber bundle, a flame resistance process, a pre-carbonization process, a carbonization process, a surface treatment process, and a sizing agent application process were performed in the same manner as in Example 1 to obtain a carbon fiber bundle. Of 5000 m was obtained. The obtained carbon fiber bundle had a strand strength of 5200 MPa and a strand elastic modulus of 242 GPa. When used in the process of producing a prepreg in which a resin is impregnated with a sheet-like material in which the carbon fiber bundles are aligned in one direction, the carbon fiber bundles cannot be checked, and a prepreg containing short fiber carbon fiber bundles is produced. I couldn't.

実施例1〜4及び比較例1〜11の結果を表1に、実施例5及び比較例11の結果を表2に示す。   The results of Examples 1 to 4 and Comparative Examples 1 to 11 are shown in Table 1, and the results of Example 5 and Comparative Example 11 are shown in Table 2.

Figure 2012021238
Figure 2012021238

Figure 2012021238
Figure 2012021238

1 電解酸化装置
21 炭素化繊維束
22a、22b、22c 電解槽
23 陰極
24、25 陽極
26 直流電源
27 搬送ロール
28 電解酸化処理された炭素繊維束
DESCRIPTION OF SYMBOLS 1 Electrolytic oxidation apparatus 21 Carbonized fiber bundle 22a, 22b, 22c Electrolysis tank 23 Cathode 24, 25 Anode 26 DC power supply 27 Conveyance roll 28 Carbon fiber bundle subjected to electrolytic oxidation treatment

Claims (4)

ポリアクリロニトリル系前駆体繊維束に耐炎化処理を施し耐炎化繊維束とする耐炎化工程と、
前記耐炎化繊維束に前炭素化処理を施し前炭素化繊維束とする前炭素化工程と、
前記前炭素化繊維束に炭素化処理を施し炭素化繊維束とする炭素化工程と、を含む炭素繊維束の製造方法において、
前記耐炎化工程後、前記前炭素化工程前に、前記耐炎化繊維束に対し耐炎化繊維束の長さ方向に一定間隔で分解促進物質を付与する炭素繊維束の製造方法。
A flameproofing process in which a polyacrylonitrile-based precursor fiber bundle is subjected to flameproofing treatment to form a flameproof fiber bundle,
A pre-carbonization step of pre-carbonizing the flame-resistant fiber bundle to form a pre-carbonized fiber bundle;
In the carbon fiber bundle manufacturing method, including the carbonization step of carbonizing the pre-carbonized fiber bundle to obtain a carbonized fiber bundle,
A method for producing a carbon fiber bundle, wherein after the flameproofing step and before the pre-carbonization step, a decomposition promoting substance is imparted to the flameproofed fiber bundle at regular intervals in the length direction of the flameproofed fiber bundle.
前記分解促進物質が、硫酸カリウム、塩化カリウム、カーボンブラック及び二酸化珪素からなる群から選択される少なくとも1種である請求項1に記載の炭素繊維束の製造方法。   The method for producing a carbon fiber bundle according to claim 1, wherein the decomposition promoting substance is at least one selected from the group consisting of potassium sulfate, potassium chloride, carbon black, and silicon dioxide. ポリアクリロニトリル系前駆体繊維束に耐炎化処理を施し耐炎化繊維束とする耐炎化工程と、
前記耐炎化繊維束に前炭素化処理を施し前炭素化繊維束とする前炭素化工程と、
前記前炭素化繊維束に炭素化処理を施し炭素化繊維束とする炭素化工程と、
前記炭素化繊維束に電解液中で電圧を付与し電解酸化処理を施す表面処理工程と、を含む炭素繊維束の製造方法において、
前記表面処理工程において前記炭素化繊維束に対し炭素化繊維束の長さ方向に一定間隔で、前記電解酸化処理の際に付与する電圧より高い電圧を付与する炭素繊維束の製造方法。
A flameproofing process in which a polyacrylonitrile-based precursor fiber bundle is subjected to flameproofing treatment to form a flameproof fiber bundle,
A pre-carbonization step of pre-carbonizing the flame-resistant fiber bundle to form a pre-carbonized fiber bundle;
A carbonization step of carbonizing the pre-carbonized fiber bundle to obtain a carbonized fiber bundle;
In the method for producing a carbon fiber bundle, including a surface treatment step of applying a voltage to the carbonized fiber bundle in an electrolytic solution to perform electrolytic oxidation treatment,
A method for producing a carbon fiber bundle, wherein in the surface treatment step, a voltage higher than a voltage applied in the electrolytic oxidation treatment is applied to the carbonized fiber bundle at regular intervals in the length direction of the carbonized fiber bundle.
前記炭素化繊維束に対し炭素化繊維束の長さ方向に一定間隔で付与する電圧が、24V以上、40V以下である請求項3に記載の炭素繊維束の製造方法。   The method for producing a carbon fiber bundle according to claim 3, wherein a voltage applied to the carbonized fiber bundle at regular intervals in a length direction of the carbonized fiber bundle is 24 V or more and 40 V or less.
JP2010157823A 2010-07-12 2010-07-12 Method for producing carbon fiber bundle Pending JP2012021238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010157823A JP2012021238A (en) 2010-07-12 2010-07-12 Method for producing carbon fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010157823A JP2012021238A (en) 2010-07-12 2010-07-12 Method for producing carbon fiber bundle

Publications (1)

Publication Number Publication Date
JP2012021238A true JP2012021238A (en) 2012-02-02

Family

ID=45775718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010157823A Pending JP2012021238A (en) 2010-07-12 2010-07-12 Method for producing carbon fiber bundle

Country Status (1)

Country Link
JP (1) JP2012021238A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7018237B1 (en) 2021-12-02 2022-02-10 竹本油脂株式会社 Carbon fiber precursor treatment agent, carbon fiber precursor treatment agent-containing composition, and carbon fiber precursor
CN115262038A (en) * 2022-06-15 2022-11-01 浙江技立新材料股份有限公司 Polyacrylonitrile preoxidation carbonization equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7018237B1 (en) 2021-12-02 2022-02-10 竹本油脂株式会社 Carbon fiber precursor treatment agent, carbon fiber precursor treatment agent-containing composition, and carbon fiber precursor
JP2023082425A (en) * 2021-12-02 2023-06-14 竹本油脂株式会社 Carbon fiber precursor treatment agent, carbon fiber precursor treatment agent-containing composition, and carbon fiber precursor
CN115262038A (en) * 2022-06-15 2022-11-01 浙江技立新材料股份有限公司 Polyacrylonitrile preoxidation carbonization equipment
CN115262038B (en) * 2022-06-15 2023-08-15 浙江技立新材料股份有限公司 Polyacrylonitrile preoxidation carbonization equipment

Similar Documents

Publication Publication Date Title
JP6885109B2 (en) Carbon fiber bundle and its manufacturing method
JP2018145540A (en) Method for production of carbon fiber bundle
EP2208813B1 (en) Carbon fiber strand and process for producing the same
US20150274860A1 (en) Flame-resistant fiber bundle, carbon fiber bundle, and processes for producing these
JP5161604B2 (en) Carbon fiber manufacturing method
CN111793857A (en) Carbon fiber surface treatment method
KR102273974B1 (en) Carbon Fiber Precursor Acrylic Fibers, Carbon Fibers and Methods of Making Them
JP4023226B2 (en) Carbon fiber bundle processing method
JP5873358B2 (en) Flame-resistant fiber strand, method for producing the same, and method for producing carbon fiber strand
JP2012021238A (en) Method for producing carbon fiber bundle
JP4305081B2 (en) Oil for carbon fiber production and method for producing carbon fiber
JP2002266173A (en) Carbon fiber and carbon fiber-reinforced composite material
JP6216509B2 (en) Sizing agent-attached carbon fiber bundle, method for producing the same, and pressure vessel production method using the sizing agent-attached carbon fiber bundle
JP2012188766A (en) Carbon fiber precursor fiber bundle and carbon fiber bundle
JP5662113B2 (en) Carbon fiber surface treatment method
JP2004003043A (en) Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same
JP2015137444A (en) Surface treatment method of carbon fiber bundle, method for producing carbon fiber bundle and carbon fiber
JP4677862B2 (en) Carbon fiber manufacturing method and apparatus
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
JP5226238B2 (en) Carbon fiber and composite material using the same
JP2013181264A (en) Carbon fiber bundle
JP5455408B2 (en) Polyacrylonitrile-based carbon fiber and method for producing the same
JP5842343B2 (en) Method for producing carbon fiber precursor acrylic fiber bundle
JP2016037689A (en) Method for producing carbon fiber
JP2005113305A (en) Flameproof fiber, carbon fiber and method for producing them