JP2012020904A - Heat treatment method of synthetic quartz glass block - Google Patents

Heat treatment method of synthetic quartz glass block Download PDF

Info

Publication number
JP2012020904A
JP2012020904A JP2010160408A JP2010160408A JP2012020904A JP 2012020904 A JP2012020904 A JP 2012020904A JP 2010160408 A JP2010160408 A JP 2010160408A JP 2010160408 A JP2010160408 A JP 2010160408A JP 2012020904 A JP2012020904 A JP 2012020904A
Authority
JP
Japan
Prior art keywords
quartz glass
synthetic quartz
blocks
heat treatment
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010160408A
Other languages
Japanese (ja)
Other versions
JP5418428B2 (en
Inventor
Kazuo Shirota
和雄 代田
Hisatoshi Otsuka
久利 大塚
Osamu Sekizawa
修 関沢
Naoki Yanagisawa
直樹 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2010160408A priority Critical patent/JP5418428B2/en
Publication of JP2012020904A publication Critical patent/JP2012020904A/en
Application granted granted Critical
Publication of JP5418428B2 publication Critical patent/JP5418428B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat treatment method of a synthetic quartz glass block which is a uniform synthetic quartz glass substrate which is suitable for a quartz glass substrate of a reticle used for excimer laser irradiation, especially ArF excimer laser irradiation, further ArF immersion technique or the like, a synthetic quartz mask substrate or the like for a photomask; excels in light transmittance, transmittance uniformity; and in which there is little light transmittance change on the occasion of using, and especially which becomes a material for a low birefringence quartz wafer substrate or the like for an application which has demand of lower birefringence, further recently for an optical part for making a high-definition display for a large-sized television or the like.SOLUTION: The heat treatment method of a synthetic quartz glass is such that two or more synthetic quartz glass blocks are put in order, and are heat-treated in an atmosphere furnace. In addition, the heat treatment method of a synthetic quartz glass block is characterized in that the synthetic quartz glass blocks have the shape of a multiangular plate or a disk, the thickness surfaces of these blocks are made into a furnace bottom side, the principal plane is turned to a heater side in a furnace, the angle of 30-60° is set to the heater in the furnace and a gap is prepared between the blocks, and the blocks are arranged in parallel and/or are vertically arranged, and the blocks are heat-treated.

Description

本発明は、エキシマレーザ照射、特にArFエキシマレーザ照射、更にはArF液浸技術等にも使用されるフォトマスク用合成石英マスク基板等の石英ガラス基板用として好適な、光透過率、透過率均一性に優れ、かつ使用に際して光透過率変化が少なく、均一である合成石英ガラスを得るための合成石英ガラスブロックの熱処理方法に関し、特には、より複屈折の低い要求のある用途や、更に最近では大型テレビ等で高画質ディスプレイを作るための光部品用として、低複屈折な石英ウェーハ基板用途等の素材になる合成石英ガラスブロックの熱処理方法に関する。   The present invention is suitable for excimer laser irradiation, particularly ArF excimer laser irradiation, and also for quartz glass substrates such as synthetic quartz mask substrates for photomasks used for ArF immersion technology, etc. With regard to a heat treatment method of a synthetic quartz glass block for obtaining a synthetic quartz glass that is excellent in properties and has little change in light transmittance upon use, in particular, in applications that require lower birefringence, and more recently The present invention relates to a heat treatment method for a synthetic quartz glass block used as a material for a low-birefringence quartz wafer substrate or the like as an optical component for producing a high-quality display on a large TV or the like.

近年、超LSIの高集積化に伴う露光パターンの微細化が進み、回路パターンを半導体ウェーハ上に描画するリソグラフィー装置(ステッパー装置)においても、露光光源はより短波長化が求められてきている。この結果、露光装置の光源として、従来のi線(波長365nm)からKrFエキシマレーザ(波長248nm)が主流となり、近年ではArFエキシマレーザ(波長193nm)の実用化が始まってきており、更に高NA化のための液浸技術の導入が始まっている。   In recent years, with the progress of miniaturization of exposure patterns accompanying the high integration of VLSI, exposure light sources are also required to have shorter wavelengths in lithography apparatuses (stepper apparatuses) that draw circuit patterns on semiconductor wafers. As a result, the KrF excimer laser (wavelength 248 nm) has become the mainstream from the conventional i-line (wavelength 365 nm) as the light source of the exposure apparatus. The introduction of immersion technology to make it easier.

このような光源の短波長化や、レンズの高NA化に伴い、露光装置に使用されるレンズ、ウインドウ、プリズム等の光学部品に加えて、IC回路の原版であるフォトマスク用合成石英マスク基板、所謂レチクルについても、より高精度なものが求められてきている。特にArFエキシマレーザに関しては、光源の偏光照明への切り替えにより投影レンズ等の光学部品と同様に、高い紫外線透過性、透過性の高均一性、エキシマレーザ照射に対する透過率の安定性及び均一性等に加えて、更には低複屈折・複屈折の均一性といった極めて重要な課題が多数存在している。   In addition to optical components such as lenses, windows, prisms, etc. used in exposure devices, the synthetic quartz mask substrate for photomasks, which is the original version of IC circuits, as the wavelength of light sources becomes shorter and the NA of lenses increases. As for the so-called reticle, a highly accurate one has been demanded. In particular, for ArF excimer lasers, high UV transmission, high uniformity of transmission, stability and uniformity of transmission with respect to excimer laser irradiation, etc., as in the case of optical components such as projection lenses, by switching the light source to polarized illumination. In addition, there are many extremely important issues such as low birefringence and uniformity of birefringence.

一方、テレビ等のディスプレイ分野においては、液晶テレビ、プラズマテレビ、リアプロテレビ等で代表されるように、特に薄型化・大画面化が進む中、今後は高精細・高画質なディスプレイの開発が鋭意進められている。例えば、液晶表示をよりハイコントラストにするための光部品用に低複屈折である合成石英ガラスウェーハ基板の要求もある。   On the other hand, in the display field such as televisions, as typified by liquid crystal televisions, plasma televisions, rear professional televisions, etc., especially with the progress of thinner and larger screens, the development of high-definition and high-quality displays will be eagerly pursued. It is being advanced. For example, there is also a need for a synthetic quartz glass wafer substrate that has low birefringence for optical components to make liquid crystal displays have higher contrast.

合成石英ガラス用基板の原料となる合成石英ガラスインゴットを製造する方法には、一般的に、シリカ原料を火炎加水分解して得られるシリカ微粒子を溶融しつつ堆積成長する直接法と、シリカ原料を火炎加水分解して得られるシリカ微粒子を堆積成長した後、透明ガラス化するスート法という2つの製造方法がある。
通常、紫外線吸収の原因となる金属不純物の混入を避けるために、例えば直接法では高純度の四塩化ケイ素等のシラン化合物や、シリコーン化合物の蒸気を直接酸水素火炎中に導入し、これを火炎加水分解させてシリカ微粒子を生成させ、直接回転する石英ガラス等の耐熱性基体上に堆積・溶融ガラス化させて、透明な合成石英ガラスとして製造される。
In general, a method for producing a synthetic silica glass ingot which is a raw material for a synthetic silica glass substrate includes a direct method in which silica fine particles obtained by flame hydrolysis of a silica raw material are melted and deposited and a silica raw material is used. There are two production methods called the soot method in which silica fine particles obtained by flame hydrolysis are deposited and grown and then transparent vitrified.
Normally, in order to avoid contamination with metal impurities that cause UV absorption, for example, in the direct method, a silane compound such as high-purity silicon tetrachloride or silicone compound vapor is directly introduced into an oxyhydrogen flame, and this is introduced into the flame. It is hydrolyzed to produce silica fine particles, which are deposited on a heat-resistant substrate such as quartz glass that directly rotates and melted into glass to produce transparent synthetic quartz glass.

このようにして製造された透明な合成石英ガラスは、190nm程度の短波長領域まで良好な光透過性を示し、紫外線レーザ光、具体的にはi線の他、KrF(248nm)、XeCl(308nm)、XeBr(282nm)、XeF(351nm,353nm)、ArF(193nm)等のエキシマレーザ光及びYAGの4倍高調波(250nm)等についての透過材料として用いられてきた。   The transparent synthetic quartz glass produced in this way exhibits good light transmission up to a short wavelength region of about 190 nm, and in addition to ultraviolet laser light, specifically i-line, KrF (248 nm), XeCl (308 nm ), XeBr (282 nm), XeF (351 nm, 353 nm), excimer laser light such as ArF (193 nm), and the fourth harmonic (250 nm) of YAG, etc., have been used as transmission materials.

紫外線に対する透過率は、例えばArFエキシマレーザでは、使用波長である波長193.4nmの光に対する透過率が最も重要であるが、合成石英ガラスの場合、この波長領域の光に対する透過率は、不純物の含有量によって低下する。この不純物の代表的なものは、Na等のアルカリ金属とCu、Fe等の金属元素である。合成石英ガラスの場合、原料であるシラン類、シリコーン類の純度が極めて高純度のものを使用することにより、得られた合成石英ガラス中に含まれるこれら金属不純物の濃度を感度のよい検出装置で測定しても検出不可能なレベル(<1ppb)まで低減することが可能であるが、Na、Cuについては、合成石英ガラスに対する拡散係数が比較的大きいために、熱処理によって、外部から拡散し、混入することが多く、これらの処理はそのような汚染が生じにくいように特に注意が必要である。   For example, in the case of ArF excimer laser, the transmittance for ultraviolet light is most important for the light having a wavelength of 193.4 nm, but in the case of synthetic quartz glass, the transmittance for light in this wavelength region is the impurity. Decreases depending on the content. Typical of these impurities are alkali metals such as Na and metal elements such as Cu and Fe. In the case of synthetic quartz glass, the concentration of these metal impurities contained in the obtained synthetic quartz glass can be measured with a sensitive detector by using raw materials such as silanes and silicones with extremely high purity. Although it is possible to reduce to a level that cannot be detected even when measured (<1 ppb), Na and Cu have a relatively large diffusion coefficient with respect to synthetic quartz glass, so that they diffuse from the outside by heat treatment, These processes are often contaminated, and special care is needed to prevent such contamination from occurring.

また、上記不純物以外にも合成石英ガラス中に存在する固有欠陥も透過率に影響を与えることが知られている。この欠陥とは、合成石英ガラスを構成するSi−O−Si構造に対して酸素が過不足しているもの、例えば酸素欠損欠陥(Si−Si:245nmに吸収を有する)や、酸素過多欠陥(Si−O−O−Si:177nmに吸収を有する)が有名であるが、紫外線用途の合成石英ガラスの場合、このような欠陥が、少なくとも分光測定で測定できるレベルにあるものは最初から除外されているので、より微妙な欠陥、例えば極度に伸縮したり、圧縮したSi−O−Si結合であるとか、Si−O−Si結合角が安定領域から外れた状態等が問題になるといわれている。   In addition to the impurities described above, it is known that inherent defects present in the synthetic quartz glass also affect the transmittance. This defect means that oxygen is excessive or insufficient with respect to the Si—O—Si structure constituting the synthetic quartz glass, for example, oxygen deficiency defect (Si—Si: having absorption at 245 nm), oxygen excess defect ( (Si-O-O-Si: absorption at 177 nm) is famous, but in the case of synthetic quartz glass for ultraviolet applications, such defects are excluded from the beginning at least at a level that can be measured by spectrophotometry. Therefore, it is said that more subtle defects such as extremely stretched or compressed Si-O-Si bonds, or a state in which the Si-O-Si bond angle is out of the stable region are problematic. .

このようなより微妙な欠陥が、波長200nm以下の紫外線領域になると微小な吸収をもたらすといわれている。これらは、合成石英ガラスの製造方法に起因して生じるものと考えられており、例えば上記に記載したような直接法で製造した合成石英ガラスインゴットの成長方向に対して垂直な面における中心部と外周部とで微妙な透過率差が、例えばArFエキシマレーザの波長193.4nmにおいては、0.5%程存在する。これはシリカの成長溶融面の温度分布によると考えられ、外周部の方の表面温度が中心部より低いために微妙な不安定構造により外周部の紫外線透過率が低くなるものと考えられている。   It is said that such a finer defect causes minute absorption in the ultraviolet region with a wavelength of 200 nm or less. These are considered to be caused by the production method of the synthetic quartz glass, for example, the central portion in the plane perpendicular to the growth direction of the synthetic quartz glass ingot produced by the direct method as described above. A subtle difference in transmittance between the outer peripheral portion and the outer peripheral portion exists, for example, at about 0.5% at an ArF excimer laser wavelength of 193.4 nm. This is considered to be due to the temperature distribution of the growth and melting surface of silica, and the surface temperature of the outer peripheral part is lower than that of the central part. .

特開平7−61823号公報(特許文献1)には、これら不安定構造を取り除くための手段として、直接法による合成石英の成長速度を2mm/時間以下に低減する方法が開示されている。この方法は有効な手段であると思われるが、成長速度が非常に遅いため、生産性が悪く経済的に問題がある。   Japanese Patent Application Laid-Open No. 7-61823 (Patent Document 1) discloses a method for reducing the growth rate of synthetic quartz by a direct method to 2 mm / hour or less as means for removing these unstable structures. Although this method seems to be an effective means, since the growth rate is very slow, the productivity is poor and there is an economical problem.

インゴットの紫外線透過率を向上させる効果的な方法として、特許第2762188号公報(特許文献2)は、熱処理工程における合成石英ガラス成形体の汚染によって生じる200nm以下の波長の光の吸収が、波長150〜300nm、望ましくは180〜255nmの範囲内の波長の紫外線を照射することによって消失することも開示している。   As an effective method for improving the ultraviolet transmittance of an ingot, Japanese Patent No. 2762188 (Patent Document 2) discloses that absorption of light having a wavelength of 200 nm or less caused by contamination of a synthetic quartz glass molded body in a heat treatment step has a wavelength of 150 It is also disclosed that it disappears by irradiating with ultraviolet light having a wavelength in the range of ˜300 nm, preferably 180 to 255 nm.

次に、紫外線透過率と同様に重要な特性として、合成石英ガラスのエキシマレーザ照射に対する安定性がある。特にArFエキシマレーザの場合、KrFエキシマレーザに比べて5倍位ダメージが入り易いといわれており、非常に重要な要素である。   Next, an important characteristic as with the ultraviolet transmittance is the stability of the synthetic quartz glass to the excimer laser irradiation. In particular, the ArF excimer laser is said to be easily damaged by 5 times compared to the KrF excimer laser, and is an extremely important factor.

合成石英ガラスにArFエキシマレーザが照射された場合に生じる現象として、Si−O−Siの結合がレーザ光の非常に強いエネルギーによって開裂し、E’センター(イープライムセンター)とよばれる常磁性欠陥が生成し、215nmの吸収が生じる現象がある。これは合成石英ガラスの193.4nmに対する透過率低下をもたらす。また、構造的には合成石英ガラスの網目構造が再配列してガラス密度が上昇して屈折率が高くなるレーザコンパクションやレアファクションとよばれ、ガラス中のOH基量に左右されるといわれている密度低下を引き起こし、屈折率の低下現象を生じることとしてもよく知られている。   As a phenomenon that occurs when an ArF excimer laser is irradiated on synthetic quartz glass, the bond of Si-O-Si is cleaved by the very strong energy of the laser beam, and a paramagnetic defect called E 'center (e-prime center) Is generated and absorption at 215 nm occurs. This leads to a decrease in the transmittance of synthetic quartz glass for 193.4 nm. Also, structurally, it is called laser compaction or rarefaction, where the refractive index increases due to the rearrangement of the network structure of synthetic silica glass and the glass density increases, and is said to depend on the amount of OH groups in the glass. It is also well known that it causes a decrease in the refractive index and a refractive index decrease phenomenon.

このような合成石英ガラスのレーザ照射に対する安定性を向上するためには、上記に記載したように合成石英ガラスの固有欠陥を低減すると同時に、合成石英ガラス中の水素分子濃度をあるレベル以上にすることが極めて効果的であると知られている。   In order to improve the stability of such synthetic quartz glass to laser irradiation, the intrinsic defects of the synthetic quartz glass are reduced as described above, and at the same time, the concentration of hydrogen molecules in the synthetic quartz glass is set to a certain level or more. Is known to be extremely effective.

また、エキシマレーザ照射による合成石英ガラスへのダメージを合成石英ガラス中の水素分子が阻害することは、特開平1−212247号公報(特許文献3)に示されて以来、熱心に研究されていてよく知られている事実である。   In addition, since hydrogen molecule in synthetic quartz glass inhibits damage to synthetic quartz glass due to excimer laser irradiation, it has been eagerly studied since it was disclosed in JP-A-1-212247 (Patent Document 3). This is a well-known fact.

この水素分子は、特開平7−43891号公報(特許文献4)にも開示されているように、特にArFエキシマレーザを高エネルギー(100mJ/cm2・pulse)による加速的な照射試験をした場合に、水素分子が多いと、照射初期での波長193.4nmでの吸収が増大するが、その後長期的な照射を継続すると吸収は緩和される。逆に、水素分子が少ないと照射初期段階の193.4nmでの吸収は小さいが、長期的照射では吸収が増大する。従って、合成石英ガラス中に含有される水素分子濃度を適度に調整する必要がある。 As disclosed in Japanese Patent Application Laid-Open No. 7-43891 (Patent Document 4), this hydrogen molecule is particularly subjected to an accelerated irradiation test using ArF excimer laser with high energy (100 mJ / cm 2 · pulse). In addition, if there are many hydrogen molecules, the absorption at a wavelength of 193.4 nm at the initial stage of irradiation increases, but if the irradiation is continued for a long time thereafter, the absorption is relaxed. Conversely, when there are few hydrogen molecules, the absorption at 193.4 nm in the initial stage of irradiation is small, but the absorption increases with long-term irradiation. Therefore, it is necessary to appropriately adjust the concentration of hydrogen molecules contained in the synthetic quartz glass.

特に生産性の追求、歩留まり向上を狙った直接法による合成石英ガラスインゴットは、その製法条件によって、酸水素ガスバランスでは水素が酸素量論量に比べて過剰な条件で作製されているために、作製された合成石英ガラスインゴット中に水素分子が非常に多く含有されており、上記ArFエキシマレーザを照射した際の照射初期吸収が増大し易い。   In particular, synthetic silica glass ingots by direct method aiming at productivity and improving yield are produced under excessive conditions compared to the oxygen stoichiometric amount in the oxyhydrogen balance, depending on the manufacturing conditions. The produced synthetic quartz glass ingot contains a large amount of hydrogen molecules, and the initial irradiation absorption upon irradiation with the ArF excimer laser tends to increase.

合成石英ガラス中に水素分子を適量含有させる方法には2通りある。一つは、合成石英ガラスインゴットの成長時に燃焼ガスである水素やプロパンと酸素の比率を適当に調節することにより、成長インゴット中に水素分子を含有させる方法である。この方法であれば、合成石英ガラスインゴット中の水素分子濃度を0〜2×1019分子数/cm3程度の範囲で調整することが可能である。
もう一つの方法は、合成石英ガラス体を水素雰囲気中で熱処理することにより水素分子を熱拡散する方法である。この方法は水素分子濃度を厳密に制御できるという利点を有する。
There are two methods for containing an appropriate amount of hydrogen molecules in synthetic quartz glass. One is a method in which hydrogen molecules are contained in the growth ingot by appropriately adjusting the ratio of hydrogen or propane and oxygen as combustion gases during the growth of the synthetic quartz glass ingot. With this method, the hydrogen molecule concentration in the synthetic quartz glass ingot can be adjusted in the range of about 0 to 2 × 10 19 molecules / cm 3 .
Another method is a method of thermally diffusing hydrogen molecules by heat-treating a synthetic quartz glass body in a hydrogen atmosphere. This method has the advantage that the hydrogen molecule concentration can be precisely controlled.

上述したように、合成石英ガラス部材の初期透過率や耐エキシマレーザ性については各種提案がなされており、高特性なものを得る方法については適宜実施することができる。   As described above, various proposals have been made for the initial transmittance and excimer laser resistance of the synthetic quartz glass member, and a method for obtaining a high-quality one can be appropriately implemented.

特に最近では、例えばArFエキシマレーザの実際の使用において、レーザ照射初期吸収の抑制及び均一性に加えて、更に光部品、フォトマスク用合成石英ガラス基板中の残留複屈折の存在や、レーザ照射中の複屈折の変化が重要になってきている。   Particularly recently, for example, in actual use of an ArF excimer laser, in addition to suppression and uniformity of initial absorption of laser irradiation, in addition to the presence of residual birefringence in a synthetic quartz glass substrate for optical components and photomasks, The change of birefringence of is becoming important.

合成石英ガラス中の複屈折は、一般的に上述した合成石英ガラスの製造方法から作製した合成石英ガラス、通常はインゴットの状態であるが、これを軟化温度以上に加熱して所望形状・大きさにする熱間成形処理をした際の冷却時に、主に残留熱応力起因の歪として検出される。   The birefringence in the synthetic quartz glass is generally a synthetic quartz glass produced from the synthetic quartz glass manufacturing method described above, usually in an ingot state, but is heated to a temperature higher than the softening temperature to obtain a desired shape and size. At the time of cooling when the hot forming process is performed, the strain is mainly detected as a strain due to residual thermal stress.

この残留熱応力起因である歪を除去して複屈折の低減を図る方法として、例えば、光学部材の製造工程では、石英ガラス中の歪除去のために徐冷を伴う熱処理(アニール)を施すことが一般的とされており、これは石英ガラスの熱特性を考慮して実施する。この熱特性は、一般的にはLittletonの定義が広く用いられていて、15分間に歪が消失する温度を徐冷点(1×1012Pa・s)とし、ガラスの粘性流動が起こり得ない温度でこの温度以下ではガラス中の歪を除去できないとする歪点(4×1013Pa・s)として定義されている。 As a method for reducing the birefringence by removing the strain caused by the residual thermal stress, for example, in the manufacturing process of the optical member, a heat treatment (annealing) with gradual cooling is performed to remove the strain in the quartz glass. This is carried out in consideration of the thermal characteristics of quartz glass. In general, the definition of Littleton is widely used for this thermal characteristic, and the temperature at which the strain disappears in 15 minutes is the annealing point (1 × 10 12 Pa · s), and the viscous flow of the glass cannot occur. It is defined as a strain point (4 × 10 13 Pa · s) at which the strain in the glass cannot be removed below this temperature.

しかしながら、より低い複屈折値を狙う場合は、上記熱処理における降温時に、被処理物の中央部分と外周部分とで温度分布を生じ、その温度分布が被処理物の密度の差として残り、これが屈折率分布や複屈折を十分期待できるレベルまで改善できなかった。   However, when aiming at a lower birefringence value, a temperature distribution is generated between the central portion and the outer peripheral portion of the workpiece when the temperature is lowered in the heat treatment, and the temperature distribution remains as a difference in density of the workpiece, which is refracted. The rate distribution and birefringence could not be improved to a level that could be expected sufficiently.

これら熱処理も石英ガラスに関して色々な方法が提案されている。特に上述したエキシマレーザ光源を用いた露光機の投影用レンズ材などの熱処理方法として、例えば、特開2002−167227号公報(特許文献5)には、熱処理容器及び熱処理方法として扁平円柱状の合成石英ガラス体を収容し、隙間にSiO2粉を充填した状態で被処理物の中央部の放熱速度が周囲の放熱度より高く設定した屈折率分布及び複屈折の改善方法が提案されている。 For these heat treatments, various methods have been proposed for quartz glass. In particular, as a heat treatment method for a projection lens material of an exposure machine using the above-described excimer laser light source, for example, Japanese Patent Laid-Open No. 2002-167227 (Patent Document 5) discloses a heat treatment container and a flat cylindrical composite as a heat treatment method. A method for improving the refractive index distribution and birefringence has been proposed in which a quartz glass body is accommodated and the heat dissipation rate at the center of the object to be processed is set higher than the surrounding heat dissipation rate in a state in which the gap is filled with SiO 2 powder.

しかしながら、これらの方法で、被処理物の一部分、中央部で複屈折値は1nm/cm以下まで低減できるが、外周部のほうがまだ中央部よりも高くなる分布が残り、材料ロスになる。また、被処理物をSiO2粉中に充填する際のSiO2粉を純度的に高純度のものを使用する必要があり、コスト的にも作業効率的にも満足できるものではなかった。 However, with these methods, the birefringence value can be reduced to 1 nm / cm or less at a part of the object to be processed, the central part, but a distribution in which the outer peripheral part is still higher than the central part remains, resulting in material loss. In addition, it is necessary to use a high-purity SiO 2 powder when filling the object to be processed into the SiO 2 powder, which is not satisfactory in terms of cost and work efficiency.

特開平7−61823号公報JP 7-61823 A 特許第2762188号公報Japanese Patent No. 2762188 特開平1−212247号公報Japanese Patent Laid-Open No. 1-212247 特開平7−43891号公報JP 7-43891 A 特開2002−167227号公報JP 2002-167227 A

本発明は、上記事情に鑑みなされたものであり、エキシマレーザ照射、特にArFエキシマレーザ照射、更にはArF液浸技術等にも使用されるレチクル、フォトマスク用合成石英マスク基板等の石英ガラス基板用として好適な、光透過率、透過率均一性に優れ、かつ使用に際して光透過率変化が少なく、均一である合成石英ガラス基板で、特に、より複屈折の低い要求のある用途や、更に最近では大型テレビ等で高画質ディスプレイを作るための光部品用として低複屈折石英ウェーハ基板用等の素材になる合成石英ガラスブロックの熱処理方法の提供することを目的とする。   The present invention has been made in view of the above circumstances, and a quartz glass substrate such as a reticle used for excimer laser irradiation, particularly ArF excimer laser irradiation, ArF immersion technology, and a synthetic quartz mask substrate for photomasks. A synthetic quartz glass substrate that is excellent in light transmittance and transmittance uniformity that is suitable for use, and that has little change in light transmittance during use, especially in applications that require lower birefringence, and more recently Then, it aims at providing the heat processing method of the synthetic quartz glass block used as a raw material for the low birefringence quartz wafer board | substrate etc. for the optical components for making a high quality display with a large sized television etc.

本発明者らは、上記目的を達成するため鋭意検討した結果、合成石英ガラスインゴットを軟化点以上の温度1,700〜1,900℃の範囲で所望の形状に熱間成形し、得られた合成石英ガラスブロックを例えば約50mmt以下の厚みのブロックに切出し、得られたブロックを熱処理(アニール)して、更にこのブロックに紫外線を一定時間照射した後、そのブロックを更にスライスして基板にして研摩し、透明な合成石英ガラス基板を製造する場合、合成石英ガラスインゴットの熱間成形後に切出したブロックを、四角以上の多角板状又は円板状とし、これらブロックの主面を炉内ヒーター側に向け、ブロック厚さ面を炉底側にして立てて置き、ブロック主面を炉内ヒーターに対して30〜60度の角度に配置し、ブロック間に空隙を設けてブロック同士を接触させずに並べ、あるいは重ねて、雰囲気炉内で熱処理することによって、複屈折が2nm/cm以下、特に1nm/cm以下と低く、かつその切出したブロックからの複屈折2nm/cm以下、特に1nm/cm以下の基板の取得率が高い合成石英ガラス基板を得ることができると共に、この複屈折の低い合成石英ガラス基板が、エキシマレーザ用、特にArFエキシマレーザ露光機用として用いられて、Siウェーハ上でのコントラストを高くできる、良好なフォトマスク用合成石英ガラス基板となること、及びこれらの低複屈折基板をウェーハ状にして液晶用ディスプレイの高精細化を狙った光部品用の低複屈折ウェーハ基板として使用すると高コントラストが得られることを見出し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventors have obtained a hot-molding of a synthetic quartz glass ingot into a desired shape within a temperature range of 1,700 to 1,900 ° C. above the softening point. A synthetic quartz glass block is cut into a block having a thickness of, for example, about 50 mmt or less, the obtained block is heat-treated (annealed), and the block is further irradiated with ultraviolet light for a certain period of time, and then the block is further sliced into a substrate. When polishing and producing a transparent synthetic quartz glass substrate, the blocks cut out after hot forming of the synthetic quartz glass ingot are made into a polygonal plate shape or a disk shape with a square shape or more, and the main surface of these blocks is on the side of the furnace heater Facing the furnace, place the block thickness side up on the furnace bottom side, place the main surface of the block at an angle of 30 to 60 degrees with respect to the heater in the furnace, and provide a gap between the blocks. By arranging or overlapping the blocks without contacting each other and performing heat treatment in an atmospheric furnace, the birefringence is as low as 2 nm / cm or less, particularly 1 nm / cm or less, and the birefringence from the cut block is 2 nm / cm. A synthetic quartz glass substrate having a high acquisition rate of a substrate of cm or less, particularly 1 nm / cm or less can be obtained, and this synthetic quartz glass substrate having a low birefringence is used for an excimer laser, particularly for an ArF excimer laser exposure machine. Optical components aiming at high-definition of a liquid crystal display by forming a good synthetic quartz glass substrate for a photomask capable of increasing contrast on a Si wafer and making these low birefringence substrates into a wafer shape When used as a low birefringence wafer substrate, it was found that high contrast can be obtained, and the present invention has been made.

従って、本発明は、下記合成石英ガラスブロックの熱処理方法を提供する。
請求項1:
合成石英ガラスブロックを複数個並べて雰囲気炉内で熱処理する合成石英ガラスの熱処理方法であって、上記合成石英ガラスブロックが多角板状又は円板状であって、これらブロックの厚さ面を炉底側にし、主面を炉内ヒーター側に向けて炉内ヒーターに対し30〜60度の角度でかつブロック間に空隙を設けて並列に及び/又は積み重ねて立設配置して、上記ブロックを熱処理することを特徴とする合成石英ガラスブロックの熱処理方法。
請求項2:
1,000〜1,300℃まで昇温して、この温度を一定時間保持した後、800〜1,000℃まで−20℃/hr以下の降温速度で冷却し、更に100〜300℃まで−40℃/hr以下の降温速度で冷却することを特徴とする請求項1記載の合成石英ガラスブロックの熱処理方法。
請求項3:
合成石英ガラスインゴットを1,700〜1,900℃の範囲で熱間成形し、この成形した合成石英ガラスを厚さ50mm以下のブロックに切出した後、得られたブロックを熱処理し、このブロックを更にスライスして基板にして透明な合成石英ガラス基板を製造する際における上記熱処理工程として実施される請求項1又は2記載の合成石英ガラスブロックの熱処理方法。
請求項4:
合成石英ガラスブロック間の空隙の幅が10〜100mmであることを特徴とする請求項1乃至3のいずれか1項記載の合成石英ガラスブロックの熱処理方法。
請求項5:
合成石英ガラスブロックの厚さが、多角板状ブロックの場合は、主面の対角線の2分の1以下であり、円板状ブロックの場合は、主面の外径の2分の1以下であることを特徴とする請求項1乃至4のいずれか1項記載の合成石英ガラスブロックの熱処理方法。
請求項6:
合成石英ガラスブロック中の主面全面の複屈折の最大値が2nm/cm以下であることを特徴とする請求項1乃至5のいずれか1項記載の合成石英ガラスブロックの熱処理方法。
請求項7:
合成石英ガラス基板が、ArFエキシマレーザ照射用フォトマスクの製造用合成石英基板である請求項3乃至6のいずれか1項記載の合成石英ガラスブロックの熱処理方法。
Accordingly, the present invention provides the following heat treatment method for a synthetic quartz glass block.
Claim 1:
A synthetic quartz glass heat treatment method in which a plurality of synthetic quartz glass blocks are arranged and heat-treated in an atmosphere furnace, wherein the synthetic quartz glass block has a polygonal plate shape or a disk shape, and the thickness surface of these blocks is defined at the bottom of the furnace. The block is heat-treated with the main surface facing the in-furnace heater side and at an angle of 30 to 60 degrees with respect to the in-furnace heater and with gaps between the blocks in parallel and / or stacked. A heat treatment method for a synthetic quartz glass block, characterized in that:
Claim 2:
After raising the temperature to 1,000 to 1,300 ° C. and maintaining this temperature for a certain period of time, the temperature is lowered to 800 to 1,000 ° C. at a temperature lowering rate of −20 ° C./hr or less, and further to 100 to 300 ° C. The method for heat-treating a synthetic quartz glass block according to claim 1, wherein cooling is performed at a temperature-decreasing rate of 40 ° C / hr or less.
Claim 3:
A synthetic quartz glass ingot was hot-molded in the range of 1,700 to 1,900 ° C., and the molded synthetic quartz glass was cut into blocks having a thickness of 50 mm or less, and then the obtained block was heat-treated. The method for heat-treating a synthetic quartz glass block according to claim 1 or 2, wherein the heat-treating step is carried out as the heat treatment step when a transparent synthetic quartz glass substrate is produced by slicing the substrate.
Claim 4:
The method for heat treatment of a synthetic quartz glass block according to any one of claims 1 to 3, wherein the width of the gap between the synthetic quartz glass blocks is 10 to 100 mm.
Claim 5:
In the case of a polygonal plate block, the thickness of the synthetic quartz glass block is less than half of the diagonal of the main surface, and in the case of a disk block, it is less than one half of the outer diameter of the main surface. The heat treatment method for a synthetic quartz glass block according to any one of claims 1 to 4, wherein the heat treatment method is performed.
Claim 6:
6. The method for heat treatment of a synthetic quartz glass block according to claim 1, wherein the maximum birefringence of the entire main surface in the synthetic quartz glass block is 2 nm / cm or less.
Claim 7:
The method for heat treatment of a synthetic quartz glass block according to any one of claims 3 to 6, wherein the synthetic quartz glass substrate is a synthetic quartz substrate for producing a photomask for ArF excimer laser irradiation.

本発明によれば、例えば、エキシマレーザ、特にはArFエキシマレーザ用、更にはArF液浸技術等に使用されるフォトマスク用合成石英マスク基板材用途、所謂レチクル材用に使用され、良好な透過率及び均一な透過率分布を有し、しかも劣化の少ない上、更には複屈折の低いエキシマレーザ用合成石英ガラス基板、また高精細ディスプレイ用の光部品用基板等の素材となる合成石英ガラスを提供できる。   According to the present invention, for example, an excimer laser, particularly an ArF excimer laser, and a synthetic quartz mask substrate material for a photomask used for an ArF immersion technique or the like, that is, a so-called reticle material can be used. Synthetic quartz glass, which is a material for excimer laser synthetic quartz glass substrates and optical component substrates for high-definition displays, which has a high rate and uniform transmittance distribution and is less deteriorated. Can be provided.

合成石英ガラスの製造装置の一例を示す概略図である。It is the schematic which shows an example of the manufacturing apparatus of synthetic quartz glass. 合成石英ガラスブロックのセット方法を示す説明図である。It is explanatory drawing which shows the setting method of a synthetic quartz glass block. 炉体内(炉体底部)へセットした合成石英ガラスブロックを示す平面図である。It is a top view which shows the synthetic quartz glass block set to the furnace body (furnace body bottom part).

まず、原料の合成石英ガラスインゴットの製造方法から説明すると、本発明における合成石英ガラスインゴットの製造方法は、シリカ原料化合物を酸水素火炎によって気相加水分解又は酸化分解してシリカ微粒子をターゲット上に堆積させると共に、これを溶融ガラス化して合成石英ガラスインゴットを製造する方法(いわゆる直接法)である。   First, the raw material synthetic quartz glass ingot will be described. The method for producing a synthetic quartz glass ingot according to the present invention includes a silica raw material compound that is vapor-phase hydrolyzed or oxidatively decomposed with an oxyhydrogen flame to target silica fine particles on a target. And a method of producing a synthetic quartz glass ingot by melting it into a molten glass (so-called direct method).

この場合、シリカ原料化合物としては有機ケイ素化合物を用い、好ましくは下記一般式(1)又は(2)で示されるシラン化合物、下記一般式(3)又は(4)で示されるシロキサン化合物が好適に用いられる。   In this case, an organosilicon compound is used as the silica raw material compound, preferably a silane compound represented by the following general formula (1) or (2), or a siloxane compound represented by the following general formula (3) or (4). Used.

nSiX4-n (1)
(式中、Rは水素原子又は脂肪族一価炭化水素基を示し、Xはハロゲン原子又はアルコキシ基、nは0〜4の整数である。)
(R1nSi(OR24-n (2)
(式中、R1、R2は同一又は異種の脂肪族一価炭化水素基を示し、nは0〜3の整数である。)
R n SiX 4-n (1)
(In the formula, R represents a hydrogen atom or an aliphatic monovalent hydrocarbon group, X represents a halogen atom or an alkoxy group, and n represents an integer of 0 to 4.)
(R 1 ) n Si (OR 2 ) 4-n (2)
(Wherein, R 1, R 2 represents an aliphatic monovalent hydrocarbon group of the same or different, n is an integer from 0 to 3.)

Figure 2012020904

(式中、R3は水素原子又は脂肪族一価炭化水素基を示し、mは1以上の整数、特に1又は2である。また、pは3〜5の整数である。)
Figure 2012020904

(In the formula, R 3 represents a hydrogen atom or an aliphatic monovalent hydrocarbon group, m is an integer of 1 or more, particularly 1 or 2, and p is an integer of 3 to 5.)

ここで、R、R1、R2、R3の脂肪族一価炭化水素基としては、メチル基、エチル基、プロピル基、n−ブチル基、tert−ブチル基等の炭素数1〜4のアルキル基、シクロヘキシル基等の炭素数3〜6のシクロアルキル基、ビニル基、アリル基等の炭素数2〜4のアルケニル基等が挙げられる。また、Xの加水分解性基としては、塩素基等のハロゲン基、−OCH3、−OCH2CH3等のアルコキシ基等が挙げられる。 Here, the aliphatic monovalent hydrocarbon group of R, R 1 , R 2 , and R 3 has 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, an n-butyl group, and a tert-butyl group. C3-C6 cycloalkyl groups, such as an alkyl group and a cyclohexyl group, C2-C4 alkenyl groups, such as a vinyl group and an allyl group, etc. are mentioned. Examples of the hydrolyzable group for X include a halogen group such as a chlorine group and an alkoxy group such as —OCH 3 and —OCH 2 CH 3 .

具体的に上記一般式(1)又は(2)で示されるシラン化合物としては、SiCl4、CH3SiCl3、Si(OCH34、Si(OCH2CH34、CH3Si(OCH33等が挙げられ、一般式(3)又は(4)で示されるシロキサン化合物としては、ヘキサメチルジシロキサン、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等が挙げられる。 Specific examples of the silane compound represented by the general formula (1) or (2) include SiCl 4 , CH 3 SiCl 3 , Si (OCH 3 ) 4 , Si (OCH 2 CH 3 ) 4 , and CH 3 Si (OCH). 3 ) 3 and the like, and examples of the siloxane compound represented by the general formula (3) or (4) include hexamethyldisiloxane, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and the like. It is done.

そして、酸水素火炎を形成する石英製バーナーに原料のシラン又はシロキサン化合物、水素、一酸化炭素、メタン、プロパン等の可燃性ガス、酸素等の支燃性ガスの各々を供給する。   Then, each of raw material silane or siloxane compound, hydrogen, carbon monoxide, flammable gas such as methane, propane, and flammable gas such as oxygen is supplied to a quartz burner forming an oxyhydrogen flame.

なお、シラン化合物、水素等の可燃性ガス、酸素等の支燃性ガスを供給するバーナーは、通常と同様に、中心部が多重管、特に三重管又は五重管バーナーを用いることができる。また、合成石英ガラスインゴットを製造する装置は、竪型又は横型でもいずれも使用することができる。   In addition, as for the burner which supplies flammable gas, such as a silane compound and hydrogen, and combustion-supporting gas, such as oxygen, a multi-pipe, especially a triple tube or a quintuple burner can be used for the center part like usual. Moreover, the apparatus which manufactures a synthetic quartz glass ingot can use any of a vertical type or a horizontal type.

得られた合成石英ガラスインゴットから、本発明の複屈折の低い合成石英ガラス基板を製造する場合は、
(i)温度1,700〜1,900℃の範囲で所望の形状に熱間成形し、
(ii)熱間成形した合成石英ガラスブロックを50mmt以下の厚みで切断し、
(iii)切断した50mmt以下の厚みの合成石英ガラスブロックを本発明の熱処理方法でアニールし、
(iv)アニールした合成石英ガラスブロックをスライスして基板にし、次いで研摩するという各工程を経て透明な合成石英ガラス基板を製造する。
When producing a synthetic quartz glass substrate with low birefringence of the present invention from the obtained synthetic quartz glass ingot,
(I) Hot forming into a desired shape within a temperature range of 1,700 to 1,900 ° C,
(Ii) cutting the hot-formed synthetic quartz glass block with a thickness of 50 mmt or less,
(Iii) annealing the cut synthetic quartz glass block having a thickness of 50 mmt or less by the heat treatment method of the present invention;
(Iv) A transparent synthetic quartz glass substrate is manufactured through each step of slicing the annealed synthetic quartz glass block into a substrate and then polishing.

更に詳述すると、先述したように製造した合成石英ガラスインゴットの表面に付着した微細なシリカ粉(スート)を円筒研削機等で除去した後、表面に付着した汚れ等をフッ酸中でエッチングし、純水又は超純水でよく洗い流し、クリーンブース等で乾燥させる。次に、所望の形状にするための熱間成形を実施する。これは真空溶解炉で、高純度カーボン材等を型材として、型材と合成石英ガラスインゴットとの間に高純度カーボンシート材を介するように合成石英ガラスインゴットを型材の中に仕込み、炉内雰囲気がアルゴン等の不活性ガス下で大気圧よりも若干の減圧で温度1,700〜1,900℃の範囲で30〜120分間保持し、円板状のインゴットを更に拡大して、例えば直径200〜320mmφ等の円板状合成石英ガラスブロック、あるいは形状を角板状にして底面が130mm×130〜200mm×200mm角等の四角板等の多角板状の合成石英ガラスブロックにする。   More specifically, after removing the fine silica powder (soot) adhering to the surface of the synthetic quartz glass ingot produced as described above with a cylindrical grinder, etc., the dirt adhering to the surface is etched in hydrofluoric acid. Rinse thoroughly with pure water or ultrapure water and dry in a clean booth. Next, hot forming is performed to obtain a desired shape. This is a vacuum melting furnace. Using a high-purity carbon material or the like as a mold material, a synthetic quartz glass ingot is charged into the mold material so that a high-purity carbon sheet material is interposed between the mold material and the synthetic quartz glass ingot. Under an inert gas such as argon, maintained at a temperature of 1,700 to 1,900 ° C. for 30 to 120 minutes under a slightly reduced pressure from the atmospheric pressure, further expanding the disk-shaped ingot, for example, a diameter of 200 to A disc-shaped synthetic quartz glass block such as 320 mmφ or a synthetic quartz glass block having a square plate shape and a polygonal plate shape such as a square plate having a bottom surface of 130 mm × 130 to 200 mm × 200 mm square or the like.

次に、この熱間成形により作製した合成石英ガラスブロックを、高さ方向で、多角板状の場合はその主面の対角線の2分の1以下とすることが好ましく、円板状の場合、主面の外径の2分の1以下とすることが好ましい。例えば、10〜50mmtの厚さの範囲、好ましくは30〜40mmtの厚さの範囲で順にスライスしてブロックとして切出す。10mmtよりも薄すぎると次工程で実施するアニール処理において不純物等の拡散が内部中央部まで拡散する可能性がある。また、50mmtよりも厚すぎると、次工程のアニール処理時に複屈折を2nm/cm以下、特に1nm/cm以下まで低減することが難しくなる場合がある。   Next, the synthetic quartz glass block produced by this hot forming is preferably at most half of the diagonal of the main surface in the height direction, in the case of a polygonal plate, It is preferable to set it to one half or less of the outer diameter of the main surface. For example, it slices in order in the range of the thickness of 10-50 mmt, Preferably the range of the thickness of 30-40 mmt is cut out as a block. If the thickness is less than 10 mm, diffusion of impurities or the like may be diffused to the inner central portion in the annealing process performed in the next step. On the other hand, if the thickness is more than 50 mmt, it may be difficult to reduce the birefringence to 2 nm / cm or less, particularly 1 nm / cm or less during the annealing process in the next step.

従って、この切出して得られたブロックは、四角以上の多角板状又は円板状となる。かかる板状ブロックにおいて、主面とは多角板状の場合は表裏面を指し、厚さ面は側面を指す。円板状ブロックの場合は、主面が表裏面(端面)を指し、厚さ面は外周面を指す。   Therefore, the block obtained by this cutting becomes a polygonal plate shape or a disk shape of a square or more. In such a plate-like block, the main surface indicates the front and back surfaces in the case of a polygonal plate shape, and the thickness surface indicates the side surface. In the case of a disk-shaped block, the main surface indicates the front and back surfaces (end surfaces), and the thickness surface indicates the outer peripheral surface.

この合成石英ガラスブロックからスライスを切出したブロック中の残留熱応力による歪を除歪するため、所謂アニール処理を実施する。このアニール処理は、通常の高温雰囲気炉を使用する。本発明において、アニール炉内への合成石英ガラスブロックのセット方法は下記の通りである。
(1)50mmt以下の厚さの合成石英ガラスブロックを複数個、主面を炉内ヒーター側に向け、厚さ面が炉底側になるように立て置きし、炉内にセットする。炉の大きさにもよるが、例えば2列で14〜40個程度を炉内に据えることが好ましい。
(2)この合成石英ガラスブロックを立て置きする際に、主面を炉内ヒーターに対して30〜60度の角度に配置する。特に40〜50度程度が好ましい。また、合成石英ガラスブロック間に空隙を設ける。空隙は10〜100mm、特に20〜50mm程度が好ましい。なお、空隙とは、ブロック間に気体以外のものが存在していないことを意味する。
In order to remove the strain caused by the residual thermal stress in the block obtained by cutting the slice from the synthetic quartz glass block, so-called annealing treatment is performed. This annealing process uses a normal high-temperature atmosphere furnace. In the present invention, the method of setting the synthetic quartz glass block in the annealing furnace is as follows.
(1) A plurality of synthetic quartz glass blocks with a thickness of 50 mmt or less are set up in a furnace, with the main surface facing the heater inside the furnace and the thickness surface facing the furnace bottom. Depending on the size of the furnace, for example, it is preferable to install about 14 to 40 pieces in two rows in the furnace.
(2) When the synthetic quartz glass block is erected, the main surface is disposed at an angle of 30 to 60 degrees with respect to the furnace heater. In particular, about 40 to 50 degrees is preferable. In addition, a gap is provided between the synthetic quartz glass blocks. The gap is preferably 10 to 100 mm, particularly preferably about 20 to 50 mm. In addition, a space | gap means that nothing other than gas exists between blocks.

図2,3は、本発明の板状ブロックの立設配置方法を示すもので、図2(a),(b)において、H側にヒーターが配設され、このヒーターに対し角度αが30〜60度傾斜して板状ブロック21がヒーターに対面するように、かつ各ブロック21が間隔Sとして10〜100mmを隔てて立設配置するものである。この場合、図2(b)に示したように、板状ブロック21をガラス治具22を介して積み重ねた状態で熱処理することもできる。図2(a),(b)は、それぞれ図3(c),(d)に対応するが、図3(a),(b)のように、ヒーター23に対し正対(0度)させることは、上述したように、本発明では採用しない。   FIGS. 2 and 3 show a method for vertically arranging plate-like blocks according to the present invention. In FIGS. 2A and 2B, a heater is provided on the H side, and an angle α is 30 with respect to this heater. The blocks 21 are arranged upright at an interval of 10 to 100 mm as an interval S so that the plate-like blocks 21 face the heater with inclination of ˜60 degrees. In this case, as shown in FIG. 2 (b), the plate-like block 21 can be heat-treated in a state of being stacked via the glass jig 22. 2 (a) and 2 (b) correspond to FIGS. 3 (c) and 3 (d), respectively, but as shown in FIGS. 3 (a) and 3 (b), the heater 23 is directly opposed (0 degree). This is not adopted in the present invention as described above.

即ち、この合成石英ガラスブロックの配置は、主面を炉内ヒーターに正対(0度)させることが望ましいが、炉内の長さの制約上限られたブロック数となり、非効率である。また、置けるブロック数を増やすために列数を多くすると、次工程のアニール処理時の冷却過程において、ヒーター側に配置したブロックにより断熱効果が発生してしまい、ヒーター側のブロックとその間のブロックとでは、ブロック内部温度の冷却速度に差が生じ、結果的に急冷状態になってしまい、残留熱応力となって、ブロックを配置した場所により歪みの低減が困難になってしまうことを知見した。そこで、歪みの均一な低減と効率化の両立を図った結果、合成石英ガラスブロックの主面を炉内ヒーターに対して30〜60度の角度に配置することで、炉内ヒーターに正対(0度)させたのと等しく歪みを低減させることを見出した。60度を超えると、上記理由から歪みの均一な低減が困難であり、一方、30度未満では置けるブロック数が0度と大差なく、効率的ではない。   That is, it is desirable that the synthetic quartz glass block be arranged so that the main surface faces the heater in the furnace (0 degree), but the number of blocks is limited to the upper limit of the length in the furnace, which is inefficient. Also, if the number of rows is increased to increase the number of blocks that can be placed, the heat-insulating effect is generated by the blocks arranged on the heater side in the cooling process during the annealing process of the next process, and the blocks on the heater side and the blocks in between Then, it was found that a difference in the cooling rate of the block internal temperature occurred, resulting in a rapid cooling state, resulting in residual thermal stress, making it difficult to reduce strain depending on where the block was placed. Therefore, as a result of achieving both uniform reduction of strain and efficiency improvement, the main surface of the synthetic quartz glass block is disposed at an angle of 30 to 60 degrees with respect to the furnace heater, so that the It was found that the distortion was reduced as much as 0 degree). If it exceeds 60 degrees, it is difficult to reduce distortion uniformly for the above reasons. On the other hand, if it is less than 30 degrees, the number of blocks that can be placed is not so different from 0 degrees, which is not efficient.

また、この合成石英ガラスブロック間の空隙は、10mmより狭い、乃至はブロック同士が接触したりすると、配置角度と同様に次工程のアニール処理時の冷却過程において、ブロック間相互で断熱効果が発生してしまい、ブロック内部の冷却過程とアニール炉内温度を制御する温度プログラムとの間にギャップが生じ、温度制御プログラムよりもブロック内部温度の冷却速度のほうが遅れてしまい、歪の低減が困難になってしまう。一方、100mmより多いと炉内の広さから置けるブロック数が制限されてしまい、効率的でない。   Also, if the gap between the synthetic quartz glass blocks is narrower than 10 mm, or if the blocks come into contact with each other, a heat insulating effect occurs between the blocks in the cooling process during the annealing process in the next step, as with the arrangement angle. Therefore, there is a gap between the cooling process inside the block and the temperature program that controls the annealing furnace temperature, and the cooling rate of the block internal temperature is delayed compared to the temperature control program, making it difficult to reduce distortion. turn into. On the other hand, if it is more than 100 mm, the number of blocks that can be placed due to the size of the inside of the furnace is limited, which is not efficient.

このように合成石英ガラスブロックをセットした後、大気中又は窒素等の不活性ガス雰囲気下でアニール温度1,000〜1,300℃の範囲内において5時間以上、特に5〜10時間保持した後、数時間以上、−20℃/hr以下、特に−1〜−15℃/hrの降温速度で、歪点温度付近の800〜1,000℃の範囲までゆっくりと冷却する。これにより合成石英ガラスブロック中の複屈折を5nm/cm以下に抑えることができる。更に、複屈折をより低く下げる場合は、最高温度と歪点付近までの冷却速度の調整に加え、歪点以下の温度100〜300℃の温度範囲まで、−40℃/hr以下、特に−1〜−20℃/hrでゆっくり徐冷することによって、例えば2nm/cm以下、更には1nm/cm以下まで抑えることが可能である。なお、複屈折の測定方法は、後述する通りである。   After setting the synthetic quartz glass block in this manner, after holding in the atmosphere at an annealing temperature of 1,000 to 1,300 ° C. for 5 hours or more, particularly 5 to 10 hours in an inert gas atmosphere such as nitrogen. Then, it is slowly cooled to a temperature range of 800 to 1,000 ° C. near the strain point temperature at a temperature decreasing rate of −20 ° C./hr or less, particularly −1 to −15 ° C./hr. Thereby, the birefringence in the synthetic quartz glass block can be suppressed to 5 nm / cm or less. Furthermore, when lowering the birefringence to a lower level, in addition to adjusting the maximum temperature and the cooling rate to near the strain point, up to a temperature range of 100 to 300 ° C. below the strain point, −40 ° C./hr or less, particularly −1. By slowly slow-cooling at -20 ° C / hr, for example, it can be suppressed to 2 nm / cm or less, and further to 1 nm / cm or less. The birefringence measurement method is as described later.

このとき降温速度をより低くすることが好ましく、アニール温度1,000〜1,300℃から歪点温度付近800〜1,000℃の範囲までの降温速度は−5℃/hr以下、−2℃/hr以下がより好ましく、次いで100〜300℃までの降温速度は、−10℃/hr以下、特には−5℃/hr以下が好ましい。   At this time, it is preferable to lower the temperature decrease rate, and the temperature decrease rate from the annealing temperature of 1,000 to 1,300 ° C. to the vicinity of the strain point temperature of 800 to 1,000 ° C. is −5 ° C./hr or less, −2 ° C. / Hr or less is more preferable, and the rate of temperature decrease from 100 to 300 ° C. is preferably −10 ° C./hr or less, and particularly preferably −5 ° C./hr or less.

これらは、上述したように、ブロック内部の温度とアニール炉内との温度ギャップが生じないように降温速度を調整するものである。この場合、上記合成石英ガラスブロックのセット方法と組合せることでブロック主面全面も複屈折値を2nm/cm以下、特に1nm/cm以下にすることが可能になる。   As described above, the temperature lowering rate is adjusted so that a temperature gap between the temperature inside the block and the annealing furnace does not occur. In this case, by combining with the synthetic quartz glass block setting method described above, the entire birefringence value of the entire block main surface can be made 2 nm / cm or less, particularly 1 nm / cm or less.

このようにして作製した合成石英ガラスブロックを、例えばArFエキシマレーザ用フォトマスク基板用として使用する場合は、更にArFの波長193nmでの初期透過率を向上させるために、例えば紫外線照射等を実施してもよい。紫外線照射は、低圧水銀ランプ、メタルハライドランプ、水銀キセノンランプ、エキシマランプ等を用いて、0.1〜50時間、特に5〜40時間行うことが好ましい。   When the synthetic quartz glass block produced in this way is used for an ArF excimer laser photomask substrate, for example, in order to further improve the initial transmittance of ArF at a wavelength of 193 nm, for example, ultraviolet irradiation is performed. May be. The ultraviolet irradiation is preferably performed for 0.1 to 50 hours, particularly 5 to 40 hours, using a low-pressure mercury lamp, a metal halide lamp, a mercury xenon lamp, an excimer lamp, or the like.

また、合成石英ガラスブロックが直接法により製造されたものであれば、このアニール処理後のブロック中の水素分子濃度は5×1015〜5×1017分子数/cm3程度であり、これはArFエキシマレーザ照射時の初期耐性及び長期耐性に対しては適度な濃度に調整されている。なお、直接法の場合、水素分子濃度の調整は、合成石英ガラスインゴットを製造する際のシリカ原料化合物、水素等の可燃性ガス、酸素等の支燃性ガスの各々について、供給バランスを調整することにより行われる。水素分子濃度の測定方法は後述する通りである。 Further, if the synthetic quartz glass block is manufactured by the direct method, the hydrogen molecule concentration in the block after the annealing treatment is about 5 × 10 15 to 5 × 10 17 molecules / cm 3. The initial concentration and long-term resistance at the time of ArF excimer laser irradiation are adjusted to an appropriate concentration. In the case of the direct method, the hydrogen molecule concentration is adjusted by adjusting the supply balance for each of the silica raw material compound, the combustible gas such as hydrogen, and the flammable gas such as oxygen when producing the synthetic quartz glass ingot. Is done. The method for measuring the hydrogen molecule concentration is as described later.

更に、例えばVAD法、OVD法、MCVD法等の所謂スート法の場合であれば、多孔質体から透明ガラス化された合成石英ガラス部材中には、上記の水素分子が含有されていないことから、上述のような熱処理後、スライス基板にて雰囲気炉内にて水素雰囲気で大気圧以上の圧力下、400℃以下の温度で数時間熱処理することで合成石英ガラス基板中に水素分子を5×1015〜5×1017分子数/cm3程度を含有させれば、耐ArFエキシマレーザ性が得られる。 Furthermore, in the case of so-called soot methods such as the VAD method, OVD method, and MCVD method, the above-described hydrogen molecules are not contained in the synthetic quartz glass member formed into a transparent glass from the porous body. After the heat treatment as described above, 5 × hydrogen molecules in the synthetic quartz glass substrate are heat-treated for several hours at a temperature of 400 ° C. or lower under a pressure of atmospheric pressure or higher in a hydrogen atmosphere in an atmosphere furnace in a slice substrate. When about 10 15 to 5 × 10 17 molecules / cm 3 are contained, ArF excimer laser resistance can be obtained.

アニール後の合成石英ガラスブロックは、各面を平面研削機によって研削すると同時に、各面を平行に仕上げる。次に、これをスライス加工、各辺の面取り加工、ラップ加工、プレ研摩加工、ファイナル研摩加工と従来の研摩加工工程を経て、例えばエキシマレーザ用合成石英ガラス基板用であれば、6インチ角で厚みが6.35mmtの所謂通常サイズである6025基板等を製造することができる。また、合成石英ガラスインゴットから熱間成形する際に円柱状に拡大成形することで、ウェーハ基板を作製することもできる。例えば8インチφの厚みを1mmt前後等のサイズの作製が可能でもあり、高精細・高コントラスト用の光部品用の低複屈折な基板として使用できる。   The annealed synthetic quartz glass block grinds each surface with a surface grinder and simultaneously finishes each surface in parallel. Next, this is subjected to slicing, chamfering of each side, lapping, pre-polishing, final polishing and conventional polishing processes. For example, for a synthetic quartz glass substrate for excimer laser, a 6 inch square A so-called normal size 6025 substrate having a thickness of 6.35 mmt can be manufactured. Moreover, a wafer substrate can also be produced by enlarging into a cylindrical shape when hot forming from a synthetic quartz glass ingot. For example, it is possible to produce an 8 inch diameter with a thickness of about 1 mmt, and it can be used as a low birefringence substrate for optical components for high definition and high contrast.

以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
なお、下記例で内部透過率、水素分子濃度、複屈折の測定方法は以下の通りである。
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
In the following examples, the methods for measuring internal transmittance, hydrogen molecule concentration, and birefringence are as follows.

内部透過率:
紫外分光光度法(具体的には、VARIAN社製透過率測定装置(Cary400))により測定した。
水素分子濃度:
レーザーラマン分光光度法(具体的には、Zhurnal Priklandnoi Spektroskopii Vol.46 No.6 pp.987〜991,1987に示される方法)により測定した。使用機器は日本分光社製NRS−2100を用い、ホトンカウント法にて測定を行った。アルゴンレーザーラマン分光光度法による水素分子濃度の測定は検出器の感度曲線によっては値が変わってしまうことがあるので、標準試料を用いて値を校正した。
複屈折:
複屈折測定装置(具体的には、UNIOPT社製複屈折測定装置(ABR−10A))を用いて室温(25〜28℃)における値を測定した。
Internal transmittance:
It was measured by an ultraviolet spectrophotometry (specifically, a transmittance measuring device (Cary 400) manufactured by VARIAN).
Hydrogen molecule concentration:
It was measured by laser Raman spectrophotometry (specifically, the method shown in Zhurnal Priklandnoi Specktroskopii Vol. 46 No. 6 pp. 987 to 991, 1987). The instrument used was NRS-2100 manufactured by JASCO Corporation, which was measured by the photon counting method. The measurement of hydrogen molecule concentration by argon laser Raman spectrophotometry may vary depending on the sensitivity curve of the detector, so the value was calibrated using a standard sample.
Birefringence:
The value at room temperature (25 to 28 ° C.) was measured using a birefringence measurement apparatus (specifically, a birefringence measurement apparatus (ABR-10A) manufactured by UNIOTPT).

[実施例1]
原料としてメチルトリクロロシラン3,000g/hrを酸素12Nm3/hrと水素30Nm3/hrから火炎を形成している石英製バーナーに供給し、酸化又は燃焼分解させてシリカ微粒子を生成させ、これを回転している石英製ターゲット上に堆積すると同時に溶融ガラス化して合成石英ガラスインゴットを得た。
[Example 1]
3,000 g / hr of methyltrichlorosilane as a raw material is supplied to a quartz burner forming a flame from oxygen 12 Nm 3 / hr and hydrogen 30 Nm 3 / hr, and oxidized or combustion decomposed to produce silica fine particles. A synthetic quartz glass ingot was obtained by depositing on a rotating quartz target and simultaneously melting into glass.

この場合、図1に示したように、回転する支台1上に石英ガラス製ターゲット2を取り付ける一方、原料蒸発器3内に入れたメチルトリクロロシラン4にアルゴンガス5を導入し、このアルゴンガス5にメチルトリクロロシラン4の蒸気を随伴させ、かつこれに酸素ガス6を混合した混合ガスを石英製バーナー7の中心ノズルに供給すると共に、このバーナー7には、更に上記混合ガスを中心にして順次内側から外側に酸素ガス8、水素ガス9、水素ガス10、酸素ガス11を供給し、バーナー7から上記原料メチルトリクロロシラン、酸水素火炎12をターゲット2に向けて噴出して、シリカ微粒子13をターゲット2に堆積させ、同時に溶融透明ガラス化させて合成石英ガラスインゴット14を得た。
合成石英ガラスインゴットは原料のメチルトリクロロシランを毎時一定流量になるように制御し、かつシリカの溶融成長面の形状を一定に維持させるようにバーナーセッティング調整やバーナー各ノズルより導入される酸水素ガス流量のバランス調整を実施した。これにより140mmφ×350mmの合成石英ガラスインゴットを切り出した。
In this case, as shown in FIG. 1, a quartz glass target 2 is mounted on a rotating abutment 1, while an argon gas 5 is introduced into methyltrichlorosilane 4 placed in a raw material evaporator 3. 5 is accompanied by vapor of methyltrichlorosilane 4 and mixed with oxygen gas 6 to supply to the central nozzle of the quartz burner 7, and the burner 7 further includes the above mixed gas as a center. Sequentially, oxygen gas 8, hydrogen gas 9, hydrogen gas 10, and oxygen gas 11 are supplied from the inside to the outside, and the raw material methyltrichlorosilane and oxyhydrogen flame 12 are ejected from the burner 7 toward the target 2 to obtain silica fine particles 13 Were deposited on the target 2 and simultaneously melted into a transparent glass to obtain a synthetic quartz glass ingot 14.
The synthetic quartz glass ingot controls the raw material methyltrichlorosilane at a constant flow rate per hour, and adjusts the burner settings to maintain a constant shape of the silica melt growth surface and oxyhydrogen gas introduced from each nozzle of the burner The flow balance was adjusted. As a result, a 140 mmφ × 350 mm synthetic quartz glass ingot was cut out.

次に、この合成石英ガラスインゴットの表面に付着した未溶融のシリカ(スート)を除去するため、円筒研削機にて表面を研削した後、表面洗浄のため、50質量%フッ酸溶液中に5時間浸漬させた後、純水槽内で洗い流し、クリーンブース内で乾燥した。
この表面処理された合成石英ガラスインゴットを真空溶解炉にて内側に高純度カーボンシートがセットされている高純度カーボン製型材の中に据えて、温度1,780℃、アルゴンガス雰囲気下で40分間加熱して160mm×160mm×210mmLの合成石英ガラスブロックとした。なお、この合成石英ガラスブロックの水素分子濃度は、4×1018分子数/cm3であった。
合成石英ガラスブロックのバリ除去後、約40mmの厚みにスライスして、4ブロックとした。このようにして同じ形状・サイズのブロックを24ブロック作製した。
Next, in order to remove unmelted silica (soot) adhering to the surface of the synthetic quartz glass ingot, after grinding the surface with a cylindrical grinder, the surface is washed with 5% in a 50% by mass hydrofluoric acid solution. After soaking for a period of time, it was washed away in a pure water tank and dried in a clean booth.
This surface-treated synthetic quartz glass ingot is placed in a high-purity carbon mold in which a high-purity carbon sheet is set inside in a vacuum melting furnace, and the temperature is 1,780 ° C. under an argon gas atmosphere for 40 minutes. A synthetic quartz glass block of 160 mm × 160 mm × 210 mmL was heated. The hydrogen molecule concentration of this synthetic quartz glass block was 4 × 10 18 molecules / cm 3 .
After removing the burrs from the synthetic quartz glass block, it was sliced to a thickness of about 40 mm to obtain 4 blocks. In this way, 24 blocks having the same shape and size were produced.

次に、この24ブロックを大気圧炉内にセットした。まず、大気圧炉床に合成石英ガラスの約10mmt前後の厚みの板を敷き、その上に、図2(b)に示すように、表1に記載の合成石英ガラスブロック間の空隙長となるよう、図3(d)に示すヒーター24を具備した炉内に合成石英ガラスブロックを立て置きした。   Next, these 24 blocks were set in an atmospheric pressure furnace. First, a plate having a thickness of about 10 mmt of synthetic quartz glass is laid on the atmospheric pressure hearth, and the gap length between the synthetic quartz glass blocks shown in Table 1 is provided thereon as shown in FIG. Thus, a synthetic quartz glass block was placed upright in a furnace equipped with the heater 24 shown in FIG.

セット後、大気圧雰囲気にて温度1,150℃まで約5時間で昇温後、5時間保持した。900℃まで−2℃/hrの降温速度で徐冷後、更に200℃まで−5℃/hrの降温速度で徐冷し、電気炉の電源をOFFとした。
室温まで冷却後、電気炉のドアを開放して各ブロックを取り出した。これらブロックの6面を平面研削機にて直角度及び表面処理を実施し、6インチ角に仕上げた。
After setting, the temperature was raised to 1,150 ° C. in an atmospheric pressure atmosphere for about 5 hours, and then held for 5 hours. After slow cooling to 900 ° C. at a rate of temperature decrease of −2 ° C./hr, the temperature was further cooled to 200 ° C. at a rate of temperature decrease of −5 ° C./hr, and the electric furnace was turned off.
After cooling to room temperature, the electric furnace door was opened and each block was taken out. Six blocks of these blocks were subjected to squareness and surface treatment with a surface grinder to finish 6 inches square.

これらの合成石英ガラスブロックに低圧水銀ランプを24時間照射した後、通常のスライス加工、面取り加工、ラップ加工、研摩加工を通して、6インチ角の厚み6.35mmの通常の代表サイズである合成石英ガラス基板を得た。   After irradiating these synthetic quartz glass blocks with a low-pressure mercury lamp for 24 hours, through normal slicing, chamfering, lapping and polishing, synthetic quartz glass having a typical representative size of 6.35 mm in thickness of 6 inches square. A substrate was obtained.

これら研摩された透明な合成石英ガラス基板全面の複屈折を5mm間隔で測定した。その結果、全枚数において最大値が1nm/cm以下であることがわかった。   The birefringence of the entire surface of these polished transparent synthetic quartz glass substrates was measured at intervals of 5 mm. As a result, it was found that the maximum value in all sheets was 1 nm / cm or less.

[実施例2]
実施例1と同様に表1に示す条件で、図2(a)、図3(c)に示す配置で合成石英ガラスブロックを熱処理し、複屈折を測定した。
[Example 2]
Similarly to Example 1, under the conditions shown in Table 1, the synthetic quartz glass block was heat-treated with the arrangement shown in FIGS. 2 (a) and 3 (c), and birefringence was measured.

[比較例1]
図3(a)に示す配置で実施例1と同様な処理を実施した。
[Comparative Example 1]
The same processing as in Example 1 was performed with the arrangement shown in FIG.

[比較例2]
図3(b)に示す配置で実施例1と同様な処理を実施した。
[Comparative Example 2]
The same processing as in Example 1 was performed with the arrangement shown in FIG.

[比較例3]
合成石英ガラスブロック間の配置を90°にした以外は実施例1と同様な処理を実施した。
[Comparative Example 3]
The same treatment as in Example 1 was performed except that the arrangement between the synthetic quartz glass blocks was 90 °.

[比較例4]
合成石英ガラスブロック間の間隔をなくし、ブロック同士を接触させた以外は実施例1と同様な処理を実施した。
[Comparative Example 4]
The same treatment as in Example 1 was performed except that the interval between the synthetic quartz glass blocks was eliminated and the blocks were brought into contact with each other.

実施例1,2及び比較例1〜4の結果を表1中に示す。   The results of Examples 1 and 2 and Comparative Examples 1 to 4 are shown in Table 1.

また、実施例1で作製した合成石英ガラス基板から10mm×6.35mm×90mmのサンプルを切り出して、4面(10mm×90mmの2面、6.35mm×90mmの2面)を研摩して、水素分子濃度及びArFエキシマレーザ照射により波長215nmでの吸光度を測定した結果、波長193nmでの換算値で透過率変化は0.5%以下であった。また、この基板から30mm角のサンプルを切り出した後、30mm角の面に対する波長193.4nmでの透過率及び基板面内の透過率分布を実測した結果、内部透過率で99.60〜99.85%、基板面内の透過率分布(ΔT%、波長193.4nm)も0.2%以下であった。   Further, a 10 mm × 6.35 mm × 90 mm sample was cut out from the synthetic quartz glass substrate produced in Example 1, and 4 surfaces (10 mm × 90 mm, 2 surfaces, 6.35 mm × 90 mm) were polished, As a result of measuring absorbance at a wavelength of 215 nm by hydrogen molecule concentration and ArF excimer laser irradiation, the transmittance change was 0.5% or less in terms of a converted value at a wavelength of 193 nm. Further, after cutting a 30 mm square sample from this substrate, the transmittance at a wavelength of 193.4 nm and the transmittance distribution in the substrate plane with respect to the 30 mm square surface were measured, and as a result, the internal transmittance was 99.60 to 99.99. The transmittance distribution (ΔT%, wavelength 193.4 nm) in the substrate plane was 85% and 0.2% or less.

Figure 2012020904
Figure 2012020904

1 支台
2 石英ガラス製ターゲット
3 原料蒸発器
4 メチルトリクロロシラン
5 アルゴンガス
6 酸素ガス
7 バーナー
8 酸素ガス
9 水素ガス
10 水素ガス
11 酸素ガス
12 酸水素火炎
13 シリカ微粒子
14 合成石英ガラスインゴット
21 合成石英ガラスブロック
22 隙間セット用ガラス治具
23 炉内ヒーター
DESCRIPTION OF SYMBOLS 1 Abutment 2 Target made of quartz glass 3 Raw material evaporator 4 Methyltrichlorosilane 5 Argon gas 6 Oxygen gas 7 Burner 8 Oxygen gas 9 Hydrogen gas 10 Hydrogen gas 11 Oxygen gas 12 Oxyhydrogen flame 13 Silica fine particle 14 Synthetic quartz glass ingot 21 Synthesis Quartz glass block 22 Glass jig for gap setting 23 Furnace heater

Claims (7)

合成石英ガラスブロックを複数個並べて雰囲気炉内で熱処理する合成石英ガラスの熱処理方法であって、上記合成石英ガラスブロックが多角板状又は円板状であって、これらブロックの厚さ面を炉底側にし、主面を炉内ヒーター側に向けて炉内ヒーターに対し30〜60度の角度でかつブロック間に空隙を設けて並列に及び/又は積み重ねて立設配置して、上記ブロックを熱処理することを特徴とする合成石英ガラスブロックの熱処理方法。   A synthetic quartz glass heat treatment method in which a plurality of synthetic quartz glass blocks are arranged and heat-treated in an atmosphere furnace, wherein the synthetic quartz glass block has a polygonal plate shape or a disk shape, and the thickness surface of these blocks is defined at the bottom of the furnace. The block is heat-treated with the main surface facing the in-furnace heater side and at an angle of 30 to 60 degrees with respect to the in-furnace heater and with gaps between the blocks in parallel and / or stacked. A heat treatment method for a synthetic quartz glass block, characterized in that: 1,000〜1,300℃まで昇温して、この温度を一定時間保持した後、800〜1,000℃まで−20℃/hr以下の降温速度で冷却し、更に100〜300℃まで−40℃/hr以下の降温速度で冷却することを特徴とする請求項1記載の合成石英ガラスブロックの熱処理方法。   After raising the temperature to 1,000 to 1,300 ° C. and maintaining this temperature for a certain period of time, the temperature is lowered to 800 to 1,000 ° C. at a temperature lowering rate of −20 ° C./hr or less, and further to 100 to 300 ° C. The method for heat-treating a synthetic quartz glass block according to claim 1, wherein cooling is performed at a temperature-decreasing rate of 40 ° C / hr or less. 合成石英ガラスインゴットを1,700〜1,900℃の範囲で熱間成形し、この成形した合成石英ガラスを厚さ50mm以下のブロックに切出した後、得られたブロックを熱処理し、このブロックを更にスライスして基板にして透明な合成石英ガラス基板を製造する際における上記熱処理工程として実施される請求項1又は2記載の合成石英ガラスブロックの熱処理方法。   A synthetic quartz glass ingot was hot-molded in the range of 1,700 to 1,900 ° C., and the molded synthetic quartz glass was cut into blocks having a thickness of 50 mm or less, and then the obtained block was heat-treated. The method for heat-treating a synthetic quartz glass block according to claim 1 or 2, wherein the heat-treating step is carried out as the heat treatment step when a transparent synthetic quartz glass substrate is produced by slicing the substrate. 合成石英ガラスブロック間の空隙の幅が10〜100mmであることを特徴とする請求項1乃至3のいずれか1項記載の合成石英ガラスブロックの熱処理方法。   The method for heat treatment of a synthetic quartz glass block according to any one of claims 1 to 3, wherein the width of the gap between the synthetic quartz glass blocks is 10 to 100 mm. 合成石英ガラスブロックの厚さが、多角板状ブロックの場合は、主面の対角線の2分の1以下であり、円板状ブロックの場合は、主面の外径の2分の1以下であることを特徴とする請求項1乃至4のいずれか1項記載の合成石英ガラスブロックの熱処理方法。   In the case of a polygonal plate block, the thickness of the synthetic quartz glass block is less than half of the diagonal of the main surface, and in the case of a disk block, it is less than one half of the outer diameter of the main surface. The heat treatment method for a synthetic quartz glass block according to any one of claims 1 to 4, wherein the heat treatment method is performed. 合成石英ガラスブロック中の主面全面の複屈折の最大値が2nm/cm以下であることを特徴とする請求項1乃至5のいずれか1項記載の合成石英ガラスブロックの熱処理方法。   6. The method for heat treatment of a synthetic quartz glass block according to claim 1, wherein the maximum birefringence of the entire main surface in the synthetic quartz glass block is 2 nm / cm or less. 合成石英ガラス基板が、ArFエキシマレーザ照射用フォトマスクの製造用合成石英基板である請求項3乃至6のいずれか1項記載の合成石英ガラスブロックの熱処理方法。   The method for heat treatment of a synthetic quartz glass block according to any one of claims 3 to 6, wherein the synthetic quartz glass substrate is a synthetic quartz substrate for producing a photomask for ArF excimer laser irradiation.
JP2010160408A 2010-07-15 2010-07-15 Heat treatment method for synthetic quartz glass block Active JP5418428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010160408A JP5418428B2 (en) 2010-07-15 2010-07-15 Heat treatment method for synthetic quartz glass block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010160408A JP5418428B2 (en) 2010-07-15 2010-07-15 Heat treatment method for synthetic quartz glass block

Publications (2)

Publication Number Publication Date
JP2012020904A true JP2012020904A (en) 2012-02-02
JP5418428B2 JP5418428B2 (en) 2014-02-19

Family

ID=45775487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010160408A Active JP5418428B2 (en) 2010-07-15 2010-07-15 Heat treatment method for synthetic quartz glass block

Country Status (1)

Country Link
JP (1) JP5418428B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170105419A (en) * 2016-03-09 2017-09-19 신에쓰 가가꾸 고교 가부시끼가이샤 Method for preparing synthetic quartz glass substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183036A (en) * 2001-12-18 2003-07-03 Shinetsu Quartz Prod Co Ltd Method for manufacturing synthetic quartz glass for optical use, synthetic quartz glass for optical use and annealing furnace
JP2008063151A (en) * 2005-08-11 2008-03-21 Shin Etsu Chem Co Ltd Synthetic quartz glass substrate for excimer laser and its production method
JP2011026173A (en) * 2009-07-27 2011-02-10 Shin-Etsu Chemical Co Ltd Heat-treatment method of synthetic quartz glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183036A (en) * 2001-12-18 2003-07-03 Shinetsu Quartz Prod Co Ltd Method for manufacturing synthetic quartz glass for optical use, synthetic quartz glass for optical use and annealing furnace
JP2008063151A (en) * 2005-08-11 2008-03-21 Shin Etsu Chem Co Ltd Synthetic quartz glass substrate for excimer laser and its production method
JP2011026173A (en) * 2009-07-27 2011-02-10 Shin-Etsu Chemical Co Ltd Heat-treatment method of synthetic quartz glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170105419A (en) * 2016-03-09 2017-09-19 신에쓰 가가꾸 고교 가부시끼가이샤 Method for preparing synthetic quartz glass substrate
CN107176794A (en) * 2016-03-09 2017-09-19 信越化学工业株式会社 The preparation method of synthetic quartz glass substrate
TWI693199B (en) * 2016-03-09 2020-05-11 日商信越化學工業股份有限公司 Method for preparing synthetic quartz glass substrate
KR102260633B1 (en) 2016-03-09 2021-06-07 신에쓰 가가꾸 고교 가부시끼가이샤 Method for preparing synthetic quartz glass substrate

Also Published As

Publication number Publication date
JP5418428B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
EP1900694B1 (en) Method for making a synthetic quartz glass substrate for excimer lasers
KR101513310B1 (en) Titania-doped quartz glass member and making method
JP5035516B2 (en) Method for producing titania-doped quartz glass for photomask
KR101869979B1 (en) Titania-doped quartz glass and making method
US7954340B2 (en) Synthetic quartz glass substrate for excimer lasers and making method
JP4453939B2 (en) Optical silica glass member for F2 excimer laser transmission and manufacturing method thereof
US6333284B1 (en) Synthetic fused silica member
JP2005255423A (en) Synthetic quartz glass-made photomask substrate and photomask
JP5471478B2 (en) Method for producing synthetic quartz glass for excimer laser
JP4158009B2 (en) Synthetic quartz glass ingot and method for producing synthetic quartz glass
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
JP5287574B2 (en) Heat treatment method for synthetic quartz glass
JP4170719B2 (en) Method for producing optical synthetic quartz glass member and optical synthetic quartz glass member
JP4569779B2 (en) Synthetic quartz glass ingot and method for producing synthetic quartz glass member
JP2006251781A (en) Mask blank
JP2001019465A (en) Synthetic quartz glass member for excimer laser and its production
JP5304720B2 (en) Synthetic quartz glass ingot and method for producing synthetic quartz glass member
JP4831328B2 (en) Method for manufacturing synthetic quartz glass substrate for excimer laser
JP5418428B2 (en) Heat treatment method for synthetic quartz glass block
KR20110053910A (en) Titania and sulfur co-doped quartz glass member and making method
JP4054983B2 (en) Synthetic quartz glass
JPH0831723A (en) Synthetic quartz mask substrate for arf excimer laser lithography and manufacture thereof
JP3796653B2 (en) Fluorine-containing synthetic quartz glass and method for producing the same
JP3965552B2 (en) Method for producing synthetic quartz glass
JP4744046B2 (en) Method for producing synthetic quartz glass material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

R150 Certificate of patent or registration of utility model

Ref document number: 5418428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150