JP2012019966A - Noise removing method and pulse photometer - Google Patents

Noise removing method and pulse photometer Download PDF

Info

Publication number
JP2012019966A
JP2012019966A JP2010160249A JP2010160249A JP2012019966A JP 2012019966 A JP2012019966 A JP 2012019966A JP 2010160249 A JP2010160249 A JP 2010160249A JP 2010160249 A JP2010160249 A JP 2010160249A JP 2012019966 A JP2012019966 A JP 2012019966A
Authority
JP
Japan
Prior art keywords
pulse wave
wave data
light
noise
discrete time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010160249A
Other languages
Japanese (ja)
Inventor
Masaru Shoda
勝 鎗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koden Corp
Original Assignee
Nippon Koden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koden Corp filed Critical Nippon Koden Corp
Priority to JP2010160249A priority Critical patent/JP2012019966A/en
Publication of JP2012019966A publication Critical patent/JP2012019966A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for removing the noise contained in discrete time series pulse wave data capable of further reducing the noise component of the low frequency region (0.5-2.0 Hz) contained in a pulse wave main component waveform (After-rotation) reduced in noise using a rotary matrix, and to provide a pulse photometer.SOLUTION: The method for removing the noise contained in the discrete time series pulse wave data includes: a step of irradiating bio-tissue with two lights different in wavelength; a step of converting the lights of respective wavelengths transmitted through or reflected from the bio-tissue into electric signals to receive them; a step of rotating the discrete time series pulse wave data obtained from the electric signals of the respective wavelengths around the average value of the respective pulse wave data at an angle predetermined using the rotary matrix or an angle determined on the basis of a predetermined condition; and a step of taking the first difference of a projection result after rotation.

Description

本発明は、一つの媒体からほぼ同時に抽出される2つの同種の信号を処理して共通の信号成分を抽出する信号処理に関し、特には医療の分野において、特に循環器系の診断に用いられるパルスフォトメータにおける信号処理の改良に関する。   The present invention relates to signal processing for extracting two common signals extracted from a single medium at the same time to extract a common signal component, and more particularly, a pulse used in the medical field, particularly for diagnosis of the circulatory system. The present invention relates to improvement of signal processing in a photometer.

一つの媒体からほぼ同時に抽出された2つの信号から信号成分と雑音成分に分離する方法には様々な方法が提案されている。
それらは、一般的には周波数領域や時間領域による処理が行われている。
医療現場でも、光電脈波計と言われる脈波波形や脈拍数を測定する装置、血液に含まれる吸光物質の濃度測定として、酸素飽和度SpO2の測定装置、一酸化炭素ヘモグロビンやMetヘモグロビン等の特殊ヘモグロビンの濃度の測定装置、注入色素濃度の測定装置などがパルスフォトメータとして知られている。
中でも酸素飽和度SpO2の測定装置を特にパルスオキシメータと呼んでいる。
Various methods have been proposed for separating a signal component and a noise component from two signals extracted almost simultaneously from one medium.
In general, they are processed in the frequency domain or the time domain.
Even in the medical field, a device that measures the pulse waveform and pulse rate, which is called a photoelectric pulse wave meter, a concentration measurement of light-absorbing substances in blood, a device for measuring oxygen saturation SpO2, carbon monoxide hemoglobin, Met hemoglobin, etc. A device for measuring the concentration of special hemoglobin, a device for measuring the concentration of injected dye, and the like are known as pulse photometers.
In particular, the oxygen saturation SpO2 measuring device is called a pulse oximeter.

パルスフォトメータの原理は、対象物質への吸光性が異なる複数の波長の光を生体組織に透過又は反射させ、その透過光又は反射光の光量を連続的に測定することで得られる脈波データ信号から対象物質の濃度を求めるものである。
そしてその脈波データに雑音が混入すると、正しい濃度の計算が出来ず、誤処置につながる危険が生じる。
パルスフォトメータにおいても従来より雑音を低減するために周波数帯域を分割して信号成分に着目したり、2つの信号の相関を取るなどの方法が提案されてきた。
しかし、これらの方法は解析に時間がかかるなどの問題があった。
The principle of the pulse photometer is that pulse wave data obtained by transmitting or reflecting light of multiple wavelengths with different absorption to the target substance to the living tissue and continuously measuring the amount of transmitted or reflected light. The concentration of the target substance is obtained from the signal.
If noise is mixed in the pulse wave data, the correct concentration cannot be calculated, and there is a risk of mishandling.
Conventionally, in a pulse photometer, in order to reduce noise, a method of dividing a frequency band and paying attention to a signal component or taking a correlation between two signals has been proposed.
However, these methods have a problem that analysis takes time.

そこで、本出願人は、特許第3270917号(特許文献1)において、異なる2つの波長の光を生体組織に照射して透過光から得られる2つの脈波信号のそれぞれの大きさを縦軸、横軸としてグラフを描き、その回帰直線を求め、その回帰直線の傾きに基づいて、動脈血中の酸素飽和度ないし吸光物質濃度を求めることを提案している。
この発明により、測定精度を高め、低消費電力化することができた。
しかし、各波長の脈波信号についての多くのサンプリングデータを用いて回帰直線ないしその傾きを求めるためには、なお多くの計算処理を要していた。
Therefore, in the patent No. 32701717 (Patent Document 1), the applicant of the present invention irradiates the biological tissue with light of two different wavelengths and expresses the magnitudes of the two pulse wave signals obtained from the transmitted light on the vertical axis, It has been proposed that a graph is drawn on the horizontal axis, the regression line is obtained, and the oxygen saturation or light-absorbing substance concentration in the arterial blood is obtained based on the slope of the regression line.
According to the present invention, measurement accuracy can be improved and power consumption can be reduced.
However, in order to obtain the regression line or its inclination using a large amount of sampling data for pulse wave signals of each wavelength, a lot of calculation processing is still required.

また、本出願人は、特許第3924636号(特許文献2)においては、周波数解析を用いてはいるが、その解析においては従来技術のように脈波信号そのものを抽出するのではなく、脈波信号の基本周波数を求め、さらには精度を高めるためにその高調波周波数を用いたフィルタを用いて脈波信号をフィルタリングする方法を提案している。   In addition, although the present applicant uses frequency analysis in Japanese Patent No. 3924636 (Patent Document 2), the pulse wave signal itself is not extracted in the analysis instead of extracting the pulse wave signal itself as in the prior art. In order to obtain the fundamental frequency of a signal and further improve accuracy, a method of filtering a pulse wave signal using a filter using the harmonic frequency is proposed.

本出願人は、更に、基本周波数を求める点に関しては更なる改善策として、特許第4352315号(特許文献3)において、同一の媒体からほぼ同時に抽出される2つの同種の信号を処理して共通の信号成分を抽出する計算処理負担を軽減した信号処理方法を提供している。   Further, as a further improvement measure regarding the point of obtaining the fundamental frequency, the present applicant processes two common signals extracted from the same medium almost simultaneously in Japanese Patent No. 4352315 (Patent Document 3). The signal processing method which reduced the calculation processing burden which extracts the signal component of is provided.

次に、上記特許文献3の内容について説明する。
特許文献3に記載の発明の実施の形態を説明するにあたり、動脈血酸素飽和度を測定するパルスオキシメータを例に挙げて原理を説明する。
なお、特許文献3に記載の発明の技術は、パルスオキシメータに限られず、特殊ヘモグロビン(一酸化炭素ヘモグロビン、Metヘモグロビンなど)、血中に注入された色素などの血中吸光物質をパルスフォトメトリーの原理を用いて測定する装置(パルスフォトメータ)に適用できる。
Next, the contents of Patent Document 3 will be described.
In describing the embodiment of the invention described in Patent Document 3, the principle will be described using a pulse oximeter that measures arterial blood oxygen saturation as an example.
The technique of the invention described in Patent Document 3 is not limited to a pulse oximeter, and pulse photometry is performed on a blood absorption substance such as special hemoglobin (carbon monoxide hemoglobin, Met hemoglobin, etc.) or a dye injected into blood. It can be applied to a device (pulse photometer) that uses the principle of

動脈血酸素飽和度を測定するパルスオキシメータの構成は、概略構成ブロック図である図3のようになっている。
異なる波長の光を発光する発光素子1、2は、交互に発光するように駆動回路3により駆動される。
発光素子1、2に採用する光はそれぞれ動脈血酸素飽和度による影響が少ない赤外光(例えば940[nm])、動脈血酸素飽和度の変化に対する感度が高い赤色光(例えば660[nm])がよい。
The configuration of the pulse oximeter for measuring the arterial oxygen saturation is as shown in FIG. 3, which is a schematic configuration block diagram.
The light-emitting elements 1 and 2 that emit light of different wavelengths are driven by the drive circuit 3 so as to emit light alternately.
Light used for the light emitting elements 1 and 2 is infrared light (eg, 940 [nm]) that is less affected by arterial oxygen saturation, and red light (eg, 660 [nm]) that is highly sensitive to changes in arterial oxygen saturation. Good.

これらの発光素子1、2からの発光は生体組織4を透過してフォトダイオード5で受光して電気信号に変換される。
なお、反射光を受光するようにしてもよい。
そして、これらの変換された信号は増幅器6で増幅され、マルチプレクサ7によりそれぞれの光波長に対応したフィルタ8−1、8−2に振り分けられる。
各フィルターに振り分けられた信号はフィルタ8−1、8−2によりフィルタリングされてノイズ成分が低減され、A/D変換器9によりデジタル化される。
Light emitted from the light emitting elements 1 and 2 is transmitted through the living tissue 4, received by the photodiode 5, and converted into an electrical signal.
The reflected light may be received.
These converted signals are amplified by the amplifier 6 and distributed by the multiplexer 7 to the filters 8-1 and 8-2 corresponding to the respective optical wavelengths.
The signals distributed to the filters are filtered by the filters 8-1 and 8-2 to reduce noise components, and are digitized by the A / D converter 9.

デジタル化された赤外光、赤色光に対応する各信号列が、それぞれの脈波信号を形成している。
デジタル化された各信号列は処理部10に入力され、ROM12に格納されているプログラムにより処理され、酸素飽和度SpO2が測定され、その値が表示部11に表示される。
Each signal sequence corresponding to digitized infrared light and red light forms a respective pulse wave signal.
Each digitized signal sequence is input to the processing unit 10, processed by a program stored in the ROM 12, the oxygen saturation SpO 2 is measured, and the value is displayed on the display unit 11.

<回転行列によるノイズ低減と脈波の基本周波数の演算>
先ず、血液中の吸光物質の吸光度(減光度)の変動の測定について説明する。
図9(a)及び(b)は、前記発光素子1、2からの発光された光が生体組織4を透過してフォトダイオード5で受光して電気信号に変換された脈波データで、(a)は赤色光の場合を、(b)は赤外光を示している。
図9の(a)では、横軸を時間、縦軸を受光出力とすると、フォトダイオード5での受光出力は、赤色光の直流成分(R’)と脈動成分(ΔR’)が重畳された波形となっている。
また、図9の(b)では、横軸を時間、縦軸を受光出力とすると、フォトダイオード5での受光出力は、赤外光の直流成分(IR’)と脈動成分(ΔIR’)が重畳された波形となっている。
図4は、図9に示すような脈波において、8秒間分の、直流成分(R’、IR’)に対する脈動成分(ΔR’、ΔIR’)の比(IR=ΔIR’/IR’)をとり、さらにその8秒間分のデータの平均値をゼロに合わせたものである。
なお、図4の如き、平均値をゼロとする処理を行わなくとも演算は可能である。
図5は、図9に示される赤外光IRのデータを横軸に、赤色光Rのデータを縦軸にとったグラフである。
<Noise reduction by rotation matrix and calculation of fundamental frequency of pulse wave>
First, measurement of the change in absorbance (light attenuation) of a light-absorbing substance in blood will be described.
FIGS. 9A and 9B are pulse wave data in which the light emitted from the light emitting elements 1 and 2 is transmitted through the living tissue 4 and received by the photodiode 5 and converted into an electrical signal. a) shows red light, and (b) shows infrared light.
In (a) of FIG. 9, assuming that the horizontal axis is time and the vertical axis is the received light output, the received light output from the photodiode 5 is obtained by superimposing the direct current component (R ′) and the pulsating component (ΔR ′) of red light. It has a waveform.
Further, in FIG. 9B, when the horizontal axis is time and the vertical axis is the light reception output, the light reception output of the photodiode 5 includes the direct current component (IR ′) and the pulsation component (ΔIR ′) of infrared light. The waveform is superimposed.
FIG. 4 shows the ratio (IR = ΔIR ′ / IR ′) of the pulsating components (ΔR ′, ΔIR ′) to the DC components (R ′, IR ′) for 8 seconds in the pulse wave as shown in FIG. In addition, the average value of the data for 8 seconds is set to zero.
Note that the calculation is possible without performing the process of setting the average value to zero as shown in FIG.
FIG. 5 is a graph in which the infrared light IR data shown in FIG. 9 is plotted on the horizontal axis and the red light R data is plotted on the vertical axis.

次に、A/D変換器9によってデジタル化した各波長の2つの脈波データ信号を回転行列を用いてノイズを低減する演算処理について説明する。
なお、赤外光と赤色光とは交互に発光されるため厳密には同時に発光されるものではないが、隣り合う得られた赤外光受光値と赤色光受光値を同時刻に得られたものとして扱い、所定時間分の赤外光の脈波信号と赤色光の脈波信号を2次元直交座標上に展開する。
すなわち図5のグラフを作成している。
また、脈波の直流成分に対する脈動成分の比をとることで脈拍による吸光度の脈動分が近似される。
図5のグラフに見られる推移は45度になっていないが、その理由は、赤外光脈波の脈動成分の振幅と赤色光脈波の脈動成分の振幅とに差があるため、およびノイズが重畳しているためである。
Next, calculation processing for reducing noise using two rotation wave data signals of two wavelengths digitized by the A / D converter 9 will be described.
In addition, since infrared light and red light are alternately emitted, they are not emitted at the same time. However, adjacent infrared light reception values and red light reception values obtained at the same time were obtained. The pulse wave signal of infrared light and the pulse wave signal of red light for a predetermined time are developed on a two-dimensional orthogonal coordinate.
That is, the graph of FIG. 5 is created.
Further, by taking the ratio of the pulsating component to the DC component of the pulsating wave, the absorbance pulsation due to the pulse is approximated.
The transition shown in the graph of FIG. 5 is not 45 degrees because the amplitude of the pulsating component of the infrared light pulse wave is different from the amplitude of the pulsating component of the red light pulse wave, and noise. This is because is superimposed.

次に、展開された脈波データに回転行列を用いて回転演算を施すこととする。
赤外光脈波の直流成分に対する脈動成分の比(IR)のデータ列を、
Next, a rotation calculation is performed on the developed pulse wave data using a rotation matrix.
A data string of the ratio (IR) of the pulsating component to the direct current component of the infrared light pulse wave,

赤色光脈波の直流成分に対する脈動成分の比(R)のデータ列を、   A data string of the ratio (R) of the pulsating component to the direct current component of the red light pulse wave is

とする。
同じ時刻tiに得られたIRとRとのデータを次のように行列で定義する。
すなわち、
And
Data of IR and R obtained at the same time ti is defined by a matrix as follows.
That is,

また、θ[rad]回転させる回転行列をAとすると、Aは次のように表すことができる。   Further, if the rotation matrix for rotating θ [rad] is A, A can be expressed as follows.

そうすると、SをAによりθ[rad]回転させることにより次のXが得られる。   Then, the following X is obtained by rotating S by θ [rad] by A.

なお、回転行列Aは、上記のほか、   In addition to the above, the rotation matrix A is

を用いてもよい。
ここで、θを0〜9π/30[rad] までπ/30[rad]ずつ脈波データSを回転させて得られるグラフを図6に示す。
図6からわかるように、横軸ゼロ、縦軸ゼロの点(赤色光脈波と赤外光脈波との両方が平均である点)を中心として回転されており、θが9π/30[rad]のときに、横軸(X1)へ射影した領域が最小になり、縦軸(X2)へ射影した領域が最大となっている。
θを9π/30[rad]よりさらにπ/2[rad]回転させ24π/30[rad] (=12π/15[rad])回転させた場合には横軸(X1)へ射影した領域が最大になり、縦軸(X2)へ射影した領域が最小となることは明らかである。
May be used.
Here, a graph obtained by rotating the pulse wave data S by π / 30 [rad] from 0 to 9π / 30 [rad] is shown in FIG.
As can be seen from FIG. 6, the image is rotated around a point with zero horizontal axis and zero vertical axis (a point where both the red light pulse wave and the infrared light pulse wave are average), and θ is 9π / 30 [ rad], the region projected onto the horizontal axis (X1) is the smallest, and the region projected onto the vertical axis (X2) is the largest.
When θ is further rotated by π / 2 [rad] from 9π / 30 [rad] and rotated by 24π / 30 [rad] (= 12π / 15 [rad]), the area projected onto the horizontal axis (X1) is the maximum. It is clear that the region projected onto the vertical axis (X2) is the smallest.

次に、θを9π/30[rad]、24π/30[rad]としたときの回転行列Aにより、測定された脈波データSが処理されてXとなった結果、どのような波形となるかを説明する。
図7は、図4に示した脈波データSを、θを9π/30[rad]として回転行列Aにより処理したXの波形を示す。
横軸へ射影した領域が最小になったX1(t i)は、
Next, the measured pulse wave data S is processed into X by the rotation matrix A when θ is 9π / 30 [rad] and 24π / 30 [rad]. Explain how.
FIG. 7 shows a waveform of X obtained by processing the pulse wave data S shown in FIG. 4 by the rotation matrix A with θ being 9π / 30 [rad].
X1 (ti) where the area projected onto the horizontal axis is minimized is

一方、横軸へ射影した領域が最大になったX2(t i)は、   On the other hand, X2 (t i) where the area projected onto the horizontal axis is maximized is

により演算される。
図7のX1の波形からはノイズが除去されたことがわかる。
なお、脈波データSを、θを24π/30[rad]として回転行列Aにより処理した場合には、X2の波形がノイズが除去された波形となる。
横軸へ射影した領域が最大になるX1(t i)は、
Is calculated by
It can be seen from the X1 waveform in FIG. 7 that the noise has been removed.
When the pulse wave data S is processed by the rotation matrix A with θ being 24π / 30 [rad], the waveform of X2 is a waveform from which noise is removed.
X1 (ti) that maximizes the area projected on the horizontal axis is

一方、横軸へ射影した領域が最小になるX2(t i)は、   On the other hand, X2 (t i) that minimizes the area projected onto the horizontal axis is

により演算される。
このように横軸へ射影した領域が最小になるように回転角θを設定して、脈波データSを処理すれば、ノイズが抑制された脈波主成分波形を得ることができる。
Is calculated by
If the rotation angle θ is set so that the region projected onto the horizontal axis in this way is minimized and the pulse wave data S is processed, a pulse wave main component waveform with suppressed noise can be obtained.

次に、脈波の基本周波数の演算について説明する。
ノイズが低減される前の図4に示した脈波信号と、回転行列を用いてノイズが低減された脈波主成分波形を周波数解析して得られたスペクトルをそれぞれ図8に示す。
横軸は周波数、縦軸はスペクトルである。
ノイズが低減される前の脈波(Before-rotation)信号のスペクトルは、ノイズの周波数帯域fnのスペクトルが強くでており、脈波信号の基本周波数fsのスペクトルはほとんど現れていない。
一方、回転行列を用いてノイズが低減された脈波主成分波形(After-rotation)を周波数解析して得られたスペクトルでは、脈波信号の基本周波数fsのスペクトルがノイズの周波数帯域fnのスペクトルと区別できるほど強く現れていることがわかり、脈波信号の基本周波数fsを求めることができる。
そして、脈波信号の基本周波数fs[Hz]が求まれば、脈拍数fs×60[回/min]を容易に求めることができる。
Next, calculation of the fundamental frequency of the pulse wave will be described.
FIG. 8 shows the spectrum obtained by frequency analysis of the pulse wave signal shown in FIG. 4 before the noise is reduced and the pulse wave main component waveform whose noise is reduced using the rotation matrix.
The horizontal axis is frequency and the vertical axis is spectrum.
The spectrum of the pulse wave (Before-rotation) signal before the noise is reduced has a strong spectrum in the frequency band fn of the noise, and the spectrum of the fundamental frequency fs of the pulse wave signal hardly appears.
On the other hand, in the spectrum obtained by frequency analysis of a pulse wave main component waveform (after-rotation) in which noise is reduced using a rotation matrix, the spectrum of the fundamental frequency fs of the pulse wave signal is the spectrum of the noise frequency band fn. The fundamental frequency fs of the pulse wave signal can be obtained.
If the fundamental frequency fs [Hz] of the pulse wave signal is obtained, the pulse rate fs × 60 [times / min] can be easily obtained.

このように、所定角度の回転行列を用いることにより、ノイズが低減された脈波主成分波形を得ることができ、脈波信号の基本周波数ないし脈拍数を求めることができる。
ここで、所定角度は、予め決められたものでもよく、測定期間中アダプティブに変化させてもよい。
Thus, by using a rotation matrix of a predetermined angle, a pulse wave main component waveform with reduced noise can be obtained, and the fundamental frequency or pulse rate of the pulse wave signal can be obtained.
Here, the predetermined angle may be determined in advance or may be changed adaptively during the measurement period.

特許第3270917号Japanese Patent No. 32701717 特許第3924636号Japanese Patent No. 3924636 特許第4352315号Japanese Patent No. 4352315

特許文献3に記載の発明の信号処理方法によれば、図8に示す如く、ノイズが低減される前の脈波(Before-rotation)信号のスペクトルは、ノイズの周波数帯域fnのスペクトルが強くでており、脈波信号の基本周波数fsのスペクトルはほとんど現れていない。
一方、回転行列を用いてノイズが低減された脈波主成分波形(After-rotation)を周波数解析して得られたスペクトルでは、脈波信号の基本周波数fsのスペクトルがノイズの周波数帯域fnのスペクトルと区別できるほど強く現れていることがわかり、脈波信号の基本周波数fsを求めることができる。
しかし、図8の回転行列を用いてノイズが低減された脈波主成分波形(After-rotation)を周波数解析して得られたスペクトルには、脈波信号の基本周波数fsのスペクトルがノイズの周波数帯域fnのスペクトルと区別できるほど強く現れてはいるが、低周波数領域(0.5〜2.0Hz)には多くのノイズ成分が存在して、脈波の正確なスペクトルの測定には問題が生じる場合があった。
According to the signal processing method of the invention described in Patent Document 3, as shown in FIG. 8, the spectrum of the pulse wave (Before-rotation) signal before the noise is reduced is strong in the spectrum of the noise frequency band fn. The spectrum of the fundamental frequency fs of the pulse wave signal hardly appears.
On the other hand, in the spectrum obtained by frequency analysis of a pulse wave main component waveform (after-rotation) in which noise is reduced using a rotation matrix, the spectrum of the fundamental frequency fs of the pulse wave signal is the spectrum of the noise frequency band fn. The fundamental frequency fs of the pulse wave signal can be obtained.
However, in the spectrum obtained by frequency analysis of the pulse wave main component waveform (After-rotation) with reduced noise using the rotation matrix of FIG. 8, the spectrum of the fundamental frequency fs of the pulse wave signal is the frequency of the noise. Although it appears strong enough to be distinguished from the spectrum of the band fn, there are many noise components in the low frequency region (0.5 to 2.0 Hz), and there is a problem in measuring the accurate spectrum of the pulse wave. There was a case.

本発明の目的(課題)は、回転行列を用いてノイズが低減された脈波主成分波形(After-rotation)に含まれる低周波数領域(0.5〜2.0Hz)のノイズ成分を更に低減させることが可能な離散的時系列脈波データに含まれるノイズの除去方法及びパルスフォトメータを提供することにある。   The object (problem) of the present invention is to further reduce the noise component in the low frequency region (0.5 to 2.0 Hz) included in the pulse wave main component waveform (after-rotation) in which the noise is reduced by using the rotation matrix. It is an object of the present invention to provide a method for removing noise contained in discrete time-series pulse wave data and a pulse photometer.

上記課題を解決するための本発明のノイズ除去方法は、異なる2つの波長の光を生体組織に照射するステップと、前記生体組織を透過または反射した各波長の光を電気信号に変換して受光するステップと、前記各波長の電気信号より得られた離散的時系列脈波データから、ノイズを除去するステップと、前記ノイズを除去された離散的時系列脈波データのノイズ除去結果の一階差分をとるステップとを含むことを特徴とする。
さらに、前記ノイズを除去するステップとは、回転行列を用いることを特徴とする。
In order to solve the above problems, the noise removal method of the present invention includes a step of irradiating a living tissue with light of two different wavelengths, and receiving light by converting each wavelength of light transmitted or reflected through the living tissue into an electrical signal. A step of removing noise from the discrete time series pulse wave data obtained from the electrical signals of the respective wavelengths, and a first floor of the noise removal result of the discrete time series pulse wave data from which the noise has been removed And a step of taking a difference.
Further, the step of removing the noise is characterized by using a rotation matrix.

また、異なる2つの波長の光を生体組織に照射するステップと、前記生体組織を透過または反射した各波長の光を電気信号に変換して受光するステップと、前記各波長の電気信号より得られた離散的時系列脈波データを、回転行列を用いてあらかじめ決められた角度にまたは所定条件に基づいて決められた角度に各脈波データの平均値を中心として回転させるステップと、前記回転後の射影結果の一階差分をとるステップとを含むことを特徴とする。   And a step of irradiating the biological tissue with light of two different wavelengths, a step of converting the light of each wavelength transmitted or reflected through the biological tissue into an electrical signal and receiving it, and the electrical signal of each wavelength. Rotating the discrete time-series pulse wave data around a mean value of each pulse wave data to an angle determined in advance using a rotation matrix or an angle determined based on a predetermined condition; And a step of taking a first-order difference of the projection results.

上記課題を解決するための本発明のパルスフォトメータは、異なる2つの波長の光を生体組織に照射する発光手段と、前記発光手段から発生し前記生体組織を透過または反射した各波長の光を電気信号に変換する受光手段とを備えたパルスフォトメータにおいて、前記各波長の電気信号より得られた離散的時系列脈波データを、あらかじめ決められた角度にまたは所定条件に基づいて決められた角度に各脈波データの平均値を中心として回転させる回転行列を用いて前記離散的時系列脈波データに含まれるノイズを除去処理する第1の処理手段と、前記第1の処理手段の処理後の射影結果に対して一階差分を取ることによって低周波数領域におけるノイズを低減する第2の処理手段とを具備することを特徴とする。   The pulse photometer of the present invention for solving the above-mentioned problems is a light emitting means for irradiating a living tissue with light of two different wavelengths, and light of each wavelength generated from the light emitting means and transmitted or reflected by the living tissue. In a pulse photometer including a light receiving means for converting to an electric signal, discrete time-series pulse wave data obtained from the electric signal of each wavelength is determined at a predetermined angle or based on a predetermined condition. First processing means for removing noise included in the discrete time-series pulse wave data using a rotation matrix that rotates the angle around the average value of each pulse wave data, and processing of the first processing means And a second processing means for reducing noise in a low-frequency region by taking a first-order difference with respect to a subsequent projection result.

また、異なる2つの波長の光を生体組織に照射する発光手段と、前記発光手段から発生し前記生体組織の同一箇所からの透過または反射した各波長の光を電気信号に変換する受光手段とを備えたパルスフォトメータにおいて、前記各波長の電気信号より得られた離散的時系列脈波データを、各波長をそれぞれ縦軸または横軸とする2次元直交座標に展開し、縦軸または横軸に射影される領域が最大または最小となるいずれかの条件を満足するように各脈波データの平均値を中心として回転行列を用いて回転させて前記離散的時系列脈波データに含まれるノイズを除去処理する第1の処理手段と、前記第1の処理手段の処理後の射影結果に対して一階差分を取ることによって低周波数領域におけるノイズを低減する第2の処理手段とを具備することを特徴とする。
また、前記低周波領域は、0.5〜2.0Hzのスペクトルであることを特徴とする。
A light emitting means for irradiating the living tissue with light of two different wavelengths; and a light receiving means for converting the light of each wavelength generated from the light emitting means and transmitted or reflected from the same portion of the biological tissue into an electrical signal. In the provided pulse photometer, the discrete time-series pulse wave data obtained from the electrical signals of the respective wavelengths are expanded into two-dimensional orthogonal coordinates with the respective wavelengths as the vertical axis or the horizontal axis, and the vertical axis or the horizontal axis. Rotation using a rotation matrix around the average value of each pulse wave data so as to satisfy one of the conditions that the region projected onto the maximum or minimum is satisfied, noise included in the discrete time series pulse wave data And a second processing means for reducing noise in a low-frequency region by taking a first-order difference with respect to a projection result after processing by the first processing means. And wherein the door.
The low frequency region has a spectrum of 0.5 to 2.0 Hz.

本発明によれば、回転行列を用いてノイズが低減された脈波主成分波形(After-rotation)に含まれる低周波数領域(0.5〜2.0Hz)のノイズ成分を更に低減させることが可能な離散的時系列脈波データに含まれるノイズの除去方法及びパルスフォトメータを実現できる。   According to the present invention, it is possible to further reduce a noise component in a low frequency region (0.5 to 2.0 Hz) included in a pulse wave main component waveform (After-rotation) in which noise is reduced using a rotation matrix. A noise removal method and a pulse photometer included in possible discrete time-series pulse wave data can be realized.

本発明で回転行列を用いてノイズが低減された脈波主成分波形に含まれる低周波数領域のノイズ成分を更に低減することを説明する時間領域における波形図である。It is a wave form diagram in the time domain explaining further reducing the noise component of the low frequency region contained in the pulse wave main component waveform by which noise was reduced using the rotation matrix in the present invention. 本発明で回転行列を用いてノイズが低減された脈波主成分波形に含まれる低周波数領域のノイズ成分を更に低減することを説明する周波数領域における波形図である。It is a wave form diagram in the frequency domain explaining further reducing the noise component of the low frequency area | region contained in the pulse wave main component waveform by which noise was reduced using the rotation matrix by this invention. パルスフォトメータの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of a pulse photometer. 検出された脈波を示す図である。It is a figure which shows the detected pulse wave. 図9に示される赤外光IRのデータを横軸に、赤色光Rのデータを縦軸にとったグラフである。10 is a graph in which infrared light IR data shown in FIG. 9 is plotted on the horizontal axis and red light R data is plotted on the vertical axis. 図3のグラフをπ/30[rad]ずつ回転させた図である。FIG. 4 is a diagram obtained by rotating the graph of FIG. 3 by π / 30 [rad]. 回転角度9π/30[rad]の回転行列で処理された脈波の波形を示す図である。It is a figure which shows the waveform of the pulse wave processed with the rotation matrix of rotation angle 9 (pi) / 30 [rad]. 図5に示すX1の波形のスペクトルを示す図である。It is a figure which shows the spectrum of the waveform of X1 shown in FIG. 血液中の吸光物質の吸光度の変動の測定原理を説明する波形図である。It is a wave form diagram explaining the measurement principle of the fluctuation | variation of the light absorbency of the light absorption substance in the blood.

次に、図1及び図2を用いて、回転行列を用いてノイズが低減された脈波主成分波形(After-rotation)に含まれる低周波数領域(0.5〜2.0Hz)のノイズ成分を更に低減させて脈波の正確なスペクトルの測定が可能な出力波形の実施例の説明をする。
図1は、本発明の出力波形を示す図であって、図1は検出脈波(IR)の離散的時系列脈波データ波形を示す図であって、横軸は時間0〜16(秒)で、縦軸は大きさ(Amplitude)である。
図1(a)は、検出脈波(IR)の離散的時系列脈波データ波形を示す図である。
図1(b)は、図1(a)の離散的時系列脈波データに回転行列を用いてあらかじめ決められた角度にまたは所定条件に基づいて決められた角度に各脈波データの平均値を中心として回転させる処理を実行した結果を示す図である。
図1(c)は、図1(b)の回転処理を実行した射影結果に対して一階差分をとる処理を施した結果を示す図である。
Next, referring to FIG. 1 and FIG. 2, the noise component in the low frequency region (0.5 to 2.0 Hz) included in the pulse wave main component waveform (After-rotation) in which noise is reduced using the rotation matrix. An embodiment of an output waveform capable of measuring the accurate spectrum of the pulse wave by further reducing the above will be described.
FIG. 1 is a diagram showing an output waveform of the present invention, and FIG. 1 is a diagram showing a discrete time-series pulse wave data waveform of a detected pulse wave (IR), with the horizontal axis representing time 0 to 16 (seconds). ), The vertical axis is the amplitude.
FIG. 1A is a diagram showing discrete time-series pulse wave data waveforms of detected pulse waves (IR).
FIG. 1B shows an average value of each pulse wave data at a predetermined angle using a rotation matrix for the discrete time-series pulse wave data of FIG. 1A or an angle determined based on a predetermined condition. It is a figure which shows the result of having performed the process to rotate centering on.
FIG. 1C is a diagram illustrating a result of performing a process of obtaining a first-order difference on the projection result obtained by executing the rotation process of FIG.

図2は、図1に対応したFFT処理をした出力スペクトルを示す図であって、横軸は周波数0〜7(Frequency)で、縦軸は大きさ(Amplitude)である。
図2(a)は、検出脈波(IR)の離散的時系列脈波データ波形に対応するFFT処理後のスペクトル図である。
図2(b)は、図1(a)の離散的時系列脈波データに回転行列を用いてあらかじめ決められた角度にまたは所定条件に基づいて決められた角度に各脈波データの平均値を中心として回転させる処理を実行した結果に対応するFFT処理後のスペクトル図である。
図2(c)は、図1(b)の回転処理を実行した射影結果に対して一階差分をとる処理を施した結果に対応するFFT処理後のスペクトル図である。
FIG. 2 is a diagram illustrating an output spectrum that has been subjected to FFT processing corresponding to FIG. 1, and the horizontal axis represents frequencies 0 to 7 (Frequency), and the vertical axis represents magnitude (Amplitude).
FIG. 2A is a spectrum diagram after FFT processing corresponding to the discrete time-series pulse wave data waveform of the detected pulse wave (IR).
2B shows an average value of each pulse wave data at an angle determined in advance using a rotation matrix for the discrete time-series pulse wave data of FIG. 1A or an angle determined based on a predetermined condition. It is the spectrum figure after the FFT process corresponding to the result of performing the process rotated about the center.
FIG. 2C is a spectrum diagram after the FFT process corresponding to the result of performing the process of obtaining the first-order difference on the projection result obtained by executing the rotation process of FIG.

なお、図1における 回転処理を実行した射影結果に対して一階差分をとる処理は、図1における横軸の時間16(秒)を1000回のサンプリングを実行した場合の一階差分処理結果である。
しかし、一階差分処理は上記の処理に限られるものではない。
The first-order difference processing for the projection result obtained by executing the rotation processing in FIG. 1 is the first-order difference processing result when 1000 times of sampling is performed for the time 16 (seconds) on the horizontal axis in FIG. is there.
However, the first-order difference processing is not limited to the above processing.

図1(a)の離散的時系列脈波データに回転行列を用いてあらかじめ決められた角度にまたは所定条件に基づいて決められた角度に各脈波データの平均値を中心として回転させる処理を実行した結果に対応するFFT処理後のスペクトル図(図2(b)から脈波と思われる2.0Hzよりも低い周波数のノイズがある程度減少しているが、本発明に特有の処理である回転処理を実行した射影結果に対して一階差分をとる処理を施した結果に対応するFFT処理後のスペクトル図(図2(c))では、2.0Hzよりも低い周波数のノイズが更に減少していることが判断できる。
したがって、本願発明の回転処理を実行した射影結果に対して一階差分をとる処理を施すことが低域周波数のノイズ低減に有効である。
A process of rotating the discrete time-series pulse wave data of FIG. 1A around a mean value of each pulse wave data to a predetermined angle using a rotation matrix or an angle determined based on a predetermined condition. A spectrum diagram after FFT processing corresponding to the execution result (FIG. 2B shows that noise having a frequency lower than 2.0 Hz, which seems to be a pulse wave, is reduced to some extent, but rotation that is processing unique to the present invention. In the spectrum diagram (FIG. 2 (c)) after the FFT processing corresponding to the result of performing the first-order difference processing on the projection result obtained by executing the processing, noise having a frequency lower than 2.0 Hz is further reduced. Can be determined.
Therefore, it is effective to reduce the noise in the low frequency range by performing the process of obtaining the first-order difference on the projection result obtained by executing the rotation process of the present invention.

上記説明では、離散的時系列脈波データに回転行列を用いてあらかじめ決められた角度にまたは所定条件に基づいて決められた角度に各脈波データの平均値を中心として回転させる処理の実行した射影結果に対して一階差分をとる処理を施すものを例として説明しているが、本発明の一階差分をとる処理は回転行列を用いた回転処理のみではなく、離散的時系列脈波データに対して他の処理方法(例えば、特許4196209号による手法など)でノイズの低減をした処理結果に対しても有効である。   In the above description, the process for rotating the discrete time-series pulse wave data around the average value of each pulse wave data to a predetermined angle using a rotation matrix or an angle determined based on a predetermined condition is executed. Although the example of performing the process of obtaining the first-order difference on the projection result is described, the process of obtaining the first-order difference of the present invention is not only the rotation process using the rotation matrix but also the discrete time series pulse wave This is also effective for processing results obtained by reducing noise with respect to data by other processing methods (for example, the method according to Japanese Patent No. 4196209).

1 発光素子
2 発光素子
3 駆動回路
4 生体組織
5 フォトダイオード
6 変換器
7 マルチプレクサ
8 フィルタ
9 A/D変換器
10 処理部
11 表示部
12 ROM
13 RAM
DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Light emitting element 3 Drive circuit 4 Living body tissue 5 Photodiode 6 Converter 7 Multiplexer 8 Filter 9 A / D converter 10 Processing part 11 Display part 12 ROM
13 RAM

Claims (6)

異なる2つの波長の光を生体組織に照射するステップと、
前記生体組織を透過または反射した各波長の光を電気信号に変換して受光するステップと、
前記各波長の電気信号より得られた離散的時系列脈波データから、ノイズを除去するステップと、
前記ノイズを除去された離散的時系列脈波データのノイズ除去結果の一階差分をとるステップと、
を含むことを特徴とする離散的時系列脈波データに含まれるノイズの除去方法。
Irradiating a living tissue with light of two different wavelengths;
Converting the light of each wavelength transmitted or reflected through the living tissue into an electrical signal and receiving it;
Removing noise from discrete time-series pulse wave data obtained from the electrical signals of the respective wavelengths;
Taking a first-order difference of the noise removal result of the discrete time-series pulse wave data from which the noise has been removed;
A method for removing noise contained in discrete time-series pulse wave data.
前記ノイズを除去するステップとは、回転行列を用いること、
を特徴とする請求項1に記載のノイズの除去方法。
The step of removing the noise includes using a rotation matrix,
The method for removing noise according to claim 1.
異なる2つの波長の光を生体組織に照射するステップと、
前記生体組織を透過または反射した各波長の光を電気信号に変換して受光するステップと、
前記各波長の電気信号より得られた離散的時系列脈波データを、回転行列を用いてあらかじめ決められた角度にまたは所定条件に基づいて決められた角度に各脈波データの平均値を中心として回転させるステップと、
前記回転後の射影結果の一階差分をとるステップと、
を含むことを特徴とする離散的時系列脈波データに含まれるノイズの除去方法。
Irradiating a living tissue with light of two different wavelengths;
Converting the light of each wavelength transmitted or reflected through the living tissue into an electrical signal and receiving it;
Discrete time-series pulse wave data obtained from the electrical signals of each wavelength is centered on the average value of each pulse wave data at an angle determined in advance using a rotation matrix or an angle determined based on a predetermined condition. As a step to rotate as
Taking the first-order difference of the projection result after the rotation;
A method for removing noise contained in discrete time-series pulse wave data.
異なる2つの波長の光を生体組織に照射する発光手段と、
前記発光手段から発生し前記生体組織を透過または反射した各波長の光を電気信号に変換する受光手段とを備えたパルスフォトメータにおいて、
前記各波長の電気信号より得られた離散的時系列脈波データを、あらかじめ決められた角度にまたは所定条件に基づいて決められた角度に各脈波データの平均値を中心として回転させる回転行列を用いて前記離散的時系列脈波データに含まれるノイズを除去処理する第1の処理手段と、
前記第1の処理手段の処理後の射影結果に対して一階差分を取ることによって低周波数領域におけるノイズを低減する第2の処理手段と、
を具備することを特徴とするパルスフォトメータ。
A light emitting means for irradiating a living tissue with light of two different wavelengths;
In a pulse photometer comprising a light receiving means for converting light of each wavelength generated from the light emitting means and transmitted or reflected through the living tissue into an electrical signal,
A rotation matrix for rotating discrete time-series pulse wave data obtained from the electrical signals of each wavelength around a mean value of each pulse wave data to a predetermined angle or an angle determined based on a predetermined condition First processing means for removing noise included in the discrete time-series pulse wave data using
Second processing means for reducing noise in a low-frequency region by taking a first-order difference with respect to the projection result after processing of the first processing means;
A pulse photometer characterized by comprising:
異なる2つの波長の光を生体組織に照射する発光手段と、前記発光手段から発生し前記生体組織の同一箇所からの透過または反射した各波長の光を電気信号に変換する受光手段とを備えたパルスフォトメータにおいて、
前記各波長の電気信号より得られた離散的時系列脈波データを、各波長をそれぞれ縦軸または横軸とする2次元直交座標に展開し、縦軸または横軸に射影される領域が最大または最小となるいずれかの条件を満足するように各脈波データの平均値を中心として回転行列を用いて回転させて前記離散的時系列脈波データに含まれるノイズを除去処理する第1の処理手段と、
前記第1の処理手段の処理後の射影結果に対して一階差分を取ることによって低周波数領域におけるノイズを低減する第2の処理手段と、
を具備することを特徴とするパルスフォトメータ。
A light emitting means for irradiating a living tissue with light of two different wavelengths; and a light receiving means for converting light of each wavelength generated from the light emitting means and transmitted or reflected from the same portion of the living tissue into an electrical signal. In the pulse photometer,
The discrete time-series pulse wave data obtained from the electrical signals of each wavelength is expanded into two-dimensional orthogonal coordinates with each wavelength as a vertical axis or a horizontal axis, respectively, and the region projected onto the vertical axis or the horizontal axis is maximum. Alternatively, first processing is performed to remove noise included in the discrete time-series pulse wave data by rotating the average value of each pulse wave data around a mean value of each pulse wave data so as to satisfy one of the minimum conditions. Processing means;
Second processing means for reducing noise in a low-frequency region by taking a first-order difference with respect to the projection result after processing of the first processing means;
A pulse photometer characterized by comprising:
前記低周波領域は、0.5〜2.0Hzのスペクトルであることを特徴とする請求項4又は5に記載のパルスフォトメータ。   6. The pulse photometer according to claim 4, wherein the low frequency region has a spectrum of 0.5 to 2.0 Hz.
JP2010160249A 2010-07-15 2010-07-15 Noise removing method and pulse photometer Pending JP2012019966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010160249A JP2012019966A (en) 2010-07-15 2010-07-15 Noise removing method and pulse photometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010160249A JP2012019966A (en) 2010-07-15 2010-07-15 Noise removing method and pulse photometer

Publications (1)

Publication Number Publication Date
JP2012019966A true JP2012019966A (en) 2012-02-02

Family

ID=45774760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010160249A Pending JP2012019966A (en) 2010-07-15 2010-07-15 Noise removing method and pulse photometer

Country Status (1)

Country Link
JP (1) JP2012019966A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160094318A (en) * 2015-01-30 2016-08-09 삼성전자주식회사 Apparatus and method for estimating biophysiological rates

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008911A (en) * 1999-04-28 2001-01-16 Seiko Instruments Inc Pulse wave detector
JP2005095581A (en) * 2003-06-30 2005-04-14 Nippon Koden Corp Method of signal processing and pulse photometer applying the same
JP2005245574A (en) * 2004-03-02 2005-09-15 Nippon Koden Corp Signal processing method and pulse photometer using the same
JP4352315B2 (en) * 2002-10-31 2009-10-28 日本光電工業株式会社 Signal processing method / apparatus and pulse photometer using the same
JP2009261458A (en) * 2008-04-22 2009-11-12 Nippon Koden Corp Signal processing method and pulse photometer using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008911A (en) * 1999-04-28 2001-01-16 Seiko Instruments Inc Pulse wave detector
JP4352315B2 (en) * 2002-10-31 2009-10-28 日本光電工業株式会社 Signal processing method / apparatus and pulse photometer using the same
JP2005095581A (en) * 2003-06-30 2005-04-14 Nippon Koden Corp Method of signal processing and pulse photometer applying the same
JP2005245574A (en) * 2004-03-02 2005-09-15 Nippon Koden Corp Signal processing method and pulse photometer using the same
JP2009261458A (en) * 2008-04-22 2009-11-12 Nippon Koden Corp Signal processing method and pulse photometer using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160094318A (en) * 2015-01-30 2016-08-09 삼성전자주식회사 Apparatus and method for estimating biophysiological rates
KR102532764B1 (en) 2015-01-30 2023-05-16 삼성전자주식회사 Apparatus and method for estimating biophysiological rates

Similar Documents

Publication Publication Date Title
JP4352315B2 (en) Signal processing method / apparatus and pulse photometer using the same
JP4830693B2 (en) Oxygen saturation measuring apparatus and measuring method
JP4632143B2 (en) Signal processing method and pulse photometer using the same
JP4196209B2 (en) Signal processing method and pulse photometer using the same
JP4454854B2 (en) Signal demodulation method and apparatus in pulse measurement system
US6650918B2 (en) Cepstral domain pulse oximetry
US7403806B2 (en) System for prefiltering a plethysmographic signal
DE60016445D1 (en) APPARATUS FOR REMOVING MOTION ARTEFACTS FROM BODY PARAMETER MEASUREMENTS
US20040039273A1 (en) Cepstral domain pulse oximetry
JP2001078990A (en) Apparatus for measuring light absorber in blood
JP2004248819A (en) Blood analyzer
CN1665443A (en) A signal processing method and device for signal-to-noise improvement
JP4831111B2 (en) Signal processing method and pulse photometer using the same
US8923945B2 (en) Determination of a physiological parameter
CN108937957A (en) Detection method, device and detection device
JP2013106837A (en) Heart rate detection method, heart rate detector, and mental stress measuring apparatus
TWI504378B (en) Denoising method and apparatus of pulse wave signal and pulse oximetry
JP2003235819A (en) Signal processing method and pulse wave signal processing method
JP2006204432A (en) Biological information measuring apparatus
JP4470056B2 (en) Signal processing method used for pulse photometer and pulse photometer using the same
JP2012019966A (en) Noise removing method and pulse photometer
JP2012019967A (en) Noise removing method and pulse photometer
JP4807598B2 (en) Pulse photometer
JP2012019968A (en) Noise removing method and pulse photometer
JP2012024320A (en) Device and method for measuring biological signal

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140507