JP2012013630A - Lubricant analysis method - Google Patents

Lubricant analysis method Download PDF

Info

Publication number
JP2012013630A
JP2012013630A JP2010152610A JP2010152610A JP2012013630A JP 2012013630 A JP2012013630 A JP 2012013630A JP 2010152610 A JP2010152610 A JP 2010152610A JP 2010152610 A JP2010152610 A JP 2010152610A JP 2012013630 A JP2012013630 A JP 2012013630A
Authority
JP
Japan
Prior art keywords
lubricant
surfactant
oil
metal
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010152610A
Other languages
Japanese (ja)
Inventor
Toshiyuki Koizumi
俊幸 小泉
Kentaro Okamoto
健太郎 岡本
Osamu Ohama
理 大濱
Yukiharu Kawahara
幸春 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010152610A priority Critical patent/JP2012013630A/en
Publication of JP2012013630A publication Critical patent/JP2012013630A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lubricant analysis method for accurately indicating degradation of lubricity and cleaning property of the lubricant.SOLUTION: In the lubricant analysis method, an oil component (lubricant component) is dispersed in an aqueous phase with a surfactant for analyzing the lubricant. The method includes a step of separating metallic soap contained in the lubricant being the measurement sample from the lubricant by means of a method, for example, for separating the oil component by adding a solvent having compatibility with water and lipophilicity into the measurement sample, and thereafter filtering the precipitation with a filter having fine holes; and a step of measuring the amount of separated metallic soap.

Description

本発明は、伸線工程等で使用される潤滑剤の劣化を判定するための分析方法に関する。   The present invention relates to an analysis method for determining deterioration of a lubricant used in a wire drawing process or the like.

電線の製造における伸線工程では、摩擦の低減、伸線の洗浄のために潤滑剤(伸線潤滑剤)が用いられている。この潤滑剤は、界面活性剤により、油分を水相中に乳化分散させ安定化させてなるものであり、伸線工程における潤滑性と洗浄性の面で重要な役割を果たしている。   In the wire drawing process in the manufacture of electric wires, a lubricant (drawing lubricant) is used to reduce friction and clean the wire. This lubricant is obtained by emulsifying and dispersing an oil in a water phase by a surfactant and stabilizing it, and plays an important role in terms of lubricity and detergency in the wire drawing process.

潤滑剤は、使用中に劣化し、潤滑性と洗浄性が低下する。潤滑性や洗浄性が低下した場合は、潤滑性や洗浄性を回復させるために潤滑剤を交換する必要がある。そして、その交換の要否や時期を判断するために、潤滑剤の劣化の程度を判定する必要があり、種々の判定法が提案されている。   Lubricants deteriorate during use, reducing lubricity and cleanability. When the lubricity and cleanability deteriorate, it is necessary to replace the lubricant in order to restore the lubricity and cleanability. In order to determine the necessity and timing of the replacement, it is necessary to determine the degree of deterioration of the lubricant, and various determination methods have been proposed.

従来、一般的に行われている判定法は、潤滑剤の濃度、pH、金属イオン濃度、濾過残渣等を分析して、潤滑剤の劣化を判定する方法である。例えば、特許文献1には、潤滑油(潤滑剤)の酸性度により溶断する線材を用い、酸性度を検出する方法が開示されている。この方法では、潤滑油が劣化し酸化状態になると、線材が溶断して警報が発せられ、潤滑油の劣化を知ることができる。   Conventionally, a commonly used determination method is a method of determining deterioration of a lubricant by analyzing the concentration, pH, metal ion concentration, filtration residue, and the like of the lubricant. For example, Patent Literature 1 discloses a method for detecting acidity using a wire material that is melted by the acidity of a lubricating oil (lubricant). In this method, when the lubricating oil deteriorates and enters an oxidized state, the wire is melted and an alarm is issued, so that the deterioration of the lubricating oil can be known.

特許文献2には、潤滑剤中の金属磨耗粉の増減を、センサーコイルを用いて検出する装置が開示されており、又、特許文献3には、潤滑油(潤滑剤)中の金属磨耗粉の増減を、磁束密度検出器を用いて検出する潤滑油劣化検出装置が開示されている。特許文献3に記載の方法では、潤滑油中に含有される金属を磁石によって吸着し、金属の吸着により減少した磁石の磁束密度を磁束密度検出手段により検知して分析し、潤滑油の劣化を判定する。   Patent Document 2 discloses a device that detects increase / decrease in metal wear powder in a lubricant using a sensor coil, and Patent Document 3 discloses metal wear powder in lubricating oil (lubricant). There is disclosed a lubricant deterioration detection device that detects an increase / decrease in the amount using a magnetic flux density detector. In the method described in Patent Document 3, the metal contained in the lubricating oil is adsorbed by the magnet, and the magnetic flux density of the magnet reduced by the adsorption of the metal is detected and analyzed by the magnetic flux density detecting means, and deterioration of the lubricating oil is detected. judge.

さらに、特許文献4では、潤滑油(潤滑剤)の劣化を光学式に検出するために使用する光学式劣化検出装置用セルが開示されている。この方法では、セル中に導入された試料潤滑油の吸光度又は透過率を光電分光光度計又は光電光度計により測定して、潤滑油の劣化を判定する。   Furthermore, Patent Document 4 discloses a cell for an optical deterioration detection device used for optically detecting deterioration of a lubricating oil (lubricant). In this method, the absorbance or transmittance of the sample lubricating oil introduced into the cell is measured by a photoelectric spectrophotometer or a photoelectric photometer to determine the deterioration of the lubricating oil.

実公平7−033037号公報No. 7-033037 特公平3−030817号公報Japanese Examined Patent Publication No. 3-030817 実用新案登録公報第2519657号Utility Model Registration Gazette No. 2519657 実公平5−024202号公報Japanese Utility Model Publication No. 5-024202

しかし、伸線工程で使用される潤滑剤において問題となる劣化とは、潤滑性や洗浄性の低下である。前記の従来技術の方法は、いずれも直接的に潤滑性や洗浄性を測定する手法ではないため、潤滑剤の正確な劣化状態を表しているとは言えない。   However, the deterioration that causes a problem in the lubricant used in the wire drawing process is a decrease in lubricity and cleaning properties. None of the above prior art methods directly measures the lubricity and cleaning properties, and thus cannot be said to represent an accurate deterioration state of the lubricant.

潤滑性の低下については、摩擦試験機により潤滑性を直接的に測定する方法も考えられる。しかしこの方法によっては、潤滑剤の洗浄性の寄与を考慮することができないため、劣化の正確な分析は困難である。   For reducing the lubricity, a method of directly measuring the lubricity with a friction tester can be considered. However, according to this method, the contribution of the cleaning property of the lubricant cannot be taken into account, so that accurate analysis of deterioration is difficult.

本発明は、伸線工程で使用される潤滑剤のように、水相中に油分(潤滑油分)を界面活性剤により分散してなる潤滑剤の劣化を分析する方法であって、前記潤滑剤の重要な機能である潤滑性や洗浄性の低下を正確に示すことができる分析法を提供することを課題とする。   The present invention is a method for analyzing the deterioration of a lubricant formed by dispersing an oil (lubricant) in a water phase with a surfactant, such as a lubricant used in a wire drawing process. It is an object of the present invention to provide an analysis method capable of accurately showing a decrease in lubricity and detergency, which are important functions of an agent.

本発明者は、前記課題を達成するために鋭意検討した結果、
水相中に油分(潤滑油分)が界面活性剤により分散している潤滑剤において、潤滑性と洗浄性は、潤滑剤中の界面活性剤により発現していること、
潤滑剤の潤滑性・洗浄性の低下は、潤滑剤中の界面活性剤の減少が主原因であること、
潤滑剤を使用するにつれて、潤滑剤中で増加してくる金属イオンと、潤滑剤中の界面活性剤が反応して金属石鹸が生成することにより、潤滑剤中の界面活性剤が減少してくること、に着目し、潤滑剤中に生成した金属石鹸量(すなわち、金属石鹸中に含まれる金属量)を分析することにより、潤滑性と洗浄性の低下を正確に示す分析を行えることを見出し本発明を完成した。
As a result of intensive studies to achieve the above-mentioned problems,
In the lubricant in which the oil (lubricating oil) is dispersed in the water phase by the surfactant, the lubricity and detergency are expressed by the surfactant in the lubricant.
The decrease in the lubricity and detergency of the lubricant is mainly due to a decrease in surfactant in the lubricant,
As the lubricant is used, the metal ions increasing in the lubricant react with the surfactant in the lubricant to form a metal soap, thereby reducing the surfactant in the lubricant. And by analyzing the amount of metal soap generated in the lubricant (ie, the amount of metal contained in the metal soap), it was found that an analysis can be performed that accurately shows the reduction in lubricity and detergency. The present invention has been completed.

すなわち、本発明は、水相中に油分(潤滑油分)を界面活性剤により分散してなる潤滑剤の分析法であって、前記潤滑剤である被測定試料中より、その中に含まれている金属石鹸を分離する工程、及び分離した金属石鹸量を測定する工程を有することを特徴とする潤滑剤の分析法(請求項1)である。   That is, the present invention is a method for analyzing a lubricant in which an oil component (lubricating oil component) is dispersed in a water phase with a surfactant, and is contained in the sample to be measured which is the lubricant. A method for analyzing a lubricant (Claim 1), comprising: a step of separating the metal soap that is separated, and a step of measuring the amount of the separated metal soap.

劣化が進んでいない場合、前記潤滑剤中では、界面活性剤は油分と結合し、エマルションとして潤滑剤中に分散している。しかし、潤滑剤の使用により潤滑剤中に銅イオン等の多価(2価以上)の金属イオンが混入すると、金属イオンが界面活性剤の親水基と結合するとともに界面活性剤の疎水基が集合体化し結晶化し、不溶物として析出する(図1及び後述の説明を参照)。金属石鹸とは、この結晶化し析出した不溶物を言う。   When the deterioration has not progressed, in the lubricant, the surfactant is combined with the oil and dispersed as an emulsion in the lubricant. However, when polyvalent metal ions such as copper ions are mixed in the lubricant due to the use of the lubricant, the metal ions are combined with the hydrophilic group of the surfactant and the hydrophobic group of the surfactant is assembled. It crystallizes and precipitates as an insoluble material (see FIG. 1 and the description below). Metal soap refers to the insoluble matter that crystallizes and precipitates.

そして、この金属石鹸の析出量は、潤滑剤中の界面活性剤(金属石鹸に含まれるもの以外の界面活性剤)の減少量に対応し、この減少量は、潤滑剤の潤滑性と洗浄性の低下に対応している。従って、析出した金属石鹸を潤滑剤中より分離しその量を分析する(潤滑剤中の金属石鹸の濃度を測定する)ことにより、潤滑剤の潤滑性と洗浄性の低下を正確に示す分析結果が得られるのである。   The amount of precipitation of this metal soap corresponds to the amount of decrease in the surfactant (surfactant other than that contained in the metal soap) in the lubricant, and this decrease is the lubricity and detergency of the lubricant. It corresponds to the decline. Therefore, by separating the deposited metal soap from the lubricant and analyzing the amount (measure the concentration of the metal soap in the lubricant), the analysis results that accurately show the deterioration of the lubricity and detergency of the lubricant Is obtained.

本発明は、請求項1に記載の潤滑剤の分析法に加えて、そのより具体的な態様として、以下に記載の潤滑剤の分析法を提供する。   The present invention provides the lubricant analysis method described below as a more specific embodiment thereof in addition to the lubricant analysis method described in claim 1.

請求項2に記載の発明は、前記潤滑剤である被測定試料中に含まれている金属石鹸を分離する工程が、前記被測定試料に、水と相溶性を有しかつ親油性を有する溶剤を加えて油分を分離した後、前記被測定試料中の沈殿物を、濾別する方法により行われることを特徴とする請求項1に記載の潤滑剤の分析法である。   According to a second aspect of the present invention, the step of separating the metal soap contained in the sample to be measured as the lubricant is a solvent having compatibility with water and lipophilicity in the sample to be measured. 2. The method for analyzing a lubricant according to claim 1, wherein the oil component is separated by adding and then the precipitate in the sample to be measured is separated by filtration.

ここで沈殿物とは、潤滑剤の使用により生じた前記金属石鹸であり、潤滑剤中に析出した固形分である。金属石鹸の分離は、この固形分を、微細孔を有するフィルターで濾別して行うことができる。しかし、潤滑剤中には油分が分散されているため濾過が困難であり、特にフィルターの孔径が微細であるほど困難になる。そこで、潤滑剤に、水と相溶性を有しかつ親油性を有する溶剤を加えると、水と該溶剤からなる混合溶剤に界面活性剤の疎水基が溶けるようになり、界面活性剤の効果が弱くなり油分が合体し分離する。このようにして油分を分離することにより、濾過を容易にすることができ、本発明の潤滑剤の分析法を効率よく行うことができる。   Here, the precipitate is the metal soap produced by the use of a lubricant, and is a solid content precipitated in the lubricant. Separation of the metal soap can be performed by filtering the solid content with a filter having fine pores. However, since oil is dispersed in the lubricant, filtration is difficult, and in particular, the finer the pore size of the filter is, the more difficult it is. Therefore, when a solvent having water compatibility and lipophilicity is added to the lubricant, the hydrophobic group of the surfactant is dissolved in the mixed solvent composed of water and the solvent, and the effect of the surfactant is increased. The oil becomes weak and coalesces and separates. By separating the oil in this manner, filtration can be facilitated, and the analysis method for the lubricant of the present invention can be performed efficiently.

請求項3に記載の発明は、水と相溶性を有しかつ親油性を有する溶剤が、アセトンであることを特徴とする請求項2に記載の潤滑剤の分析法である。   The invention described in claim 3 is the method for analyzing a lubricant according to claim 2, wherein the solvent having compatibility with water and having lipophilicity is acetone.

水と相溶性を有しかつ親油性を有する溶剤は、水と相溶性を有し均一に混合するものでなければならない。又、界面活性剤の疎水基が、水と均一に混合してなる混合溶剤中に溶けるようにする必要があるため、この作用を発揮できる程度の疎水性を有するものでなければならない。このような溶剤としては、炭素数5以下の有機溶剤を挙げることができるが、扱いやすさ等の観点から、アセトンが好ましい。   Solvents that are compatible with water and oleophilic must be compatible with water and uniformly mixed. Further, since it is necessary to dissolve the hydrophobic group of the surfactant in a mixed solvent obtained by uniformly mixing with water, the hydrophobic group must have a degree of hydrophobicity that can exert this action. Examples of such a solvent include organic solvents having 5 or less carbon atoms, but acetone is preferred from the viewpoint of ease of handling.

請求項4に記載の発明は、分離した金属石鹸量を測定する工程が、前記金属石鹸中に含まれる金属量の誘導結合プラズマ発光分光分析により行われることを特徴とする請求項1ないし請求項3のいずれか1項に記載の潤滑剤の分析法である。   The invention according to claim 4 is characterized in that the step of measuring the amount of separated metal soap is performed by inductively coupled plasma emission spectroscopic analysis of the amount of metal contained in the metal soap. 4. The method for analyzing a lubricant according to any one of 3 above.

金属石鹸量は、その中の金属量に比例する。従って、金属石鹸量の測定方法としては、金属石鹸中の金属量を測定する方法を挙げることができる。金属量の測定方法としては、蛍光X線分析、原子吸光分析、発光分光分析等を挙げることができるが、中でも誘導結合プラズマ発光分光分析(ICP発光分析)による方法が、定量精度が高いため好ましく用いられる。具体的には、濾別された析出物(金属石鹸)を、通常のICP発光分析で行われる前処理を行って得られた試料について、標準溶液とともにICP測定を行って金属量を定量する。なお、誘導型プラズマ発光分光質量分析法(ICP−MS)による方法も好ましく用いられ、請求項4における誘導結合プラズマ発光分光分析とは、ICP−MSも含む意味である。   The amount of metal soap is proportional to the amount of metal in it. Therefore, the method for measuring the amount of metal soap includes a method for measuring the amount of metal in the metal soap. Examples of the method for measuring the amount of metal include fluorescent X-ray analysis, atomic absorption analysis, and emission spectroscopic analysis. Among them, the method using inductively coupled plasma emission spectroscopic analysis (ICP emission analysis) is preferable because of its high quantitative accuracy. Used. Specifically, the amount of metal is quantified by performing ICP measurement with a standard solution on a sample obtained by subjecting the precipitate (metal soap) separated by filtration to a pretreatment performed by ordinary ICP emission analysis. Inductive plasma emission spectroscopic mass spectrometry (ICP-MS) is also preferably used, and the inductively coupled plasma emission spectroscopic analysis in claim 4 includes ICP-MS.

以上説明したように、本発明の潤滑剤の分析法によれば、伸線工程等で使用される潤滑剤について問題となる潤滑性や洗浄性の低下を正確に示す分析値を、潤滑剤中の金属石鹸濃度を測定することにより得ることができる。その結果、従来の方法(磨耗金属の混入の磁気的、光学的測定やpHの変化の分析等)では困難であった、潤滑剤そのものの性能評価を行うことができるので、本発明を使用することにより、潤滑剤の交換の時期や要否を正確に判断することができる。   As described above, according to the method for analyzing a lubricant of the present invention, an analysis value that accurately indicates a decrease in lubricity or cleaning property that is a problem for the lubricant used in the wire drawing step or the like is obtained. Can be obtained by measuring the concentration of the metal soap. As a result, it is possible to evaluate the performance of the lubricant itself, which has been difficult with conventional methods (magnetic and optical measurement of wear metal contamination, analysis of pH change, etc.), so the present invention is used. Thus, it is possible to accurately determine the timing and necessity of replacement of the lubricant.

水相中に油分を界面活性剤により分散してなる潤滑剤において問題となる潤滑性や洗浄性の低下を正確に示す分析値を、潤滑剤中の金属石鹸濃度を測定することにより得ることができる。   It is possible to obtain an analytical value that accurately shows a decrease in lubricity and detergency that causes a problem in a lubricant in which an oil component is dispersed in a water phase with a surfactant by measuring the concentration of metal soap in the lubricant. it can.

水相中に油分を界面活性剤により分散してなる潤滑剤中に、(磨耗金属より発生した)銅石鹸が生成し劣化する様子を示す模式説明図である。It is a schematic explanatory drawing which shows a mode that the copper soap (it generate | occur | produced from the abrasion metal) produces | generates and deteriorates in the lubricant formed by disperse | distributing an oil component in surfactant in a water phase. 水と相溶性を有しかつ親油性を有する溶剤を、潤滑剤に加えることにより、油分が分離する様子を示す模式説明図である。It is a schematic explanatory drawing which shows a mode that an oil component isolate | separates by adding a solvent which has water compatibility and an oleophilic property to a lubricant. 参考例における銅石鹸量の推移を示すグラフである。It is a graph which shows transition of the amount of copper soap in a reference example.

次に、本発明を実施するための形態について説明するが、本発明の範囲はこの形態に限定されるものではなく本発明の趣旨を損なわない範囲で種々の変更をすることができる。   Next, although the form for implementing this invention is demonstrated, the range of this invention is not limited to this form, A various change can be made in the range which does not impair the meaning of this invention.

[測定対象の潤滑剤及びその劣化]
本発明の測定対象となる潤滑剤は、界面活性剤(乳化剤)によって油分を水(水相)に分散、安定化させてなるもので、電線用銅線の製造における伸線工程において摩擦の低減、伸線の洗浄のために用いられている伸線潤滑剤をその代表例として挙げることができる。図1(a)は、本発明の測定対象(被測定対象)となる潤滑剤において、界面活性剤(乳化剤)により、油分の粒子(油滴)が水相に分散されている様子を示す。なお、図1及び図2においては、界面活性剤を、円と棒との組合わせで表しているが、円が親水性基であり、棒が疎水性基を表している。
[Lubricant to be measured and its deterioration]
The lubricant to be measured in the present invention is obtained by dispersing and stabilizing oil in water (aqueous phase) with a surfactant (emulsifier), and reducing friction in the wire drawing process in the production of copper wires for electric wires. As a representative example, a wire drawing lubricant used for wire drawing cleaning can be given. FIG. 1A shows a state where oil particles (oil droplets) are dispersed in an aqueous phase by a surfactant (emulsifier) in a lubricant that is a measurement target (measurement target) of the present invention. In FIGS. 1 and 2, the surfactant is represented by a combination of a circle and a bar. The circle represents a hydrophilic group and the bar represents a hydrophobic group.

伸線潤滑剤は、一般的には、油分の粒子の粒径が1〜100μm程度のものが用いられているが、粒径がそれより小さくソルブル等と呼ばれるマイクロエマルション等も用いられており、本発明の測定対象となる。本発明の測定対象となる潤滑剤に含まれる界面活性剤は、アニオン性界面活性剤であり、カチオンである金属イオンと会合するものである。本発明の測定対象となる潤滑剤としては、例えば、ルーブライト(日本油剤研究所製)、メタルシン(共栄社製)、ラップル(日新化学社製)等の商品を挙げることができる。   As the wire drawing lubricant, those having an oil particle size of about 1 to 100 μm are generally used, but microemulsions having a smaller particle size called solubil or the like are also used, It becomes a measuring object of the present invention. The surfactant contained in the lubricant to be measured in the present invention is an anionic surfactant and associates with a metal ion that is a cation. Examples of the lubricant to be measured in the present invention include commodities such as rubrite (manufactured by Nippon Oil Research Laboratories), metal shin (manufactured by Kyoeisha), and lapple (manufactured by Nisshin Chemical).

このような潤滑剤が使用されると、金属の摩耗により、潤滑剤中に金属イオンが含まれるようになる。図1(a)は、潤滑剤中に2価の銅イオンが含まれている様子を示している。この多価(2価以上)の金属イオンが界面活性剤の親水基と結合すると、界面活性剤の疎水基が集合体化し結晶化して金属石鹸を生じる。図1(b)は、多価の金属イオン(2価の銅イオン)と界面活性剤の親水基が結合し、金属石鹸(銅石鹸)が生じている様子を示している。   When such a lubricant is used, metal ions are contained in the lubricant due to wear of the metal. FIG. 1A shows a state in which divalent copper ions are contained in the lubricant. When this polyvalent (bivalent or higher) metal ion binds to the hydrophilic group of the surfactant, the hydrophobic group of the surfactant aggregates and crystallizes to produce a metal soap. FIG. 1B shows a state in which metal soap (copper soap) is produced by combining polyvalent metal ions (divalent copper ions) and hydrophilic groups of the surfactant.

このように界面活性剤が金属石鹸を形成すると、油分を水相中に分散させていた界面活性剤が機能しなくなり、油分の分離が引き起こされる。図1(c)は、金属石鹸(銅石鹸)の生成により油分の分離が引き起こされる様子を示している。生成した金属石鹸は、不溶物として析出する。   When the surfactant forms a metal soap in this manner, the surfactant that has dispersed the oil in the aqueous phase does not function, causing separation of the oil. FIG.1 (c) has shown a mode that isolation | separation of an oil component is caused by the production | generation of metal soap (copper soap). The produced metal soap is deposited as an insoluble material.

[水と相溶性を有しかつ親油性を有する溶剤の添加による油分の分離]
図2は、被測定試料である潤滑剤に、水と相溶性を有しかつ親油性を有する溶剤であるアセトンを添加することにより油分が分離する様子を示す。図2(a)は、アセトン添加前の状態を示し、図1(a)と同様に、界面活性剤(乳化剤)により油分の粒子(油滴)が、水相に分散され乳化されている様子を示す。
[Separation of oil by addition of water-compatible and lipophilic solvent]
FIG. 2 shows how the oil component is separated by adding acetone, which is a solvent having compatibility with water and lipophilicity, to the lubricant that is the sample to be measured. FIG. 2 (a) shows the state before the addition of acetone. Like FIG. 1 (a), oil particles (oil droplets) are dispersed in the aqueous phase and emulsified by the surfactant (emulsifier). Indicates.

図2(b)、(c)は、アセトンが添加されていく時の様子を示す。図2(b)に示されるように、外相(水相)にアセトンが添加されると外相の疎水性が増し、外相に界面活性剤の疎水基が溶けるようになるので、油分の界面に界面活性剤が吸着しにくくなる。すると図2(c)に示されるように、界面活性剤の効果が弱くなり、油分の粒子が合体し分離し、最終的には、図2(d)に示されるように、油分が合一して分離する(油分は比重が軽いので通常は上層になる)。   2 (b) and 2 (c) show how acetone is added. As shown in FIG. 2 (b), when acetone is added to the outer phase (aqueous phase), the hydrophobicity of the outer phase increases and the hydrophobic group of the surfactant dissolves in the outer phase. The activator becomes difficult to adsorb. Then, as shown in FIG. 2 (c), the effect of the surfactant is weakened, the oil particles are coalesced and separated, and finally, as shown in FIG. (The oil usually has an upper layer because of its low specific gravity).

[具体的手順の例]
次に、本発明の潤滑剤の分析法の一具体例について、その具体的手順を示す。
[Example of specific procedure]
Next, the specific procedure is shown about one specific example of the analysis method of the lubricant of this invention.

(1)潤滑剤の秤量
先ず、被測定試料である潤滑剤の秤量が行われる。この例では、三角フラスコに潤滑剤を約1ml採取し、重量測定する方法により行われている。
(2)アセトンの添加
水と相溶性を有しかつ親油性を有する溶剤であるアセトンを添加して油分を分離する工程である(図2(b)、(c)に対応)。この例では、秤量した潤滑剤を含む前記三角フラスコにアセトン10mlを加え、油分を分離する。
(3)沈殿物(銅石鹸)の濾別
潤滑剤中に析出している銅石鹸を、微細な孔を有するフィルターにより濾別する工程である。この例では、孔径0.2μmのフッ素樹脂製フィルターであるフロロポアを使用して、油分を分離した潤滑剤を濾過する。濾過分離した沈殿物は、フロロポアとともに三角フラスコに入れて乾燥させる。
(1) Weighing of lubricant First, the lubricant which is a sample to be measured is weighed. In this example, about 1 ml of lubricant is collected in an Erlenmeyer flask, and the weight is measured.
(2) Addition of acetone This is a step of adding acetone, which is a solvent compatible with water and having lipophilicity, to separate the oil (corresponding to FIGS. 2B and 2C). In this example, 10 ml of acetone is added to the Erlenmeyer flask containing the weighed lubricant to separate the oil.
(3) Filtration of precipitate (copper soap) In this step, the copper soap precipitated in the lubricant is filtered by a filter having fine pores. In this example, the lubricant from which the oil has been separated is filtered using a fluoropore which is a fluororesin filter having a pore diameter of 0.2 μm. The precipitate separated by filtration is put into an Erlenmeyer flask together with fluoropores and dried.

(4)IPC測定の前処理
次に、沈殿物中の金属量(銅量)の定量が行われるが、この例ではIPC測定による定量が行われている。IPC測定の前処理は、具体的には、次のようにして行うことができる。
・前記のようにして乾燥された試料に、硫酸10mlを加え、加熱して、界面活性剤等を分解して炭化物とした後、硝酸を添加し炭化物を揮散させる。
・その後、ビーカーに移し入れ蒸発乾固させたものを、硝酸5ml+水5mlで加温し溶解させ、50mlメスフラスコで一定容とし、IPC測定用の試料を調整する。同時に、銅標準溶液を調整する。
(5)IPC測定
上記のようにして調整された試料、及び銅標準溶液についてICP測定を行い、銅量を定量する。
(4) Pretreatment of IPC measurement Next, the amount of metal (copper amount) in the precipitate is quantified. In this example, quantification by IPC measurement is performed. Specifically, the preprocessing of the IPC measurement can be performed as follows.
-To the sample dried as described above, 10 ml of sulfuric acid is added and heated to decompose the surfactant and the like into carbides, and then nitric acid is added to volatilize the carbides.
-Then, transfer to a beaker and evaporate to dryness, warm and dissolve with 5 ml of nitric acid + 5 ml of water, make a constant volume in a 50 ml volumetric flask, and prepare a sample for IPC measurement. At the same time, prepare a copper standard solution.
(5) IPC measurement The ICP measurement is performed on the sample prepared as described above and the copper standard solution, and the amount of copper is quantified.

[参考例]
図3は、伸線装置の一例において、潤滑剤を交換後、約1月毎に、本発明の方法により銅石鹸量を測定したときの、銅石鹸量の変化を示すグラフである。潤滑剤の交換当初、銅石鹸はほとんど発生していないが、時間の経過とともに、銅石鹸量が増加していること、すなわち潤滑剤の劣化が進んでいることが示されている。
[Reference example]
FIG. 3 is a graph showing changes in the amount of copper soap when the amount of copper soap is measured by the method of the present invention about every month after the lubricant is replaced in an example of the wire drawing device. Although copper soap is hardly generated at the beginning of the replacement of the lubricant, it is shown that the amount of copper soap increases with time, that is, the deterioration of the lubricant progresses.

Claims (4)

水相中に油分を界面活性剤により分散してなる潤滑剤の分析法であって、前記潤滑剤中より、その中に含まれている金属石鹸を分離する工程、及び分離した金属石鹸量を測定する工程を有することを特徴とする潤滑剤の分析法。   A method for analyzing a lubricant obtained by dispersing an oil in a water phase with a surfactant, the step of separating the metal soap contained in the lubricant, and the amount of the separated metal soap. A method for analyzing a lubricant, comprising the step of measuring. 前記潤滑剤である被測定試料中に含まれている金属石鹸を分離する工程が、前記被測定試料に、水と相溶性を有しかつ親油性を有する溶剤を加えて油分を分離した後、前記被測定試料中の沈殿物を、濾別する方法により行われることを特徴とする請求項1に記載の潤滑剤の分析法。   The step of separating the metal soap contained in the sample to be measured which is the lubricant, after separating the oil by adding a solvent having compatibility with water and having lipophilicity to the sample to be measured. The method for analyzing a lubricant according to claim 1, wherein the precipitate in the sample to be measured is separated by a method of filtering. 水と相溶性を有しかつ親油性を有する溶剤が、アセトンであることを特徴とする請求項2に記載の潤滑剤の分析法。   The method for analyzing a lubricant according to claim 2, wherein the solvent having compatibility with water and having lipophilicity is acetone. 分離した金属石鹸量を測定する工程が、前記金属石鹸中に含まれる金属量の誘導結合プラズマ発光分光分析により行われることを特徴とする請求項1ないし請求項3のいずれか1項に記載の潤滑剤の分析法。   The step of measuring the amount of separated metal soap is performed by inductively coupled plasma emission spectroscopy analysis of the amount of metal contained in the metal soap. Lubricant analysis method.
JP2010152610A 2010-07-05 2010-07-05 Lubricant analysis method Pending JP2012013630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010152610A JP2012013630A (en) 2010-07-05 2010-07-05 Lubricant analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010152610A JP2012013630A (en) 2010-07-05 2010-07-05 Lubricant analysis method

Publications (1)

Publication Number Publication Date
JP2012013630A true JP2012013630A (en) 2012-01-19

Family

ID=45600227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010152610A Pending JP2012013630A (en) 2010-07-05 2010-07-05 Lubricant analysis method

Country Status (1)

Country Link
JP (1) JP2012013630A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108085A (en) * 1996-06-21 1998-01-13 Nippon Parkerizing Co Ltd Aqueous lubricant for cold plastic working of metallic material
JP2003253290A (en) * 2002-02-27 2003-09-10 Yushiro Chem Ind Co Ltd Water-based lubricating oil composition for plastically working non-ferrous metal
JP2003344293A (en) * 2002-05-28 2003-12-03 Toribo Tex Kk Diagnostic method of lubricated part and diagnostic system of lubricated part
JP2007009005A (en) * 2005-06-29 2007-01-18 Sumitomo Light Metal Ind Ltd Hot rolling oil and hot rolling method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH108085A (en) * 1996-06-21 1998-01-13 Nippon Parkerizing Co Ltd Aqueous lubricant for cold plastic working of metallic material
JP2003253290A (en) * 2002-02-27 2003-09-10 Yushiro Chem Ind Co Ltd Water-based lubricating oil composition for plastically working non-ferrous metal
JP2003344293A (en) * 2002-05-28 2003-12-03 Toribo Tex Kk Diagnostic method of lubricated part and diagnostic system of lubricated part
JP2007009005A (en) * 2005-06-29 2007-01-18 Sumitomo Light Metal Ind Ltd Hot rolling oil and hot rolling method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014000536; 'Comparative analysis of lubricants used for weapons' Journal of Forensic Sciences Vol.46 No.3, 2001, pp.441-447 *

Similar Documents

Publication Publication Date Title
Majedi et al. Recent advances in the separation and quantification of metallic nanoparticles and ions in the environment
US8222038B2 (en) Method for analyzing metal specimen
Mitrano et al. Detecting nanoparticulate silver using single‐particle inductively coupled plasma–mass spectrometry
Li et al. Dispersive liquid–liquid microextraction based on the solidification of floating organic drop followed by ICP-MS for the simultaneous determination of heavy metals in wastewaters
Peters et al. Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices
Shahat et al. A ligand-anchored optical composite material for efficient vanadium (II) adsorption and detection in wastewater
Ghaedi et al. Cloud point extraction for the determination of copper, nickel and cobalt ions in environmental samples by flame atomic absorption spectrometry
Zhang et al. Label free colorimetric sensing of thiocyanate based on inducing aggregation of Tween 20-stabilized gold nanoparticles
Surme et al. Cloud point extraction procedure for flame atomic absorption spectrometric determination of lead (II) in sediment and water samples
Shokrollahi et al. Cloud point extraction for the determination of copper in environmental samples by flame atomic absorption spectrometry
Mortada et al. A cloud point extraction procedure for gallium, indium and thallium determination in liquid crystal display and sediment samples
Santos et al. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters
Cao et al. Visual colorimetric detection of UO22+ using o-phosphorylethanolamine-functionalized gold nanoparticles
Cao et al. Highly sensitive ‘naked-eye’colorimetric detection of thiourea using gold nanoparticles
Mohammadi et al. Speciation of Tl (III) and Tl (I) in hair samples by dispersive liquid–liquid microextraction based on solidification of floating organic droplet prior to flame atomic absorption spectrometry determination
Habila et al. Combination of dispersive liquid–liquid microextraction and multivariate optimization for separation-enrichment of traces lead by flame atomic absorption spectrometry
Abad-Alvaro et al. An ICP-MS-based platform for release studies on silver-based nanomaterials
Ulusoy et al. Micelle-mediated extraction and flame atomic absorption spectrometric method for determination of trace cobalt ions in beverage samples
Alothman et al. Lead preconcentration as rac-(E, E)-N, N′-bis (2-chlorobenzylidene) cyclohexane-1, 2-diamine complexes from water and tobacco samples by dispersive liquid-liquid microextraction
Nukatsuka et al. Solid-phase extraction with slurry injection of the resin into ETAAS for trace determination of thallium in natural water
Zhang et al. Simultaneous multi-element analysis of total As, Se and Sb on titanium dioxide by slurry sampling—graphite furnace atomic absorption spectrometry
Baghban et al. Solid Phase Extraction of Trace Amounts of Cadmium with Cetyltrimethylammonium Bromide‐Coated Magnetic Nanoparticles Prior to Its Determination by Flame Atomic Absorption Spectrometry
CN109459420B (en) Method for detecting di/ferric iron ions in water body
Badr et al. A novel spectrofluorimetric method based on a reaction with an azoisoxazoles–benzenesulfonamide derivative for determination of uranium (VI) ions in water samples
JP2012013630A (en) Lubricant analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140519