JP2012002552A - Method of manufacturing sample for electron microscope - Google Patents

Method of manufacturing sample for electron microscope Download PDF

Info

Publication number
JP2012002552A
JP2012002552A JP2010135634A JP2010135634A JP2012002552A JP 2012002552 A JP2012002552 A JP 2012002552A JP 2010135634 A JP2010135634 A JP 2010135634A JP 2010135634 A JP2010135634 A JP 2010135634A JP 2012002552 A JP2012002552 A JP 2012002552A
Authority
JP
Japan
Prior art keywords
sample
needle
fine particles
gold fine
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010135634A
Other languages
Japanese (ja)
Other versions
JP5321918B2 (en
Inventor
Misaki Hayashida
美咲 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010135634A priority Critical patent/JP5321918B2/en
Publication of JP2012002552A publication Critical patent/JP2012002552A/en
Application granted granted Critical
Publication of JP5321918B2 publication Critical patent/JP5321918B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of mounting, on a needle-like sample, gold fine particles which have a diameter of several nanometers and which are used as a mark for positioning for transmission type electron microscope (TEM) tomography in which a series of rotational images are photographed and subjected to image processing by the TEM.SOLUTION: When the sample is processed into a needle shape with a focused ion beam, a mask 10 is processed and formed at the same time. Then when the gold fine particles are vapor-deposited at a predetermined angle on the needle-like sample having the mask 10 nearby, the gold fine particles stick on a specified region of the needle-like sample and do not stick on other regions because of the mask, so that the region on which the gold fine particles stick and the regions on which the gold fine particles do not stick can be separated in a vapor deposition device.

Description

本発明は、高精度の三次元像を得るのに適した、透過型電子顕微鏡(TEM:Transmission Electron Microscope)トモグラフィーに用いる試料及びその作製方法、並びに前記試料を用いた電子顕微鏡画像形成方法に関する。   The present invention relates to a sample used for transmission electron microscope (TEM) tomography, a manufacturing method thereof, and an electron microscope image forming method using the sample, which are suitable for obtaining a highly accurate three-dimensional image.

近年、ナノメートルもしくはそれ以下のオーダーでの観察を必要とする材料や生物などの研究分野で、透過型電子顕微鏡が広く利用されている。TEMは、観察試料に電子線を照射し、試料を透過した電子の作る像をCCDカメラなどの撮像媒体に投影させる装置である。TEMで得られる画像は試料を透過した電子が形成する2次元像であり、試料の厚み方向(電子の入射方向)の詳細な情報は得られない。そこで、試料の構造をナノメートルスケールで、しかも3次元で取得する手法としてTEMトモグラフィーが近年注目されている。これは、TEMで試料を数度ステップずつ回転させ、その都度像を撮影し、撮影した一連のTEM像(回転像シリーズと呼ぶ)数十枚〜百数十枚に対して、CT(Computerized Tomography)法を用いて画像処理を行うことにより三次元再構成像を得る手法である。病院などで用いられているX線CTと原理は同じであるが、得られる画像の分解能は、X線CTがサブミリメートルであるのに対し、TEMトモグラフィーでは数ナノメートルである。   In recent years, transmission electron microscopes have been widely used in research fields such as materials and organisms that require observation on the order of nanometers or less. The TEM is a device that irradiates an observation sample with an electron beam and projects an image formed by electrons transmitted through the sample onto an imaging medium such as a CCD camera. An image obtained by TEM is a two-dimensional image formed by electrons transmitted through the sample, and detailed information on the thickness direction of the sample (electron incident direction) cannot be obtained. Therefore, TEM tomography has recently attracted attention as a technique for acquiring the structure of a sample on the nanometer scale and in three dimensions. This is because a sample is rotated step by step several times with a TEM, an image is taken each time, and a series of taken TEM images (referred to as a rotation image series) of tens to hundreds of CT (Computerized Tomography) ) Method to obtain a three-dimensional reconstructed image by performing image processing. The principle is the same as that of X-ray CT used in hospitals and the like, but the resolution of the obtained image is several nanometers in TEM tomography, whereas X-ray CT is sub-millimeter.

TEM像の中心軸と試料の回転軸とをナノメートルオーダーで一致させることは非常に困難であるため、CT法で処理する前に、一連のTEM像の位置合わせを行う必要がある。この位置合わせとは、一連のTEM像から、TEM像の中心軸に対する試料の回転軸の傾斜角度と、像の位置ずれ補正量を算出するための手法である。位置あわせの手法としては、試料表面に載せた金微粒子などの粒子の位置を目印にする方法(マーカー法)(非特許文献1参照)と、再構成を行う物体自体の位置を目印にして行う方法(非特許文献2参照)が代表的である。どちらも回転像シリーズの各像に写っている同じ物体を目印としている点は同じである。マーカー法は、画像中の複数個の金微粒子を目印として選択し、それぞれの目印の軌道から回転軸の方向と各画像の位置ずれ補正量の最適値を求める方法であり、マーカー法の方が高精度の位置合わせができるため幅広く用いられている。   Since it is very difficult to match the center axis of the TEM image with the rotation axis of the sample on the order of nanometers, it is necessary to align a series of TEM images before processing by the CT method. This alignment is a method for calculating the tilt angle of the rotation axis of the sample with respect to the central axis of the TEM image and the image displacement correction amount from a series of TEM images. As a positioning method, a method of marking the position of particles such as gold fine particles placed on the sample surface (marker method) (see Non-Patent Document 1) and a position of the object itself to be reconstructed are used as marks. The method (see Non-Patent Document 2) is representative. Both are the same in that the same object in each image of the rotating image series is used as a landmark. The marker method is a method in which a plurality of fine gold particles in an image are selected as landmarks, and the direction of the rotation axis and the optimum value of the positional deviation correction amount of each image are obtained from the trajectory of each marker. Widely used because of high precision alignment.

ところで、TEMトモグラフィーにおいて、従来は薄膜上に観察対象物が載った試料の像が撮影される場合が多かったが、近年は真空中に突き出した針状形状の試料を観察する例が増えてきている。針状形状にすることにより、試料の回転角度によらず電子線に対する試料の厚みがほぼ一定であり、等方的な分解能の像が得られるからである。   By the way, in TEM tomography, conventionally, an image of a sample on which an observation object is placed on a thin film is often photographed, but in recent years, an example of observing a needle-like sample protruding into a vacuum has increased. Yes. This is because, by using the needle shape, the thickness of the sample with respect to the electron beam is almost constant regardless of the rotation angle of the sample, and an image with isotropic resolution can be obtained.

TEMやSEMその他の分析を行うための試料を作製する方法として、集束イオンビーム(Focused Ion Beam、略してFIB)を利用して、試料の必要な箇所を切り出し、分離試料に対して分析を行う方法が知られている(特許文献1参照)。   As a method for preparing a sample for TEM, SEM, or other analysis, a focused ion beam (FIB) is used to cut out a necessary portion of the sample and analyze the separated sample. A method is known (see Patent Document 1).

特開平5−52721号公報JP-A-5-52721

J.Frank,B.F.McEwen,1992. Alignment by Cross−Correlation. In: J.Frank edit, Electron Tomography. Plenum Press, New York,pp.205−213.J. et al. Frank, B.M. F. McEwen, 1992. Alignment by Cross-Correlation. In: J.M. Frank edit, Electron Tomography. Plenum Press, New York, pp. 205-213. M.C.Lawrence,1992. Least−squares methods of alignment using markers, In: J.Frank edit, Electron Tomography. Plenum Press, New York,pp.197−204.M.M. C. Lawrence, 1992. Least-squares methods of alignment using markers, In: J. Am. Frank edit, Electron Tomography. Plenum Press, New York, pp. 197-204.

マーカー法において、位置合わせの目印のために用いる金微粒子は、直径が数nm〜数十nmである。従来のマーカー法では、金微粒子は、試料上に金微粒子の溶液を滴下して乾燥させることによって試料上に載せている。金微粒子は、観察領域(数十〜数百nm平方)に適当な密度で分散しているのが望ましい。しかしながら、従来の方法では、観察領域に金微粒子が全く載っていなかったり、逆に多く載りすぎて電子線の透過を妨げ、観察したい試料の像を正確に得られなかったりするという問題がある。   In the marker method, gold fine particles used for alignment marks have a diameter of several nm to several tens of nm. In the conventional marker method, gold fine particles are placed on a sample by dropping a solution of gold fine particles onto the sample and drying it. It is desirable that the gold fine particles are dispersed at an appropriate density in the observation region (several tens to several hundreds nm square). However, the conventional method has a problem that gold fine particles are not placed at all in the observation region, or on the contrary, a large amount is placed so as to prevent the transmission of the electron beam and the image of the sample to be observed cannot be obtained accurately.

特に、TEMトモグラフィーにおいて用いられる針状試料において、金微粒子等の粒子を所望の密度で分散付着させることが現実的に困難であった。   In particular, in a needle-like sample used in TEM tomography, it was practically difficult to disperse and adhere particles such as gold fine particles at a desired density.

まず、針状試料の作製方法について図6を参照して説明する。図6(a)〜(e)は、観察したい試料の埋め込まれている基板からTEMトモグラフィー観察用の針状形状の試料を作製する工程を表す。第1の工程では、集束イオンビームにより試料がダメージを受けないように保護する目的で、図6(a)に示すように、集束イオンビーム装置内で基板1上に保護膜を堆積させる。保護膜は、カーボン膜2を用い、C1410のガス雰囲気中での集束イオンビーム照射により形成されるビーム誘起堆積膜である。第2の工程では、カーボン膜2の周辺と底辺部分を集束イオンビーム3で削り取り、図6(b)のように一辺数μmの8面体が支持部4のみ基板に繋がっている状態にする。試料を傾斜させてから底辺部分を削り取るため、底辺部分は基板表面に対して傾斜している。第3の工程では、カーボン膜2上に集束イオンビーム装置内のプローブ5を接触させ、その接合部を第1の工程と同様の方法で堆積させたカーボン膜6で接合させる。そして、支持部4を集束イオンビーム3で削り取り、図6(c)に示すように、プローブ5を使って、試料を基板から取り出す。ここで、試料上面はXZ面に平行の姿勢のまま取り出される。第4の工程では、図6(d)のように、分離試料7をTEM観察用試料ステージ8へ移して、その上面と接触させる。ここで、試料ステージ8の上面がXZ面に平行である場合、分離試料7の底面の一部のみ接触する。(図6(d)では分離試料7の向かって右の底辺が、試料ステージ8の上面と接触している)。次に、第1の工程と同様の方法で堆積させたカーボン膜9を使って該分離試料7とTEM観察用試料ステージ8の接触部分を接合させる。その後、集束イオンビーム3を用いて、プローブ5を分離試料7から切断させる。第5の工程では、図6(e)のように、集束イオンビームを用いて、針状になるように加工する。 First, a method for producing a needle sample will be described with reference to FIG. 6A to 6E show a process of producing a needle-shaped sample for TEM tomography observation from a substrate in which a sample to be observed is embedded. In the first step, a protective film is deposited on the substrate 1 in the focused ion beam apparatus as shown in FIG. 6A for the purpose of protecting the sample from being damaged by the focused ion beam. The protective film is a beam-induced deposition film formed by the focused ion beam irradiation in a C 14 H 10 gas atmosphere using the carbon film 2. In the second step, the periphery and bottom of the carbon film 2 are scraped off with the focused ion beam 3 so that the octahedron of several μm on one side is connected to the substrate only as shown in FIG. 6B. In order to scrape the bottom portion after the sample is inclined, the bottom portion is inclined with respect to the substrate surface. In the third step, the probe 5 in the focused ion beam apparatus is brought into contact with the carbon film 2, and the bonded portion is bonded with the carbon film 6 deposited by the same method as in the first step. And the support part 4 is scraped off by the focused ion beam 3, and as shown in FIG.6 (c), the sample is taken out from a board | substrate using the probe 5. FIG. Here, the upper surface of the sample is taken out in a posture parallel to the XZ plane. In the fourth step, as shown in FIG. 6D, the separated sample 7 is moved to the TEM observation sample stage 8 and brought into contact with the upper surface thereof. Here, when the upper surface of the sample stage 8 is parallel to the XZ plane, only a part of the bottom surface of the separated sample 7 contacts. (In FIG. 6D, the right bottom side of the separated sample 7 is in contact with the upper surface of the sample stage 8). Next, using the carbon film 9 deposited by the same method as in the first step, the contact portion between the separated sample 7 and the TEM observation sample stage 8 is bonded. Thereafter, the probe 5 is cut from the separated sample 7 using the focused ion beam 3. In the fifth step, as shown in FIG. 6E, processing is performed using a focused ion beam so as to form a needle shape.

ここで、針状試料に金微粒子を載せようとすると、針状試料上に金微粒子の溶液を滴下して乾燥させることが従来なされてきた。   Here, in order to place gold fine particles on a needle-shaped sample, it has been conventionally performed to drop a solution of gold fine particles on the needle-shaped sample and dry it.

本発明は、これらの問題を解決しようとするものであり、金微粒子を針状試料上に分散付着させるのに好適な作製方法を提供することを目的とするものである。また、金微粒子を付着させる領域(マーカー領域)と付着させない領域(観察領域)とを分離することを目的とするものである。また、高精度な三次元像を得ることを目的とするものである。   An object of the present invention is to solve these problems, and an object of the present invention is to provide a production method suitable for dispersing and attaching gold fine particles onto a needle-like sample. Another object is to separate a region (marker region) to which gold fine particles are attached from a region (observation region) to which gold fine particles are not attached. Another object is to obtain a highly accurate three-dimensional image.

本発明は、前記目的を達成するために、以下の特徴を有するものである。   The present invention has the following features in order to achieve the above object.

本発明の方法は、電子顕微鏡用試料作製方法であって、試料を集束イオンビームで針状試料に形成加工する際に、前記試料からマスクを形成加工することを特徴とする。前記マスクは、前記針状試料に金微粒子を蒸着する際に、金微粒子を選択的に遮蔽する位置に設けられていることを特徴とする。針状形状とマスクの形成加工工程後、蒸着装置内で、前記マスクにより、金微粒子を付着させる領域と付着させない領域を分離させるよう蒸着する。前記金微粒子を付着させる領域が、針状先端部の保護膜であり、前記金微粒子を付着させない領域が電子顕微鏡の観察領域であることが好ましい。   The method of the present invention is a method for preparing a sample for an electron microscope, and is characterized by forming a mask from the sample when the sample is formed into a needle-like sample by a focused ion beam. The mask is provided at a position that selectively shields the gold fine particles when the gold fine particles are deposited on the needle-like sample. After the process of forming the needle shape and the mask, vapor deposition is performed in the vapor deposition apparatus so as to separate the area where the gold fine particles are adhered and the area where the gold fine particles are not adhered. It is preferable that the region to which the gold fine particles are attached is a protective film on the needle-like tip, and the region to which the gold fine particles are not attached is an observation region of an electron microscope.

本発明の方法は、本発明の作製方法により作製した電子顕微鏡用試料の電子顕微鏡画像形成方法であって、前記針状試料の針状長手方向に対して垂直に電子線を入射し、針状試料の針状長手方向を回転軸として、透過電子顕微鏡画像の回転像シリーズを撮影し、前記回転像の金微粒子をマーカーとして位置合わせを行い、試料の三次元像を得ることを特徴とする。   The method of the present invention is an electron microscope image forming method of an electron microscope sample produced by the production method of the present invention, wherein an electron beam is incident perpendicularly to the needle-like longitudinal direction of the needle-like sample, A rotation image series of transmission electron microscope images is taken with the needle-like longitudinal direction of the sample as a rotation axis, and alignment is performed using gold fine particles of the rotation image as a marker to obtain a three-dimensional image of the sample.

本発明は、透過型電子顕微鏡に最適な試料であって、金微粒子が付着した領域を先端部に有して、金微粒子の付着しない観察領域を中間部に有する針状試料と、マスク部と、前記針状試料と前記マスク部とを繋ぐ台座部とを備える一体構造の試料であることを特徴とする。前記マスク部は、前記針状試料の前記観察領域より針状長手方向高さが低いことを特徴とする。   The present invention is an optimal sample for a transmission electron microscope, and has a needle-like sample having a region where gold fine particles are attached at the tip and an observation region where gold fine particles are not attached at an intermediate portion, a mask portion, A sample having an integral structure including a pedestal portion that connects the needle-shaped sample and the mask portion. The mask portion has a needle-like longitudinal height lower than the observation region of the needle-like sample.

本発明は、前記電子顕微鏡用試料を用いる電子顕微鏡画像形成方法であって、前記針状試料の針状長手方向に対して垂直に電子線を入射して、針状試料の針状長手方向を回転軸として、透過電子顕微鏡画像の回転像シリーズを撮影し、前記回転像の金微粒子をマーカーとして位置合わせを行い、試料の三次元像を得ることを特徴とする。   The present invention is an electron microscope image forming method using the electron microscope sample, wherein an electron beam is incident perpendicularly to the needle-like longitudinal direction of the needle-like sample, and the needle-like longitudinal direction of the needle-like sample is changed. A rotation image series of transmission electron microscope images is taken as a rotation axis, and alignment is performed using gold fine particles of the rotation image as a marker to obtain a three-dimensional image of the sample.

本発明の作製方法により、金微粒子を針状試料上に適切な密度で分散して確実に載せることができる。また、本発明の方法により、針状試料に金微粒子を付着させる領域と付着させない領域を分離して形成することができる。その結果、本発明の電子顕微鏡用試料は、金微粒子が付着していない領域である観察領域と、金微粒子が付着している先端部領域とを有しているので、試料観察に際して、金微粒子が電子線の透過を防ぐことがないので、正確な試料の三次元像を得ることができる。本発明の方法を用いることで、TEMトモグラフィーの試料作製の成功率が向上し、TEMトモグラフィーの精度が高まり、結果として実用性が高まる。   According to the production method of the present invention, the gold fine particles can be surely dispersed and placed on the needle-like sample at an appropriate density. Further, by the method of the present invention, it is possible to separate and form a region where gold fine particles are attached to a needle-like sample and a region where gold fine particles are not attached. As a result, the sample for an electron microscope of the present invention has an observation region which is a region where gold fine particles are not attached and a tip region where gold fine particles are attached. Does not prevent transmission of the electron beam, so that an accurate three-dimensional image of the sample can be obtained. By using the method of the present invention, the success rate of TEM tomography sample preparation is improved, the accuracy of TEM tomography is increased, and as a result, practicality is increased.

本発明の実施の形態の作製方法を示す図である。It is a figure which shows the preparation methods of embodiment of this invention. 本発明の実施の形態におけるマスクと針状試料を形成加工する方法を示す図である。It is a figure which shows the method of forming and processing the mask and needle-shaped sample in embodiment of this invention. 本発明の実施の形態における金微粒子の蒸着装置を説明する図である。It is a figure explaining the vapor deposition apparatus of the gold fine particle in embodiment of this invention. 本発明の実施の形態の図2の蒸着装置内の試料周辺部を拡大した図である。It is the figure which expanded the sample peripheral part in the vapor deposition apparatus of FIG. 2 of embodiment of this invention. 本発明の実施の形態のTEM画像を示す図である。It is a figure which shows the TEM image of embodiment of this invention. 従来の試料作製方法を示す図である。It is a figure which shows the conventional sample preparation method.

本発明は、金微粒子を付着させる際のマスクを、針状試料の近傍に作製するものである。まず試料を集束イオンビームで針状に加工する際に同時にマスクを加工形成する。次に、マスクを近傍に有する針状試料に対して、所定の角度を持たせて金微粒子を蒸着させる。そうすると、針状試料の特定の領域には金微粒子が付着し、他の領域にはマスクにより金微粒子が付着しないので、金微粒子を付着させる領域と付着させない領域を分離することができる。   In the present invention, a mask for depositing gold fine particles is prepared in the vicinity of a needle-like sample. First, when the sample is processed into a needle shape with a focused ion beam, a mask is processed and formed simultaneously. Next, gold fine particles are vapor-deposited at a predetermined angle with respect to a needle-like sample having a mask in the vicinity. Then, gold fine particles adhere to specific areas of the needle-shaped sample, and gold fine particles do not adhere to the other areas due to the mask, so that the area where the gold fine particles are adhered and the area where the gold fine particles are not adhered can be separated.

(第1の実施の形態)
本発明の第1の実施の形態について、図1〜図5を参照して以下説明する。図1は、針状試料の作製方法を説明する図である。図1(a)〜(e)は、観察したい試料の埋め込まれている基板からTEMトモグラフィー観察用の針状形状の試料を作製する各工程を表す。図1のxyz軸は、作製後の針状試料との関係を説明するために付与したものであり、y軸はTEM内での試料の回転軸と平行な向きで、z軸はTEM内での試料への電子線入射方向と平行な向きである。x軸は、それらに垂直な軸である。
(First embodiment)
A first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram for explaining a method for producing a needle-like sample. FIGS. 1A to 1E show the respective steps of producing a needle-shaped sample for TEM tomography observation from a substrate in which the sample to be observed is embedded. The xyz axis in FIG. 1 is given to explain the relationship with the needle-shaped sample after fabrication. The y axis is in a direction parallel to the rotation axis of the sample in the TEM, and the z axis is in the TEM. The direction parallel to the direction of incidence of the electron beam on the sample. The x axis is the axis perpendicular to them.

第1の工程では、集束イオンビームにより試料がダメージを受けないように保護する目的で、図1(a)に示すように、集束イオンビーム装置内で基板1上に保護膜を堆積させる。保護膜は、カーボン膜2を用い、C1410のガス雰囲気中での集束イオンビーム照射により形成されるビーム誘起堆積膜である。その寸法は、例えば数μmであり、膜厚は、数百nmから数μm程度である。基板は、例えば半導体の配線など、観察したい試料が埋め込まれている基板全般を指す。 In the first step, a protective film is deposited on the substrate 1 in the focused ion beam apparatus as shown in FIG. 1A for the purpose of protecting the sample from being damaged by the focused ion beam. The protective film is a beam-induced deposition film formed by the focused ion beam irradiation in a C 14 H 10 gas atmosphere using the carbon film 2. The dimension is, for example, several μm 2 , and the film thickness is about several hundred nm to several μm. The substrate refers to all substrates on which a sample to be observed is embedded, such as semiconductor wiring.

第2の工程では、カーボン膜2の周辺と底辺部分を集束イオンビーム3で削り取り、図1(b)のように一辺数μmの8面体が支持部4のみ基板に繋がっている状態にする。試料を傾斜させてから底辺部分を削り取るため、底辺部分は基板表面に対して傾斜している。第3の工程では、カーボン膜2上に集束イオンビーム装置内のプローブ5を接触させ、その接合部を第1の工程と同様の方法で堆積させたカーボン膜6で接合させる。そして、支持部4を集束イオンビーム3で削り取り、図1(c)に示すように、プローブ5を使って、試料を基板から取り出す。ここで、試料上面はXZ面に平行の姿勢のまま取り出される。第4の工程では、図1(d)のように、分離試料7をTEM観察用試料ステージ8へ移して、その上面と接触させる。ここで、試料ステージ8の上面がXZ面に平行である場合、分離試料7の底面の一部のみ接触する。(図1(d)では分離試料7の向かって右の底辺が、試料ステージ8の上面と接触している)。次に、第1の工程と同様の方法で堆積させたカーボン膜9を使って該分離試料7とTEM観察用試料ステージ8の接触部分を接合させる。その後、集束イオンビーム3を用いて、プローブ5を分離試料7から切断させる。   In the second step, the periphery and bottom of the carbon film 2 are scraped off by the focused ion beam 3 so that only the support portion 4 is connected to the substrate by the octahedron having a side of several μm as shown in FIG. In order to scrape the bottom portion after the sample is inclined, the bottom portion is inclined with respect to the substrate surface. In the third step, the probe 5 in the focused ion beam apparatus is brought into contact with the carbon film 2, and the bonded portion is bonded with the carbon film 6 deposited by the same method as in the first step. And the support part 4 is scraped off by the focused ion beam 3, and as shown in FIG.1 (c), a sample is taken out from a board | substrate using the probe 5. FIG. Here, the upper surface of the sample is taken out in a posture parallel to the XZ plane. In the fourth step, as shown in FIG. 1D, the separated sample 7 is moved to the TEM observation sample stage 8 and brought into contact with the upper surface thereof. Here, when the upper surface of the sample stage 8 is parallel to the XZ plane, only a part of the bottom surface of the separated sample 7 contacts. (In FIG. 1D, the right bottom of the separated sample 7 is in contact with the upper surface of the sample stage 8). Next, using the carbon film 9 deposited by the same method as in the first step, the contact portion between the separated sample 7 and the TEM observation sample stage 8 is bonded. Thereafter, the probe 5 is cut from the separated sample 7 using the focused ion beam 3.

第5の工程では、図1(e)のように、集束イオンビームを用いて、試料が直径数十nmから百数十nmの針状になるように加工すると同時に、試料の一部を加工してマスク10を形成する。針状試料の長さは数μmである。   In the fifth step, as shown in FIG. 1 (e), the sample is processed so as to have a needle shape with a diameter of several tens to several tens of nm using a focused ion beam, and at the same time, a part of the sample is processed. Thus, the mask 10 is formed. The length of the needle-like sample is several μm.

上記第5の工程におけるマスクと針状試料の形成加工方法を、図2を参照して詳しく説明する。なお、図1における試料ステージは図2では省略した。切り出した試料を図2(a)の点線軸に対して90度反時計回りに回転させて図2(b)の状態にする。次に、集束イオンビームで、図2(c)のように、マスクと、保護膜のついた針状試料加工用部分とを加工する。図2(c)のように、加工残りの台座部によって、マスクと前記加工用部分とは繋がっている。次に図2(c)の点線軸に対して90度時計回りに回転させて、図2(d)の状態にする。図2(d)の状態で、集束イオンビームにより針状試料加工用部分を針状に加工して、図2(e)の構造を得る。図2(e)に示すように、本実施の形態の針状試料は、マスク部と、針状試料部と、これらを繋ぐ台座部とからなる一体構造である。TEM内で試料の観察領域に電子線が透過するために、マスクのy方向の高さは針状試料の観察領域に比べて低く作製する。   The mask / needle sample forming method in the fifth step will be described in detail with reference to FIG. The sample stage in FIG. 1 is omitted in FIG. The cut sample is rotated 90 degrees counterclockwise with respect to the dotted line axis in FIG. 2A to obtain the state in FIG. Next, with a focused ion beam, as shown in FIG. 2C, the mask and the needle-shaped sample processing portion with the protective film are processed. As shown in FIG. 2C, the mask and the processing portion are connected by the unprocessed pedestal portion. Next, it is rotated 90 degrees clockwise with respect to the dotted line axis in FIG. 2C to obtain the state in FIG. In the state of FIG. 2D, the portion for processing the needle-like sample is processed into a needle shape by the focused ion beam to obtain the structure of FIG. As shown in FIG. 2 (e), the needle-like sample of the present embodiment has an integral structure including a mask portion, a needle-like sample portion, and a pedestal portion that connects them. Since the electron beam passes through the observation area of the sample in the TEM, the height of the mask in the y direction is made lower than the observation area of the needle-like sample.

加工した針状試料の保護膜の部分にのみ金微粒子を載せる方法を図3及び図4を参照して説明する。図3は、本実施の形態における金微粒子の蒸着装置を模式的に示す図である。図4は、図3の蒸着装置内の試料周辺部を拡大した図である。図3のように、蒸着装置内に金線33と試料を設置する。金線33はタングステンワイヤー32に取りつけられており、ワイヤー32に電極31によって電流を流すと、金線33が溶け、蒸着装置内に等方的に分散し、保護膜上に金の微粒子が蒸着される。金線33の長さにより、蒸着する粒子の大きさが変化するため、あらかじめ直径数nmとなる長さを計算して設定しておくことができる。   A method of placing gold fine particles only on the protective film portion of the processed needle-like sample will be described with reference to FIGS. FIG. 3 is a diagram schematically showing a gold fine particle deposition apparatus according to the present embodiment. 4 is an enlarged view of the periphery of the sample in the vapor deposition apparatus of FIG. As shown in FIG. 3, a gold wire 33 and a sample are installed in the vapor deposition apparatus. The gold wire 33 is attached to the tungsten wire 32. When a current is passed through the wire 32 by the electrode 31, the gold wire 33 melts and isotropically disperses in the vapor deposition apparatus, and gold fine particles are deposited on the protective film. Is done. Since the size of the particles to be deposited varies depending on the length of the gold wire 33, the length of several nanometers in diameter can be calculated and set in advance.

マスクの寸法と針状試料の保護膜の膜厚の関係、並びに蒸着装置内の蒸着源の金線と試料との配置は、次のように設定する。マスク10の蒸着源側の表面と針状試料の蒸着面のz方向の距離をdzとする。保護膜であるカーボン膜2はマスク10の高さに比べてdy以上の高さの領域に付いている。図4で示すように、マスク10から針状試料の保護膜までのy方向の距離をdyとする。dyが観察領域のy方向の長さとなる。保護膜にのみ金を蒸着させるため、金線33の位置と針状試料とのy、z方向の距離dy’とdz’の比が、dyとdzの比に一致するように、蒸着装置内に試料を設置する。次の式1のように表すことができる。   The relationship between the dimension of the mask and the thickness of the protective film of the needle-shaped sample, and the arrangement of the gold wire of the vapor deposition source in the vapor deposition apparatus and the sample are set as follows. The distance in the z direction between the surface on the vapor deposition source side of the mask 10 and the vapor deposition surface of the needle-shaped sample is dz. The carbon film 2 as a protective film is attached to a region having a height higher than dy as compared with the height of the mask 10. As shown in FIG. 4, the distance in the y direction from the mask 10 to the protective film of the needle-like sample is defined as dy. dy is the length of the observation region in the y direction. Since gold is vapor-deposited only on the protective film, the inside of the vapor deposition apparatus is set so that the ratio of the distances dy ′ and dz ′ in the y and z directions between the position of the gold wire 33 and the needle-like sample matches the ratio of dy and dz. Place the sample on The following equation 1 can be expressed.

dz/dy=dz’/dy’ (式1)
なお、dzとdyは、集束イオンビーム装置の二次イオン像から確認しておく。
dz / dy = dz ′ / dy ′ (Formula 1)
In addition, dz and dy are confirmed from the secondary ion image of the focused ion beam apparatus.

本実施の形態の方法を用いれば、保護膜上にのみ金を載せることができる。本実施の形態で得られた針状試料を、透過電子顕微鏡(TEM)内に設置し、針状試料の回転軸の方向をy軸とし、針状試料へ電子線を入射(z軸方向)して観察する。図5に、TEM画像の例を模式的に示す。図示中央に、針状試料とその先端保護膜部分(縦縞部)に金微粒子(黒点)が観察できる。なお、上下は真空部分12である。金微粒子と観察領域11を同時にカメラの視野内に入るように回転像シリーズの撮影をし(図5参照)、撮影後、各像に写っている金微粒子をマーカーとして位置合わせを行うことにより、試料の三次元像が得られる。   If the method of the present embodiment is used, gold can be placed only on the protective film. The needle-like sample obtained in this embodiment is placed in a transmission electron microscope (TEM), the direction of the axis of rotation of the needle-like sample is the y-axis, and an electron beam is incident on the needle-like sample (z-axis direction). And observe. FIG. 5 schematically shows an example of a TEM image. In the center of the figure, gold fine particles (black dots) can be observed on the needle-shaped sample and the tip protective film portion (vertical stripe portion). Note that the upper and lower portions are the vacuum portion 12. By taking a rotating image series so that the gold fine particles and the observation region 11 are simultaneously within the field of view of the camera (see FIG. 5), after the photographing, the gold fine particles appearing in each image are aligned as markers, A three-dimensional image of the sample is obtained.

本実施の形態で作製した針状試料によれば、TEMの観察領域11には金微粒子が載っていないため電子線透過を妨げることがなくなるという効果を奏する。また、観察領域と金微粒子が重なって投影されてしまって金微粒子の位置を識別しにくくなることがない。   According to the needle-shaped sample produced in the present embodiment, since the gold fine particles are not placed on the observation region 11 of the TEM, there is an effect that the electron beam transmission is not hindered. Further, it is not difficult to identify the position of the gold fine particle because the observation region and the gold fine particle are projected in an overlapping manner.

上記実施の形態等で示した例は、発明を理解しやすくするために記載したものであり、この形態に限定されるものではない。   The examples shown in the embodiment and the like are described for easy understanding of the invention, and are not limited to this embodiment.

半導体材料の微細化が進んでおり、特性と構造を結びつけた検討が必要になってきている。そのため、TEMトモグラフィーを使って三次元構造を評価する例が増えている。本発明により試料作製の効率が上がるので、TEMトモグラフィーの普及に繋がり、半導体材料開発に好適に利用できる。   As semiconductor materials have been miniaturized, it has become necessary to examine characteristics and structures. Therefore, there are increasing examples of evaluating a three-dimensional structure using TEM tomography. Since the efficiency of sample preparation is increased by the present invention, it leads to the spread of TEM tomography and can be suitably used for semiconductor material development.

1 基板
2 保護膜(カーボン膜)
3 集束イオンビーム
4 支持部
5 プローブ
6 カーボン膜
7 分離試料
8 試料ステージ
9 カーボン膜
10 マスク
11 観察領域
12 真空部分
31 電極
32 タングステンワイヤー
33 金線
1 substrate 2 protective film (carbon film)
DESCRIPTION OF SYMBOLS 3 Focused ion beam 4 Support part 5 Probe 6 Carbon film 7 Separated sample 8 Sample stage 9 Carbon film 10 Mask 11 Observation area 12 Vacuum part 31 Electrode 32 Tungsten wire 33 Gold wire

Claims (7)

電子顕微鏡用試料の作製方法であって、試料を集束イオンビームで針状試料に形成加工する際に、前記試料からマスクを形成加工することを特徴とする電子顕微鏡用試料作製方法。   A method for preparing an electron microscope sample, comprising: forming a mask from the sample when the sample is formed into a needle-like sample by a focused ion beam. 前記マスクは、前記針状試料に金微粒子を蒸着する際に、金微粒子を選択的に遮蔽する位置に設けられていることを特徴とする請求項1記載の電子顕微鏡用試料作製方法。   2. The sample preparation method for an electron microscope according to claim 1, wherein the mask is provided at a position for selectively shielding the gold fine particles when the gold fine particles are deposited on the needle-like sample. 前記マスクにより、蒸着装置内で、金微粒子を付着させる領域と付着させない領域を分離させるよう蒸着することを特徴とする請求項2記載の電子顕微鏡用試料作製方法。   3. The method for preparing a sample for an electron microscope according to claim 2, wherein vapor deposition is performed by the mask so as to separate a region where the gold fine particles are adhered and a region where the gold fine particles are not adhered within the vapor deposition apparatus. 前記金微粒子を付着させる領域が、針状先端部の保護膜であり、前記金微粒子を付着させない領域が電子顕微鏡の観察領域であることを特徴とする請求項3記載の電子顕微鏡用試料作製方法。   4. The method for preparing a sample for an electron microscope according to claim 3, wherein the region to which the gold fine particles are attached is a protective film at a needle-like tip, and the region to which the gold fine particles are not attached is an observation region of an electron microscope. . 請求項1乃至4のいずれか1項記載の作製方法により作製した電子顕微鏡用試料の電子顕微鏡画像形成方法であって、前記針状試料の針状長手方向に対して垂直に電子線を入射し、針状試料の針状長手方向を回転軸として、透過電子顕微鏡画像の回転像シリーズを撮影し、前記回転像の金微粒子をマーカーとして位置合わせを行い、試料の三次元像を得ることを特徴とする電子顕微鏡画像形成方法。   An electron microscope image forming method for a sample for an electron microscope manufactured by the manufacturing method according to claim 1, wherein an electron beam is incident perpendicularly to a needle-like longitudinal direction of the needle-like sample. Taking a rotation image series of transmission electron microscope images with the needle-like longitudinal direction of the needle-like sample as the rotation axis, and aligning with the gold fine particles of the rotation image as a marker, obtaining a three-dimensional image of the sample An electron microscope image forming method. 金微粒子が付着した領域を先端部に有して、金微粒子の付着しない観察領域を中間部に有する針状試料と、マスク部と、前記針状試料と前記マスク部とを繋ぐ台座部とを備える一体構造の透過型の電子顕微鏡用の試料であって、
前記マスク部は、前記針状試料の前記観察領域より針状長手方向高さが低いことを特徴とする電子顕微鏡用試料。
A needle-like sample having an area where gold fine particles are attached at the tip and an observation area where gold fine particles are not attached in the middle part, a mask part, and a pedestal part connecting the needle-like sample and the mask part. A sample for a transmission electron microscope having a monolithic structure,
The sample for an electron microscope, wherein the mask portion has a needle-like longitudinal height lower than the observation region of the needle-like sample.
前記針状試料の針状長手方向に対して垂直に電子線を入射して、針状試料の針状長手方向を回転軸として、透過電子顕微鏡画像の回転像シリーズを撮影し、前記回転像の金微粒子をマーカーとして位置合わせを行い、試料の三次元像を得ることを特徴とする請求項6記載の電子顕微鏡用試料を用いる電子顕微鏡画像形成方法。   An electron beam is incident perpendicularly to the needle-like longitudinal direction of the needle-like sample, and a rotation image series of transmission electron microscope images is taken with the needle-like longitudinal direction of the needle-like sample as a rotation axis, 7. The electron microscope image forming method using the sample for an electron microscope according to claim 6, wherein alignment is performed using gold fine particles as a marker to obtain a three-dimensional image of the sample.
JP2010135634A 2010-06-15 2010-06-15 Sample preparation method for electron microscope Expired - Fee Related JP5321918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010135634A JP5321918B2 (en) 2010-06-15 2010-06-15 Sample preparation method for electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010135634A JP5321918B2 (en) 2010-06-15 2010-06-15 Sample preparation method for electron microscope

Publications (2)

Publication Number Publication Date
JP2012002552A true JP2012002552A (en) 2012-01-05
JP5321918B2 JP5321918B2 (en) 2013-10-23

Family

ID=45534729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010135634A Expired - Fee Related JP5321918B2 (en) 2010-06-15 2010-06-15 Sample preparation method for electron microscope

Country Status (1)

Country Link
JP (1) JP5321918B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013235801A (en) * 2012-05-11 2013-11-21 National Institute Of Advanced Industrial & Technology Electron microscope sample, electron microscope image forming method and electron microscope device
CN104155158A (en) * 2014-07-25 2014-11-19 胜科纳米(苏州)有限公司 Method utilizing FIB cutting to achieve three-dimensional observation of nanoscale sample
CN105628460A (en) * 2014-10-30 2016-06-01 中芯国际集成电路制造(上海)有限公司 Transmission electron microscope sample forming method
CN106018022A (en) * 2016-05-17 2016-10-12 上海华力微电子有限公司 Preparation method of planar TEM (transmission electron microscope) sample
JP2017026612A (en) * 2015-07-23 2017-02-02 エフ・イ−・アイ・カンパニー Fiducial mark formation for tem/stem tomography tilt-series acquisition and alignment
CN109839296A (en) * 2017-11-28 2019-06-04 中国科学院上海微***与信息技术研究所 A kind of preparation method of the transmission electron microscope sample for electrical testing in situ
CN111366428A (en) * 2020-03-03 2020-07-03 上海华力集成电路制造有限公司 Method for preparing TEM sample by FIB back cut
CN112083022A (en) * 2019-06-12 2020-12-15 苏试宜特(上海)检测技术有限公司 Specific micro-area calibration method based on plane sample rotary section sample
CN113899765A (en) * 2021-09-27 2022-01-07 中国科学院广州地球化学研究所 Electron microscopy three-dimensional reconstruction geological sample preparation method based on focused ion beam processing
US11281344B2 (en) 2015-11-19 2022-03-22 Hyundai Motor Company Touch input device, vehicle including same, and manufacturing method therefor
US11439028B2 (en) * 2019-04-03 2022-09-06 Denso Corporation Vehicle control apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103308365A (en) * 2013-06-27 2013-09-18 上海华力微电子有限公司 Method for preparing triethylenemelamine (TEM) sample

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545265A (en) * 1991-08-12 1993-02-23 Jeol Ltd Specimen for performance evaluation of scan type electroc microscope and method for preparing specimen
JPH0552721A (en) * 1991-08-22 1993-03-02 Hitachi Ltd Sample separating method and method for analyzing separated sample obtained by the separating method
JPH06258680A (en) * 1993-03-09 1994-09-16 Olympus Optical Co Ltd Lens holding jig
JPH10111223A (en) * 1996-10-04 1998-04-28 Hitachi Ltd Sample preparing device and electron microscope for observing three-dimensional structure and method therefor
JP2007248368A (en) * 2006-03-17 2007-09-27 Jeol Ltd Section sample preparation method using ion beam
JP2009110734A (en) * 2007-10-29 2009-05-21 Hitachi High-Technologies Corp Charged particle beam microscope system and microscopic detection method
JP2009152120A (en) * 2007-12-21 2009-07-09 Fujitsu Ltd Electron beam tomography method, and electron beam tomography device
JP2010003617A (en) * 2008-06-23 2010-01-07 Hitachi High-Technologies Corp Sample stand, sample rotating holder, construction method of sample stand, and sample stand construction method, and test piece analyzing method
US20100084555A1 (en) * 2008-10-03 2010-04-08 Inotera Memories, Inc. Preparation method for an electron tomography sample with embedded markers and a method for reconstructing a three-dimensional image

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545265A (en) * 1991-08-12 1993-02-23 Jeol Ltd Specimen for performance evaluation of scan type electroc microscope and method for preparing specimen
JPH0552721A (en) * 1991-08-22 1993-03-02 Hitachi Ltd Sample separating method and method for analyzing separated sample obtained by the separating method
JPH06258680A (en) * 1993-03-09 1994-09-16 Olympus Optical Co Ltd Lens holding jig
JPH10111223A (en) * 1996-10-04 1998-04-28 Hitachi Ltd Sample preparing device and electron microscope for observing three-dimensional structure and method therefor
JP2007248368A (en) * 2006-03-17 2007-09-27 Jeol Ltd Section sample preparation method using ion beam
JP2009110734A (en) * 2007-10-29 2009-05-21 Hitachi High-Technologies Corp Charged particle beam microscope system and microscopic detection method
JP2009152120A (en) * 2007-12-21 2009-07-09 Fujitsu Ltd Electron beam tomography method, and electron beam tomography device
JP2010003617A (en) * 2008-06-23 2010-01-07 Hitachi High-Technologies Corp Sample stand, sample rotating holder, construction method of sample stand, and sample stand construction method, and test piece analyzing method
US20100084555A1 (en) * 2008-10-03 2010-04-08 Inotera Memories, Inc. Preparation method for an electron tomography sample with embedded markers and a method for reconstructing a three-dimensional image

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013020556; Mitsuro Kato et al.: 'Maximum diameter of the rod-shaped specimen for transmission electron microtomography without the "m' Ultramicroscopy Vol. 108, 2008, pp. 221-229 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013235801A (en) * 2012-05-11 2013-11-21 National Institute Of Advanced Industrial & Technology Electron microscope sample, electron microscope image forming method and electron microscope device
CN104155158A (en) * 2014-07-25 2014-11-19 胜科纳米(苏州)有限公司 Method utilizing FIB cutting to achieve three-dimensional observation of nanoscale sample
CN105628460A (en) * 2014-10-30 2016-06-01 中芯国际集成电路制造(上海)有限公司 Transmission electron microscope sample forming method
CN105628460B (en) * 2014-10-30 2019-04-26 中芯国际集成电路制造(上海)有限公司 The forming method of transmission electron microscope sample
JP2017026612A (en) * 2015-07-23 2017-02-02 エフ・イ−・アイ・カンパニー Fiducial mark formation for tem/stem tomography tilt-series acquisition and alignment
US11281344B2 (en) 2015-11-19 2022-03-22 Hyundai Motor Company Touch input device, vehicle including same, and manufacturing method therefor
CN106018022A (en) * 2016-05-17 2016-10-12 上海华力微电子有限公司 Preparation method of planar TEM (transmission electron microscope) sample
CN109839296A (en) * 2017-11-28 2019-06-04 中国科学院上海微***与信息技术研究所 A kind of preparation method of the transmission electron microscope sample for electrical testing in situ
US11439028B2 (en) * 2019-04-03 2022-09-06 Denso Corporation Vehicle control apparatus
CN112083022A (en) * 2019-06-12 2020-12-15 苏试宜特(上海)检测技术有限公司 Specific micro-area calibration method based on plane sample rotary section sample
CN112083022B (en) * 2019-06-12 2024-05-24 苏试宜特(上海)检测技术股份有限公司 Specific micro-area calibration method based on plane sample-to-section sample
CN111366428A (en) * 2020-03-03 2020-07-03 上海华力集成电路制造有限公司 Method for preparing TEM sample by FIB back cut
CN113899765A (en) * 2021-09-27 2022-01-07 中国科学院广州地球化学研究所 Electron microscopy three-dimensional reconstruction geological sample preparation method based on focused ion beam processing

Also Published As

Publication number Publication date
JP5321918B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5321918B2 (en) Sample preparation method for electron microscope
US11315756B2 (en) Fiducial design for tilted or glancing mill operations with a charged particle beam
JP3902925B2 (en) Scanning atom probe
CN104049097B (en) The Multi-example to nano-controller for high productive capacity sample preparation is attached
TW201015057A (en) Method for manufacturing an electron tomography specimen with fiducial markers and method for constructing 3D image
JP6393448B2 (en) Reference mark formation for acquisition and alignment of TEM / STEM tomography continuous tilt
US10816333B2 (en) Pattern measurement method and pattern measurement device
TW201643927A (en) Pattern matching using a lamella of known shape for automated S/TEM acquisition and metrology
US7288772B2 (en) Diagnostic system for profiling micro-beams
JP2010003617A (en) Sample stand, sample rotating holder, construction method of sample stand, and sample stand construction method, and test piece analyzing method
JP5560246B2 (en) Standard sample used for charged particle beam apparatus and method for producing standard sample used for charged particle beam apparatus
US10539489B2 (en) Methods for acquiring planar view STEM images of device structures
US9396907B2 (en) Method of calibrating a scanning transmission charged-particle microscope
US9514913B2 (en) TEM sample mounting geometry
US10410829B1 (en) Methods for acquiring planar view stem images of device structures
JP2007248082A (en) Standard sample to be used for charged particle beam device, charged particle beam device, and method for manufacturing standard sample to be used for charged particle beam device
JP5489295B2 (en) Charged particle beam apparatus and charged particle beam irradiation method
JP2008014899A (en) Sample preparing method
TWI731467B (en) Image forming method, image forming system and ion milling device
JP5939627B2 (en) Sample for electron microscope, electron microscope image forming method, and electron microscope apparatus
JP4996206B2 (en) Shape observation apparatus and shape observation method
TWI811653B (en) Sample holder and system and method for sample modification
CN109031897A (en) A kind of method that mixed exposure quickly accurately makes microelectrode
Park et al. FIB overview
CN115148568A (en) Sample carrier and system and method for modifying sample

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130703

R150 Certificate of patent or registration of utility model

Ref document number: 5321918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees