JP2012018886A - Manufacturing method of porous carbon electrode base material - Google Patents

Manufacturing method of porous carbon electrode base material Download PDF

Info

Publication number
JP2012018886A
JP2012018886A JP2010156935A JP2010156935A JP2012018886A JP 2012018886 A JP2012018886 A JP 2012018886A JP 2010156935 A JP2010156935 A JP 2010156935A JP 2010156935 A JP2010156935 A JP 2010156935A JP 2012018886 A JP2012018886 A JP 2012018886A
Authority
JP
Japan
Prior art keywords
resin
porous carbon
carbon electrode
electrode substrate
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010156935A
Other languages
Japanese (ja)
Other versions
JP5560977B2 (en
Inventor
Kazuhiro Sumioka
和宏 隅岡
Mitsuo Hamada
光夫 浜田
Makoto Nakamura
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2010156935A priority Critical patent/JP5560977B2/en
Publication of JP2012018886A publication Critical patent/JP2012018886A/en
Application granted granted Critical
Publication of JP5560977B2 publication Critical patent/JP5560977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Ceramic Products (AREA)
  • Paper (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porous carbon electrode base material with high mechanical strength and surface smoothness, sufficient gas permeability and conductivity, no curling, and capable of suppressing the occurrence of a peel between layers under a load in the direction of the thickness expected in incorporation into a cell.SOLUTION: A manufacturing method of a porous carbon electrode base material comprises steps of manufacturing resin impregnated paper by impregnating paper in which carbon short fibers are dispersed in a two-dimensional plane with a phenol resin, and curing layered two sheets of the resin impregnated paper by hot pressing and carbonizing them. The degree of curing of the phenol resin in the resin impregnated paper before the curing by hot pressing is 5% or lower.

Description

本発明は、多孔質炭素電極基材の製造方法に関する。   The present invention relates to a method for producing a porous carbon electrode substrate.

燃料電池に設置されるガス拡散電極基材は、従来、高いガス透過能を持たせるため、ガス拡散電極基材を多孔質構造体とし、その空孔率を高めることが行われてきた。また、電子導電性に関しては、カーボン材料や金属材料を用いてセパレーターと触媒層との間の電気抵抗を低減させることが行われてきた。そのため、ガス拡散電極基材として、炭素材料からなる多孔質炭素電極基材を用いることが有効とされている。   Conventionally, a gas diffusion electrode substrate installed in a fuel cell has been made to have a porous structure as a gas diffusion electrode substrate and to increase its porosity in order to have high gas permeability. Regarding electronic conductivity, it has been practiced to reduce the electrical resistance between the separator and the catalyst layer using a carbon material or a metal material. Therefore, it is effective to use a porous carbon electrode substrate made of a carbon material as the gas diffusion electrode substrate.

またガス拡散電極基材は、電気的な接触抵抗を低減し、かつ、セパレーターから供給される燃料ガス又は酸化ガスの燃料電池外への漏出の抑制を目的として、セパレーターによって数MPaの荷重で締結されるため、機械的強度が必要とされる。このためガス拡散電極基材としては、炭素繊維を用いて紙状にした炭素材料からなる多孔質炭素電極基材が主流となっている。このようなガス拡散電極基材として、例えば特許文献1には、ガス透過性、導電性、さらに機械的強度を改善する技術として、実質的に二次元平面内においてランダムに分散した炭素短繊維を炭素により結着させた多孔質炭素板において、少なくとも一方の面の中心線平均粗さRa(JIS B 0601)が15μm以下であり、かつ、切断レベルが20μmのときの負荷長さ率tpが50%以上であることを特徴とする多孔質炭素板が記載されている。   In addition, the gas diffusion electrode base material is fastened by a separator with a load of several MPa for the purpose of reducing electrical contact resistance and suppressing leakage of fuel gas or oxidizing gas supplied from the separator to the outside of the fuel cell. Therefore, mechanical strength is required. For this reason, as a gas diffusion electrode base material, a porous carbon electrode base material made of a carbon material made of paper using carbon fiber has become the mainstream. As such a gas diffusion electrode substrate, for example, in Patent Document 1, carbon short fibers dispersed in a substantially two-dimensional plane are randomly distributed as a technique for improving gas permeability, conductivity, and mechanical strength. In the porous carbon plate bound by carbon, the load length ratio tp when the center line average roughness Ra (JIS B 0601) of at least one surface is 15 μm or less and the cutting level is 20 μm is 50. A porous carbon plate characterized by being at least% is described.

また特許文献2には、炭化樹脂とこれを含浸させた炭素繊維紙からなる燃料電池用の電極基材であって、前記炭素繊維紙が2枚以上の炭素繊維紙を積層してなり、積層する炭素繊維紙が同種のものからなり、その同一面が表側となるように積層されてなる、ことを特徴とする固体高分子型燃料電池用の電極基材が記載されている。   Patent Document 2 discloses an electrode base material for a fuel cell made of carbonized resin and carbon fiber paper impregnated with the carbonized paper, wherein the carbon fiber paper is formed by laminating two or more carbon fiber papers. There is described an electrode substrate for a polymer electrolyte fuel cell, characterized in that the carbon fiber papers to be made are of the same type and are laminated so that the same surface is the front side.

さらには特許文献3には、炭素短繊維と熱可塑性樹脂と熱硬化性樹脂からなる炭素繊維シートにおいて、フーリエ変換型赤外吸光分析−ATR法により得られる、一方の面の熱可塑性樹脂と熱硬化性樹脂のピーク面積をそれぞれA、Bとしたときの、次の式で示す熱可塑性樹脂と熱硬化性樹脂のピーク面積強度比C、C=B/Aと、他方の面の熱可塑性樹脂と熱硬化性樹脂のピーク面積をそれぞれD、Eとしたときの次の式で示すピーク面積強度比F、F=E/Dとが次の式、0.7<F/C(ただし、C>Fとする)を満たすことを特徴とする炭素繊維シートが記載されている。   Further, Patent Document 3 discloses that a carbon fiber sheet made of short carbon fibers, a thermoplastic resin, and a thermosetting resin is obtained by a Fourier transform infrared absorption analysis-ATR method, and the thermoplastic resin and heat When the peak areas of the curable resin are A and B, respectively, the peak area strength ratio C, C = B / A of the thermoplastic resin and the thermosetting resin represented by the following formula, and the thermoplastic resin on the other surface And the peak area intensity ratio F and F = E / D shown by the following equations when the peak areas of the thermosetting resin are D and E, respectively, 0.7 <F / C (where C > F) is described.

特開2003−286085号公報JP 2003-286085 A 特開2003−151568号公報JP 2003-151568 A 特開2005−297547号公報JP 2005-297547 A

しかしながら、特許文献1に開示されている多孔質炭素板は、熱硬化性樹脂溶液を炭素繊維紙に含浸させ、加熱乾燥後、加熱加圧成型している。フェノール樹脂に代表される熱硬化性樹脂は炭素繊維紙に含浸させた際、表と裏で樹脂の付着状態が異なる場合があり、多孔質炭素電極基材とすると樹脂付着斑による反りや局所機械強度低減による多孔質炭素電極基材の破壊が生じる場合がある。また、特許文献2、3に開示されている電極基材では、抄紙時の炭素繊維紙の下面を上にして樹脂含浸、乾燥したり、炭素繊維紙を2枚重ねることで樹脂含浸、乾燥させても反らないようにしたりしている。しかしながら、表層と内層で樹脂の付着状態が異なる場合がある。そのため、樹脂の多い面を外側にすると厚み方向に荷重をかけた際、層間剥離が生じ易く、樹脂の少ない面を外側にすると繊維が毛羽立ち易くなる場合があり、更なる改善が望まれる。   However, the porous carbon plate disclosed in Patent Document 1 is obtained by impregnating a carbon fiber paper with a thermosetting resin solution, heating and drying, and then heating and pressing. When carbon fiber paper is impregnated with a thermosetting resin typified by phenolic resin, the adhesion state of the resin may differ between the front and the back. In some cases, the strength of the porous carbon electrode substrate may be destroyed due to the strength reduction. In addition, in the electrode base materials disclosed in Patent Documents 2 and 3, resin impregnation and drying are performed with the lower surface of the carbon fiber paper at the time of paper making facing up, or two carbon fiber papers are stacked and dried. I try not to warp it. However, the adhesion state of the resin may be different between the surface layer and the inner layer. For this reason, when the surface with a large amount of resin is placed outside, delamination is likely to occur when a load is applied in the thickness direction, and when the surface with a small amount of resin is placed on the outside, fibers may be easily fluffed, and further improvement is desired.

前記問題点は、多孔質炭素電極基材中の炭素化したフェノール樹脂に代表される熱硬化性樹脂の厚み方向、面内方向の目付け斑に原因があることが分かった。また該目付け斑の発生は、炭素繊維紙中での熱硬化性樹脂の付着斑だけでなく、成型時における熱硬化性樹脂の流動性の差による熱硬化性樹脂の厚み、面内方向の目付け斑が大きな要因であることが分かった。   It has been found that the above problem is caused by unevenness in the thickness direction and in-plane direction of the thermosetting resin represented by the carbonized phenol resin in the porous carbon electrode substrate. In addition, the occurrence of the spot weight is not only due to the adhesion spot of the thermosetting resin in the carbon fiber paper, but also the thickness of the thermosetting resin due to the difference in fluidity of the thermosetting resin at the time of molding, the basis weight in the in-plane direction. Spots were found to be a major factor.

本発明は前記課題を克服し、機械的強度、表面平滑性が高く、十分なガス透過度、導電性を持ち、反りがなくかつ電池に組み込む条件である厚み方向への荷重をかけた際の層間剥離の発生を抑制できる多孔質炭素電極基材を提供することを目的とする。   The present invention overcomes the above-described problems, has high mechanical strength and high surface smoothness, has sufficient gas permeability and conductivity, has no warping, and is loaded with a load in the thickness direction, which is a condition for incorporation into a battery. It aims at providing the porous carbon electrode base material which can suppress generation | occurrence | production of delamination.

本発明に係る多孔質炭素電極基材の製造方法は、
炭素短繊維を二次元平面内において分散せしめた抄紙体にフェノール樹脂を含浸させて樹脂含浸紙を製造する工程と、
前記樹脂含浸紙を2枚重ね合わせ加熱プレス硬化した後、更に炭素化する工程と、
を含む多孔質炭素電極基材の製造方法であって、
前記加熱プレス硬化前の樹脂含浸紙の前記フェノール樹脂の硬化進行度が5%以下である。
The method for producing a porous carbon electrode substrate according to the present invention comprises:
A step of producing a resin-impregnated paper by impregnating a phenolic resin into a paper body in which short carbon fibers are dispersed in a two-dimensional plane;
Two resin impregnated papers are stacked and heated and press-cured, and then carbonized;
A method for producing a porous carbon electrode substrate comprising:
The degree of cure of the phenol resin of the resin-impregnated paper before the heat press curing is 5% or less.

本発明によれば、機械的強度、表面平滑性が高く、十分なガス透過度、導電性を持ち、反りがなくかつ電池に組み込む条件である厚み方向への荷重をかけた際の層間剥離の発生を抑制できる多孔質炭素電極基材を提供することができる。   According to the present invention, the mechanical strength and surface smoothness are high, the gas permeability and conductivity are sufficient, there is no warpage, and the delamination occurs when a load is applied in the thickness direction, which is a condition for incorporation into a battery. It is possible to provide a porous carbon electrode substrate capable of suppressing the generation.

本発明における剥離強さの測定手段を示す概略図である。It is the schematic which shows the measuring means of the peeling strength in this invention.

本発明に係る多孔質炭素電極基材の製造方法では、炭素短繊維を二次元平面内において分散せしめた抄紙体にフェノール樹脂を含浸させて樹脂含浸紙を製造する工程と、前記樹脂含浸紙を2枚重ね合わせ加熱プレス硬化した後、更に炭素化する工程と、を含む多孔質炭素電極基材の製造方法であって、前記加熱プレス硬化前の樹脂含浸紙の前記フェノール樹脂の硬化進行度が5%以下である。   In the method for producing a porous carbon electrode substrate according to the present invention, a step of producing a resin-impregnated paper by impregnating a paper-making body in which short carbon fibers are dispersed in a two-dimensional plane with a phenol resin, and the resin-impregnated paper, A method of producing a porous carbon electrode base material comprising a step of further carbonizing after two-sheet heat-press-curing, wherein the phenol resin curing progress of the resin-impregnated paper before the heat-press curing is 5% or less.

本発明に係る方法では、樹脂含浸紙のフェノール樹脂の硬化進行度が5%以下の状態で、加熱プレス硬化、炭素化を行う。硬化進行度が5%以下の状態では、フェノール樹脂の流動性が高いため、加熱プレス硬化工程においてフェノール樹脂の付着状態の均一性を向上させることができる。これにより、厚み方向に荷重をかけた際に層間剥離を抑制可能な多孔質炭素電極基材を提供できる。   In the method according to the present invention, heat press curing and carbonization are performed in a state where the degree of curing of the phenol resin of the resin-impregnated paper is 5% or less. In a state where the degree of curing is 5% or less, the fluidity of the phenol resin is high, so that the uniformity of the adhesion state of the phenol resin can be improved in the heat press curing step. Thereby, the porous carbon electrode base material which can suppress delamination when a load is applied to the thickness direction can be provided.

[樹脂含浸紙製造工程]
本発明に係る方法においては、まず、炭素短繊維を二次元平面内において分散せしめた抄紙体にフェノール樹脂を含浸させて樹脂含浸紙を製造する。
[Resin-impregnated paper manufacturing process]
In the method according to the present invention, first, a resin-impregnated paper is produced by impregnating a papermaking body in which short carbon fibers are dispersed in a two-dimensional plane with a phenol resin.

<炭素短繊維>
本発明で用いる炭素短繊維の原料である炭素繊維は、ポリアクリロニトリル(PAN)系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維などいずれであっても良いが、ポリアクリロニトリル系炭素繊維が好ましい。特に、多孔質炭素電極基材の機械的強度を比較的高くすることができることから、炭素繊維がポリアクリロニトリル系炭素繊維のみからなることが好ましい。
<Short carbon fiber>
The carbon fiber that is a raw material of the short carbon fiber used in the present invention may be any of polyacrylonitrile (PAN) -based carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, and the like, but polyacrylonitrile-based carbon fiber is preferable. In particular, since the mechanical strength of the porous carbon electrode substrate can be made relatively high, it is preferable that the carbon fiber is made of only polyacrylonitrile-based carbon fiber.

炭素短繊維の直径は、炭素短繊維の生産コスト、分散性の面から、3〜9μmであることが好ましい。最終的に得られる多孔質炭素電極基材の平滑性の面から、4〜8μmであることがより好ましい。また、異なる平均直径の炭素短繊維を2種類以上用いることも、表面平滑性、導電性の両立の観点からに好ましい。炭素短繊維の繊維長は、分散性の観点から2〜12mmが好ましい。   The diameter of the short carbon fiber is preferably 3 to 9 μm from the viewpoint of production cost and dispersibility of the short carbon fiber. In view of the smoothness of the finally obtained porous carbon electrode substrate, it is more preferably 4 to 8 μm. It is also preferable to use two or more types of short carbon fibers having different average diameters from the viewpoint of both surface smoothness and conductivity. The fiber length of the short carbon fiber is preferably 2 to 12 mm from the viewpoint of dispersibility.

<分散>
本発明において、「二次元平面内において分散」とは、炭素短繊維がおおむね一つの面を形成するように横たわっている状態を示す。これにより炭素短繊維による短絡や炭素短繊維の折損を防止することができる。二次元平面内での炭素短繊維の配向方向は実質的にランダムであっても、特定方向への配向性が高くなっていても良い。
<Dispersion>
In the present invention, “dispersion in a two-dimensional plane” indicates a state in which carbon short fibers lie so as to form a single plane. Thereby, the short circuit by carbon short fiber and the breakage of carbon short fiber can be prevented. The orientation direction of the short carbon fibers in the two-dimensional plane may be substantially random, or the orientation in a specific direction may be high.

<抄紙体>
炭素短繊維を二次元平面内において分散させて抄紙体を作製する方法としては、液体の媒体中に炭素短繊維と後述するバインダー短繊維とを分散させて抄造する湿式法や、空気中に炭素短繊維とバインダー短繊維とを分散させて降り積もらせる乾式法が適用できる。この中でも湿式法が好ましく、炭素短繊維が単繊維に分散するのを補助し、分散した単繊維が再び収束するのを防ぐことができる。
<Paper body>
As a method for producing a paper body by dispersing short carbon fibers in a two-dimensional plane, a wet method in which paper is made by dispersing short carbon fibers and binder short fibers described later in a liquid medium, or carbon in the air is used. A dry method in which short fibers and binder short fibers are dispersed and deposited is applicable. Among these, the wet method is preferable, which helps to disperse the short carbon fibers into the single fibers and prevents the dispersed single fibers from converging again.

炭素短繊維とバインダー短繊維とを混合する方法としては、炭素短繊維とともに水中で攪拌分散させる方法と、直接混ぜ込む方法があるが、均一に分散させるためには水中で拡散分散させる方法が好ましい。このようにバインダー短繊維を混合することにより、炭素繊維紙の強度を保持し、その製造途中で炭素繊維紙から炭素短繊維が剥離したり、炭素短繊維の配向が変化したりするのを防止することができる。また、抄紙体中に高分子短繊維や高分子パルプ状物を同時に混ぜることが、炭素短繊維の抄紙体中での再集束抑制や、抄紙体のシート強度の点で好ましい。   As a method of mixing the short carbon fiber and the short binder fiber, there are a method of stirring and dispersing in water together with the short carbon fiber and a method of directly mixing, but a method of diffusing and dispersing in water is preferable for uniform dispersion. . By mixing the binder short fibers in this way, the strength of the carbon fiber paper is maintained, and it is possible to prevent the carbon short fibers from being peeled off from the carbon fiber paper during the production and the orientation of the carbon short fibers from being changed. can do. Further, it is preferable to mix short polymer fibers and polymer pulp at the same time in the paper body from the viewpoint of suppressing refocusing of the short carbon fibers in the paper body and the sheet strength of the paper body.

また、抄紙体の作製は連続で行う方法やバッチ式で行う方法があるが、本発明において行う抄紙体の作製は、特に目付のコントロールが容易であるという点と生産性及び機械的強度の観点から連続で行う方法が好ましい。抄紙体の目付けは、10〜200g/mとすることが好ましい。   In addition, there are continuous and batch-type methods for producing paper bodies. However, the production of paper bodies in the present invention is particularly easy to control the basis weight, and in terms of productivity and mechanical strength. A continuous method is preferred. The basis weight of the paper body is preferably 10 to 200 g / m.

<バインダー短繊維>
バインダー短繊維は、炭素短繊維を含む抄紙体中で各成分をつなぎとめるバインダー(糊剤)として使用される。バインダー短繊維としては、ポリビニルアルコール(PVA)、ポリ酢酸ビニルなどを用いることができる。特にポリビニルアルコールは抄紙体作製工程での結着力に優れるため、炭素短繊維の脱落が少なくバインダーとして好ましい。
<Binder staple fiber>
The binder short fiber is used as a binder (glue) that holds the components together in a papermaking body containing carbon short fibers. As the binder short fiber, polyvinyl alcohol (PVA), polyvinyl acetate or the like can be used. In particular, polyvinyl alcohol is preferable as a binder because it has excellent binding power in the paper making process, and the short carbon fibers do not fall off.

抄紙後、抄紙体中のバインダー繊維の質量比率は、繊維の脱落を防止するためには5質量%以上であることが好ましく、シワなど外観不良発生を抑制するためには30質量%以下であることが好ましい。   After the paper making, the mass ratio of the binder fiber in the paper body is preferably 5% by mass or more in order to prevent the fibers from dropping out, and 30% by mass or less in order to suppress appearance defects such as wrinkles. It is preferable.

<高分子短繊維>
前記高分子短繊維としては、ビニロン繊維、PET繊維、セルロース繊維などが挙げられるが、抄紙体中での炭素短繊維の再集束抑制や、抄紙体のシート強度を改善できる観点からビニロン繊維が好ましい。ビニロン繊維とは、ポリビニルアルコール繊維を熱処理やホルムアルデヒドでアセタール化することにより耐熱性、耐水性を高めた繊維である。ビニロン繊維は炭素化により分解してなくなるが、その周りに付着したフェノール樹脂の形状はそのまま残り、多孔質炭素電極基材中でそのフェノール樹脂がフィラメント状炭化物を形成する。
<Short polymer fiber>
Examples of the polymer short fibers include vinylon fibers, PET fibers, and cellulose fibers. Vinylon fibers are preferable from the viewpoint of suppressing refocusing of carbon short fibers in the paper body and improving sheet strength of the paper body. . The vinylon fiber is a fiber having improved heat resistance and water resistance by acetalizing polyvinyl alcohol fiber with heat treatment or formaldehyde. Although the vinylon fiber is not decomposed by carbonization, the shape of the phenol resin attached around it remains as it is, and the phenol resin forms filamentous carbide in the porous carbon electrode substrate.

ビニロン繊維の繊度は、特に限定されないが、0.05〜1.5dtexであることが好ましい。繊度を0.05dtex以上とすることにより、ビニロン繊維一本あたりのフェノール樹脂の付着を十分なものとし、炭素化後、多孔質炭素電極基材からフィラメント状樹脂炭化物が剥離することを防ぐことができる。繊度を1.5dtex以下とすることにより、多孔質炭素電極基材表面が粗くなることを防ぎ、燃料電池を作製した際に多孔質炭素電極基材と周辺部材との接触を良好なものとすることができる。   The fineness of the vinylon fiber is not particularly limited, but is preferably 0.05 to 1.5 dtex. By setting the fineness to 0.05 dtex or more, the phenol resin per vinylon fiber can be sufficiently adhered, and after carbonization, the filamentous resin carbide can be prevented from peeling off from the porous carbon electrode substrate. it can. By setting the fineness to 1.5 dtex or less, the surface of the porous carbon electrode substrate is prevented from becoming rough, and when the fuel cell is manufactured, the contact between the porous carbon electrode substrate and the peripheral member is improved. be able to.

ビニロン繊維の長さは、特に限定されないが、同時に用いる炭素短繊維と同程度のものが好ましい。バインダーとの結着性や分散性の点から、2〜12mmが好ましい。   The length of the vinylon fiber is not particularly limited, but is preferably the same as the short carbon fiber used at the same time. From the viewpoint of binding properties and dispersibility with the binder, 2 to 12 mm is preferable.

ビニロン繊維は、炭素短繊維と一緒に分散することで、炭素短繊維の再収束を防止する役割も果たす。そのため、水との親和性にも優れているものが好ましい。   The vinylon fiber also serves to prevent re-convergence of the short carbon fiber by being dispersed together with the short carbon fiber. Therefore, what is excellent also in the affinity with water is preferable.

抄紙体中のビニロン繊維の質量比率は、10〜60質量%であることが好ましい。抄紙体中のビニロン繊維の質量比率を10質量%以上とすることにより、ビニロン繊維由来のフィラメント状炭化物による補強効果が十分となる。一方、60質量%以下であれば、フィラメント状炭化物とその他の炭化物のバランスがよく、多孔質炭素電極基材の形態を満足させることができる。   The mass ratio of vinylon fibers in the paper body is preferably 10 to 60% by mass. By setting the mass ratio of the vinylon fibers in the paper body to 10% by mass or more, the reinforcing effect by the filamentous carbide derived from the vinylon fibers is sufficient. On the other hand, if it is 60 mass% or less, the balance between filamentous carbides and other carbides is good, and the form of the porous carbon electrode substrate can be satisfied.

<高分子パルプ状物>
前記高分子パルプ状物としては、ポリエチレンパルプ、セルロースパルプ、麻パルプなどが挙げられるが、抄紙体中での炭素短繊維の再集束抑制や、抄紙体のシート強度を改善できる点、炭素短繊維との親和性、取り扱い性、コストの点でポリエチレンパルプが好ましい。ポリエチレンパルプは、炭素短繊維と一緒に分散し、炭素短繊維の再収束を防止する役割を果たす。また、フェノール樹脂は硬化の際に縮合水を生成するが、ポリエチレンパルプにはその水を吸収、排出する役割も期待できる。
<Polymer pulp>
Examples of the polymer pulp-like material include polyethylene pulp, cellulose pulp, hemp pulp, and the like, which can suppress refocusing of short carbon fibers in the paper body and improve sheet strength of the paper body. Polyethylene pulp is preferred from the standpoint of affinity with the resin, handleability, and cost. The polyethylene pulp is dispersed together with the short carbon fibers and plays a role in preventing the refocusing of the short carbon fibers. In addition, the phenol resin generates condensed water upon curing, but the polyethylene pulp can also be expected to absorb and discharge the water.

さらに、多孔質炭素電極基材中で、炭素からなる架橋構造を効率的に形成するという点からポリエチレンパルプが好ましい。ポリエチレンパルプの表面自由エネルギーは炭素短繊維より大きいため、含浸樹脂が繊維に優先的に付着し、炭素化後、網状の架橋構造が形成されやすくなる。   Furthermore, polyethylene pulp is preferable from the viewpoint of efficiently forming a crosslinked structure composed of carbon in the porous carbon electrode substrate. Since the surface free energy of polyethylene pulp is larger than that of short carbon fibers, the impregnated resin preferentially adheres to the fibers, and a network-like cross-linked structure is likely to be formed after carbonization.

抄紙体中のポリエチレンパルプの質量比率は、10〜70質量%であることが好ましい。ポリエチレンパルプを10質量%以上含有することで、多孔質炭素電極基材に十分な機械強度とガス透過度を付与できる。また、ポリエチレンパルプは、フェノール樹脂を押圧下で硬化する際に生じるうねりやシワ等の外力に打ち勝つための補強材としても働くため、10質量%以上であることが好ましい。一方、ポリエチレンパルプを70質量%以下とすることにより、炭素短繊維に付着するフェノール樹脂の不足により多孔質炭素電極基材が崩れやすくなったり、厚み制御が困難となることを防ぐことができる。なお、ビニロン繊維、ポリエチレンパルプは、その一方の使用に限らず、双方を使用しても良い。   The mass ratio of polyethylene pulp in the paper body is preferably 10 to 70% by mass. By containing 10% by mass or more of polyethylene pulp, sufficient mechanical strength and gas permeability can be imparted to the porous carbon electrode substrate. Moreover, since polyethylene pulp also functions as a reinforcing material for overcoming external forces such as swells and wrinkles generated when a phenol resin is cured under pressure, the content is preferably 10% by mass or more. On the other hand, by setting the polyethylene pulp to 70% by mass or less, it is possible to prevent the porous carbon electrode base material from being easily broken due to the shortage of the phenol resin adhering to the short carbon fibers and the thickness control from being difficult. The vinylon fiber and the polyethylene pulp are not limited to one of them, and both may be used.

<フェノール樹脂>
本発明で用いるフェノール樹脂としては、アルカリ触媒存在下においてフェノール類とアルデヒド類の反応によって得られるレゾールタイプフェノール樹脂を挙げることができる。該レゾールタイプフェノール樹脂には、公知の方法によって酸性触媒下においてフェノール類とアルデヒド類の反応によって生成する、固体の熱融着性を示すノボラックタイプのフェノール樹脂を溶解混入させることもできる。この場合、フェノール樹脂は硬化剤、例えばヘキサメチレンジアミンを含有した自己架橋タイプのものが好ましい。
<Phenolic resin>
As a phenol resin used by this invention, the resol type phenol resin obtained by reaction of phenols and aldehydes in presence of an alkali catalyst can be mentioned. The resol-type phenol resin may be mixed with a novolak-type phenol resin having a solid heat-fusibility, which is produced by a reaction between a phenol and an aldehyde under an acidic catalyst by a known method. In this case, the phenol resin is preferably a self-crosslinking type containing a curing agent such as hexamethylenediamine.

前記フェノール類としては、例えば、フェノール、レゾルシン、クレゾール、キシレノール等が用いられる。前記アルデヒド類としては、例えばホルマリン、パラホルムアルデヒド、フルフラール等が用いられる。また、これらを混合物として用いることができる。なお、フェノール樹脂として市販品を利用することも可能である。   Examples of the phenols include phenol, resorcin, cresol, xylenol, and the like. Examples of the aldehydes include formalin, paraformaldehyde, furfural and the like. Moreover, these can be used as a mixture. In addition, it is also possible to use a commercial item as a phenol resin.

<フェノール樹脂の含浸方法>
抄紙体にフェノール樹脂を含浸する方法としては、抄紙体にフェノール樹脂を含浸させることができればよく、特に限定されない。しかしながら、コーターを用いて抄紙体表面にフェノール樹脂を均一にコートする方法、絞り装置を用いるdip−nip方法、若しくは抄紙体とフェノール樹脂フィルムを重ねて、フェノール樹脂を抄紙体に転写する方法が、連続的に行うことができ、生産性及び長尺ものも製造できる点で好ましい。
<Impregnation method of phenol resin>
The method for impregnating the paper body with the phenol resin is not particularly limited as long as the paper body can be impregnated with the phenol resin. However, a method of uniformly coating a phenolic resin on the surface of a papermaking body using a coater, a dip-nip method using a squeezing device, or a method of transferring a phenolic resin to a papermaking body by overlapping the papermaking body and a phenolic resin film, It is preferable in that it can be carried out continuously and productivity and a long product can be produced.

<フェノール樹脂の含浸量>
多孔質炭素電極基材に機械的強度、表面平滑性が高く、十分なガス透過度、導電性持たせるためにはフェノール樹脂を炭化した炭素が、炭素短繊維100質量部に対し20〜50質量部であることが好ましい。この場合、抄紙体に含浸させるフェノール樹脂の樹脂量は、炭素短繊維100質量部に対し、70〜120質量部含浸させることが好ましい。
<Impregnation amount of phenolic resin>
In order to give the porous carbon electrode base material high mechanical strength and surface smoothness, sufficient gas permeability and conductivity, carbon obtained by carbonizing a phenol resin is 20 to 50 mass with respect to 100 mass parts of carbon short fibers. Part. In this case, the amount of the phenol resin impregnated in the paper body is preferably impregnated in an amount of 70 to 120 parts by mass with respect to 100 parts by mass of the short carbon fibers.

[加熱プレス硬化、炭素化工程]
次に、前記樹脂含浸紙を2枚重ね合わせ加熱プレス硬化した後、更に炭素化する。これにより、多孔質炭素電極基材を製造する。ここで前記樹脂含浸紙製造工程の後、続く加熱プレス硬化、炭素化工程へは、連続的に運転することが効率的である。しかし、通常、樹脂含浸紙製造工程における抄紙速度は加熱プレス硬化及び炭素化工程における処理速度より早く、樹脂含浸紙は加熱プレス硬化及び炭素化工程前に一時的に滞留(保存)した状態となる。そこで、加熱プレス硬化工程においては、樹脂含浸紙のフェノール樹脂の硬化進行度の管理が重要となる。
[Heat press curing, carbonization process]
Next, two sheets of the resin-impregnated paper are superposed and heat-press cured, and then further carbonized. Thereby, a porous carbon electrode base material is manufactured. Here, after the resin impregnated paper manufacturing process, it is efficient to continuously operate to the subsequent heat press curing and carbonization process. However, the paper making speed in the resin impregnated paper manufacturing process is usually faster than the processing speed in the heat press curing and carbonization process, and the resin impregnated paper is temporarily retained (stored) before the heat press curing and carbonization process. . Therefore, in the heat press curing process, it is important to manage the degree of curing of the phenol resin of the resin-impregnated paper.

<フェノール樹脂の硬化進行度>
本発明においては、加熱プレス硬化する前の樹脂含浸紙のフェノール樹脂の硬化進行度が5%以下である。
<Degree of cure of phenolic resin>
In the present invention, the degree of cure of the phenolic resin in the resin-impregnated paper before hot press curing is 5% or less.

フェノール樹脂は加熱により流動性が向上し、さらに加熱を続けると架橋反応により硬化反応が進行する。多孔質炭素電極基材が機械的強度、表面平滑性が高く、十分なガス透過度、導電性を有し、さらに反りがなくかつ電池に組み込む条件である厚み方向への荷重をかけた際の層間剥離を抑制するためには、後述する加熱プレス硬化後における抄紙体へのフェノール樹脂の付着状態の均一性を高める必要がある。このためには、樹脂含浸後に生じるフェノール樹脂の付着斑を加熱プレス硬化工程において均一とすることが必要となり、そのためにはフェノール樹脂の流動性が高いことが必須となる。本発明においては、加熱プレス硬化前の樹脂含浸紙のフェノール樹脂の硬化進行度を5%以下とする。硬化進行度が5%を超えると、加熱プレス硬化工程でのフェノール樹脂の流動性が低下し、2枚の樹脂含浸紙の重ね合わせ面におけるフェノール樹脂による炭素短繊維結着不足に起因する多孔質炭素電極基材の剥離現象や、多孔質炭素電極基材表面の炭素短繊維の毛羽立ち現象が確認されるためである。加熱プレス硬化前の樹脂含浸紙のフェノール樹脂の硬化進行度としては2%以下が好ましい。なお、硬化進行度は低ければ低い方が好ましい。   The phenolic resin is improved in fluidity by heating, and when the heating is further continued, a curing reaction proceeds by a crosslinking reaction. The porous carbon electrode base material has high mechanical strength and surface smoothness, sufficient gas permeability and conductivity, and has no warping and is loaded with a load in the thickness direction, which is a condition for incorporation into a battery. In order to suppress delamination, it is necessary to improve the uniformity of the state of adhesion of the phenolic resin to the papermaking body after hot press curing described later. For this purpose, it is necessary to make the adhesion spots of the phenol resin generated after the resin impregnation uniform in the heat press curing step, and for this purpose, it is essential that the phenol resin has high fluidity. In the present invention, the degree of cure of the phenol resin in the resin-impregnated paper before heat press curing is set to 5% or less. When the curing progress exceeds 5%, the fluidity of the phenol resin in the heat press curing process is reduced, and the porous material is caused by insufficient carbon short fiber binding by the phenol resin on the overlapping surface of the two resin-impregnated papers. This is because the peeling phenomenon of the carbon electrode substrate and the fuzzing phenomenon of the short carbon fibers on the surface of the porous carbon electrode substrate are confirmed. The curing progress of the phenolic resin in the resin-impregnated paper before heat press curing is preferably 2% or less. In addition, the one where a cure progress degree is low is preferable.

フェノール樹脂は常温においても反応速度が遅いものの硬化反応が進行するため、硬化進行度を5%以下とするためには、樹脂含浸後の樹脂含浸紙を10℃以下の温度で保存することが好ましい。10℃以下で保存することにより170日以内の保存であれば硬化進行度を5%以下で維持することができる。一方、10℃を超える温度で保存した場合には短期間で硬化進行度が5%をこえるため、製造プロセスに制約が生じ製造コストが上昇する。   Although the phenol resin has a slow reaction rate even at room temperature, the curing reaction proceeds. Therefore, in order to set the curing progress to 5% or less, it is preferable to store the resin-impregnated paper after resin impregnation at a temperature of 10 ° C. or less. . By storing at 10 ° C. or lower, the degree of cure progress can be maintained at 5% or lower if stored within 170 days. On the other hand, when stored at a temperature exceeding 10 ° C., the degree of progress of curing exceeds 5% in a short period of time, which restricts the manufacturing process and increases the manufacturing cost.

<硬化進行度の測定>
フェノール樹脂の硬化反応は縮合水が生成する縮合反応であるため、フェノール樹脂の硬化に伴い重量が減少する特徴を示す。このため、本発明においてはフェノール樹脂の重量減少を測定することにより、加熱プレス硬化工程前における樹脂含浸紙のフェノール樹脂の硬化進行度を測定する。
<Measurement of curing progress>
Since the curing reaction of the phenol resin is a condensation reaction generated by condensed water, it exhibits a feature that the weight decreases with the curing of the phenol resin. For this reason, in this invention, the hardening progress of the phenol resin of the resin impregnated paper before a heat press hardening process is measured by measuring the weight reduction of a phenol resin.

硬化進行度の測定は示差熱熱重量同時測定装置(EXSTAR TG/DTA:セイコーインスツルメント製)を用いて、昇温速度2℃/minで200℃における樹脂含浸紙の重量減少を測定し、以下の式を用いて算出した。   Curing progress was measured using a differential thermothermal gravimetric simultaneous measurement device (EXSTAR TG / DTA: manufactured by Seiko Instruments Inc.), measuring the decrease in weight of the resin-impregnated paper at 200 ° C. at a heating rate of 2 ° C./min. The following formula was used for calculation.

硬化進行度(%)=
(((加熱プレス硬化前の樹脂含浸紙の200℃におけるTG(%))−(樹脂含浸工程直後の樹脂含浸紙の200℃におけるTG(%)))/(100−(樹脂含浸工程直後の樹脂含浸浸紙の200℃におけるTG(%))))×100。
Curing progress (%) =
(((TG (%) at 200 ° C. of resin-impregnated paper before heat press curing))-(TG (%) of resin-impregnated paper immediately after resin impregnation step at 200 ° C.)) / (100- (immediately after resin impregnation step) TG (%) of resin impregnated paper at 200 ° C.))) × 100.

なお、樹脂含浸紙を2枚重ねる工程と加熱プレス硬化工程は連続して行われ、樹脂含浸紙を2枚重ねる工程の前後において硬化進行度は実質的に変化しない。このため、本発明では樹脂含浸紙を2枚重ねる直前の1枚の樹脂含浸紙について前記式により硬化進行度を算出し、これを加熱プレス硬化前の樹脂含浸紙のフェノール樹脂の硬化進行度とする。   In addition, the process of stacking two sheets of resin-impregnated paper and the heat press curing process are performed continuously, and the degree of curing is not substantially changed before and after the process of stacking two sheets of resin-impregnated paper. Therefore, in the present invention, the degree of curing progress is calculated by the above formula for one sheet of resin-impregnated paper immediately before the two resin-impregnated papers are stacked, and this is calculated as the degree of progress of phenol resin curing in the resin-impregnated paper before heat press curing. To do.

<樹脂含浸紙の重ね合わせ>
樹脂含浸紙を2枚重ね合わせる方法としては、抄紙時における下面が表面にくるように2枚の樹脂含浸紙を積層することが、表面の炭素短繊維の毛羽立ちを抑制できる観点から好ましい。
<Superposition of resin impregnated paper>
As a method of superposing two resin-impregnated papers, it is preferable from the viewpoint of suppressing the fluff of the short carbon fibers on the surface that the two resin-impregnated papers are laminated so that the lower surface at the time of papermaking comes to the surface.

<加熱プレス硬化>
フェノール樹脂を含浸した2枚重ね合わせた樹脂含浸紙を、炭素化処理の前に加熱プレス硬化する。該樹脂含浸紙を加熱プレス硬化することで、炭素短繊維をフェノール樹脂で結着させ、かつ、多孔質炭素電極基材の厚み斑を低減できる。加熱プレス硬化は、樹脂含浸紙を均等に加熱加圧成型できる技術であればいかなる技術も適用できる。その例としては、上下両面から平滑な剛板にて熱プレスする方法や連続ベルトプレス装置を用いて行う方法がある。
<Hot press curing>
Two sheets of resin-impregnated paper impregnated with phenol resin are heated and press-cured before carbonization. By heat-press-curing the resin-impregnated paper, the short carbon fibers can be bound with a phenol resin, and the uneven thickness of the porous carbon electrode substrate can be reduced. Any technology can be applied to the heat press curing as long as it is a technology capable of uniformly heating and press-molding the resin-impregnated paper. As an example, there are a method of performing hot pressing with smooth rigid plates from both upper and lower surfaces, and a method of performing using a continuous belt press apparatus.

連続製造によるフェノール樹脂を含浸した2枚重ね合わせた樹脂含浸紙を加熱プレス硬化する場合は、連続ベルトプレス装置を用いて行う方法が長尺の多孔質炭素電極基材を製造できる点で好ましい。多孔質炭素電極基材が長尺であれば、多孔質炭素電極基材の生産性が高くなるだけでなく、その後のMEA製造も連続で行うことができ、燃料電池のコスト低減化に大きく寄与することができる。また、本発明の多孔質炭素電極基材は、連続的に巻き取ることも可能で、多孔質炭素電極基材や燃料電池の生産性、コストの観点から好ましい。連続ベルト装置におけるプレス方法としては、ロールプレスによりベルトに線圧で圧力を加える方法と液圧ヘッドプレスにより面圧でプレスする方法があるが、後者の方がより平滑な多孔質炭素電極基材が得られる点で好ましい。   In the case where two sheets of resin-impregnated paper impregnated with phenol resin by continuous production are heated and press cured, a method using a continuous belt press apparatus is preferable in that a long porous carbon electrode substrate can be produced. If the porous carbon electrode base material is long, not only will the productivity of the porous carbon electrode base material increase, but the subsequent MEA production can be performed continuously, which greatly contributes to cost reduction of the fuel cell. can do. In addition, the porous carbon electrode substrate of the present invention can be continuously wound, and is preferable from the viewpoint of productivity and cost of the porous carbon electrode substrate and the fuel cell. As a pressing method in a continuous belt device, there are a method of applying pressure to a belt by a roll press by a linear pressure and a method of pressing by a surface pressure by a hydraulic head press, the latter being a smoother porous carbon electrode substrate Is preferable in that it is obtained.

加熱プレス硬化における加熱温度は、効果的に表面を平滑にするために200℃以下が好ましく、120〜190℃がより好ましい。加熱プレス硬化におけるプレス圧力は特に限定されないが、フェノール樹脂の比率が多い場合は、成型圧が低くても加熱プレス硬化後の樹脂含浸紙の表面を平滑にすることが容易である。一方、必要以上にプレス圧を高くすることは、成型時に炭素短繊維を破壊する、多孔質炭素電極基材としたときその組織が緻密になりすぎる場合がある。例えば、20kPa〜10MPaの圧力で加圧することができる。加熱プレス硬化の時間は、例えば30秒〜10分とすることができる。   In order to effectively smooth the surface, the heating temperature in the heat press curing is preferably 200 ° C. or lower, more preferably 120 to 190 ° C. The press pressure in heat press curing is not particularly limited, but when the ratio of phenol resin is large, it is easy to smooth the surface of the resin-impregnated paper after heat press curing even if the molding pressure is low. On the other hand, if the press pressure is increased more than necessary, the structure may become too dense when the porous carbon electrode substrate is broken, which destroys the short carbon fibers during molding. For example, pressurization can be performed at a pressure of 20 kPa to 10 MPa. The time for heat press curing can be, for example, 30 seconds to 10 minutes.

剛板に挟んで、又は連続ベルト装置で抄紙体の加熱プレス硬化を行う時は、剛板やベルトにフェノール樹脂が付着しないようにあらかじめ剥離剤を塗っておくか、樹脂含浸紙と剛板やベルトとの間に離型紙を挟んで行うことが好ましい。   When heat-press-curing the paper body with a rigid plate or with a continuous belt device, apply a release agent in advance to prevent phenol resin from adhering to the rigid plate or belt, or use resin-impregnated paper and rigid plate It is preferable that the release paper is sandwiched between the belt and the belt.

<炭素化処理>
抄紙体にフェノール樹脂を含浸させた樹脂含浸紙を2枚重ね合わせ、加熱プレス硬化されたフェノール樹脂含浸紙は、続いて炭素化される。この炭素化処理は、炭素短繊維をフェノール樹脂で結着させ、かつフェノール樹脂組成物を炭素化することより、多孔質炭素電極基材の機械的強度と導電性を発現させることを目的に行う。
<Carbonization treatment>
The two resin-impregnated papers impregnated with a phenolic resin are overlapped on the paper body, and the heat-cured phenolic resin-impregnated paper is subsequently carbonized. This carbonization treatment is performed for the purpose of expressing the mechanical strength and conductivity of the porous carbon electrode substrate by binding short carbon fibers with a phenol resin and carbonizing the phenol resin composition. .

炭素化処理は、多孔質炭素電極基材の導電性を高めるために不活性ガス中で行うことが好ましい。炭素化処理は1000℃以上の温度で行うことが好ましい。1000〜3000℃の温度範囲で炭素化処理することがより好ましく、1000〜2200℃の温度範囲が更に好ましい。1000℃未満の温度で炭素化処理して得られた多孔質炭素電極基材は、導電性が十分ではない場合がある。炭素化処理の前に300〜800℃の程度の不活性雰囲気での焼成による前処理を行っても良い。炭素化処理の時間は、例えば10分〜1時間とすることができる。   The carbonization treatment is preferably performed in an inert gas in order to increase the conductivity of the porous carbon electrode substrate. The carbonization treatment is preferably performed at a temperature of 1000 ° C. or higher. The carbonization treatment is more preferably performed at a temperature range of 1000 to 3000 ° C, and the temperature range of 1000 to 2200 ° C is still more preferable. The porous carbon electrode substrate obtained by carbonization at a temperature of less than 1000 ° C. may not have sufficient conductivity. Before the carbonization treatment, a pretreatment by firing in an inert atmosphere of about 300 to 800 ° C. may be performed. The time for the carbonization treatment can be, for example, 10 minutes to 1 hour.

抄紙体にフェノール樹脂を含浸させた樹脂含浸紙を2枚重ね合わせ、加熱プレス硬化されたフェノール樹脂含浸紙を連続製造により炭素化処理する場合は、加熱プレス硬化されたフェノール樹脂含浸紙の全長にわたって連続で炭素化処理を行うことが低コスト化の観点から好ましい。多孔質炭素電極基材が長尺であれば、多孔質炭素電極基材の生産性が高くなるだけでなく、その後のMEA製造も連続で行うことができ、燃料電池のコスト低減に大きく寄与することができる。また、本発明の多孔質炭素電極基材は、連続的に巻き取ることも可能で、多孔質炭素電極基材や燃料電池の生産性、コストの観点から好ましい。   When two sheets of resin-impregnated paper impregnated with phenolic resin are superimposed on a paper body and carbonized by continuous press production of phenolic resin-impregnated paper that has been heat-press-cured, the entire length of the heat-press-cured phenolic resin-impregnated paper It is preferable from the viewpoint of cost reduction that the carbonization treatment is performed continuously. If the porous carbon electrode substrate is long, not only the productivity of the porous carbon electrode substrate is increased, but also the subsequent MEA production can be performed continuously, which greatly contributes to cost reduction of the fuel cell. be able to. In addition, the porous carbon electrode substrate of the present invention can be continuously wound, and is preferable from the viewpoint of productivity and cost of the porous carbon electrode substrate and the fuel cell.

<剥離強さ>
本発明に係る多孔質炭素電極基材は、両面をテープで固定し、垂直方向に引き剥がしたときの層間の剥離強さが10N/4cm2以上であることが好ましい。
<Peel strength>
The porous carbon electrode substrate according to the present invention preferably has a peel strength between layers of 10 N / 4 cm 2 or more when both surfaces are fixed with a tape and peeled in the vertical direction.

剥離強さが10N/4cm2より小さい場合は、燃料電池に組み込んだ際、多孔質炭素電極基材が2枚に剥がれ、そこに反応により発生した生成水が溜まり、電池性能が著しく低下する、さらには、2枚の間の接触抵抗増大による起電力低下の要因となる場合がある。なお、燃料電池に組み込んだ際、多孔質炭素電極基材にかかる圧力が高いほど剥がれやすくなるため、より高い剥離強さが必要となる。 When the peel strength is less than 10 N / 4 cm 2 , the porous carbon electrode substrate is peeled into two sheets when it is incorporated into a fuel cell, and water generated by the reaction is accumulated there, and the battery performance is significantly reduced. Furthermore, it may be a cause of a decrease in electromotive force due to an increase in contact resistance between the two sheets. In addition, when it incorporates in a fuel cell, since it becomes easy to peel, so that the pressure concerning a porous carbon electrode base material is high, higher peeling strength is required.

本発明において多孔質炭素電極基材の剥離強度は、図1に示すように多孔質炭素電極基材1(縦2cm×横2cm)の上下に両面テープ2を張り、上下の両面テープ2と金属治具3を貼り付ける。さらに上下の金属治具3をそれぞれフック4に引っ掛けた後、上のフック4を引っ張り試験装置にて持ち上げる(下のフックは固定)方法で測定する。   In the present invention, the peel strength of the porous carbon electrode substrate is such that, as shown in FIG. 1, a double-sided tape 2 is applied to the top and bottom of the porous carbon electrode substrate 1 (vertical 2 cm × 2 cm), and the upper and lower double-sided tape 2 and metal The jig 3 is pasted. Further, after the upper and lower metal jigs 3 are respectively hooked on the hooks 4, the upper hooks 4 are lifted by a tensile test device (the lower hooks are fixed).

この際、多孔質炭素電極基材に荷重がかかり、その界面がはがれ、2枚に分かれる。そのときの強度を多孔質炭素電極基材の剥離強度とする。なお、引き剥がすときの引っ張り速度は、30mm/minで行う。   At this time, a load is applied to the porous carbon electrode base material, the interface is peeled off, and two substrates are separated. The strength at that time is defined as the peel strength of the porous carbon electrode substrate. The pulling speed when peeling off is 30 mm / min.

〔実施例1〕
表1に示す配合で平均繊維径が7μm、平均繊維長が3mmのポリアクリロニトリル(PAN)系炭素短繊維(7μm径CF)、平均繊維径が4μm、平均繊維長が3mmのポリアクリロニトリル(PAN)系炭素短繊維(4μm径CF)、ポリビニルアルコール(PVA)及びビニロン繊維を、水を分散媒体として均一に分散させた。これを湿式連続抄紙装置により連続的に抄紙した。その後、熱ロールに接触させて乾燥し、炭素短繊維の目付が約13g/m2の長尺の抄紙体を得てロール状に巻き取った。
[Example 1]
Polyacrylonitrile (PAN) carbon short fibers (7 μm diameter CF) with an average fiber diameter of 7 μm and an average fiber length of 3 mm, polyacrylonitrile (PAN) with an average fiber diameter of 4 μm and an average fiber length of 3 mm, with the composition shown in Table 1. The short carbon fibers (4 μm diameter CF), polyvinyl alcohol (PVA) and vinylon fibers were uniformly dispersed using water as a dispersion medium. The paper was continuously made with a wet continuous paper making machine. Then, it was made to contact with a hot roll and dried to obtain a long paper body having a basis weight of short carbon fibers of about 13 g / m 2 and wound into a roll.

この抄紙体にフェノール樹脂(商品名:「フェノライトJ−325」、DIC(株)製)の23質量%メタノール溶液を連続的に両面からコートし、最高温度90℃で1分間乾燥することにより、フェノール樹脂を含む樹脂含浸紙を得てロール状に巻き取った。   By coating this paper body with a 23% by weight methanol solution of a phenolic resin (trade name: “Phenolite J-325”, manufactured by DIC Corporation) from both sides, and drying at a maximum temperature of 90 ° C. for 1 minute. Then, a resin-impregnated paper containing a phenol resin was obtained and wound into a roll.

このフェノール樹脂を含む樹脂含浸紙を温度が10℃に調整された冷蔵庫で1日保管した。その後、抄紙時における下面が表面にくるように2枚の樹脂含浸紙を積層し、離型剤コーティング基材で挟み、ダブルベルトプレス装置にて連続的に加熱プレス硬化(プレス時最大荷重:20MPa)した。これにより、フェノール樹脂が硬化した樹脂含浸紙を得た。このとき加熱プレス硬化前の樹脂含浸紙の硬化進行度は0.1%以下であった。続いて、このフェノール樹脂が硬化した樹脂含浸紙を窒素ガス雰囲気中にて最高温度800℃の連続焼成炉に10分間通した後、最高温度1900℃の連続焼成炉において10分間加熱し、炭素化することで長さ100mの多孔質炭素電極基材を連続的に得た。該多孔質炭素電極基材の剥離強さは75N/4cm2であり、層間剥離が生じにくい多孔質炭素電極基材が得られた。この多孔質炭素電極基材について厚み、目付、厚さ方向ガス透過度、貫通抵抗を測定及び算出した結果を表1に示す。 The resin-impregnated paper containing this phenol resin was stored for one day in a refrigerator whose temperature was adjusted to 10 ° C. Thereafter, two resin-impregnated papers are laminated so that the lower surface at the time of paper making comes to the surface, sandwiched by a release agent coating base material, and continuously heat-press-cured with a double belt press device (maximum load during pressing: 20 MPa) )did. Thereby, a resin-impregnated paper in which the phenol resin was cured was obtained. At this time, the progress of curing of the resin-impregnated paper before heat press curing was 0.1% or less. Subsequently, the resin-impregnated paper cured with the phenol resin is passed through a continuous firing furnace having a maximum temperature of 800 ° C. for 10 minutes in a nitrogen gas atmosphere, and then heated in a continuous firing furnace having a maximum temperature of 1900 ° C. for 10 minutes to be carbonized. Thus, a porous carbon electrode substrate having a length of 100 m was continuously obtained. The peel strength of the porous carbon electrode substrate was 75 N / 4 cm 2 , and a porous carbon electrode substrate that hardly caused delamination was obtained. Table 1 shows the results of measuring and calculating the thickness, basis weight, gas permeability in the thickness direction, and penetration resistance of this porous carbon electrode substrate.

〔実施例2〕
フェノール樹脂を含む樹脂含浸紙の保管日数を30日としたこと以外は実施例1と同様にして多孔質炭素電極基材を得た。このとき加熱プレス硬化前の樹脂含浸紙の硬化進行度は0.3%であった。該多孔質炭素電極基材の剥離強さは68N/4cm2であり、層間剥離が生じにくい多孔質炭素電極基材が得られた。また実施例1同様、物性値を測定した。測定結果を表1に示す。
[Example 2]
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that the storage days of the resin-impregnated paper containing the phenol resin was 30 days. At this time, the degree of curing of the resin-impregnated paper before heat press curing was 0.3%. The peel strength of the porous carbon electrode substrate was 68 N / 4 cm 2 , and a porous carbon electrode substrate that hardly caused delamination was obtained. Further, the physical property values were measured as in Example 1. The measurement results are shown in Table 1.

〔実施例3〕
フェノール樹脂を含む樹脂含浸紙の保管日数を60日としたこと以外は実施例1と同様にして多孔質炭素電極基材を得た。このとき加熱プレス硬化前の樹脂含浸紙の硬化進行度は1.1%であった。該多孔質炭素電極基材の剥離強さは52N/4cm2であり、層間剥離が生じにくい多孔質炭素電極基材が得られた。また実施例1同様、物性値を測定した。測定結果を表1に示す。
Example 3
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that the storage days of the resin-impregnated paper containing the phenol resin was set to 60 days. At this time, the degree of curing of the resin-impregnated paper before heat press curing was 1.1%. The peel strength of the porous carbon electrode substrate was 52 N / 4 cm 2 , and a porous carbon electrode substrate that hardly caused delamination was obtained. Further, the physical property values were measured as in Example 1. The measurement results are shown in Table 1.

〔実施例4〕
フェノール樹脂を含む樹脂含浸紙の保管日数を120日としたこと以外は実施例1と同様にして多孔質炭素電極基材を得た。このとき加熱プレス硬化前の樹脂含浸紙の硬化進行度は3.3%であった。該多孔質炭素電極基材の剥離強さは32N/4cm2であり、実施例1と比較すると剥離強さは低下しているものの、層間剥離が生じにくい多孔質炭素電極基材が得られた。また実施例1同様、物性値を測定した。測定結果を表1に示す。
Example 4
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that the storage days of the resin-impregnated paper containing the phenol resin was 120 days. At this time, the degree of curing of the resin-impregnated paper before heat press curing was 3.3%. The peel strength of the porous carbon electrode substrate was 32 N / 4 cm 2 , and although a peel strength was reduced as compared with Example 1, a porous carbon electrode substrate that hardly caused delamination was obtained. . Further, the physical property values were measured as in Example 1. The measurement results are shown in Table 1.

〔実施例5〕
フェノール樹脂を含む樹脂含浸紙の保管日数を170日としたこと以外は実施例1と同様にして多孔質炭素電極基材を得た。このとき加熱プレス硬化前の樹脂含浸紙の硬化進行度は4.6%であった。該多孔質炭素電極基材の剥離強さは21N/4cm2であり、実施例1と比較すると剥離強さは低下しているものの、層間剥離が生じにくい多孔質炭素電極基材が得られた。また実施例1同様、物性値を測定した。測定結果を表1に示す。
Example 5
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that the number of storage days of the resin-impregnated paper containing the phenol resin was 170 days. At this time, the curing progress of the resin-impregnated paper before heat press curing was 4.6%. The peel strength of the porous carbon electrode substrate was 21 N / 4 cm 2 , and although a peel strength was reduced as compared with Example 1, a porous carbon electrode substrate that hardly caused delamination was obtained. . Further, the physical property values were measured as in Example 1. The measurement results are shown in Table 1.

〔実施例6〕
フェノール樹脂を含む樹脂含浸紙の保管温度を25℃としたこと以外は実施例2と同様にして多孔質炭素電極基材を得た。このとき加熱プレス硬化前の樹脂含浸紙の硬化進行度は4.2%であった。該多孔質炭素電極基材の剥離強さは24N/4cm2であり、実施例1と比較すると剥離強さは低下しているものの、層間剥離が生じにくい多孔質炭素電極基材が得られた。また実施例1同様、物性値を測定した。測定結果を表1に示す。
Example 6
A porous carbon electrode substrate was obtained in the same manner as in Example 2 except that the storage temperature of the resin-impregnated paper containing the phenol resin was 25 ° C. At this time, the degree of curing of the resin-impregnated paper before heat press curing was 4.2%. The peel strength of the porous carbon electrode base material was 24 N / 4 cm 2 , and although the peel strength was lower than that of Example 1, a porous carbon electrode base material that hardly caused delamination was obtained. . Further, the physical property values were measured as in Example 1. The measurement results are shown in Table 1.

〔実施例7〕
表1に示す配合で平均繊維径が7μm、平均繊維長が3mmのポリアクリロニトリル(PAN)系炭素短繊維(7μm径CF)、ポリビニルアルコール(PVA)及びポリエチレンパルプ(PEパルプ)を、水を分散媒体として均一に分散させた。これを湿式連続抄紙装置により連続的に抄紙した。その後、熱ロールに接触させて乾燥し、炭素短繊維の目付が約21g/m2の長尺の炭素繊維紙を得て、ロール状に巻き取った。その後、実施例1同様にフェノール樹脂を含浸させ、加熱プレス硬化工程、炭素化工程を行うことで、長さ100mの多孔質炭素電極基材を連続的に得た。このとき加熱プレス硬化前の樹脂含浸紙の硬化進行度は0.1%以下であった。該多孔質炭素電極基材の剥離強さは62N/4cm2であり、層間剥離が生じにくい多孔質炭素電極基材が得られた。また実施例1同様、物性値を測定した。測定結果を表1に示す。
Example 7
Dispersion of water in polyacrylonitrile (PAN) carbon short fibers (7 μm diameter CF), polyvinyl alcohol (PVA) and polyethylene pulp (PE pulp) with an average fiber diameter of 7 μm and an average fiber length of 3 mm in the formulation shown in Table 1 It was dispersed uniformly as a medium. The paper was continuously made with a wet continuous paper making machine. Then, it was made to contact with a hot roll and dried to obtain a long carbon fiber paper having a short carbon fiber basis weight of about 21 g / m 2 and wound into a roll. Then, the porous carbon electrode base material of length 100m was obtained continuously by impregnating a phenol resin like Example 1, and performing a heat press hardening process and a carbonization process. At this time, the progress of curing of the resin-impregnated paper before heat press curing was 0.1% or less. The peel strength of the porous carbon electrode substrate was 62 N / 4 cm 2 , and a porous carbon electrode substrate that hardly caused delamination was obtained. Further, the physical property values were measured as in Example 1. The measurement results are shown in Table 1.

〔実施例8〕
フェノール樹脂を含む樹脂含浸紙の保管日数を170日としたこと以外は実施例7と同様にして多孔質炭素電極基材を得た。このとき加熱プレス硬化前の樹脂含浸紙の硬化進行度は4.3%であった。該多孔質炭素電極基材の剥離強さは16N/4cm2であり、実施例7と比較すると剥離強さは低下しているものの、層間剥離が生じにくい多孔質炭素電極基材が得られた。また実施例1同様、物性値を測定した。測定結果を表1に示す。
Example 8
A porous carbon electrode substrate was obtained in the same manner as in Example 7 except that the number of storage days of the resin-impregnated paper containing phenol resin was 170 days. At this time, the progress of curing of the resin-impregnated paper before heat press curing was 4.3%. The peel strength of the porous carbon electrode substrate was 16 N / 4 cm 2 , and although a peel strength was reduced as compared with Example 7, a porous carbon electrode substrate that hardly caused delamination was obtained. . Further, the physical property values were measured as in Example 1. The measurement results are shown in Table 1.

〔比較例1〕
フェノール樹脂を含む樹脂含浸紙の保管日数を180日としたこと以外は実施例1と同様にして多孔質炭素電極基材を得た。このとき加熱プレス硬化前の樹脂含浸紙の硬化進行度は5.2%であった。該多孔質炭素電極基材の剥離強さは9N/4cm2であり、実施例1と比較すると剥離強さが大きく低下し、層間剥離が生じやすい多孔質炭素電極基材が得られた。また実施例1同様、物性値を測定した。測定結果を表1に示す。
[Comparative Example 1]
A porous carbon electrode substrate was obtained in the same manner as in Example 1 except that the storage days of the resin-impregnated paper containing the phenol resin was 180 days. At this time, the degree of curing of the resin-impregnated paper before heat press curing was 5.2%. The peel strength of the porous carbon electrode substrate was 9 N / 4 cm 2 , and the peel strength was greatly reduced as compared with Example 1, and a porous carbon electrode substrate that was likely to cause delamination was obtained. Further, the physical property values were measured as in Example 1. The measurement results are shown in Table 1.

〔比較例2〕
フェノール樹脂を含む樹脂含浸紙の保管日数を40日としたこと以外は実施例6と同様にして多孔質炭素電極基材を得た。このとき加熱プレス硬化前の樹脂含浸紙の硬化進行度は5.8%であった。該多孔質炭素電極基材の剥離強さは6N/4cm2であり、実施例1と比較すると剥離強さが大きく低下し、層間剥離が生じやすい多孔質炭素電極基材が得られた。また実施例1同様、物性値を測定した。測定結果を表1に示す。
[Comparative Example 2]
A porous carbon electrode substrate was obtained in the same manner as in Example 6 except that the storage days of the resin-impregnated paper containing the phenol resin was 40 days. At this time, the curing progress of the resin-impregnated paper before heat press curing was 5.8%. The peel strength of the porous carbon electrode substrate was 6 N / 4 cm 2 , and the peel strength was greatly reduced as compared with Example 1, and a porous carbon electrode substrate that was likely to cause delamination was obtained. Further, the physical property values were measured as in Example 1. The measurement results are shown in Table 1.

〔比較例3〕
フェノール樹脂を含む樹脂含浸紙の保管日数を180日としたこと以外は実施例7と同様にして多孔質炭素電極基材を得た。このとき加熱プレス硬化前の樹脂含浸紙の硬化進行度は5.1%であった。該多孔質炭素電極基材の剥離強さは8N/4cm2であり、実施例7と比較すると剥離強さが大きく低下し、層間剥離が生じやすい多孔質炭素電極基材が得られた。また実施例1同様、物性値を測定した。測定結果を表1に示す。
[Comparative Example 3]
A porous carbon electrode substrate was obtained in the same manner as in Example 7 except that the storage days of the resin-impregnated paper containing the phenol resin was 180 days. At this time, the degree of curing of the resin-impregnated paper before heat press curing was 5.1%. The peel strength of the porous carbon electrode substrate was 8 N / 4 cm 2 , and the peel strength was greatly reduced as compared with Example 7, resulting in a porous carbon electrode substrate that was likely to cause delamination. Further, the physical property values were measured as in Example 1. The measurement results are shown in Table 1.

尚、本発明の実施例中の各物性値等は以下の方法で測定した。   In addition, each physical-property value in the Example of this invention was measured with the following method.

<厚み測定方法>
多孔質炭素電極基材の厚みは、厚み測定装置(商品名:「ダイヤルシックネスゲージ7321」、ミツトヨ製)を使用し、測定した。このときの測定子の大きさは直径10mmであり、測定圧力は1.5kPaで行った。
<Thickness measurement method>
The thickness of the porous carbon electrode substrate was measured using a thickness measuring device (trade name: “Dial Thickness Gauge 7321”, manufactured by Mitutoyo Corporation). The size of the probe at this time was 10 mm in diameter, and the measurement pressure was 1.5 kPa.

<ガス透過度測定方法>
JIS規格P−8117に準拠した方法によって測定した。多孔質炭素電極基材の試験片を0.645cm2の透過面積の孔を有するセルに挟み、孔から304Paの圧力で300mLのガスを流し、ガスが透過するのにかかった時間を測定した。ガス透過度は以下の式より算出した。
<Gas permeability measurement method>
It measured by the method based on JIS specification P-8117. A test piece of a porous carbon electrode substrate was sandwiched between cells having a permeation area of 0.645 cm 2 , 300 mL of gas was allowed to flow from the hole at a pressure of 304 Pa, and the time taken for the gas to permeate was measured. The gas permeability was calculated from the following formula.

ガス透過度(ml/(cm2・hr・Pa))
=気体透過量(ml)/(気体透過孔面積(cm2)・透過時間(hr)・透過圧(Pa))。
Gas permeability (ml / (cm 2 · hr · Pa))
= Gas permeation amount (ml) / (gas permeation hole area (cm 2 ), permeation time (hr), permeation pressure (Pa)).

<貫通抵抗測定方法>
多孔質炭素電極基材の厚さ方向の電気抵抗(貫通抵抗)の測定は、まず試料36mmφを金メッキした銅板にはさみ、金メッキした銅板の上下から1.6MPaで2回加圧した。その後、1MPaで加圧し、10mA/cm2の電流密度で電流を流したときの抵抗値を測定した。貫通抵抗は次式より求めた。
<Penetration resistance measurement method>
The electrical resistance (penetration resistance) in the thickness direction of the porous carbon electrode substrate was measured by first sandwiching a sample 36 mmφ between the gold-plated copper plates and pressurizing twice at 1.6 MPa from the top and bottom of the gold-plated copper plate. Thereafter, pressurization was performed at 1 MPa, and a resistance value was measured when a current was passed at a current density of 10 mA / cm 2 . The penetration resistance was obtained from the following equation.

貫通抵抗(Ω・cm2)=測定抵抗値(Ω)×試料面積(cm2Penetration resistance (Ω · cm 2 ) = Measured resistance value (Ω) × Sample area (cm 2 )

Figure 2012018886
Figure 2012018886

1 多孔質炭素電極基材
2 両面テープ
3 金属治具
4 フック
1 Porous carbon electrode base material 2 Double-sided tape 3 Metal jig 4 Hook

Claims (3)

炭素短繊維を二次元平面内において分散せしめた抄紙体にフェノール樹脂を含浸させて樹脂含浸紙を製造する工程と、
前記樹脂含浸紙を2枚重ね合わせ加熱プレス硬化した後、更に炭素化する工程と、
を含む多孔質炭素電極基材の製造方法であって、
前記加熱プレス硬化前の樹脂含浸紙の前記フェノール樹脂の硬化進行度が5%以下である多孔質炭素電極基材の製造方法。
A step of producing a resin-impregnated paper by impregnating a phenolic resin into a paper body in which short carbon fibers are dispersed in a two-dimensional plane;
Two resin impregnated papers are stacked and heated and press-cured, and then carbonized;
A method for producing a porous carbon electrode substrate comprising:
The manufacturing method of the porous carbon electrode base material whose hardening progress of the said phenol resin of the resin impregnation paper before the said heat press hardening is 5% or less.
前記多孔質炭素電極基材の厚み方向の剥離強度が10N/4cm2以上である請求項1に記載の多孔質炭素電極基材の製造方法。 The method for producing a porous carbon electrode substrate according to claim 1, wherein the peel strength in the thickness direction of the porous carbon electrode substrate is 10 N / 4 cm 2 or more. 請求項1又は2に記載の方法により製造される多孔質炭素電極基材。   The porous carbon electrode base material manufactured by the method of Claim 1 or 2.
JP2010156935A 2010-07-09 2010-07-09 Method for producing porous carbon electrode substrate Active JP5560977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010156935A JP5560977B2 (en) 2010-07-09 2010-07-09 Method for producing porous carbon electrode substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010156935A JP5560977B2 (en) 2010-07-09 2010-07-09 Method for producing porous carbon electrode substrate

Publications (2)

Publication Number Publication Date
JP2012018886A true JP2012018886A (en) 2012-01-26
JP5560977B2 JP5560977B2 (en) 2014-07-30

Family

ID=45603990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010156935A Active JP5560977B2 (en) 2010-07-09 2010-07-09 Method for producing porous carbon electrode substrate

Country Status (1)

Country Link
JP (1) JP5560977B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016541096A (en) * 2013-12-09 2016-12-28 アウディ アクチェンゲゼルシャフトAudi Ag Dry fuel cell precursor substrate and substrate manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270331A (en) * 1986-05-19 1987-11-24 日東紡績株式会社 Carbon fiber sheet-shaped article
JP2010031419A (en) * 2008-07-29 2010-02-12 Mitsubishi Rayon Co Ltd Method for producing carbonaceous electrode material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270331A (en) * 1986-05-19 1987-11-24 日東紡績株式会社 Carbon fiber sheet-shaped article
JP2010031419A (en) * 2008-07-29 2010-02-12 Mitsubishi Rayon Co Ltd Method for producing carbonaceous electrode material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016541096A (en) * 2013-12-09 2016-12-28 アウディ アクチェンゲゼルシャフトAudi Ag Dry fuel cell precursor substrate and substrate manufacturing method

Also Published As

Publication number Publication date
JP5560977B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5844760B2 (en) Porous electrode substrate
WO2005124907A1 (en) Porous electrode base material and process for producing the same
TWI314599B (en) Carbon electrode base material using carbon paper for fuel cell made
JP2006040886A (en) Porous electrode substrate and its manufacturing method
JP5702218B2 (en) Porous electrode substrate for polymer electrolyte fuel cell
JP5485212B2 (en) Porous carbon electrode substrate and method for producing the same
JP2003183994A (en) Carbon fiber paper, and porous carbon electrode material for fuel battery using the same
JP2021100004A (en) Electrode for redox flow battery and redox flow battery
JP4266699B2 (en) Porous electrode substrate for polymer electrolyte fuel cell and method for producing the same
JP4730888B2 (en) Porous electrode substrate and method for producing the same
JP5398297B2 (en) Method for producing porous carbon electrode substrate
JP2004259711A (en) Carbon fiber paper and porous carbon electrode base material for fuel cells
JP5560977B2 (en) Method for producing porous carbon electrode substrate
JP5297701B2 (en) Method for producing electrode substrate for polymer electrolyte fuel cell
JP5728802B2 (en) Porous carbon electrode substrate and method for producing the same
JP6172131B2 (en) Porous carbon electrode substrate
JP5250328B2 (en) Method for producing carbonaceous electrode substrate
JP4801354B2 (en) Electrode base material for polymer electrolyte fuel cell and method for producing the same
JP2009280437A (en) Method for producing porous carbon sheet
JP2004134108A (en) Manufacturing method of precursor sheet-like material for porous carbon electrode base material
JP2006004858A (en) Porous electrode base material and its manufacturing method
JP2006004858A5 (en)
JP2003151568A (en) Electrode material for solid high polymer fuel cell and its manufacturing method
JP2018014275A (en) Porous electrode substrate
JP5336912B2 (en) Porous electrode substrate manufacturing method, membrane-electrode assembly using the same, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R151 Written notification of patent or utility model registration

Ref document number: 5560977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250