JP2012011796A - Energy absorbing member for vehicle - Google Patents

Energy absorbing member for vehicle Download PDF

Info

Publication number
JP2012011796A
JP2012011796A JP2010147213A JP2010147213A JP2012011796A JP 2012011796 A JP2012011796 A JP 2012011796A JP 2010147213 A JP2010147213 A JP 2010147213A JP 2010147213 A JP2010147213 A JP 2010147213A JP 2012011796 A JP2012011796 A JP 2012011796A
Authority
JP
Japan
Prior art keywords
buckling
convex
axial direction
energy absorbing
absorbing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010147213A
Other languages
Japanese (ja)
Inventor
Sunao Takagi
直 高木
Yoshitaka Okitsu
貴隆 興津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010147213A priority Critical patent/JP2012011796A/en
Publication of JP2012011796A publication Critical patent/JP2012011796A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To further improve absorption performance of collision energy in comparison with a conventional member.SOLUTION: A member includes: an embossing part 20 on which a plurality of projections 16 is formed; and a plane part 18 which remains on the embossing part 20 without the plurality of projections 16 being formed and extends along a virtual straight line "A" which connects to the centers of the plurality of projections 16 adjacent to each other in a plane view. The plane part 18 meanders along the virtual straight line "A" and is provided so that an extending direction of the plane part 18 is non-perpendicular to an axial direction of a cylinder.

Description

本発明は、衝撃荷重を受けて軸方向に座屈することにより、衝突エネルギを吸収することが可能な車両用エネルギ吸収部材に関する。   The present invention relates to a vehicle energy absorbing member capable of absorbing collision energy by buckling in an axial direction under an impact load.

従来から、例えば、車両ボディの前部や後部等には、車両の衝突時に塑性変形することによって衝突エネルギを吸収し、車室への衝撃力を緩和するエネルギ吸収部材(衝突エネルギ吸収部材)が設けられている。   2. Description of the Related Art Conventionally, for example, an energy absorbing member (collision energy absorbing member) that absorbs collision energy by plastically deforming at the time of a vehicle collision and relaxes an impact force to a passenger compartment is provided at a front portion, a rear portion, and the like of a vehicle body. Is provided.

この種のエネルギ吸収部材に関し、例えば、特許文献1には、断面略コ字状に曲げ加工された第1部材と平板状の第2部材とが接合され、側面視してハット形状に形成されたエネルギ吸収部材が開示されている。この特許文献1に開示されたエネルギ吸収部材では、第1部材を略コ字状に曲げ加工する際、第2部材と接触しない各平面部にそれぞれ加工歪が均等に付与されるようにプレス成形し、各平面部をほぼ均等に加工硬化させて強度を向上させることができるとしている。   With respect to this type of energy absorbing member, for example, in Patent Document 1, a first member bent into a substantially U-shaped cross section and a flat plate-like second member are joined and formed into a hat shape when viewed from the side. An energy absorbing member is disclosed. In the energy absorbing member disclosed in Patent Document 1, when the first member is bent into a substantially U shape, press molding is performed so that the processing strain is evenly applied to each plane portion that does not contact the second member. In addition, it is said that the strength can be improved by work-hardening each flat portion almost uniformly.

また、特許文献2には、中空の角柱状からなり、複数の凸部を千鳥状に配置することによって前記凸部に隣接する各平面部が蛇行するように設けられると共に、前記各平面部が衝撃荷重に直交するように設けられたエネルギ吸収部材が開示されている。この特許文献2に開示されたエネルギ吸収部材では、上記のように構成することにより、塑性変形時(クラッシュモード)の荷重変化特性を安定させ、荷重変化特性の山部を必要最小限低下させることで荷重変化特性を平準化させることができる、としている。   Further, Patent Document 2 has a hollow prismatic shape, and by arranging a plurality of convex portions in a staggered manner, each planar portion adjacent to the convex portions is provided to meander, and each planar portion is An energy absorbing member provided to be orthogonal to the impact load is disclosed. In the energy absorbing member disclosed in Patent Document 2, by configuring as described above, the load change characteristic at the time of plastic deformation (crash mode) is stabilized, and the peak portion of the load change characteristic is reduced to the minimum necessary. The load change characteristics can be leveled.

特開平8−128487号公報JP-A-8-128487 特許第3701884号公報Japanese Patent No. 3770184

しかしながら、特許文献1に開示されたエネルギ吸収部材では、簡便に安価に製造することができる点で優れているが、蛇腹変形による安定座屈を得ることが困難である、という問題がある。   However, the energy absorbing member disclosed in Patent Document 1 is excellent in that it can be manufactured easily and inexpensively, but there is a problem that it is difficult to obtain stable buckling due to bellows deformation.

また、特許文献2に開示されたエネルギ吸収部材は、脆弱部として機能する平面部の形成時に加工歪みが発生することで材料が硬化してしまい(加工硬化)、座屈安定が失われて高い衝突吸収エネルギが得られなくなるおそれがある。   In addition, the energy absorbing member disclosed in Patent Document 2 is hard because the material is hardened (work hardening) due to processing distortion occurring when the flat portion functioning as the fragile portion is formed, and the buckling stability is lost. There is a possibility that collision absorption energy cannot be obtained.

本発明は、前記の点に鑑みてなされたものであり、蛇腹状に変形させる安定座屈を軸方向の一端部から他端部まで部材全体で継続させることにより、従来と比較してより一層衝突エネルギ吸収性能を向上させることが可能な車両用エネルギ吸収部材を提供することを目的とする。   The present invention has been made in view of the above points, and by continuing stable buckling that deforms in a bellows shape from the one end portion to the other end portion in the axial direction, the entire member is further improved. It aims at providing the energy absorption member for vehicles which can improve collision energy absorption performance.

前記の目的を達成するために、本発明は、衝撃荷重を受けて軸方向に座屈することで衝突エネルギを吸収する筒体からなる車両用エネルギ吸収部材において、前記筒体の側面を構成する少なくとも一部には、複数の凸部が形成されたエンボス加工部が設けられ、前記エンボス加工部のうちで前記凸部が形成されずに残存し、平面視して隣接する前記凸部の中心を結ぶ仮想直線Aに沿って延在する平面部が設けられ、前記平面部は、前記仮想直線Aに沿って蛇行し、且つ、前記平面部の延在方向が前記筒体の軸方向と直交するものがないように設けられることを特徴とする。   In order to achieve the above object, the present invention provides a vehicle energy absorbing member comprising a cylindrical body that absorbs impact energy by buckling in an axial direction upon receiving an impact load, and at least constitutes a side surface of the cylindrical body. A part is provided with an embossed part in which a plurality of convex parts are formed. Among the embossed parts, the convex part remains without being formed, and a center of the convex part adjacent in a plan view is provided. A plane part extending along the imaginary straight line A is provided, the plane part meanders along the virtual line A, and the extension direction of the plane part is orthogonal to the axial direction of the cylinder. It is provided so that there is nothing.

本発明によれば、座屈のきっかけとなる脆弱部が一直線上に揃うことがなくジグザグ状に蛇行して形成された平面部からなり、しかも、荷重軸方向(筒体の軸方向)に対して前記平面部の延在方向が直交するものがないように、すなわち、前記平面部の全ての延在方向が非直交する方向に延在するように複数の凸部を配列することで、荷重を受けて座屈する決まった一定間隔の脆弱部(平面部)が部材の軸方向に、見かけ上、連続して存在するように構成している。   According to the present invention, the fragile portion that causes buckling is not formed in a straight line, but is formed of a plane portion that is meandering in a zigzag shape, and also with respect to the load axis direction (axial direction of the cylinder). By arranging a plurality of convex portions so that no extension direction of the plane portion is orthogonal, that is, all the extension directions of the plane portion extend in a non-orthogonal direction, In this way, weak portions (planar portions) with a fixed interval that buckle in response are apparently continuously present in the axial direction of the member.

従って、本発明では、衝突変形中において、常に、エネルギ吸収部材中の一部が座屈していることとなり、加工硬化して座屈時の反力が大きい場合であっても、その生じた反力が常に荷重軸方向(圧潰方向)に向かうため、圧潰方向(軸方向)に連続した座屈が生じるようになる。この結果、本発明では、安定座屈が部材の途中で停止することがなく、エネルギ吸収部材の軸方向に沿った一端部から他端部までの部材全体で蛇腹変形による安定座屈を継続することができ、高い衝撃吸収エネルギを得ることができる。   Therefore, in the present invention, part of the energy absorbing member is always buckled during the impact deformation, and even if the reaction force during buckling is large due to work hardening, Since the force always goes in the load axis direction (crush direction), continuous buckling occurs in the crush direction (axial direction). As a result, in the present invention, stable buckling does not stop in the middle of the member, and stable buckling due to bellows deformation is continued in the entire member from one end portion to the other end portion along the axial direction of the energy absorbing member. And high impact absorption energy can be obtained.

さらに、本発明は、前記複数の凸部は、対角線の長さ、直径又は高さのいずれか1つが大なる凸部と、前記大なる凸部に対応して、対角線の長さ、直径又は高さのいずれか1つが小なる他の凸部からなり、前記平面部に沿って延在する前記他の凸部の中心を結ぶ仮想直線Bは、前記筒体の軸方向と非直交するように設けられることを特徴とする。   Further, according to the present invention, the plurality of convex portions correspond to the convex portion having any one of the length, the diameter, or the height of the diagonal line, and the length, diameter, or the diagonal line corresponding to the large convex portion. An imaginary straight line B, which is composed of another convex portion whose one of the heights is small, and which connects the center of the other convex portion extending along the plane portion, is non-orthogonal to the axial direction of the cylindrical body. It is provided in.

本発明によれば、平面視して対角線の長さが大なる凸部と小なる凸部からなり、又は、平面視して直径が大なる凸部と小なる凸部からなり、若しくは、高さが大なる凸部と小なる凸部からなり、平面部に沿って延在する他の凸部の中心を結ぶ仮想直線Bが、筒体の軸方向と非直交するように設けられることにより、安定座屈が部材の途中で停止することがなく、エネルギ吸収部材の軸方向に沿った一端部から他端部までの部材全体で蛇腹変形による安定座屈を継続することができ、高い衝撃吸収エネルギを得ることができる。   According to the present invention, the length of the diagonal line in plan view is composed of a convex portion and a small convex portion, or the plan view is composed of a convex portion having a large diameter and a small convex portion, or a high height. By providing a virtual straight line B consisting of a convex portion with a large length and a small convex portion and connecting the center of another convex portion extending along the plane portion so as to be non-orthogonal to the axial direction of the cylindrical body , Stable buckling does not stop in the middle of the member, stable buckling due to bellows deformation can be continued throughout the member from one end to the other end in the axial direction of the energy absorbing member, and high impact Absorbed energy can be obtained.

本発明では、蛇腹状に変形させる安定座屈を、軸方向の一端部から他端部まで部材全体で継続させることができる。この結果、本発明では、従来と比較して衝突エネルギ吸収量を増大させて、より一層衝突エネルギ吸収性能を向上させることができる。   In the present invention, stable buckling that deforms in a bellows shape can be continued throughout the member from one end to the other end in the axial direction. As a result, in the present invention, the amount of collision energy absorption can be increased compared to the conventional case, and the collision energy absorption performance can be further improved.

本発明の実施形態に係る車両用エネルギ吸収部材が組み込まれた車両前部の一部省略断面図である。1 is a partially omitted cross-sectional view of a vehicle front portion in which a vehicle energy absorbing member according to an embodiment of the present invention is incorporated. 図1に示される車両用エネルギ吸収部材の部分平面拡大図である。FIG. 2 is an enlarged partial plan view of the vehicle energy absorbing member shown in FIG. 1. 前記車両用エネルギ吸収部材を構成する平面部が衝撃荷重に対して非直交する状態を示す説明図である。It is explanatory drawing which shows the state which the plane part which comprises the said energy absorption member for vehicles does not orthogonally cross with respect to an impact load. 図3の斜視図である。FIG. 4 is a perspective view of FIG. 3. 本発明の他の実施形態に係る車両用エネルギ吸収部材の部分平面拡大図である。It is a partial plane enlarged view of the energy absorption member for vehicles concerning other embodiments of the present invention. 図5に示す車両用エネルギ吸収部材を構成する平面部が衝撃荷重に対して非直交する状態を示す説明図である。It is explanatory drawing which shows the state which the plane part which comprises the energy absorption member for vehicles shown in FIG. 5 does not orthogonally cross with respect to an impact load. (a)は、従来例における座屈状態を示す一部省略正面図、(b)は、本実施形態における座屈状態を示す一部省略正面図である。(A) is a partially omitted front view showing a buckled state in a conventional example, and (b) is a partially omitted front view showing a buckled state in the present embodiment. 各種鋼板における板厚、凸部の形状及び平面部の配列を示す説明図である。It is explanatory drawing which shows the board | plate thickness in various steel plates, the shape of a convex part, and the arrangement | sequence of a plane part. 前記各種鋼板を用いて構成した筒型部材の斜視図である。It is a perspective view of the cylindrical member comprised using the said various steel plates. 前記筒型部材の上下端に天板及び地板を接合して構成した試験体の斜視図である。It is a perspective view of the test body comprised by joining a top plate and a ground plate to the upper and lower ends of the said cylindrical member. 前記試験体が落錘試験機にセットされた状態を示す正面図である。It is a front view which shows the state in which the said test body was set to the falling weight testing machine. 実施例1、2及び比較例1〜6における圧潰試験の結果を示す説明図である。It is explanatory drawing which shows the result of the crush test in Examples 1, 2 and Comparative Examples 1-6. 実施例1、比較例1及び比較例5における圧潰ストロークと圧潰荷重との関係を示す特性図である。It is a characteristic view which shows the relationship between the crush stroke in Example 1, the comparative example 1, and the comparative example 5, and a crush load. 実施例1及び比較例1における圧潰ストロークと吸収エネルギとの関係を示す特性図である。It is a characteristic view which shows the relationship between the crushing stroke and absorbed energy in Example 1 and Comparative Example 1. (a)は、比較例1の座屈開始直後の状態を示した正面図、(b)は、比較例1において座屈開始後、転倒した状態の正面図である。(A) is the front view which showed the state immediately after the buckling start of the comparative example 1, (b) is the front view of the state which fell after the buckling start in the comparative example 1. FIG. (a)は、実施例1の座屈開始直後の状態を示した正面図、(b)は、実施例1において座屈開始後、座屈変形が終了した状態の正面図である。(A) is the front view which showed the state immediately after the buckling start of Example 1, (b) is the front view of the state after buckling deformation | transformation in Example 1 after the buckling start. 実施例1、2及び比較例1〜6における吸収エネルギと初期反力との関係を示す特性図である。It is a characteristic view which shows the relationship between the absorbed energy and the initial reaction force in Examples 1, 2 and Comparative Examples 1-6. 比較例1〜4を構成するエンボス鋼板2の部分平面拡大図である。It is the partial plane enlarged view of the embossed steel plate 2 which comprises Comparative Examples 1-4.

次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。図1は、本発明の実施形態に係る車両用エネルギ吸収部材が組み込まれた車両前部の一部省略断面図、図2は、図1に示される車両用エネルギ吸収部材の部分平面拡大図、図3は、前記車両用エネルギ吸収部材を構成する平面部が衝撃荷重に対して非直交する状態を示す説明図、図4は、図3の斜視図である。   Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. 1 is a partially omitted cross-sectional view of a vehicle front portion in which a vehicle energy absorbing member according to an embodiment of the present invention is incorporated, and FIG. 2 is an enlarged partial plan view of the vehicle energy absorbing member shown in FIG. FIG. 3 is an explanatory view showing a state in which the flat portion constituting the vehicle energy absorbing member is not orthogonal to the impact load, and FIG. 4 is a perspective view of FIG.

図1に示されるように、本実施形態に係る車両用エネルギ吸収部材(以下、エネルギ吸収部材という)10は、例えば、自動車(車両)12の車体前部における車幅方向の両側部位で車体前後方向にそれぞれ延在するフロントサイドフレーム14の前端部と図示しないバンパレインフォースメントとの間に介在されるクラッシュ部材として、単独又は各部材に組み込まれて用いられる。   As shown in FIG. 1, a vehicle energy absorbing member (hereinafter referred to as an energy absorbing member) 10 according to the present embodiment is, for example, a vehicle front-rear portion at both sides in the vehicle width direction of a vehicle body front portion of an automobile (vehicle) 12. The crush member interposed between a front end portion of the front side frame 14 extending in the direction and a bumper reinforcement (not shown) is used alone or incorporated in each member.

なお、前記エネルギ吸収部材10が配設される部位は、自動車12の車体前部に限定されるものではなく、例えば、車体後部や衝突エネルギ(衝撃荷重)を吸収する必要がある他の適宜な部位に配設することができる。   The part where the energy absorbing member 10 is disposed is not limited to the front part of the vehicle body of the automobile 12, but for example, the rear part of the vehicle body or other appropriate parts that need to absorb collision energy (impact load). It can be arranged at the site.

前記エネルギ吸収部材10は、平板状の鋼板に対して、例えば、タレットパンチ等で複数の凸部16(図2参照)を成形するエンボス加工が施され、複数の凸部16が適宜な配列で加工された鋼板で構成される。前記凸部16を成形する鋼板の生産性向上を目的とした場合、ロール加工によって広範囲に短時間で複数の凸部16を成形することができる。また、プレス加工を用いることにより、部品成形と同時に凸部16を成形することができ、より高い生産性を得ることができる。   The energy absorbing member 10 is embossed on a flat steel plate, for example, by forming a plurality of convex portions 16 (see FIG. 2) with a turret punch or the like, and the plurality of convex portions 16 have an appropriate arrangement. Consists of processed steel plates. When aiming at the productivity improvement of the steel plate which shape | molds the said convex part 16, the several convex part 16 can be shape | molded in a short time by roll processing. Moreover, by using press work, the convex part 16 can be shape | molded simultaneously with component shaping | molding, and higher productivity can be acquired.

本実施形態では、図2に示されるように、エンボス加工された凸部16の形状を平面視して正六角形状に形成している。しかしながら、これに限定されるものではなく、本実施形態では、後記するように、凸部16間に残存し脆弱部として機能する平面部18の延在方向に特徴があるため、平面視した凸部16の形状は限定されるものではなく、例えば、丸形状や角形状等の他の形状であってもよい。平面視した凸部16の大きさは、エネルギ吸収部材10を構成する平面部18の短辺長の中に凸部16が3つ以上存在することが好ましい。   In the present embodiment, as shown in FIG. 2, the shape of the embossed convex portion 16 is formed in a regular hexagonal shape in plan view. However, the present invention is not limited to this, and in the present embodiment, as will be described later, there is a feature in the extending direction of the planar portion 18 that remains between the convex portions 16 and functions as the fragile portion. The shape of the portion 16 is not limited, and may be other shapes such as a round shape and a square shape. The size of the convex portion 16 in plan view is preferably such that three or more convex portions 16 are present in the short side length of the planar portion 18 constituting the energy absorbing member 10.

エンボス加工で凸部16が形成された鋼板は、後記するように、プレス加工又は曲げ加工(bending)によってハット断面形状に成形することができ、フランジ部を有する断面コ字状の折曲板と平板状の背板とを、例えば、スポット溶接で複数個所を接合することにより、略筒体からなるエネルギ吸収部材10を容易に製造することができる(後記する図8参照)。   As will be described later, the steel plate on which the convex portions 16 are formed by embossing can be formed into a hat cross-sectional shape by pressing or bending, and has a U-shaped bent plate having a flange portion. The energy absorption member 10 which consists of a substantially cylindrical body can be easily manufactured by joining a flat backplate with several places, for example by spot welding (refer FIG. 8 mentioned later).

前記筒体の側面を構成する少なくとも一部には、図2に示されるように、複数の凸部16が形成されたエンボス加工部20が設けられる。図3及び図4に示されるように、前記エンボス加工部20のうちで前記凸部16が形成されずに残存し平面視して隣接する前記凸部16の中心を結ぶ仮想直線Aに沿って(並行に)延在する平面部18が設けられる。前記平面部18は、前記仮想直線Aに沿ってジグザグ状に蛇行し(図中の網点参照)、且つ、前記平面部18の延在方向(破線参照)が前記筒体の軸方向(衝撃荷重の付与方向)と非直交するように設けられる。   At least a part of the side surface of the cylindrical body is provided with an embossed portion 20 in which a plurality of convex portions 16 are formed, as shown in FIG. As shown in FIGS. 3 and 4, the convex portion 16 remains without being formed in the embossed portion 20, and extends along a virtual straight line A that connects the centers of the convex portions 16 adjacent in plan view. A planar portion 18 is provided that extends (in parallel). The planar portion 18 meanders in a zigzag manner along the virtual straight line A (see halftone dots in the figure), and the extending direction of the planar portion 18 (see the broken line) is the axial direction (impact of the cylinder) It is provided so as to be non-orthogonal to the load application direction.

図5は、本発明の他の実施形態に係る車両用エネルギ吸収部材の部分平面拡大図、図6は、図5に示す車両用エネルギ吸収部材を構成する平面部が衝撃荷重に対して非直交する状態を示す説明図である。   FIG. 5 is a partially enlarged plan view of a vehicle energy absorbing member according to another embodiment of the present invention. FIG. 6 is a plan view of the vehicle energy absorbing member shown in FIG. It is explanatory drawing which shows the state to do.

図5及び図6に示されるように、他の実施形態に係るエネルギ吸収部材10aは、複数の凸部が、平面視して正六角形の対角線の長さが大なる凸部16aと、平面視して正六角形の対角線の長さが小なる他の凸部16bとの2種類で構成され、前記平面部18に沿って延在する前記他の凸部16bの中心を結ぶ仮想直線Bは、前記筒体の軸方向と非直交するように設けられる(図6参照)。   As shown in FIG. 5 and FIG. 6, the energy absorbing member 10 a according to another embodiment includes a plurality of convex portions, a convex portion 16 a having a regular hexagonal diagonal length in plan view, and a plan view. The imaginary straight line B, which is composed of two types of other convex portions 16b having a regular hexagonal diagonal line length and connecting the center of the other convex portions 16b extending along the plane portion 18, It is provided so as to be non-orthogonal to the axial direction of the cylinder (see FIG. 6).

なお、例えば、2種類の凸部の形状が平面視して円形の場合には、直径の長さが大なる凸部と、直径の長さが小なる他の凸部とによって構成してもよい。または、2種類の凸部の形状を、平面部18から頂部までの高さ方向の寸法が大なる凸部と、高さ方向の寸法が小なる他の凸部とによって構成してもよい。その際、正六角形の場合と同様に、平面部18に沿って延在する他の凸部の中心を結ぶ仮想直線Bが、筒体の軸方向と非直交するように設けられる。   In addition, for example, when the shape of the two types of convex portions is circular in plan view, the convex portions having a large diameter length and other convex portions having a small diameter length may be used. Good. Or you may comprise the shape of two types of convex parts by the convex part from which the dimension of the height direction from the plane part 18 to a top part becomes large, and the other convex part from which the dimension of a height direction becomes small. At this time, as in the case of the regular hexagon, a virtual straight line B connecting the centers of the other convex portions extending along the plane portion 18 is provided so as to be non-orthogonal to the axial direction of the cylindrical body.

ここで、エネルギ吸収部材10が衝撃荷重を受容して蛇腹変形する場合について、以下詳細に説明する。図7(a)は、特許文献2の従来例における座屈状態を示す一部省略正面図、図7(b)は、本実施形態における座屈状態を示す一部省略正面図である。   Here, the case where the energy absorbing member 10 receives an impact load and deforms bellows will be described in detail below. FIG. 7A is a partially omitted front view showing the buckled state in the conventional example of Patent Document 2, and FIG. 7B is a partially omitted front view showing the buckled state in the present embodiment.

エネルギ吸収部材10が軸方向で受ける衝撃荷重は、一定の周期を持つ応力波として前記エネルギ吸収部材10中を伝達していき、前記応力波の強さが材料の強さを超えた部位にて最初の座屈(初期座屈)が始まり、応力波の習性や材料の柔軟性により最初の変形部位から一定の間隔を経て次の座屈部位が生じ、次々と座屈が軸方向に所定間隔だけ離間しながら続いていく。このような変形形態が蛇腹変形といわれるものである。   The impact load that the energy absorbing member 10 receives in the axial direction is transmitted through the energy absorbing member 10 as a stress wave having a constant period, and the stress wave strength exceeds the strength of the material. The first buckling (initial buckling) starts, and the next buckling part occurs after a certain interval from the first deformation part due to stress wave behavior and material flexibility. Continue with a distance. Such a deformation mode is called bellows deformation.

例えば、脆弱部として機能する平面部が一直線上に揃っている場合や、特許文献2に示されるように荷重付加方向(軸方向)に対して直交する方向に脆弱部(平面部)が延在する場合には、座屈の生じる脆弱部が、衝撃荷重が付与される軸方向に決まった一定間隔で存在することとなる。例えば、図7(a)に示されるように、従来例(特許文献2参照)における屈曲状態では、荷重付加方向(軸方向)に対して直交する脆弱部aと脆弱部bとが荷重付加方向に沿って所定距離だけ離間するように存在する。この場合、荷重付加方向に対して直交する脆弱部aで座屈が発生した後、同様に荷重付加方向に対して直交する凸部の後に存在する脆弱部bで次の座屈が発生することとなり、座屈が荷重付加方向(軸方向)で不連続に発生する。なお、図7(a)、(b)では、ジグザグ状に蛇行する平面部18を、説明の便宜上、太線の実線で示している。   For example, when the plane part functioning as the fragile part is aligned on a straight line, or as shown in Patent Document 2, the fragile part (plane part) extends in a direction orthogonal to the load application direction (axial direction). In this case, the fragile portions where buckling occurs are present at fixed intervals determined in the axial direction to which the impact load is applied. For example, as shown in FIG. 7A, in the bent state in the conventional example (see Patent Document 2), the fragile portion a and the fragile portion b perpendicular to the load application direction (axial direction) are in the load application direction. And a predetermined distance apart. In this case, after buckling occurs in the weak part a orthogonal to the load application direction, the next buckling occurs in the weak part b existing after the convex part orthogonal to the load application direction. Thus, buckling occurs discontinuously in the load application direction (axial direction). In FIGS. 7A and 7B, the planar portion 18 meandering in a zigzag shape is indicated by a thick solid line for convenience of explanation.

このような圧潰方向における不連続な座屈は、エネルギ吸収体が比較的軟らかい材料で構成されている場合には安定座屈となるが、例えば、加工硬化したような材料で構成されている場合には、座屈時の反力が大きい一方で、部材自体が強靭であるため、その反力が比較的自由な方向性を持つことにより、応力伝達の周期性が失われて座屈の進行が停止し、座屈変形中の部材が荷重軸方向から大きく離脱して転倒するような不安定座屈となる。   Such discontinuous buckling in the crushing direction becomes stable buckling when the energy absorber is made of a relatively soft material, but for example, when it is made of a work-hardened material. However, because the reaction force during buckling is large, the member itself is strong, and the reaction force has a relatively free direction, so the periodicity of stress transmission is lost and the buckling progresses. Stops, and the buckling deformation member is largely buckled from the direction of the load axis, resulting in unstable buckling.

そこで、本実施形態では、形成した凸部16間の平面部18、つまり、座屈のきっかけとなる脆弱部が一直線上に揃うことがなく仮想直線Aに沿ってジグザグ状に蛇行するように平面部18を形成し、しかも、前記平面部18の延在方向が荷重軸方向に対して非直交するように複数の凸部16を配列することで、荷重を受けて座屈する決まった一定間隔の脆弱部(平面部18)が部材の軸方向に、見かけ上、連続して存在するように構成している。   Therefore, in the present embodiment, the planar portion 18 between the formed convex portions 16, that is, the planar portion so that the fragile portions that cause buckling are not aligned on a straight line but meander in a zigzag manner along the virtual straight line A. Forming a portion 18 and arranging the plurality of convex portions 16 so that the extending direction of the plane portion 18 is non-orthogonal with respect to the load axis direction; The fragile portion (plane portion 18) is configured to appear continuously in the axial direction of the member.

本実施形態における座屈状態では、荷重付加方向(軸方向)に対して直交する脆弱部が存在しないため、残存する複数の平面部18のうちで最も直交に近い脆弱部(平面部18)が優先して座屈することとなる。すなわち、図7(b)に示されるように、本実施形態においても先ず脆弱部aが座屈した後、複数の凸部16を介して次の脆弱部bが座屈する点は、図7(a)の従来例と同様であるが、初めの脆弱部aが座屈変形した後の次の座屈部位となる脆弱部bを見ると、脆弱部aの下端部a2と脆弱部bの上端部b1とが、部材中の軸方向(図7(b)中の縦方向)において略同じ高さにあることから、座屈する脆弱部a、脆弱部bが部材の軸方向で、見かけ上、連続して存在するように構成されている。   In the buckled state in the present embodiment, there is no fragile portion that is orthogonal to the load application direction (axial direction), and therefore the fragile portion that is closest to the orthogonality (planar portion 18) among the plurality of remaining planar portions 18. It will be buckled preferentially. That is, as shown in FIG. 7B, in this embodiment as well, after the weak part a is first buckled, the next weak part b is buckled through the plurality of convex parts 16 as shown in FIG. Although it is the same as the conventional example of a), when the weak part b used as the next buckling site | part after the first weak part a buckling deformation is seen, the lower end part a2 of the weak part a and the upper end of the weak part b Since the part b1 is at substantially the same height in the axial direction in the member (longitudinal direction in FIG. 7 (b)), the fragile part a and the fragile part b to be buckled are apparently in the axial direction of the member. It is configured to exist continuously.

換言すると、本実施形態では、荷重付加方向(軸方向)に対して脆弱部(平面部18)を非直交状態に配列することにより、隣接する脆弱部間において、荷重付加部位に近接する一方の脆弱部aの下端部a2と、荷重付加部位から離間する他方の脆弱部bの上端部b1との離間距離が従来例よりも近接して略オーバーラップするように配置され、座屈する脆弱部a、脆弱部bが、見かけ上、連続して存在する。なお、図7(b)中において、a1は、脆弱部aの上端部、b2は、脆弱部bの下端部をそれぞれ示している。   In other words, in this embodiment, by arranging the fragile portions (planar portion 18) in a non-orthogonal state with respect to the load application direction (axial direction), one of the adjacent fragile portions adjacent to the load application site is arranged. The fragile part a which is arranged so that the separation distance between the lower end part a2 of the fragile part a and the upper end part b1 of the other fragile part b which is separated from the load application portion is substantially closer to and overlaps the conventional example and buckles. , The fragile part b exists continuously in appearance. In FIG. 7B, a1 indicates the upper end portion of the fragile portion a, and b2 indicates the lower end portion of the fragile portion b.

本実施形態の作用として、衝突変形中のエネルギ吸収部材10は、常にエネルギ吸収部材10中の一部が座屈していることとなり、加工硬化して座屈時の反力が大きい場合であっても、その生じた反力が常に荷重軸方向(圧潰方向)に向かうため、圧潰方向(軸方向)に連続した座屈が生じるようになる。この結果、本実施形態では、安定座屈が部材の途中で停止することがなく、エネルギ吸収部材10の軸方向に沿った一端部から他端部までの部材全体で蛇腹変形による安定座屈を継続することができ、高い衝撃吸収エネルギを得ることができる。   As an action of the present embodiment, the energy absorbing member 10 during the collision deformation is always partly buckled in the energy absorbing member 10, and is a case where the reaction force during buckling is large due to work hardening. However, since the generated reaction force is always directed in the load axial direction (crushing direction), continuous buckling occurs in the crushing direction (axial direction). As a result, in this embodiment, stable buckling does not stop in the middle of the member, and stable buckling due to bellows deformation is performed on the entire member from one end portion to the other end portion along the axial direction of the energy absorbing member 10. It can be continued and high shock absorption energy can be obtained.

また、本実施形態では、単純なプレス加工や曲げ加工によって平板状の鋼板に複数の凸部16を形成するエンボス加工を施すことで作製することができ、従来と同じ工程でハット断面形状のエネルギ吸収部材10を容易に製造することができる利点がある。   Moreover, in this embodiment, it can produce by embossing which forms the several convex part 16 in a flat steel plate by simple press work and bending, and it is the same process as before, and energy of hat cross-sectional shape is produced. There exists an advantage which can manufacture the absorption member 10 easily.

ところで、近年では、自動車のフロントフレームに使用される材料(例えば、鋼板)の強度を高くする傾向となっている。この場合、一般的に、鋼板を高強度化すると、フロントフレームのような部材が長手方向に圧縮変形するときに座屈形状が不安定となり、安定した蛇腹状の座屈から折れ曲がりの状態に変形様式が変化するという問題がある。この結果、従来では、圧縮変形時にエネルギ吸収部材が折れ曲がることによって衝撃エネルギの吸収効率が低下し、素材を高強度化したことによって衝撃吸収エネルギの増大が困難となる。   By the way, in recent years, there is a tendency to increase the strength of a material (for example, a steel plate) used for a front frame of an automobile. In this case, generally, when the strength of the steel plate is increased, the buckling shape becomes unstable when a member such as a front frame is compressed and deformed in the longitudinal direction, and the stable bellows-like buckling is deformed into a bent state. There is a problem that the style changes. As a result, conventionally, the energy absorbing member is bent at the time of compressive deformation to reduce the impact energy absorption efficiency, and it is difficult to increase the impact absorption energy by increasing the strength of the material.

これに対して、本実施形態では、エンボス加工部20における凸部16の配列パターンを安定座屈するように最適化することで、相反する素材の高強度化と衝撃エネルギの吸収効率との要求をそれぞれ両立させ、材料を高強度化しながら衝撃エネルギの吸収効率を向上させることができる。   On the other hand, in the present embodiment, by optimizing the arrangement pattern of the convex portions 16 in the embossed portion 20 so as to be stably buckled, there is a demand for higher strength of conflicting materials and impact energy absorption efficiency. It is possible to improve the absorption efficiency of impact energy while achieving both compatibility and increasing the strength of the material.

次に、本発明の効果を確認した実施例について説明する。なお、前記実施の形態と同一の構成要素には、同一の参照符号を付して説明する。   Next, examples in which the effects of the present invention have been confirmed will be described. The same components as those in the above-described embodiment will be described with the same reference numerals.

先ず、図8に示されるように、板厚が約1.0mmの同一板厚で同一形状及び同一材料からなり、平面視して正六角形の複数の凸部16を有し前記凸部16の配列パターンがそれぞれ異なる3種類の鋼板をタレットパンチ加工とレーザ切断とを用いて準備した。この3種類の鋼板は、エンボス加工が施されたエンボス鋼板1及びエンボス鋼板2と、エンボス加工が全く施されていない平板のままの平鋼板とから構成される。   First, as shown in FIG. 8, the plate thickness is about 1.0 mm, the same shape and the same material, and has a plurality of regular hexagonal convex portions 16 in plan view. Three types of steel plates having different arrangement patterns were prepared using turret punching and laser cutting. These three types of steel plates are composed of an embossed steel plate 1 and an embossed steel plate 2 that have been embossed, and a flat steel plate that has not been embossed at all.

エンボス鋼板1は、凸部16の間に平板と同様な平面部18が一直線上に揃わないようにジグザグ状に蛇行して残存させ、且つ、荷重付加方向(軸方向)に対して平面部18の延在方向が非直交するように複数の凸部16を配置した(図2〜図4参照)。   The embossed steel sheet 1 is left in a zigzag manner so that the flat portions 18 similar to the flat plate are not aligned between the convex portions 16, and the flat portions 18 with respect to the load application direction (axial direction). The plurality of convex portions 16 were arranged so that the extending directions of the two were non-orthogonal (see FIGS. 2 to 4).

エンボス鋼板2は、図18に示されるように、凸部16の間に平板と同様な平面部18を一直線上に揃わないようにジグザグ状に蛇行して残存させ、且つ、荷重付加方向(軸方向)に対して平面部18の延在方向(破線参照)が直交するように複数の凸部16を配置した。なお、エンボス鋼板1における複数の凸部16とエンボス鋼板2における複数の凸部16は、配置パターンのみが異なっているだけでそれぞれ同一形状であると共に、各エンボス鋼板に形成された複数の凸部16の形状も全て同一形状とした。   As shown in FIG. 18, the embossed steel plate 2 is left in a zigzag manner so that a flat portion 18 similar to a flat plate is not aligned between the convex portions 16, and the load application direction (axis The plurality of convex portions 16 are arranged so that the extending direction (see the broken line) of the plane portion 18 is orthogonal to the direction). In addition, while the some convex part 16 in the embossed steel plate 1 and the some convex part 16 in the embossed steel plate 2 differ only in an arrangement pattern, each is the same shape, and the some convex part formed in each embossed steel plate The 16 shapes were all the same.

次に、このようにして準備された3種類の鋼板を複数用いて、図9に示されるように、断面ハット状で略角筒体からなる筒型部材100を試験体として構成し、以下の実験を行った。この筒型部材100は、断面コ字状に折り曲げ加工されることにより突出して形成された折曲部102と、幅方向の両端部に設けられたフランジ部104とを有する。このフランジ部104に対して背板をスポット溶接して略筒体として形成し、自動車のフレームの一部に見立てたものである。筒型部材100において、複数の凸部16が形成されたエンボス加工部20は、折曲部102の両側に配置されたフランジ部104と、前記フランジ部104に溶着される背板の一部とを除いた部位に設けられる。なお、図9〜図11中では、便宜上、複数の凸部16の描出を適宜省略している。   Next, using a plurality of the three types of steel plates prepared in this way, as shown in FIG. 9, a cylindrical member 100 having a cross-sectional hat shape and consisting of a substantially rectangular tube is configured as a test body, and the following The experiment was conducted. The tubular member 100 includes a bent portion 102 that is formed by being bent into a U-shaped cross section and flange portions 104 that are provided at both ends in the width direction. A back plate is spot-welded to the flange portion 104 to form a substantially cylindrical body, and is regarded as a part of an automobile frame. In the tubular member 100, an embossed portion 20 formed with a plurality of convex portions 16 includes a flange portion 104 disposed on both sides of the bent portion 102, and a part of a back plate welded to the flange portion 104. It is provided in the part except for. In FIGS. 9 to 11, the drawing of the plurality of convex portions 16 is omitted as appropriate for convenience.

本実施例に係るエンボス鋼板1及び比較例1に係るエンボス鋼板2では、図9に示されるように、折曲部102における凸部16が筒体の外方に向って膨出すると共に、背板における凸部16が筒体の内方に向って膨出するように製作した。また、折曲部102における4個所の直角状に屈曲する部位は、半径5mmのポンチを用いて、曲げ加工によって成形した。   In the embossed steel plate 1 according to the present example and the embossed steel plate 2 according to the comparative example 1, as shown in FIG. 9, the convex portion 16 in the bent portion 102 bulges toward the outside of the cylindrical body, and the back surface. The protrusions 16 on the plate were produced so as to bulge toward the inside of the cylinder. Further, the four portions of the bent portion 102 bent at right angles were formed by bending using a punch having a radius of 5 mm.

以上のようにして、エンボス鋼板1を複数用いて実施例1、2に係る筒型部材100をそれぞれ作製し、エンボス鋼板2を複数用いて比較例1〜4に係る筒型部材100をそれぞれ作製し、平鋼板を複数用いて比較例5、6に係る筒型部材100をそれぞれ作製した。その後、各筒型部材100の軸方向に沿った両端部にそれぞれ天板106と地板108とをTIG溶接によって接合した試験体を作製した。   As described above, each of the tubular members 100 according to Examples 1 and 2 is manufactured using a plurality of embossed steel plates 1, and each of the cylindrical members 100 according to Comparative Examples 1 to 4 is manufactured using a plurality of embossed steel plates 2. And the cylindrical member 100 which concerns on the comparative examples 5 and 6 was produced using the flat steel plate, respectively. Then, the test body which joined the top plate 106 and the ground plate 108 by TIG welding to the both ends along the axial direction of each cylindrical member 100 was produced.

なお、天板106及び地板108を溶接する前の各筒型部材100は、それぞれ同一寸法で構成され、図10の立設した状態を基準として各種寸法を説明すると、図9に示されるように、幅寸法が約78mm、高さ寸法が約230mm、折り曲げられた折曲部102の突出寸法が約31mm、前記折曲部102の幅寸法が約46mmに設定した。   Each cylindrical member 100 before welding the top plate 106 and the base plate 108 is configured with the same dimensions, and various dimensions will be described with reference to the standing state of FIG. 10 as shown in FIG. The width dimension is set to about 78 mm, the height dimension is set to about 230 mm, the protruding dimension of the bent part 102 is set to about 31 mm, and the width part of the bent part 102 is set to about 46 mm.

前記天板106及び地板108は、それぞれ正方形の鋼板からなり、地板108の平面視した面積を天板106の平面視した面積よりも大きく設定した。試験体における各筒型部材100は、天板106及び地板108の平面視した中央部に接合した。   The top plate 106 and the base plate 108 are each made of a square steel plate, and the area of the base plate 108 in plan view is set larger than the area of the top plate 106 in plan view. Each cylindrical member 100 in the test body was joined to the central portion of the top plate 106 and the main plate 108 in plan view.

次に、作製した各試験体について、以下のような圧潰試験(squeezing test)を行った。この圧潰試験は、図11に示されるように、自由落下式の落錘試験機を用い、ロードセル110で支持されたベースプレート112に地板108の四隅をボルト114で締結固定して筒型部材100を立設状態で支持し、上方から落錘116を落下させて各筒型部材100を上方から軸方向の下方に向かって押し潰す方法を採用した。   Next, the following crushing test (squeezing test) was performed on each prepared specimen. In this crushing test, as shown in FIG. 11, a free fall type falling weight tester is used, and the four corners of the base plate 108 are fastened and fixed to the base plate 112 supported by the load cell 110 with bolts 114. A method was adopted in which the cylindrical member 100 was supported in an upright state, dropped from the upper side, and crushed from the upper side toward the lower side in the axial direction.

圧潰試験の条件は、落錘116の重さが約100kg、落下高さが約11m、衝突時の落錘速度が約50km/hとし、筒型部材100に生じた圧潰ストローク(筒型部材100の圧潰前の軸方向に沿った全長から圧潰後の軸方向に沿った全長を減算した値)と、圧潰時に発生した荷重(圧潰荷重)とを測定した。また、各試験体につき、吸収エネルギと初期反力とを求めた。   The conditions of the crush test were as follows: the weight of the falling weight 116 was about 100 kg, the falling height was about 11 m, the falling weight speed at the time of collision was about 50 km / h, and the crushing stroke generated in the cylindrical member 100 (tubular member 100 The value obtained by subtracting the total length along the axial direction after crushing from the total length along the axial direction before crushing) and the load generated during crushing (crush load) were measured. Further, the absorbed energy and the initial reaction force were determined for each specimen.

図12は、実施例1、2及び比較例1〜6において、圧潰ストロークが160mmのときの吸収エネルギと初期反力の結果及び座屈形態をそれぞれ示したものである。   FIG. 12 shows the results of the absorbed energy and initial reaction force when the crushing stroke is 160 mm and the buckling form in Examples 1 and 2 and Comparative Examples 1 to 6, respectively.

エンボス鋼板1で構成された実施例1及び実施例2は、それぞれ、蛇腹変形による安定座屈を示し、エンボス鋼板2で構成された比較例1〜6は、転倒又は破断を示した。この実施例1及び実施例2は、それぞれ同一構成で同一の凸部16の配置パターンからなるエンボス鋼板1によって構成された試験体からなり、圧潰試験の1回目に用いられた試験体を実施例1とし、圧潰試験の2回目に用いられた試験体を実施例2とした。   Example 1 and Example 2 comprised with the embossed steel plate 1 showed the stable buckling by bellows deformation, respectively, and Comparative Examples 1-6 comprised with the embossed steel plate 2 showed the fall or fracture | rupture. This Example 1 and Example 2 consisted of a test body constituted by an embossed steel plate 1 having the same configuration and the same pattern of convex portions 16, and the test body used for the first time of the crushing test was an example. 1 and Example 2 was used as the test body used in the second crush test.

この比較例1〜6は、それぞれ、同一の凸部16の配置パターンからなるエンボス鋼板2によって構成された試験体からなり、圧潰試験に用いられた試験体の順番に対応して、比較例1〜6とした。なお、座屈形態については、圧潰試験時に各試験体が潰れる様子を2000コマ/secで撮影できる図示しない高速ビデオカメラで録画し、その録画映像を目視して判定した。   Each of Comparative Examples 1 to 6 is composed of a test body constituted by the embossed steel plate 2 having the same pattern of the convex portions 16, and corresponds to the order of the test bodies used in the crushing test. It was set to ~ 6. Note that the buckling mode was determined by recording with a high-speed video camera (not shown) capable of shooting at 2000 frames / sec.

図13は、実施例1、比較例1及び比較例5の各試験体について、圧潰試験で求めた圧潰ストロークと圧潰荷重との関係を示した特性図であり、図14は、実施例1と比較例1の各試験体の圧潰ストロークと吸収エネルギとの関係を示した特性図である。   FIG. 13 is a characteristic diagram showing the relationship between the crushing stroke and the crushing load obtained in the crushing test for each specimen of Example 1, Comparative Example 1 and Comparative Example 5, and FIG. It is the characteristic view which showed the relationship between the crush stroke of each test body of the comparative example 1, and absorbed energy.

図13において、先ず、実施例1(太い実線参照)と比較例1(細い実線参照)の各特性線図は、変形状態の前半である圧潰ストロークが約80mmまでほぼ近似する近似特性を示しているのに対し、比較例5(破線参照)の特性曲線は、これらと全く異なる特性を示していることがわかる。これは、エンボス鋼板1で構成された実施例1とエンボス鋼板2で構成された比較例1は、部材の一部に脆弱部(平面部18)が存在するため、座屈の発生するタイミングが同じ間隔で生じていることを示しており、衝突変形時に脆弱部が優先して折れることで、蛇腹変形による座屈が制御された状態となり、安定座屈をもたらす作用が働いている。   In FIG. 13, first, each characteristic diagram of Example 1 (see thick solid line) and Comparative Example 1 (see thin solid line) shows approximate characteristics in which the crushing stroke which is the first half of the deformed state is approximately approximated to about 80 mm. On the other hand, it can be seen that the characteristic curve of Comparative Example 5 (see broken line) shows completely different characteristics. This is because, in Example 1 configured with the embossed steel plate 1 and Comparative Example 1 configured with the embossed steel plate 2, there is a fragile portion (plane portion 18) in a part of the member. This indicates that the fragile portion is preferentially broken at the time of collision deformation, and the buckling due to the bellows deformation is controlled, and the effect of causing stable buckling is working.

次に、図13において、圧潰ストロークが約80mm以降の変形状態の後半では、実施例1(太い実線参照)が高い圧潰荷重を保持したまま座屈変形が進行しているのに対し、比較例1(細い実線参照)では、圧潰荷重が低下している。図14から了解されるように、各試験体で吸収される吸収エネルギは、比較例1よりも実施例1が優れていることがわかる。   Next, in FIG. 13, in the second half of the deformation state after the crushing stroke is about 80 mm or more, the buckling deformation is progressing while the high crushing load is maintained in Example 1 (see the thick solid line), whereas the comparative example In 1 (see thin solid line), the crushing load is reduced. As can be understood from FIG. 14, it can be seen that the absorbed energy absorbed by each test specimen is superior to that of Comparative Example 1.

実施例1及び比較例1の両者は、複数の凸部16を有しエンボス加工が施されたエンボス鋼板からなるが、エンボス鋼板1で構成された実施例1は、形成した複数の凸部16間の平面部18、つまり脆弱部が一直線上に揃うことがなくジグザグ状に蛇行して延在し、且つ、荷重付加方向に対して脆弱部の延在方向が非直交するように配置されている。   Both Example 1 and Comparative Example 1 are made of an embossed steel plate having a plurality of convex portions 16 and embossed, but Example 1 configured with the embossed steel plate 1 has a plurality of formed convex portions 16. The flat portion 18 between them, that is, the fragile portion does not align in a straight line, extends in a zigzag manner, and is arranged so that the extending direction of the fragile portion is not orthogonal to the load application direction. Yes.

これに対して、エンボス鋼板2で構成された比較例1では、脆弱部(平面部18)が一直線上に揃うことがなくジグザグ状に蛇行している点は実施例1と同一であるが、荷重付加方向に対して脆弱部の延在方向が直交するように配置されており、この脆弱部の配列パターンの違いによって上記のような吸収エネルギの差が発生したものと推測される。   On the other hand, in the comparative example 1 comprised with the embossed steel plate 2, the point which the meandering part (plane part 18) meanders in zigzag form without aligning on a straight line is the same as Example 1. It is assumed that the extension direction of the fragile portion is orthogonal to the load application direction, and the difference in the absorbed energy as described above is caused by the difference in the arrangement pattern of the fragile portion.

ここで、実施例1と比較例1の圧潰形態の相違について、圧潰時の状態を比較して説明する。図15(a)は、比較例1の座屈開始直後の状態を示した正面図、図15(b)は、比較例1において座屈開始後、座屈変形が終了した状態の正面図、図16(a)は、実施例1の座屈開始直後の状態を示した正面図、図16(b)は、実施例1において座屈開始後、座屈変形が終了した状態の正面図である。   Here, the difference between the crushing modes of Example 1 and Comparative Example 1 will be described by comparing the crushing states. 15 (a) is a front view showing a state immediately after the start of buckling in Comparative Example 1, and FIG. 15 (b) is a front view showing a state in which buckling deformation is finished after buckling is started in Comparative Example 1. FIG. 16A is a front view showing a state immediately after the start of buckling in Example 1, and FIG. 16B is a front view showing a state in which buckling deformation is completed after the start of buckling in Example 1. FIG. is there.

図15(a)において、比較例1は、凸部16間の脆弱部(平面部18)が荷重付加方向に対して直交する方向に連続しているにも拘わらず、座屈直後の変形部位が荷重付加方向(軸方向、鉛直下方向)に決まった一定間隔で不連続に存在していることがわかる。一方、図16(a)において、実施例1は、凸部16間の脆弱部(平面部18)が荷重付加方向に対して非直交する方向に連続しており、座屈開始直後の変形部位が部材の幅方向にわたりながら荷重付加方向(軸方向、鉛直下方向)に連続して存在していることがわかる。   In FIG. 15A, the comparative example 1 is a deformed portion immediately after buckling, even though the fragile portion (planar portion 18) between the convex portions 16 is continuous in the direction orthogonal to the load application direction. Is discontinuously present at fixed intervals in the load application direction (axial direction, vertically downward direction). On the other hand, in FIG. 16A, in Example 1, the fragile portion (plane portion 18) between the convex portions 16 is continuous in a direction non-orthogonal to the load application direction, and the deformed portion immediately after the start of buckling. Is continuously present in the load application direction (axial direction, vertically downward direction) over the width direction of the member.

図15(b)と図16(b)とを比較して了解されるように、これらの変形が進行すると、比較例1では、試験体である筒型部材100が途中から折れ曲がって転倒してしまったのに対し、実施例1では、常に、座屈変形が生じていることがわかり、試験体である筒型部材100の軸方向に沿った一端部から他端部まで継続した蛇腹変形による安定座屈を示した。   As understood from comparison between FIG. 15B and FIG. 16B, when these deformations progress, in Comparative Example 1, the cylindrical member 100 as the test body is bent from the middle and falls down. On the other hand, in Example 1, it was found that buckling deformation always occurred, and due to the bellows deformation that continued from one end portion to the other end portion along the axial direction of the cylindrical member 100 as the test body. Stable buckling was demonstrated.

従って、脆弱部が一直線上に揃うことがなく荷重付加方向に対して直交する方向に配列された比較例1は、不連続な座屈により変形途中で座屈の進行が停止してしまい、筒型部材100に生じる反力が圧潰方向から外れて筒型部材100の転倒につながったものと思われる。   Therefore, in Comparative Example 1 in which the fragile portions are not aligned on a straight line and are arranged in a direction orthogonal to the load application direction, the progress of the buckling is stopped in the middle of the deformation due to the discontinuous buckling. It is considered that the reaction force generated in the mold member 100 deviates from the crushing direction and led to the tubular member 100 falling over.

一方、実施例1では、脆弱部として機能する平面部18が一直線上に揃うことがなくジグザグ状に蛇行して延在し、しかも、前記平面部18の延在方向が荷重付加方向に対し非直交する方向に配列されている。従って、実施例1では、荷重を受けて座屈する決まった一定間隔の脆弱部が筒型部材100の軸方向に対して、見かけ上、連続して存在するようにしたことで、変形中において、常にその一部が座屈するようになっている。この結果、実施例1では、生じた反力が常に荷重付加方向に向かい、圧潰方向に連続(継続)した座屈変形による安定座屈が生じるようになり、転倒した比較例1と比較してより高い衝撃エネルギを吸収することができた。   On the other hand, in the first embodiment, the flat portions 18 functioning as the fragile portions do not align on a straight line and extend in a zigzag manner, and the extending direction of the flat portions 18 is not relative to the load application direction. They are arranged in the orthogonal direction. Therefore, in the first embodiment, the fragile portions of a fixed interval that buckle under load are apparently continuously present in the axial direction of the tubular member 100, so that during deformation, Some of them are always buckled. As a result, in Example 1, the generated reaction force is always directed in the load application direction, and stable buckling is generated due to buckling deformation that is continuous (continuous) in the crushing direction. Higher impact energy could be absorbed.

ちなみに、図12に示されるように、比較例2〜4では、試験体である筒型部材がその途中から破断してしまった。また、平鋼板からなる比較例5では、比較例1と同様に転倒し、平鋼板からなる比較例6では、比較例2〜4と同様に破断してしまった。   Incidentally, as shown in FIG. 12, in Comparative Examples 2 to 4, the cylindrical member as the test body was broken from the middle thereof. Moreover, in the comparative example 5 which consists of a flat steel plate, it fell over like the comparative example 1, and the comparative example 6 which consists of a flat steel plate fractured | ruptured similarly to the comparative examples 2-4.

図17は、圧潰試験で測定された圧潰ストローク160mmまでの吸収エネルギと、圧潰ストローク5mmまでの初期反力との関係を示した特性図である。図17に示されるように、脆弱部(平面部18)が荷重付加方向に対して非直交する方向に連続する実施例1、2は、平鋼板からなる比較例5、6よりも吸収エネルギが高く、脆弱部(平面部18)が荷重付加方向に対して直交する方向に連続する比較例1〜4に対し、初期反力が同等であるが、吸収エネルギが高くなっている。   FIG. 17 is a characteristic diagram showing the relationship between the absorbed energy up to the crushing stroke of 160 mm measured in the crushing test and the initial reaction force up to the crushing stroke of 5 mm. As shown in FIG. 17, Examples 1 and 2 in which the fragile part (plane part 18) continues in a direction non-orthogonal with respect to the load application direction have a higher absorption energy than Comparative Examples 5 and 6 made of flat steel plates. The initial reaction force is equivalent to Comparative Examples 1 to 4 in which the fragile portion (plane portion 18) is continuous in the direction orthogonal to the load application direction, but the absorbed energy is high.

すなわち、実施例1、2は、同一の衝撃力に対して得られる吸収エネルギが高いことを示しており、衝撃エネルギ吸収性に優れていることがわかる。従って、エンボス鋼板1で構成された実施例1、2の筒型部材100は、脆弱部(平面部18)の配列による連続した座屈変形の効果により、優れた衝撃エネルギ吸収能を備えている。この衝撃エネルギは、圧潰される部材の変形抵抗と変形ストローク(変形量)との積に比例するが、より短い変形ストロークで同等の衝撃エネルギを吸収することにより、例えば、車体のフロントオーバーハングの短縮による車両運動性能の向上や車体軽量化等を達成することができる。   That is, Examples 1 and 2 show that the absorbed energy obtained with respect to the same impact force is high, and it is understood that the impact energy absorbability is excellent. Therefore, the cylindrical members 100 of Examples 1 and 2 configured by the embossed steel plate 1 have excellent impact energy absorption ability due to the effect of continuous buckling deformation due to the arrangement of the fragile portions (plane portions 18). . This impact energy is proportional to the product of the deformation resistance of the member to be crushed and the deformation stroke (deformation amount), but by absorbing the equivalent impact energy with a shorter deformation stroke, for example, the front overhang of the vehicle body Improvement of vehicle motion performance and weight reduction of the vehicle body can be achieved by shortening.

以上から、本発明に係る実施例1、2は、従来の蛇腹変形による安定座屈をもたらす技術以上に優れた安定座屈性を有しており、高い衝撃エネルギ吸収能を備え、且つ、従来工程と同じ手法で製造可能なハット断面形状を有する最適な状態を実現することができる。   From the above, Examples 1 and 2 according to the present invention have stable buckling performance superior to that of the conventional technology that provides stable buckling due to bellows deformation, has high impact energy absorption ability, and An optimal state having a hat cross-sectional shape that can be manufactured by the same technique as the process can be realized.

このため、例えば、自動車等の車体のフロントフレームに設けられるクラッシュ部材等に対して、エネルギ吸収部材10、10aを適用することにより、部材長さの短縮による車体の軽量化やフロントオーバーハングの短縮による運動性能の向上、さらには、従来の部品製造工程を利用することによる製造コストの低減等、車両構成上の利点を具現することができる。   For this reason, for example, by applying the energy absorbing members 10 and 10a to a crash member or the like provided on a front frame of a vehicle body such as an automobile, the weight of the vehicle body can be reduced and the front overhang can be reduced by shortening the member length. It is possible to realize advantages in vehicle configuration, such as improvement in motion performance due to, and reduction in manufacturing cost by using a conventional part manufacturing process.

10、10a エネルギ吸収部材
12 自動車(車両)
16 凸部
18 平面部
20 エンボス加工部
A、B 仮想直線
10, 10a Energy absorbing member 12 Automobile (vehicle)
16 Convex part 18 Plane part 20 Embossed part A, B Virtual straight line

Claims (2)

衝撃荷重を受けて軸方向に座屈することで衝突エネルギを吸収する筒体からなる車両用エネルギ吸収部材において、
前記筒体の側面を構成する少なくとも一部には、複数の凸部が形成されたエンボス加工部が設けられ、
前記エンボス加工部のうちで前記凸部が形成されずに残存し、平面視して隣接する前記凸部の中心を結ぶ仮想直線Aに沿って延在する平面部が設けられ、
前記平面部は、前記仮想直線Aに沿って蛇行し、且つ、前記平面部の延在方向が前記筒体の軸方向と直交するものがないように設けられることを特徴とする車両用エネルギ吸収部材。
In the vehicle energy absorbing member comprising a cylindrical body that absorbs impact energy by buckling in the axial direction under impact load,
At least a part of the side surface of the cylindrical body is provided with an embossed portion formed with a plurality of convex portions,
Of the embossed portion, the convex portion remains without being formed, and a plane portion extending along a virtual straight line A connecting the centers of the adjacent convex portions in plan view is provided,
The flat surface portion meanders along the imaginary straight line A, and the extending direction of the flat surface portion is provided so that there is no one perpendicular to the axial direction of the cylindrical body. Element.
前記複数の凸部は、対角線の長さ、直径又は高さのいずれか1つが大なる凸部と、前記大なる凸部に対応して、対角線の長さ、直径又は高さのいずれか1つが小なる他の凸部からなり、前記平面部に沿って延在する前記他の凸部の中心を結ぶ仮想直線Bは、前記筒体の軸方向と非直交するように設けられることを特徴とする請求項1記載の車両用エネルギ吸収部材。   The plurality of convex portions are convex portions having any one of the length, diameter, or height of the diagonal line, and one of the length, diameter, or height of the diagonal line corresponding to the large convex portion. An imaginary straight line B, which is composed of another convex portion having a small one and connects the center of the other convex portion extending along the flat surface portion, is provided so as to be non-orthogonal to the axial direction of the cylindrical body. The energy absorbing member for a vehicle according to claim 1.
JP2010147213A 2010-06-29 2010-06-29 Energy absorbing member for vehicle Pending JP2012011796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010147213A JP2012011796A (en) 2010-06-29 2010-06-29 Energy absorbing member for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010147213A JP2012011796A (en) 2010-06-29 2010-06-29 Energy absorbing member for vehicle

Publications (1)

Publication Number Publication Date
JP2012011796A true JP2012011796A (en) 2012-01-19

Family

ID=45598766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010147213A Pending JP2012011796A (en) 2010-06-29 2010-06-29 Energy absorbing member for vehicle

Country Status (1)

Country Link
JP (1) JP2012011796A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121415A (en) * 2010-12-07 2012-06-28 Toyota Motor Corp Skeleton structure, skeleton reinforcing structure, and pillar structure of vehicle
WO2012147684A1 (en) * 2011-04-25 2012-11-01 日東電工株式会社 Buffer device support member, buffer device support structure, and vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121415A (en) * 2010-12-07 2012-06-28 Toyota Motor Corp Skeleton structure, skeleton reinforcing structure, and pillar structure of vehicle
WO2012147684A1 (en) * 2011-04-25 2012-11-01 日東電工株式会社 Buffer device support member, buffer device support structure, and vehicle

Similar Documents

Publication Publication Date Title
CA2882393C (en) Crash box and automobile chassis
US8419090B2 (en) Vehicular metal absorber, vehicular bumper system, automobile bumper absorber, and automobile bumper system
JP5549964B2 (en) Frame structure for vehicles with excellent collision resistance
WO2013024883A1 (en) Shock absorbing member
JPH08216684A (en) Door guard beam for automobile
JP2006527338A (en) Vehicle structural elements that act to absorb specific impacts by plastic deformation
US8500178B2 (en) Bumper structure for vehicle
WO2005010397A1 (en) Impact-absorbing member
JP2008222097A (en) Vehicle body structure for automobile
CN201240339Y (en) Collision energy-absorbing component for automobile
JP2012011796A (en) Energy absorbing member for vehicle
KR20220101188A (en) side member structure of the body
KR101308312B1 (en) Bumper back beam for vehicle using hot press forming beam
US11472359B2 (en) Structural member for vehicle
JP5440318B2 (en) Body front structure
JP2016094945A (en) Energy absorption member
KR101359271B1 (en) Crash Box and Producing Method thereof
KR101359262B1 (en) Crash Box and Producing Method thereof
JP4391212B2 (en) Shock absorbing member
US20230182819A1 (en) Columnar member
KR20140034636A (en) Bumper beam for vehicle
KR101353874B1 (en) Impact Absorbtion Structure, Crash Box Comprising It, and Producing Method thereof
KR20130006095A (en) Bumper stay unit for vehicle
JPH0858499A (en) Bumper stay
JP5204388B2 (en) Energy absorbing member made of extruded aluminum alloy