JP2012015313A - Semiconductor device having semiconductor element - Google Patents

Semiconductor device having semiconductor element Download PDF

Info

Publication number
JP2012015313A
JP2012015313A JP2010150214A JP2010150214A JP2012015313A JP 2012015313 A JP2012015313 A JP 2012015313A JP 2010150214 A JP2010150214 A JP 2010150214A JP 2010150214 A JP2010150214 A JP 2010150214A JP 2012015313 A JP2012015313 A JP 2012015313A
Authority
JP
Japan
Prior art keywords
layer
pure
semiconductor element
alloy
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010150214A
Other languages
Japanese (ja)
Inventor
Takeshi Tachibana
武史 橘
Yasushi Goto
裕史 後藤
Hiroyuki Okuno
博行 奥野
Takeaki Maeda
剛彰 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010150214A priority Critical patent/JP2012015313A/en
Publication of JP2012015313A publication Critical patent/JP2012015313A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device with high reliability by reducing a strain stress due to thermal expansion occurring between semiconductor elements or between a semiconductor element and a circuit board.SOLUTION: A semiconductor device comprises at least one configuration in which a circuit board 1 and a semiconductor element 2 having an electrode 3 are bonded via a joint member. The joint member is composed of a stacked structure of an Al alloy layer 5 and a pure Al layer 6. The Al alloy layer is disposed at the electrode side of the semiconductor element and the pure Al layer is disposed at the circuit board side.

Description

本発明は、半導体素子を有する半導体装置に関し、詳細には耐熱性に優れ、長期信頼性を高めることが可能な半導体素子を有する半導体装置に関する。   The present invention relates to a semiconductor device having a semiconductor element, and more particularly to a semiconductor device having a semiconductor element that has excellent heat resistance and can improve long-term reliability.

半導体装置は、論理回路、CPUなどの様々な用途で使用されると共に、これらを組み込んだ電子機器は多岐に亘る。近年、電子機器の小型、軽量化や高性能化が求められており、半導体としてもSiよりもバンドギャップが大きいSiC、GaN、ダイヤモンドなどのワイドギャップ半導体(パワー半導体)が注目されている。これらSiCなどのワイドギャップ半導体はSi半導体に比べて耐電圧性能が高く、また電力損失が少なく、高温動作性にも優れていることから、様々な分野での使用が検討されている。   Semiconductor devices are used in various applications such as logic circuits and CPUs, and a wide variety of electronic devices incorporate them. In recent years, there has been a demand for smaller, lighter, and higher performance electronic devices. As semiconductors, wide gap semiconductors (power semiconductors) such as SiC, GaN, and diamond, which have a larger band gap than Si, have attracted attention. These wide-gap semiconductors such as SiC have higher withstand voltage performance than Si semiconductors, have less power loss, and are excellent in high-temperature operability, and are therefore being studied for use in various fields.

例えば高電圧、大電流の用途に用いられる大電力用半導体装置にワイドギャップ半導体を用いると、半導体素子の高集積化による高性能化やインバータなどの電力変換装置の小型化や低損失化が期待できることから、近年開発が進められている。もっとも、半導体装置の大電流化や半導体素子の高集積化に伴い、半導体素子からの発熱量も増大する傾向にある。発熱量が一定以上に達すると、半導体素子や回路基板などが熱膨張するが、熱膨張係数差に起因して、歪応力が残留し、その影響で半導体素子の特性の変動が発生するという問題が生じ、長期信頼性の確保が問題となっていた。   For example, if a wide-gap semiconductor is used in a high-power semiconductor device used for high-voltage and large-current applications, high performance due to high integration of semiconductor elements and miniaturization and low loss of power conversion devices such as inverters are expected. Because of this, development has been promoted in recent years. However, the amount of heat generated from the semiconductor element tends to increase as the current of the semiconductor device increases and the integration of the semiconductor element increases. When the calorific value reaches a certain level, the semiconductor elements and circuit boards thermally expand, but due to the difference in coefficient of thermal expansion, the strain stress remains, which causes fluctuations in the characteristics of the semiconductor elements. As a result, ensuring long-term reliability has been a problem.

また近年、ブルーレイディスクなどの高密度光ディスクの記録や読み出し用のレーザーや、LED照明などにもワイドギャップ半導体が用いられるようになっている。レーザーやLED照明などの用途では、さらなる発光強度の向上が要求されているが、電流量を増大させて発光強度を高めると発熱を伴うため、上記残留歪の影響で、波長や偏光特性にばらつきが発生し、長期信頼性が低下するという問題が生じていた。   In recent years, wide gap semiconductors have also been used for lasers for recording and reading high density optical disks such as Blu-ray discs, LED lighting, and the like. In applications such as laser and LED lighting, further improvement in light emission intensity is required, but increasing the light emission intensity by increasing the amount of current is accompanied by heat generation, so the wavelength and polarization characteristics vary due to the effects of residual strain. Has occurred, and the long-term reliability has deteriorated.

このように半導体装置の大電流化や半導体素子の集積化に伴い、半導体素子の発熱量は増大する傾向にあり、またSiCやGaNなど、Siより高い温度で動作可能な半導体素子の実用化によって、使用時の耐熱温度として、更に高い温度が要求されるようになっている。   Thus, with the increase in current of semiconductor devices and the integration of semiconductor elements, the amount of heat generated by semiconductor elements tends to increase, and the practical use of semiconductor elements that can operate at temperatures higher than Si, such as SiC and GaN. As a heat-resistant temperature at the time of use, a higher temperature is required.

このような問題の対策として、従来からファンや冷却フィンなどの冷却装置によって温度の低減が図られているが、ワイドギャップ半導体などのように従来よりも高温となる場合には、冷却装置では十分に冷却することができない。   As countermeasures against such problems, the temperature has been conventionally reduced by cooling devices such as fans and cooling fins. However, if the temperature is higher than that of conventional devices such as wide gap semiconductors, the cooling device is sufficient. Can not be cooled to.

また半導体素子同士や半導体素子と回路基板との接合に用いるはんだ材料としてPb系はんだを用いると、はんだに上記歪応力が残留しやすく、熱膨張と熱収縮の繰り返しによって、はんだ接合部に亀裂が生じたり、高温によってはんだが溶融してしまい、接合が外れるというがあった。   In addition, when Pb-based solder is used as a solder material used for bonding between semiconductor elements or between a semiconductor element and a circuit board, the above-mentioned strain stress tends to remain in the solder, and cracks are generated in the solder joint due to repeated thermal expansion and contraction. It was generated or the solder was melted due to a high temperature, and the joint was disconnected.

そこで、Pb系はんだよりも融点の高いAu合金系はんだを用いることが提案されている。しかしワイドギャップ半導体の使用可能温度はAu合金系はんだの融点よりも高いため、Au合金系はんだが溶融したり、歪応力の残留によってはんだ接合部に亀裂が生じるという問題がある。またAu合金系はんだは高価であり、製造コストの面からも汎用的に使用することは難しい。   Thus, it has been proposed to use Au alloy solder having a higher melting point than Pb solder. However, since the usable temperature of the wide gap semiconductor is higher than the melting point of the Au alloy solder, there is a problem that the Au alloy solder melts or cracks occur in the solder joints due to residual strain stress. In addition, Au alloy solder is expensive and difficult to use for general purposes from the viewpoint of manufacturing cost.

上記歪応力を緩和する技術として特許文献1には半導体素子と回路基板との間にエポキシ樹脂などの応力緩和層を設ける技術が開示されているが、樹脂は塑性変形性に優れているものの、融点が低いため、上記Au合金系はんだと同様、高温時に溶融するという問題がある。   As a technique for relaxing the strain stress, Patent Document 1 discloses a technique for providing a stress relaxation layer such as an epoxy resin between a semiconductor element and a circuit board, although the resin is excellent in plastic deformability, Since the melting point is low, there is a problem that it melts at a high temperature like the Au alloy solder.

特開2009−10436号公報JP 2009-10436 A

本発明は上記のような問題点に鑑みてなされたもので、その目的は、半導体素子間や半導体素子と回路基板との間で生じる熱膨張による歪応力を緩和し、長時間使用(500時間以上)しても該歪応力の影響によって半導体素子の電極に亀裂が生じるのを抑制したり、歪応力による半導体素子の特性の変動を抑制することによって、長期間にわたって高い信頼性を有する半導体装置を提供することにある。   The present invention has been made in view of the above-described problems, and its purpose is to relieve strain stress due to thermal expansion generated between semiconductor elements or between a semiconductor element and a circuit board, and can be used for a long time (500 hours). The semiconductor device having high reliability over a long period of time by suppressing the generation of cracks in the electrodes of the semiconductor element due to the influence of the strain stress and suppressing the fluctuation of the characteristics of the semiconductor element due to the strain stress. Is to provide.

上記課題を達成し得た本発明は、電極を有する半導体素子と、回路基板とが、接合部材を介して接合された構成を1以上含む半導体装置であって、前記接合部材は、Al合金層と純Al層との積層構造からなり、前記Al合金層は、前記半導体素子の電極側に配置され、前記純Al層は、前記回路基板側に配置されていることに要旨を有する。   The present invention that has achieved the above object is a semiconductor device including one or more configurations in which a semiconductor element having an electrode and a circuit board are bonded via a bonding member, the bonding member comprising an Al alloy layer The Al alloy layer is arranged on the electrode side of the semiconductor element, and the pure Al layer is arranged on the circuit board side.

本発明では、前記電極の一部または全部が、前記接合部材で構成されていることも好ましい実施態様である。   In the present invention, it is also a preferred embodiment that part or all of the electrode is constituted by the joining member.

また前記純Al層のAl純度が99.5%以上であることも好ましい実施態様である。   It is also a preferred embodiment that the Al purity of the pure Al layer is 99.5% or more.

更に前記Al合金は、Ni、Co、Fe、およびMnよりなる群から選ばれる少なくとも1種を合計で0.1〜10原子%含有すると共に、Nd、La、およびPrよりなる群から選ばれる少なくとも1種を合計で0.1〜6原子%含有するものであることも好ましい実施態様である。   The Al alloy further contains at least one selected from the group consisting of Ni, Co, Fe, and Mn in a total amount of 0.1 to 10 atomic%, and at least selected from the group consisting of Nd, La, and Pr. It is also a preferred embodiment that one type is contained in a total of 0.1 to 6 atomic%.

本発明によれば半導体素子間や、半導体素子と回路基板は、純AlとAl合金の積層構造からなる接合部材を介して接合させているため、稼働時に発生する歪応力は、該接合部材が塑性変形することによって緩和できる。したがって本発明の半導体装置は、半導体素子や回路基板にかかるストレスを小さくできるため、残留した歪応力による半導体素子の特性の変動が抑制されており、従来よりも優れた長期信頼性を有する。   According to the present invention, between the semiconductor elements and between the semiconductor element and the circuit board are joined via a joining member having a laminated structure of pure Al and an Al alloy, strain stress generated during operation is It can be relaxed by plastic deformation. Therefore, the semiconductor device of the present invention can reduce the stress applied to the semiconductor element and the circuit board. Therefore, the fluctuation of the characteristics of the semiconductor element due to the remaining strain stress is suppressed, and the long-term reliability is superior to that of the conventional device.

図1は、本発明の半導体装置一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a semiconductor device of the present invention. 図2は、本発明の他の半導体装置一例を示す概略断面図である。FIG. 2 is a schematic sectional view showing an example of another semiconductor device of the present invention. 図3は、実施例1で使用したLED半導体装置を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing the LED semiconductor device used in Example 1. 図4は、実施例2で使用した絶縁ゲート型バイポーラ・トランジスタを示す概略断面図である。FIG. 4 is a schematic sectional view showing the insulated gate bipolar transistor used in the second embodiment. 図5は、亀裂密度とNi、Co含有量の関係を示すグラフである。FIG. 5 is a graph showing the relationship between crack density and Ni / Co content.

本発明者らは上記課題を解決すべく、鋭意研究を重ねてきた。その結果、半導体素子間、或いは半導体素子と基板を、純AlとAl合金との積層構造からなる接合部材を介して接合することによって、上記課題を解決できることを見出し、本発明に至った。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, the present inventors have found that the above-described problems can be solved by joining between semiconductor elements or between a semiconductor element and a substrate via a joining member having a laminated structure of pure Al and an Al alloy.

以下、図面を参照しながら、本発明の半導体装置の好ましい実施形態を説明するが、本発明はこれに限定されない。   Hereinafter, preferred embodiments of the semiconductor device of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

図1は、本発明に係る半導体装置の好ましい実施形態を説明する概略断面説明図である。図1は、電極3を有する半導体素子2と、回路基板1に形成された回路(図示せず)とが、接合部材4を介して接合された構成を1以上含む半導体装置である。具体的には、接合部材4は、純Al層6とAl合金層5との積層構造からなり、Al合金層5は、半導体素子2の電極3側に配置され、純Al層6は、回路基板1側に配置されている。   FIG. 1 is a schematic cross-sectional explanatory view illustrating a preferred embodiment of a semiconductor device according to the present invention. FIG. 1 shows a semiconductor device including one or more configurations in which a semiconductor element 2 having an electrode 3 and a circuit (not shown) formed on a circuit board 1 are bonded via a bonding member 4. Specifically, the bonding member 4 has a laminated structure of a pure Al layer 6 and an Al alloy layer 5, the Al alloy layer 5 is disposed on the electrode 3 side of the semiconductor element 2, and the pure Al layer 6 is a circuit. Arranged on the substrate 1 side.

本発明では接合部材4を純Al層6とAl合金層5からなる積層構造とすることにより、熱伝導性に優れ柔軟性の高い純Al層6によって稼働時の発熱によって生じる半導体素子間(後記図2参照)や半導体素子2と回路基板1との間の熱膨張係数差に起因する歪応力を緩和・吸収させると共に、純Alに比べて耐熱性の高いAl合金層5によって純Al層6と半導体素子2の電極3との接続性を確保することができる。   In the present invention, the joining member 4 has a laminated structure composed of a pure Al layer 6 and an Al alloy layer 5, so that the pure Al layer 6 having excellent thermal conductivity and high flexibility can be used to generate heat between semiconductor elements (described later). 2) and the strained stress caused by the difference in thermal expansion coefficient between the semiconductor element 2 and the circuit board 1 is relaxed and absorbed, and the pure Al layer 6 is formed by the Al alloy layer 5 having higher heat resistance than pure Al. And the electrode 3 of the semiconductor element 2 can be secured.

また図2は本発明の他の好ましい実施形態であり、複数の半導体素子をアレイ状に集積させた半導体装置の概略説明図である。図2は、電極3aを有する第1の半導体素子2aと電極3bを有する第2の半導体素子2bとが、接合部材4を介して接合された構成を1以上含む半導体装置である。具体的には、上記図1と同様、接合部材4を構成するAl合金層5は、第1の半導体素子2aの電極3a側に配置され、純Al層6は、基板側に配置されている。   FIG. 2 shows another preferred embodiment of the present invention, and is a schematic explanatory view of a semiconductor device in which a plurality of semiconductor elements are integrated in an array. FIG. 2 shows a semiconductor device including one or more configurations in which a first semiconductor element 2 a having an electrode 3 a and a second semiconductor element 2 b having an electrode 3 b are bonded via a bonding member 4. Specifically, as in FIG. 1, the Al alloy layer 5 constituting the bonding member 4 is disposed on the electrode 3a side of the first semiconductor element 2a, and the pure Al layer 6 is disposed on the substrate side. .

このように接合部材4を介して複数の半導体素子間を接合させれば、上記図1の場合と同様、接合部材を構成する純Al層6によって稼働時の発熱によって生じる半導体素子間の熱膨張係数差に起因する歪応力を緩和・吸収することができると共に、Al合金層5によって純Al層6と半導体素子の電極との接続性を確保することができる。   If a plurality of semiconductor elements are bonded through the bonding member 4 in this way, as in the case of FIG. 1, the thermal expansion between the semiconductor elements caused by heat generated during operation by the pure Al layer 6 constituting the bonding member. The strain stress resulting from the coefficient difference can be relaxed and absorbed, and the Al alloy layer 5 can ensure the connectivity between the pure Al layer 6 and the electrode of the semiconductor element.

なお、複数の半導体素子を集積させる場合、本発明では図2に限定されず、更に多くの半導体素子と接合部材が接合されていてもよく、その場合の基本的な構造は図2と同じである。   In the case where a plurality of semiconductor elements are integrated, the present invention is not limited to FIG. 2, and more semiconductor elements and bonding members may be bonded, and the basic structure in that case is the same as FIG. is there.

また本発明では、上記半導体素子の電極や回路の電極の一部または全部が、上記接合部材で構成されていてもよい。即ち、半導体素子の電極の一部または全部がAl合金で構成されていてもよく、また回路基板の電極の一部または全部が純Alで構成されていてもよい。なお、本発明では、基板に設けられた配線であっても、上記純Alとの接合部分は、電極に含まれる。   In the present invention, some or all of the electrodes of the semiconductor element and the electrodes of the circuit may be constituted by the bonding member. That is, some or all of the electrodes of the semiconductor element may be made of an Al alloy, and some or all of the electrodes of the circuit board may be made of pure Al. In the present invention, even if the wiring is provided on the substrate, the junction with pure Al is included in the electrode.

このように半導体素子や回路の電極の一部または全部を上記接合部材で構成することによって、接合部材のみを純AlとAl合金とした場合に比べて、夫々の上記効果をより高めることができるからである。   As described above, by forming a part or all of the electrodes of the semiconductor element and the circuit with the above-mentioned joining member, the above-described effects can be further enhanced as compared with the case where only the joining member is made of pure Al and Al alloy. Because.

以下、本発明の純Al層とAl合金層からなる接合部材について説明する。   Hereinafter, the joining member consisting of a pure Al layer and an Al alloy layer of the present invention will be described.

まず、本発明者らは熱膨張係数差に起因する歪応力の影響によって半導体素子の特性が低下するという上記問題を解消するために、半導体素子間、あるいは半導体素子と回路基板との間に該応力を吸収できる熱応力緩和層(接合部材4)を設けることとし、最適な材料について調べたところ、純Alが有効であることを見出した。   First, in order to solve the above-mentioned problem that the characteristics of a semiconductor element deteriorate due to the influence of strain stress caused by a difference in thermal expansion coefficient, the present inventors have found that the semiconductor element or between a semiconductor element and a circuit board When a thermal stress relaxation layer (bonding member 4) capable of absorbing stress was provided and an optimum material was examined, it was found that pure Al was effective.

純Alは、Pb系はんだやAu合金系はんだよりも融点が高く、また熱伝導性が高く、放熱効果に優れているため、SiCなどのワイドギャップ半導体を使用した半導体素子の稼働時の発熱温度でも溶融することがない。また半導体装置の稼働によって発生する温度において純Al層が軟化するため、熱膨張係数差によって発生する歪応力を、純Al層が柔軟に変形することによって、吸収、緩和できる。   Pure Al has a higher melting point than Pb-based solder and Au alloy-based solder, has high thermal conductivity, and is excellent in heat dissipation. But it does not melt. Further, since the pure Al layer is softened at the temperature generated by the operation of the semiconductor device, the strain stress generated by the difference in thermal expansion coefficient can be absorbed and relaxed by flexibly deforming the pure Al layer.

もっとも、このような歪応力に対する吸収、緩和効果を発揮するためには、純Al層にある程度の厚みを持たせることが望ましい。純Al層の厚みが薄すぎると、歪応力を十分に吸収、緩和できず、上記効果を発揮できないことがある。純Al層の厚みは、半導体素子の形状、素材や、稼働時の温度、熱膨張係数などに応じて適宜決定すればよいが、好ましくは半導体素子を構成する主要母材の厚さよりも厚くするのがよく、例えば好ましくは2倍以上、より好ましくは3倍以上とする。一方、純Al層の厚みを増大させすぎても、上記熱応力緩和層の効果は飽和すると共に、半導体装置の厚みが増すことから、好ましくは10倍以下、より好ましく5倍以下とすることが望ましい。   However, in order to exhibit such an effect of absorbing and relaxing strain stress, it is desirable that the pure Al layer has a certain thickness. If the thickness of the pure Al layer is too thin, strain stress cannot be sufficiently absorbed and relaxed, and the above effects may not be exhibited. The thickness of the pure Al layer may be appropriately determined according to the shape, material, operating temperature, thermal expansion coefficient, etc. of the semiconductor element, but is preferably thicker than the thickness of the main base material constituting the semiconductor element. For example, it is preferably 2 times or more, more preferably 3 times or more. On the other hand, even if the thickness of the pure Al layer is increased too much, the effect of the thermal stress relaxation layer is saturated and the thickness of the semiconductor device is increased. Therefore, the thickness is preferably 10 times or less, more preferably 5 times or less. desirable.

なお、半導体素子を構成する主要母材の厚さとは、半導体素子を構成する半導体(例えばSi、SiCなど)の厚さをノギスやマイクロメータ、或いはレーザー干渉法によって測定されるマザーウエハの厚さをいう。   The thickness of the main base material constituting the semiconductor element refers to the thickness of the semiconductor (eg, Si, SiC, etc.) constituting the semiconductor element and the thickness of the mother wafer measured by a caliper, micrometer, or laser interferometry. Say.

また本発明で用いる純Alとは、純度99.5%以上のAlであることが好ましい。本発明では上記の通り、純Al層は歪応力を吸収、緩和する層としての役割を果たすが、Al層の柔軟性はAlの純度が低下するほど失われる。したがって純Al層が250℃以上の高温下で柔軟に変形して歪応力を吸収、緩和する効果を十分に発揮させるためには、Alの純度は高い方が望ましい。具体的に純度は99.5%以上のAlが好ましく、より好ましく純度99.9%以上のAl、更に好ましくは純度99.95%以上のAlである。なお、残部は不可避不純物である。   The pure Al used in the present invention is preferably Al having a purity of 99.5% or more. In the present invention, as described above, the pure Al layer serves as a layer that absorbs and relieves strain stress, but the flexibility of the Al layer is lost as the purity of Al decreases. Therefore, in order for the pure Al layer to flexibly deform at a high temperature of 250 ° C. or higher to sufficiently absorb and relax the strain stress, it is desirable that the purity of Al is high. Specifically, Al having a purity of 99.5% or more is preferable, Al having a purity of 99.9% or more is more preferable, and Al having a purity of 99.95% or more is more preferable. The balance is inevitable impurities.

本発明では、半導体素子側の電極と、上記純Al層との接合を高めるために、該電極と純Al層の間にAl合金の層を設ける。Al合金層を設けることによって、純Al層では十分な耐熱性が得られない200℃以上の温度域でも優れた耐熱性を発揮できる。   In the present invention, in order to enhance the bonding between the electrode on the semiconductor element side and the pure Al layer, an Al alloy layer is provided between the electrode and the pure Al layer. By providing the Al alloy layer, excellent heat resistance can be exhibited even in a temperature range of 200 ° C. or higher where sufficient heat resistance cannot be obtained with a pure Al layer.

このように、Al合金層は純Al層の欠点を補完するために設けられたものであり、純Al層とAl合金層からなる積層構造を接合部材として用いることによって、熱膨張係数差による熱応力の緩和と高い耐熱性を兼ね備えた接合部材を得ることができる。   As described above, the Al alloy layer is provided to compensate for the shortcomings of the pure Al layer. By using a laminated structure composed of the pure Al layer and the Al alloy layer as a joining member, heat due to a difference in thermal expansion coefficient can be obtained. A joining member having both relaxation of stress and high heat resistance can be obtained.

また本発明に用いるAl合金層に添加する合金元素としては、次の観点から約300℃程度の熱履歴によって導電性の高い析出物が形成可能な元素であることが望ましい。   The alloy element added to the Al alloy layer used in the present invention is desirably an element that can form a highly conductive precipitate with a thermal history of about 300 ° C. from the following viewpoint.

まず、300℃程度としたのは、半導体素子の稼働時の温度がおおむね300℃程度となることがあり、この温度域での耐熱性を確保し、半導体素子と純Al層との接合を維持する必要があるからである。   First, the temperature of about 300 ° C. is that the operating temperature of the semiconductor element is about 300 ° C. The heat resistance in this temperature range is ensured and the bonding between the semiconductor element and the pure Al layer is maintained. Because it is necessary to do.

また、Al合金層に300℃程度の熱履歴が加えられた場合に、合金成分が析出することが望ましいとしたのは、300℃程度の熱履歴が加えられた際に、Al合金層内部で合金元素を析出させれば、この析出物によって半導体素子の電極と純Al層との導電性を維持しつつ、Al合金層に歪応力による亀裂等が生じるのを防ぐことができるため、接合部材を介して半導体素子同士、あるいは半導体素子と回路基板との接合を維持できるからである。このようにAl合金層内部で析出物を析出させることによって、本発明の熱緩和部材が、高温下でも優れた安定性を発揮できる。   In addition, it is desirable that the alloy component is precipitated when a heat history of about 300 ° C. is applied to the Al alloy layer, when the heat history of about 300 ° C. is applied inside the Al alloy layer. If the alloy element is deposited, it is possible to prevent the Al alloy layer from being cracked due to strain stress while maintaining the conductivity between the electrode of the semiconductor element and the pure Al layer. This is because the bonding between the semiconductor elements or between the semiconductor element and the circuit board can be maintained via the. Thus, by depositing precipitates in the Al alloy layer, the heat relaxation member of the present invention can exhibit excellent stability even at high temperatures.

なお、本発明において300℃の熱履歴には、製造工程において加えられる300℃以上の熱に限らず、使用に伴う発熱によって300℃以上に達する場合も含む。   In the present invention, the heat history of 300 ° C. includes not only the heat of 300 ° C. or higher applied in the manufacturing process, but also the case of reaching 300 ° C. or higher due to heat generated by use.

このような性質を付与する合金元素(X)として、Ni、Co、Fe、Mnなどの遷移金属を添加すると、耐熱性を高めることができるので望ましい。またNi、Co、Fe、およびMnは、Al合金層と、このAl合金層に直接接触する半導体素子の電極との接触電気抵抗を低減するのに有効な元素である。これらの中でも、特に好ましい合金元素はNiやCoである。NiやCoは熱処理によって界面に導電性のNi含有析出物などが形成され、絶縁性酸化アルミニウム等の生成が抑制されるため、接触電気抵抗を低く抑えることができる。これらの合金元素(X)は単独で添加してもよいし、併用してもよい。   It is desirable to add a transition metal such as Ni, Co, Fe, or Mn as the alloying element (X) that imparts such properties because heat resistance can be improved. Ni, Co, Fe, and Mn are effective elements for reducing the contact electric resistance between the Al alloy layer and the electrode of the semiconductor element that is in direct contact with the Al alloy layer. Among these, particularly preferable alloy elements are Ni and Co. Since Ni or Co forms a conductive Ni-containing precipitate or the like at the interface by heat treatment and suppresses the production of insulating aluminum oxide or the like, the contact electrical resistance can be kept low. These alloy elements (X) may be added alone or in combination.

またこれら合金元素(X)の含有量は合計量(単独の場合は単独量)で、0.1〜10原子%とすることが好ましい。0.1原子%を下回ると合金元素(X)による上記耐熱性向上効果が十分に得られないことがある。より好ましい合金元素(X)の添加量の下限は0.2原子%、更に好ましくは0.5原子%である。一方、合金元素(X)の含有量が10原子%を超えると、Al合金の柔軟性が失われて、高温下で使用した場合に歪応力の影響によってAl合金層に亀裂が生じることがある。より好ましい合金元素(X)の添加量の上限は6原子%、更に好ましくは2原子%である。   Further, the content of these alloy elements (X) is a total amount (single amount in the case of single), and is preferably 0.1 to 10 atomic%. If it is less than 0.1 atomic%, the effect of improving the heat resistance by the alloy element (X) may not be sufficiently obtained. The lower limit of the addition amount of the alloy element (X) is more preferably 0.2 atomic%, still more preferably 0.5 atomic%. On the other hand, if the content of the alloy element (X) exceeds 10 atomic%, the flexibility of the Al alloy is lost, and cracks may occur in the Al alloy layer due to the influence of strain stress when used at high temperatures. . The upper limit of the addition amount of the alloy element (X) is more preferably 6 atomic%, and further preferably 2 atomic%.

また上記合金元素(X)と共に、希土類元素(Y)を添加することが望ましい。300℃近傍の高温下では、ヒロックと呼ばれる微細な突起が電極を構成する配線膜等の表面に形成されて、半導体装置としての性能が低下する場合があるが、希土類元素は、加熱による結晶粒の成長、拡散を抑制して、耐ヒロック性の向上に有用だからである。   Moreover, it is desirable to add rare earth elements (Y) together with the alloy element (X). Under a high temperature of about 300 ° C., fine protrusions called hillocks are formed on the surface of a wiring film or the like that constitutes the electrode, and the performance as a semiconductor device may be deteriorated. This is because it is useful for improving the hillock resistance by suppressing the growth and diffusion of the metal.

希土類元素(Y)として、Nd、La、Prなどの高融点希土類元素を添加すると、これら希土類元素が、大電流通電時の断線防止という効果を発揮することができるので望ましい。これらの中でも、特に好ましい希土類元素(Y)としてはNdやLaである。これらの希土類元素(Y)は単独で添加してもよいし、併用してもよい。   It is desirable to add refractory rare earth elements such as Nd, La, Pr and the like as the rare earth elements (Y) because these rare earth elements can exhibit the effect of preventing disconnection when a large current is applied. Among these, particularly preferable rare earth elements (Y) are Nd and La. These rare earth elements (Y) may be added alone or in combination.

本発明で用いるAl合金は好ましくは上記合金元素を含み、残部Al及び不可避不純物である。   The Al alloy used in the present invention preferably contains the above alloy elements, with the balance being Al and inevitable impurities.

またこれら希土類元素(Y)の含有量は合計量(単独の場合は単独量)で、0.1〜6原子%とすることが好ましい。希土類元素(Y)が0.1原子%を下回ると希土類元素(Y)による上記断線防止効果が十分に得られないことがある。より好ましい希土類元素(Y)の添加量の下限は0.25原子%、更に好ましくは0.35原子%である。一方、希土類元素(Y)の含有量が6原子%を超えると、希土類元素を起因とする膜割れや剥離が生じることがある。より好ましい希土類元素(Y)の添加量の上限は3原子%、更に好ましくは2原子%である。なお上記Al合金層の厚みは特に限定されない。   Further, the content of these rare earth elements (Y) is preferably the total amount (single amount in the case of single use) of 0.1 to 6 atomic%. If the rare earth element (Y) is less than 0.1 atomic%, the disconnection preventing effect by the rare earth element (Y) may not be sufficiently obtained. The lower limit of the addition amount of the rare earth element (Y) is more preferably 0.25 atomic%, still more preferably 0.35 atomic%. On the other hand, when the content of the rare earth element (Y) exceeds 6 atomic%, film cracking or peeling due to the rare earth element may occur. The upper limit of the addition amount of the rare earth element (Y) is more preferably 3 atomic%, further preferably 2 atomic%. The thickness of the Al alloy layer is not particularly limited.

以上、本発明の積層構造について説明した。   The laminated structure of the present invention has been described above.

次に本発明の半導体素子の製造方法について説明する。   Next, the manufacturing method of the semiconductor element of this invention is demonstrated.

回路基板としては特に限定されず、各種用途に用いられる電子回路等が例示される。また回路基板に形成される電極や配線材料等についても特に限定されない。本発明の接合部材を構成する純Al層は、回路基板の電極や配線など所望の位置に形成すればよい。   It does not specifically limit as a circuit board, The electronic circuit etc. which are used for various uses are illustrated. Also, the electrodes and wiring materials formed on the circuit board are not particularly limited. The pure Al layer constituting the bonding member of the present invention may be formed at a desired position such as an electrode or wiring of a circuit board.

接合部材を構成する純Al層を形成するにあたっては、成膜方法は特に限定されず、例えば公知のスパッタリング法や溶射法で成膜してもよい。   In forming the pure Al layer constituting the joining member, the film forming method is not particularly limited, and for example, the film may be formed by a known sputtering method or thermal spraying method.

次に、接合部材を構成するAl合金層を、上記純Al層上に形成する。Al合金層を形成するにあたっては、成膜が容易であることからスパッタリング法によることが好ましい。   Next, an Al alloy layer constituting the joining member is formed on the pure Al layer. In forming the Al alloy layer, it is preferable to use a sputtering method because film formation is easy.

スパッタリング法の条件としては上記純Al層と同様の条件でもよい。また使用するターゲット材は、Al合金層と同じ組成のものをもちいればよい。   The conditions for the sputtering method may be the same as those for the pure Al layer. The target material to be used may be the same composition as the Al alloy layer.

このようにして形成した接合部材のAl合金側に、半導体素子の電極を接地させるが、公知の方法により、接地させればよい。   The electrode of the semiconductor element is grounded on the Al alloy side of the joining member formed as described above, but may be grounded by a known method.

なお、本発明で用いることができる半導体素子としては特に限定されず、各種トランジスタ、サイリスタ(SCR)、ダイオード(整流器)、発光ダイオード(LED)等が例示される。   In addition, it does not specifically limit as a semiconductor element which can be used by this invention, Various transistors, a thyristor (SCR), a diode (rectifier), a light emitting diode (LED) etc. are illustrated.

以上のようにして、半導体素子は接合部材を介して回路基板と接合することができる。   As described above, the semiconductor element can be bonded to the circuit board via the bonding member.

また本発明では、半導体素子を個別部品(単体チップ)として上記のように接合部材を介して回路基板に接合させる場合に限らず、複数の半導体素子を用いて集積回路とする場合にも適用できる。特に複数の半導体素子を積層させアレイ状の集積回路とする場合は、半導体素子間に上記接合部材を介在させればよい。   Further, the present invention is not limited to the case where the semiconductor element is bonded to the circuit board as a separate component (single chip) via the bonding member as described above, but can also be applied to a case where an integrated circuit is formed using a plurality of semiconductor elements. . In particular, when a plurality of semiconductor elements are stacked to form an arrayed integrated circuit, the bonding member may be interposed between the semiconductor elements.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

(実施例1)
半導体素子としてGaN系LED(シチズン電子製:LC−L230−CION−A)を用いて図3に示すような電極部を作製して、100時間の通電試験と500時間の通電試験を行ない、夫々の試験における亀裂発生の有無を調べた。
Example 1
Using a GaN-based LED (manufactured by Citizen Electronics: LC-L230-CION-A) as a semiconductor element, an electrode portion as shown in FIG. 3 is produced, and a 100-hour energization test and a 500-hour energization test are performed. The presence or absence of cracks in this test was examined.

回路基板(材質:アルミナ)上にまず、純度99.9%のAl膜(純Al層:厚さ600nm)をスパッタリング法で成膜した後、2原子%Ni−Al合金膜(Al合金層:厚さ300nm)をスパッタリング法で成膜し、接合部材(純Al/Al合金)を形成した。次いでAl合金層にLED(半導体素子)の電極面(図示せず)を接地させた。なお、半導体素子を構成する主要母材の厚さ(100nm)は、レーザー干渉法によって測定した。また純Al層、Al合金層の厚みは触針式膜厚計によって測定した。各膜の成分についてはICP(Inductively Coupled Plasma:誘導結合プラズマ)発光分析法によって測定した。   First, an Al film (pure Al layer: thickness 600 nm) having a purity of 99.9% is formed on a circuit board (material: alumina) by sputtering, and then a 2 atomic% Ni—Al alloy film (Al alloy layer: (Thickness 300 nm) was formed by sputtering to form a bonding member (pure Al / Al alloy). Next, the electrode surface (not shown) of the LED (semiconductor element) was grounded to the Al alloy layer. In addition, the thickness (100 nm) of the main base material constituting the semiconductor element was measured by a laser interference method. The thicknesses of the pure Al layer and Al alloy layer were measured with a stylus type film thickness meter. The components of each film were measured by ICP (Inductively Coupled Plasma) emission spectrometry.

また回路基板の片面には、基板側から順に約150nm厚のNi層および約100nm厚のAu層が形成された配線膜が形成されているが(図示しない)、上記純Al層とAl合金層は図示しないオーミック層とバリア層との間に形成されている。   On one side of the circuit board is formed a wiring film (not shown) in which an Ni layer of about 150 nm thickness and an Au layer of about 100 nm thickness are formed in order from the substrate side. Is formed between an ohmic layer (not shown) and a barrier layer.

LED(半導体素子)のp側電極は、3nm厚のNi層と約150nm厚のAu層の積層構造とした。また拡散防止層は、約30nm厚のTi層と約300nm厚のAu層の積層構造とした。   The p-side electrode of the LED (semiconductor element) has a laminated structure of a Ni layer having a thickness of 3 nm and an Au layer having a thickness of about 150 nm. The diffusion preventing layer has a laminated structure of a Ti layer having a thickness of about 30 nm and an Au layer having a thickness of about 300 nm.

比較例として、上記接合部材(純Al層とAl合金層)に代えて20原子%Sn−Au(比較例1)、10原子%Ge−Au(比較例2)を用いてはんだ付けした以外は実施例1と同様にしてLED半導体装置を作製した。なお、はんだ条件は290℃で60秒間、加圧着した。   As a comparative example, instead of the joining member (pure Al layer and Al alloy layer), soldering was performed using 20 atomic% Sn—Au (Comparative Example 1) and 10 atomic% Ge—Au (Comparative Example 2). An LED semiconductor device was produced in the same manner as in Example 1. Note that the soldering condition was 290 ° C. for 60 seconds.

試験条件
LED半導体装置に定格電流密度比+15%の条件で、100時間、500時間通電させた後、LED(半導体素子)のp側電極を光学顕微鏡(倍率30〜100倍)で観察して、亀裂の有無を調べた。亀裂が観察された場合を×、観察されなかった場合を○と評価した。結果を表1に示す。
Test conditions After the LED semiconductor device was energized for 100 hours and 500 hours under the condition of the rated current density ratio + 15%, the p-side electrode of the LED (semiconductor element) was observed with an optical microscope (magnification 30 to 100 times). The presence or absence of cracks was examined. The case where cracks were observed was evaluated as x, and the case where cracks were not observed was evaluated as ◯. The results are shown in Table 1.

表1に示すように、本発明の要件を満たす純Alと、2原子%Ni−Al合金膜からなる積層構造の接合部材を用いた場合は、100時間通電のみならず、500時間もの長時間通電させてもp側電極に亀裂は生じておらず、高温状態で稼働させても半導体素子の長期信頼性を確保できたと共に、長時間に亘って電流密度を高めてLEDの発光効率を維持することができた。   As shown in Table 1, when a joining member having a laminated structure composed of pure Al that satisfies the requirements of the present invention and a 2 atomic% Ni—Al alloy film is used, not only energization for 100 hours but also a long time of 500 hours The p-side electrode is not cracked even when energized, and the long-term reliability of the semiconductor element was ensured even when operated at a high temperature, and the light emission efficiency of the LED was maintained by increasing the current density over a long period of time. We were able to.

なお、Al合金層、純Al層、基板についても光学顕微鏡で観察したが亀裂は発生していなかった。   In addition, although the Al alloy layer, the pure Al layer, and the substrate were also observed with an optical microscope, no cracks were generated.

一方、比較例1では、100時間通電後は良好な結果だったが、500時間通電試験後の半導体素子の電極に亀裂が観察された。また比較例2では100時間通電試験後の半導体素子の電極に亀裂が観察され、高温状態で稼働させると半導体素子の信頼性が低下することが分かった。
(実施例2)
図4に示すような絶縁ゲート型バイポーラ・トランジスタ(IGBT)が実装された半導体装置(応力緩和層を有する半導体装置と半導体素子の集合体)を作製した。
On the other hand, in Comparative Example 1, although good results were obtained after energization for 100 hours, cracks were observed in the electrodes of the semiconductor elements after the energization test for 500 hours. Further, in Comparative Example 2, cracks were observed in the electrodes of the semiconductor element after the 100-hour energization test, and it was found that the reliability of the semiconductor element was lowered when operated at a high temperature.
(Example 2)
A semiconductor device (an assembly of a semiconductor device having a stress relaxation layer and a semiconductor element) on which an insulated gate bipolar transistor (IGBT) as shown in FIG. 4 was mounted was manufactured.

具体的には、まず、回路基板(材質:AlN)上に純度99.5%のAl膜(純Al層)を溶射した後、図5に示す各種合金膜(Al合金層:厚さ100nm)をスパッタリング法で成膜し、接合部材(純Al/Al合金)を形成した。次いでAl合金膜上に半導体素子(IGBT)の電極面を接地させた。なお、半導体素子の接地は、不溶性ガス中で600℃の加熱を1時間保持しておこなった。また半導体素子を構成する主要母材の厚さは200nmであり、純Al層の厚さは350nmであった。なお、図5における各種合金膜(Al−x原子%Ni−5原子%Nd、Al−x原子%Ni−3原子%La、Al−x原子%Co−6原子%Nd、Al−x原子%Co−3原子%La)はNiとCoの含有量(x)を変化させたものである。   Specifically, first, after spraying a 99.5% pure Al film (pure Al layer) on a circuit board (material: AlN), various alloy films (Al alloy layer: thickness 100 nm) shown in FIG. Was formed by sputtering to form a bonding member (pure Al / Al alloy). Next, the electrode surface of the semiconductor element (IGBT) was grounded on the Al alloy film. The grounding of the semiconductor element was performed by maintaining heating at 600 ° C. in an insoluble gas for 1 hour. The main base material constituting the semiconductor element had a thickness of 200 nm, and the pure Al layer had a thickness of 350 nm. In addition, various alloy films in FIG. 5 (Al-x atom% Ni-5 atom% Nd, Al-x atom% Ni-3 atom% La, Al-x atom% Co-6 atom% Nd, Al-x atom% Co-3 atomic% La) is obtained by changing the content (x) of Ni and Co.

このような半導体装置に、電子情報技術産業規格(JEITA:ED−4701)に準拠して信頼性試験を実施した。具体的には、熱衝撃試験(100℃で5分間保持した後、0℃で5分間保持するサイクルを10サイクル)と温度サイクル試験(−40℃で60分保持した後、155℃で60分保持するサイクルは100サイクル繰り返し)を実施した。その後、回路基板を分解し、Al合金層を透過X線で観察し、線状コントラストが観察された場合、該線状コントラストを亀裂密度として計測した。具体的には、マイクロフォーカス機能付きのX線顕微鏡でAl合金層の透過像を観察した。この際、管電圧を20〜30kVとすると共に、等倍撮影したデータを2〜10倍に拡大して線状コントラストを確認した。結果を図5に示す。   A reliability test was performed on such a semiconductor device in accordance with the Electronic Information Technology Industry Standard (JEITA: ED-4701). Specifically, thermal shock test (10 cycles of holding at 100 ° C. for 5 minutes and then holding at 0 ° C. for 5 minutes) and temperature cycle test (holding at −40 ° C. for 60 minutes, then at 155 ° C. for 60 minutes) The holding cycle was repeated 100 cycles). Thereafter, the circuit board was disassembled, the Al alloy layer was observed with transmitted X-rays, and when a linear contrast was observed, the linear contrast was measured as a crack density. Specifically, a transmission image of the Al alloy layer was observed with an X-ray microscope with a microfocus function. At this time, the tube voltage was set to 20 to 30 kV, and the data taken at the same magnification was magnified 2 to 10 times to confirm the linear contrast. The results are shown in FIG.

図5に示すように、Al合金層が本発明で規定する範囲内の添加量のAl合金を用いた場合、優れた効果を発揮した。   As shown in FIG. 5, when the Al alloy layer was used in an addition amount within the range specified by the present invention, an excellent effect was exhibited.

1 回路基板
2、2a、2b、2c、2d 半導体素子
3、3a、3b 電極
4 接合部材
5 Al合金層
6 純Al層
DESCRIPTION OF SYMBOLS 1 Circuit board 2, 2a, 2b, 2c, 2d Semiconductor element 3, 3a, 3b Electrode 4 Joining member 5 Al alloy layer 6 Pure Al layer

Claims (4)

電極を有する半導体素子と、回路基板とが、接合部材を介して接合された構成を1以上含む半導体装置であって、
前記接合部材は、Al合金層と純Al層との積層構造からなり、
前記Al合金層は、前記半導体素子の電極側に配置され、
前記純Al層は、前記回路基板側に配置されていることを特徴とする半導体装置。
A semiconductor device including one or more configurations in which a semiconductor element having an electrode and a circuit board are bonded via a bonding member,
The joining member has a laminated structure of an Al alloy layer and a pure Al layer,
The Al alloy layer is disposed on the electrode side of the semiconductor element,
The pure Al layer is arranged on the circuit board side.
前記電極の一部または全部が、前記接合部材で構成されている請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein a part or all of the electrode is configured by the bonding member. 前記純Al層のAl純度が99.5%以上である請求項1または2に記載の半導体装置。   The semiconductor device according to claim 1, wherein an Al purity of the pure Al layer is 99.5% or more. 前記Al合金は、Ni、Co、Fe、およびMnよりなる群から選ばれる少なくとも1種を合計で0.1〜10原子%含有すると共に、Nd、La、およびPrよりなる群から選ばれる少なくとも1種を合計で0.1〜6原子%含有するものである請求項1〜3のいずれかに記載の半導体装置。   The Al alloy contains at least one selected from the group consisting of Ni, Co, Fe, and Mn in a total amount of 0.1 to 10 atomic%, and at least one selected from the group consisting of Nd, La, and Pr. The semiconductor device according to any one of claims 1 to 3, wherein the seed contains 0.1 to 6 atomic percent in total.
JP2010150214A 2010-06-30 2010-06-30 Semiconductor device having semiconductor element Withdrawn JP2012015313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010150214A JP2012015313A (en) 2010-06-30 2010-06-30 Semiconductor device having semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010150214A JP2012015313A (en) 2010-06-30 2010-06-30 Semiconductor device having semiconductor element

Publications (1)

Publication Number Publication Date
JP2012015313A true JP2012015313A (en) 2012-01-19

Family

ID=45601387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010150214A Withdrawn JP2012015313A (en) 2010-06-30 2010-06-30 Semiconductor device having semiconductor element

Country Status (1)

Country Link
JP (1) JP2012015313A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115665A1 (en) * 2014-02-03 2015-08-06 国立大学法人大阪大学 Bonded structure and method for producing bonded structure
WO2016093276A1 (en) * 2014-12-09 2016-06-16 国立大学法人大阪大学 Bonded structure and method for producing bonded structure
WO2018100932A1 (en) * 2016-11-30 2018-06-07 株式会社コベルコ科研 Aluminum alloy sputtering target

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115665A1 (en) * 2014-02-03 2015-08-06 国立大学法人大阪大学 Bonded structure and method for producing bonded structure
JPWO2015115665A1 (en) * 2014-02-03 2017-03-23 国立大学法人大阪大学 Junction structure and manufacturing method of junction structure
US10332853B2 (en) 2014-02-03 2019-06-25 Osaka University Bonding structure and method for producing bonding structure
WO2016093276A1 (en) * 2014-12-09 2016-06-16 国立大学法人大阪大学 Bonded structure and method for producing bonded structure
JP2016111259A (en) * 2014-12-09 2016-06-20 国立大学法人大阪大学 Junction structure and manufacturing method of the same
WO2018100932A1 (en) * 2016-11-30 2018-06-07 株式会社コベルコ科研 Aluminum alloy sputtering target

Similar Documents

Publication Publication Date Title
JP6199397B2 (en) Semiconductor device and manufacturing method thereof
JP5613914B2 (en) Power module substrate
JP4964009B2 (en) Power semiconductor module
WO2013147142A1 (en) Power module substrate, power module substrate with heat sink, and power module
WO2016143557A1 (en) Power semiconductor device
CN102593081A (en) Semiconductor device including a heat spreader
JP2014222788A (en) Method for manufacturing substrate for power module, method for manufacturing substrate for power module with heat sink, and method for manufacturing power module
JP2006269966A (en) Wiring substrate and its manufacturing method
JP2007013064A (en) Semiconductor module
JP6440903B2 (en) Semiconductor device and manufacturing method thereof
JP4407521B2 (en) Insulated heat transfer structure and power module substrate
JP2012015313A (en) Semiconductor device having semiconductor element
JP5978589B2 (en) Method for manufacturing power semiconductor device
JP6259625B2 (en) Bonding structure of insulating substrate and cooler, manufacturing method thereof, power semiconductor module, and manufacturing method thereof
JP2008028295A (en) Power semiconductor module and production method therefor
US10685932B2 (en) Semiconductor device
JP3250635B2 (en) Semiconductor device
JP2022505219A (en) Power semiconductor device with floating mounting
JP2020141023A (en) Semiconductor device
JP2017157776A (en) Electrode film, semiconductor device having the same, and method of manufacturing semiconductor device
WO2023119438A1 (en) Semiconductor device
JP2007335795A (en) Substrate for power module, and power module
JPS6129161A (en) Thermal conductive cooling module device
EP3699958A1 (en) Electronic chip reliably mounted with compressive strain
JP2021072301A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130624