JP2011509345A - Wire rod for wire drawing excellent in strength and ductility and manufacturing method thereof - Google Patents

Wire rod for wire drawing excellent in strength and ductility and manufacturing method thereof Download PDF

Info

Publication number
JP2011509345A
JP2011509345A JP2010540556A JP2010540556A JP2011509345A JP 2011509345 A JP2011509345 A JP 2011509345A JP 2010540556 A JP2010540556 A JP 2010540556A JP 2010540556 A JP2010540556 A JP 2010540556A JP 2011509345 A JP2011509345 A JP 2011509345A
Authority
JP
Japan
Prior art keywords
wire
strength
wire rod
less
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010540556A
Other languages
Japanese (ja)
Inventor
チョン ヨル イ、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2011509345A publication Critical patent/JP2011509345A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/003Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

強度と延性に優れた伸線用線材及びその製造方法が提供される。
強度と延性に優れた伸線用線材は、重量%で、C:0.87〜1.0%、Mn:0.1〜0.60%、Si:0.3〜1.0%、S:0.010%以下(0%を含まない)、P:0.011%以下(0%を含まない)、Cr:0.1〜0.5%、及びN:0.007%以下(0%を含まない)、並びに残部Fe及びその他の不可避な不純物からなり、前記Si、Crの含有量が次式、0.6≦Si+Cr≦1.2(Si及びCrは当該元素の重量%を意味)を満たし、パーライト組織を含むことを特徴とする。
A wire rod for wire drawing excellent in strength and ductility and a method for producing the same are provided.
The wire rod for wire drawing excellent in strength and ductility is, by weight, C: 0.87 to 1.0%, Mn: 0.1 to 0.60%, Si: 0.3 to 1.0%, S : 0.010% or less (not including 0%), P: 0.011% or less (not including 0%), Cr: 0.1 to 0.5%, and N: 0.007% or less (0 %) And the balance Fe and other inevitable impurities, the content of Si and Cr is the following formula, 0.6 ≦ Si + Cr ≦ 1.2 (Si and Cr mean the weight percent of the element) ) And includes a pearlite structure.

Description

本発明は、タイヤコード、ワイヤロープ、ピアノ線、橋梁用鋼線などに用いられる強度と延性に優れた伸線用線材及びその製造方法に関する。より詳しくは、Cの含有量を適切に制御するとともに、Si及びCrを複合添加することでパーライト層状組織を微細化し、高強度及び高延性を有する伸線用線材及びその製造方法に関する。   The present invention relates to a wire rod for wire drawing excellent in strength and ductility used for tire cords, wire ropes, piano wires, steel wires for bridges, and the like, and a method for producing the same. More specifically, the present invention relates to a wire rod for wire drawing having high strength and high ductility, and a method for producing the same, by appropriately controlling the content of C and making the pearlite layered structure fine by adding Si and Cr in combination.

一般的に、伸線用高強度線材の製造には次の3つの方法がある。   Generally, there are the following three methods for producing a high-strength wire for drawing.

まず、強化元素を多量に添加して基本鋼材(base steel)自体の強度を増加させることができる。上記強化元素の代表的な例としては炭素(C)が挙げられる。炭素は亜共析領域から共析領域に、また、共析領域から過共析領域にCの含有量が次第に増加することによって、要求される線材の強度が次第に増加する。   First, the strength of the basic steel material itself can be increased by adding a large amount of strengthening element. A typical example of the reinforcing element is carbon (C). As the carbon content of carbon gradually increases from the hypoeutectoid region to the eutectoid region and from the eutectoid region to the hypereutectoid region, the required strength of the wire gradually increases.

炭素含有量が増加すると、線材の内部には硬質相のセメンタイトの分率が増加し、パーライト組織のラメラ(lamellar)間隔が圧縮することによって鋼材の強度を向上させることができる。   As the carbon content increases, the fraction of hard phase cementite increases in the wire, and the strength of the steel can be improved by compressing the lamellar spacing of the pearlite structure.

次に、伸線用線材は、圧延された線材を伸線処理及び熱処理して、最終的に圧延された線材を素線に加工することにより提供される。この場合、圧延された線材は、強度を大幅に向上させるため、硬化することができる。パーライト組織のラメラ間隔が微細化されるため、線材の加工時に加工硬化係数が増加し、転位(potential)が集積されるため、線材を硬化することができる。   Next, the wire for drawing is provided by subjecting the rolled wire to a wire drawing treatment and heat treatment, and finally processing the rolled wire into a strand. In this case, the rolled wire can be cured in order to greatly improve the strength. Since the lamella spacing of the pearlite structure is miniaturized, the work hardening coefficient increases during processing of the wire, and dislocations (potentials) are accumulated, so that the wire can be hardened.

最後に、上記の工程とは別に、素材の伸線の変形率を増加させることで強度が向上することができる。素材の伸線の変形率は素材の延性と密接な関係にある。伸線加工時に素材に断線が発生しなければ、鋼材は容易に加工することができ、かつ線材の強度も好ましく改善される。   Finally, separately from the above steps, the strength can be improved by increasing the deformation rate of the wire drawing of the material. The deformation rate of the wire drawing of the material is closely related to the ductility of the material. If no breakage occurs in the material during wire drawing, the steel can be easily processed and the strength of the wire is also preferably improved.

しかし、上記方法は独立して作用するのではなく、互いに連関して線材の強度を変化させるものである。このため、上記方法は、それぞれの工程のパラメータを独立して制限し強度を向上させるのには限界がある。   However, the above methods do not work independently, but change the strength of the wire in conjunction with each other. For this reason, the said method has a limit in restricting the parameter of each process independently and improving intensity | strength.

また、線材の強度を向上させるために単純に合金元素を多量に添加すると、線材圧延後の線材製造工程において線材の延性が悪化し、断線が生ずるなどの問題が発生する。また、炭素の含有量が増加することによって強度は向上できるが、延性はむしろ減少するという問題が発生する。   In addition, if a large amount of alloying elements are simply added to improve the strength of the wire, the ductility of the wire deteriorates in the wire manufacturing process after the wire rolling, resulting in problems such as disconnection. Further, although the strength can be improved by increasing the carbon content, there arises a problem that the ductility is rather reduced.

本発明は従来技術の問題を解決することを意図するものであり、従って本発明の目的は、Cの含有量を適切に制御するとともにSi及びCrを複合添加することで、パーライト層状組織の微細化による高強度及び高延性を有する、伸線用線材を提供することにある。また、本発明の他の目的は、高強度及び高延性を有する、伸線用線材の製造方法を提供することにある。   The present invention is intended to solve the problems of the prior art. Accordingly, the object of the present invention is to appropriately control the C content and add Si and Cr in combination so that the fine structure of the pearlite layered structure can be obtained. An object of the present invention is to provide a wire rod for wire drawing having high strength and high ductility. Another object of the present invention is to provide a method for producing a wire rod for wire drawing having high strength and high ductility.

上記目的を達成するための手段として、本発明の強度と延性に優れた伸線用線材は、重量%で、C:0.87〜1.0%、Mn:0.1〜0.60%、Si:0.3〜1.0%、S:0.010%以下(0%を含まない)、P:0.011%以下(0%を含まない)、Cr:0.1〜0.5%、及びN:0.007%以下(0%を含まない)、並びに残部Fe及びその他の不可避な不純物を含み、上記Si、Crの含有量の合計(重量%)が次式、0.6≦Si+Cr≦1.2を満たし、前記線材はパーライト組織を含むことを特徴とする。   As a means for achieving the above object, the wire rod for wire drawing having excellent strength and ductility according to the present invention is, by weight, C: 0.87 to 1.0%, Mn: 0.1 to 0.60%. , Si: 0.3 to 1.0%, S: 0.010% or less (not including 0%), P: 0.011% or less (not including 0%), Cr: 0.1 to 0. 5% and N: not more than 0.007% (not including 0%), and the balance Fe and other inevitable impurities, and the total content (% by weight) of Si and Cr is represented by the following formula: 6 ≦ Si + Cr ≦ 1.2 is satisfied, and the wire includes a pearlite structure.

上記のように、本発明の例示的な態様は、Cの含有量を適切に制御するとともにSi及びCrを複合添加することで、高強度及び高延性を有する伸線用線材を提供することができる。また、本発明の別の例示的な態様は、高強度だけでなく、高延性を有する伸線用線材の製造方法を提供することができる。   As described above, the exemplary embodiment of the present invention can provide a wire rod for wire drawing having high strength and high ductility by appropriately controlling the C content and adding Si and Cr in combination. it can. Moreover, another exemplary aspect of the present invention can provide a method of manufacturing a wire rod for wire drawing having not only high strength but also high ductility.

Cの含有量による伸線用線材の引張強度及び断面減少率を示すグラフである。It is a graph which shows the tensile strength and cross-section reduction rate of the wire for wire drawing by content of C. 組成範囲による伸線用線材の引張強度及び断面減少率を示すグラフである。It is a graph which shows the tensile strength and cross-sectional reduction rate of the wire for wire drawing by a composition range.

従来の伸線用線材の強度を向上させるために、一般的に炭素を多量に添加されている。この事実から、本発明者は上記炭素の含有量と伸線用線材の強度との関係を鋭意検討して、次の結論に至った。   In order to improve the strength of a conventional wire rod, a large amount of carbon is generally added. From this fact, the present inventor diligently studied the relationship between the carbon content and the strength of the wire drawing wire, and reached the following conclusion.

一般的に炭素の含有量が亜共析領域から過共析領域に増加すると線材の強度も増加する。図1は炭素含有量による引張強度と断面減少率を示すグラフである。これを参考にすると、炭素の含有量が一定水準以上になると、強度の向上はそれ以上期待できず、断面減少率が減少して強度がそれ以上増加せず、むしろ減少する。   Generally, when the carbon content increases from the hypoeutectoid region to the hypereutectoid region, the strength of the wire also increases. FIG. 1 is a graph showing the tensile strength and the cross-sectional reduction rate depending on the carbon content. Referring to this, when the carbon content exceeds a certain level, no further improvement in strength can be expected, and the cross-sectional reduction rate decreases and the strength does not increase any more, but rather decreases.

したがって、炭素の含有量を増加し続けることなく、断面減少率を十分に確保可能な範囲で炭素の上限を制限する一方、他の合金元素、特にSi及びCrを複合添加すると、パーライトの層状組織が微細化され、伸線用線材の強度及び延性を確保することができるようになる。   Therefore, without limiting the carbon content, while limiting the upper limit of the carbon within a range that can sufficiently secure the cross-sectional reduction rate, while adding other alloy elements, particularly Si and Cr, a pearlite layered structure Thus, the strength and ductility of the wire rod for drawing can be ensured.

以下に、本発明の鋼成分の組成範囲を説明する。本願明細書の全体において、特に指定しない限り、用語「パーセント(%)」は、「重量%」を表す。   Below, the composition range of the steel component of this invention is demonstrated. Throughout this specification, unless otherwise specified, the term “percent (%)” refers to “wt%”.

炭素(C)の含有量:0.87〜1.0%
Cは、強度を確保するための核となる元素である。この場合、Cの含有量が1.0%を超過すると、鋼材の断面減少率(RA)が減少して結局は伸線加工による強度増加を期待できない一方、0.87%未満であると、目標の強度を確保することが困難である。このため、上記Cの含有量は0.87〜1.0%に制限することが好ましい。
Carbon (C) content: 0.87 to 1.0%
C is an element serving as a nucleus for ensuring strength. In this case, if the C content exceeds 1.0%, the cross-sectional area reduction rate (RA) of the steel material is reduced, and eventually an increase in strength due to wire drawing cannot be expected, whereas if it is less than 0.87%, It is difficult to ensure the target strength. For this reason, it is preferable to limit the C content to 0.87 to 1.0%.

マンガン(Mn)の含有量:0.1〜0.6%
Mnは、焼入れ性の増加に有効な元素であるが、激しい中心偏析を引き起こす。この場合、Mnの含有量が0.6%を超過すると、Mnは低温組織を誘発する可能性が非常に高い。一方、Mnの含有量が0.1%未満であると、添加の効果が十分に得られない。このため、上記Mnの含有量を0.1%〜0.6%に制限することが好ましい。
Manganese (Mn) content: 0.1-0.6%
Mn is an element effective for increasing hardenability, but causes severe central segregation. In this case, if the content of Mn exceeds 0.6%, Mn is very likely to induce a low temperature structure. On the other hand, when the Mn content is less than 0.1%, the effect of addition cannot be sufficiently obtained. For this reason, it is preferable to limit the content of Mn to 0.1% to 0.6%.

シリコン(Si)の含有量:0.3〜1.0%
Siは、Crとともに本発明において最も重要な元素である。Cは、添加量が増加すると強度が増加する働きがある一方、断面減少率は減少して結局は強度の上昇に限界を有することとなる。また、Cは過共析組成以上では、伸線中の主な割れ発生位置を提供する粗大な初析セメンタイトを析出させる働きがある。Siを添加すると、過共析組成範囲において初析セメンタイト生成を助長せず、固溶強化により強度を増加させる。
Silicon (Si) content: 0.3-1.0%
Si, together with Cr, is the most important element in the present invention. While C has a function of increasing the strength when the amount added is increased, the cross-sectional reduction rate is decreased, and eventually the strength is limited. Further, C has a function of precipitating coarse pro-eutectoid cementite that provides a main crack generation position during wire drawing at a hypereutectoid composition or more. When Si is added, the formation of pro-eutectoid cementite is not promoted in the hypereutectoid composition range, and the strength is increased by solid solution strengthening.

Siは、製鋼工程において脱酸剤として用いられるので鋼中に微量含まれている、Siの含有量が0.3%未満であると、強度及び延性増加に有効ではない。しかし、1.0%を超過すると、ラメラフェライトの延性を急激に減少させ伸線加工性を悪化させる。よって、上記Siの含有量は0.3〜1.0%に制限することが好ましい。   Since Si is used as a deoxidizing agent in the steelmaking process, if the Si content is less than 0.3% contained in a small amount in steel, it is not effective for increasing strength and ductility. However, if it exceeds 1.0%, the ductility of the lamellar ferrite is rapidly reduced and the wire drawing workability is deteriorated. Therefore, the Si content is preferably limited to 0.3 to 1.0%.

クロム(Cr)の含有量:0.1〜0.5%
上記Crは、Siとともに本発明において最も重要な元素である。Crは、パーライトの層状組織を微細化することで強度と延性を向上させる働きがある。Crの含有量が0.1%未満であると、層状組織の微細化が十分に得られず、Crの含有量が0.5%を超過すると、恒温変態速度を遅くして生産性を悪化させる。よって、上記Crの含有量は0.1〜0.5%に制限することが好ましい。
Chromium (Cr) content: 0.1-0.5%
The Cr is the most important element in the present invention together with Si. Cr has a function of improving strength and ductility by refining the layer structure of pearlite. If the Cr content is less than 0.1%, the layered structure cannot be sufficiently refined. If the Cr content exceeds 0.5%, the isothermal transformation rate is slowed and the productivity deteriorates. Let Therefore, the Cr content is preferably limited to 0.1 to 0.5%.

シリコン(Si)の含有量+クロム(Cr)の含有量:0.6〜1.2%
上記SiとCrは複合添加されることが効果的である。ここで、両元素の重量の合計が0.6〜1.2%であると、強度と延性がともに上昇するようになる。Si+Crの含有量が0.6%未満であると、強度の増加幅が小さいなる一方で、Si+Crの含有量が1.2%を超過すると、延性の減少を招く。このため、上記Si及びCrの含有量の合計は0.6〜1.2%に制限することが好ましい。
Content of silicon (Si) + content of chromium (Cr): 0.6 to 1.2%
It is effective to add Si and Cr in combination. Here, when the total weight of both elements is 0.6 to 1.2%, both strength and ductility are increased. If the Si + Cr content is less than 0.6%, the increase in strength is small, while if the Si + Cr content exceeds 1.2%, ductility is reduced. For this reason, it is preferable to limit the total content of Si and Cr to 0.6 to 1.2%.

S:0.010%以下(0%を含まない)、P:0.011%以下(0%を含まない)、N:0.007%以下(0%を含まない)
S、P、Nは、線材製造時に存在する不純物元素である。不純物が多量に存在すると素材の脆化を招き、伸線加工時に断線の原因となる。このため、不純物の含有量の上限を夫々0.010%、0.011%、0.007%に制限する。
S: 0.010% or less (not including 0%), P: 0.011% or less (not including 0%), N: 0.007% or less (not including 0%)
S, P, and N are impurity elements that exist during wire manufacturing. If a large amount of impurities are present, the material will become brittle and cause wire breakage during wire drawing. For this reason, the upper limit of the content of impurities is limited to 0.010%, 0.011%, and 0.007%, respectively.

また、上記組成範囲を満たす線材はNiをさらに含有することができる。Niはセメンタイトのスリップシステムを1つ追加して可動させることにより、伸線加工時にセメンタイトの塑性変形を増加させるため、線材の強度と延性が向上する。Niの含有量が0.3%未満の場合、Niを含有しない上記組成範囲を満たす線材と比べて強度と延性の大差がないため、0.3%以上を含有することが好ましい。一方、Niの含有量が1.0%を超過すると、高価のNiを添加することに対する強度及び延性の向上効果が明らかでなく、経済性が低いため、Niの含有量を0.3〜1.0%とすることがより好ましい。   Moreover, the wire which satisfy | fills the said composition range can further contain Ni. Since Ni increases the plastic deformation of cementite during wire drawing by adding one cementite slip system and moving it, the strength and ductility of the wire are improved. When the Ni content is less than 0.3%, since there is no great difference in strength and ductility compared to a wire material that does not contain Ni and satisfies the above composition range, it is preferable to contain 0.3% or more. On the other hand, if the Ni content exceeds 1.0%, the effect of improving the strength and ductility with respect to the addition of expensive Ni is not clear, and the economic efficiency is low. More preferably, it is made into 0.0%.

上記の成分に加えて、本発明の伸線用線材の例示的な一態様は、上記した成分以外の残部はFe及びその他の不可避な不純物を含む。   In addition to the above components, an exemplary embodiment of the wire rod of the present invention includes Fe and other inevitable impurities in the balance other than the above components.

上記のような組成範囲を有する線材の場合、その線材の引張強度は1300MPa以上で、断面減少率は30%以上となる。   In the case of the wire having the composition range as described above, the tensile strength of the wire is 1300 MPa or more, and the cross-sectional reduction rate is 30% or more.

以下に、本発明の線材の組織の例示的な一態様について説明する。   Below, the exemplary one aspect | mode of the structure | tissue of the wire rod of this invention is demonstrated.

上記の組成範囲を有する線材のパーライト組織の層状間隔は130nm以下となる。   The layer spacing of the pearlite structure of the wire having the above composition range is 130 nm or less.

線材をLP(Lead Patenting)熱処理した後はパーライト組織の層状間隔が50nm以下となる。パーライト組織の層状間隔が小さいほど線材の強度は高くなる。   After the wire is subjected to LP (Lead Patenting) heat treatment, the layer interval of the pearlite structure becomes 50 nm or less. The strength of the wire increases as the layer spacing of the pearlite structure decreases.

以下、本発明の伸線用線材の製造方法の例示的な一態様について説明する。   Hereinafter, an exemplary embodiment of the method for manufacturing a wire for wire drawing according to the present invention will be described.

重量%で、C:0.87〜1.0%、Mn:0.1〜0.60%、Si:0.3〜1.0%、S:0.010%以下(0%を含まない)、P:0.011%以下(0%を含まない)、Cr:0.1〜0.5%、及びN:0.007%以下(0%を含まない)、並びに残部Fe及びその他の不可避な不純物を含み、上記Si、Crの含有量の合計(重量%)が次式、0.6≦Si+Cr≦1.2(Si及びCrは当該元素の重量%を意味)を満たすことを特徴とする線材を均質化処理及び熱間圧延の温度確保のために1100〜1300℃に加熱し圧延後、微細で均質なパーライト組織を得るために10〜20℃/秒で冷却する。   By weight, C: 0.87 to 1.0%, Mn: 0.1 to 0.60%, Si: 0.3 to 1.0%, S: 0.010% or less (excluding 0%) ), P: 0.011% or less (not including 0%), Cr: 0.1 to 0.5%, and N: 0.007% or less (not including 0%), and the balance Fe and other Including inevitable impurities, the total content of Si and Cr (wt%) satisfies the following formula, 0.6 ≦ Si + Cr ≦ 1.2 (Si and Cr mean the wt% of the element) In order to secure a temperature for homogenization and hot rolling, the wire is heated to 1100 to 1300 ° C. After rolling, the wire is cooled at 10 to 20 ° C./second to obtain a fine and homogeneous pearlite structure.

以下、実施例を挙げて本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

表1のような組成範囲を有する鋼片を1100〜1300℃に加熱し圧延後、10〜20℃/秒で冷却して、線材を製造した。その後、製造した線材の引張強度(TS)、断面減少率(RA)、パーライト組織のラメラ層状間隔を測定した。   A steel slab having a composition range as shown in Table 1 was heated to 1100 to 1300 ° C., rolled, and then cooled at 10 to 20 ° C./second to produce a wire. Then, the tensile strength (TS) of the manufactured wire, cross-sectional reduction rate (RA), and the lamellar layer spacing of the pearlite structure were measured.

以下の表1に示すように、比較鋼1から6は線材の引張強度が1119〜1249MPaであり、断面減少率は、比較鋼1を除いて30%以下である。比較鋼1の場合は、Cの含有量が0.82重量%と低いため、高い断面減少率を示すが、強度は1119MPaと非常に低く、高強度鋼には適合しないことが分かる。   As shown in Table 1 below, in Comparative Steels 1 to 6, the tensile strength of the wire is 1119 to 1249 MPa, and the cross-sectional reduction rate is 30% or less except for Comparative Steel 1. In the case of the comparative steel 1, since the C content is as low as 0.82% by weight, it shows a high cross-sectional reduction rate, but the strength is very low as 1119 MPa, which indicates that it is not suitable for high strength steel.

これに対し、発明鋼1から5は強度が1300MPa以上であり、断面減少率も30%以上となっている。発明鋼1を比較鋼4と比べると、Siの含有量を増加させたところ、引張強度が121MPa増加し、断面減少率が6.6%増加したことが分かる。図2は、C:0.92重量%にCrとSiの添加による引張強度と断面減少率を示す。図2の一番右側の棒グラフは、発明鋼1の引張強度と断面減少率を示す。   On the other hand, invention steels 1 to 5 have a strength of 1300 MPa or more and a cross-sectional reduction rate of 30% or more. When the inventive steel 1 is compared with the comparative steel 4, it can be seen that when the Si content is increased, the tensile strength is increased by 121 MPa and the cross-sectional reduction rate is increased by 6.6%. FIG. 2 shows the tensile strength and the cross-sectional reduction rate by adding Cr and Si to C: 0.92% by weight. The rightmost bar graph in FIG. 2 shows the tensile strength and the cross-sectional reduction rate of Invention Steel 1.

発明鋼1から3は、Si含有量を増加させることによって、断面減少率を大きく減少させずとも強度が増加することが分かる。しかし、比較鋼7の場合には、Siを1.512重量%添加すると強度は増加するが、Cが1.0重量%を超過して添加され、断面減少率が19.3%と急激に減少するようになる。   Inventive steels 1 to 3 show that increasing the Si content increases the strength without greatly reducing the cross-sectional reduction rate. However, in the case of the comparative steel 7, the strength increases when Si is added by 1.512% by weight, but C is added by exceeding 1.0% by weight, and the cross-section reduction rate is abruptly 19.3%. It will decrease.

発明鋼4のようにCrを0.496重量%添加した場合も引張強度が1364MPaで、断面減少率が38.7%と優れた強度と延性を示している。また、SiとCrの含有量の合計が0.6〜1.2重量%の範囲において、引張強度が1300MPa以上で断面減少率が30%以上となっている。また、発明鋼5は、Niを0.5重量%添加する場合に優れた引張強度と断面減少率を有することが分かる。   Even when 0.496% by weight of Cr is added as in invention steel 4, the tensile strength is 1364 MPa and the cross-section reduction rate is 38.7%, indicating excellent strength and ductility. Further, when the total content of Si and Cr is in the range of 0.6 to 1.2% by weight, the tensile strength is 1300 MPa or more and the cross-sectional reduction rate is 30% or more. It can also be seen that Invention Steel 5 has excellent tensile strength and cross-sectional reduction rate when 0.5% by weight of Ni is added.

発明鋼の線材は、線材状態のパーライト組織のラメラ層状間隔が130nm以下であることを特徴としており、これに起因して優れた強度と断面減少率が得られることが分かる。   The wire of the invention steel is characterized in that the lamellar layer spacing of the pearlite structure in the wire state is 130 nm or less, and it can be seen that excellent strength and cross-sectional reduction rate can be obtained.

Figure 2011509345
Figure 2011509345

実施例1の方法により製造された線材(発明鋼1、比較鋼4及び比較鋼5)を1050℃でオーステナイト化した後、はんだ槽温度550℃でLP熱処理(lead−patented)して、鋼材を得た。その後、それぞれの鋼材の引張強度とラメラ層状間隔とを測定した。これらの結果を表2に示す。   The wire material manufactured by the method of Example 1 (Invention Steel 1, Comparative Steel 4 and Comparative Steel 5) was austenitized at 1050 ° C., and then subjected to LP heat treatment (lead-patented) at a solder bath temperature of 550 ° C. Obtained. Thereafter, the tensile strength and lamellar layer spacing of each steel material were measured. These results are shown in Table 2.

発明鋼1は比較鋼4に比べ、Siの増加によって引張強度が88MPa増加したことが分かる。また、発明鋼1は、炭素含有量がさらに高い比較鋼5に比べても優れた引張強度となっている。そして発明鋼1は、Si及びCrの複合添加によってLP熱処理後も優れた強度を示していた。この際、発明鋼1の層状間隔は26nmと、比較鋼の約半分であることが分かる。これは、Si元素添加時に共析温度を上昇させて過冷度を増加させ、核生成速度が増加したからである。   It can be seen that Invention Steel 1 has an increase in tensile strength of 88 MPa due to an increase in Si as compared with Comparative Steel 4. Inventive steel 1 has excellent tensile strength compared to comparative steel 5 having a higher carbon content. Inventive steel 1 showed excellent strength even after LP heat treatment due to the combined addition of Si and Cr. At this time, it can be seen that the laminar spacing of the inventive steel 1 is 26 nm, which is about half that of the comparative steel. This is because the eutectoid temperature was increased when the Si element was added, the degree of supercooling was increased, and the nucleation rate was increased.

Figure 2011509345
Figure 2011509345

実施例1及び実施例2の方法により製造された線材(発明鋼1、比較鋼4及び比較鋼5)を伸線加工して、鋼線を得た。その後、それぞれ鋼線の物性を測定した。結果を表3に示す。伸線加工は3.2%以上の同様の変形率で施し、最終鋼線直径は2.7mmであった。   The wire rods manufactured by the methods of Example 1 and Example 2 (Invention Steel 1, Comparative Steel 4 and Comparative Steel 5) were drawn to obtain a steel wire. Then, the physical property of each steel wire was measured. The results are shown in Table 3. The wire drawing was performed at a similar deformation rate of 3.2% or more, and the final steel wire diameter was 2.7 mm.

発明鋼1は、引張強度、撚り回数、疲労特性のいずれも、比較鋼4や比較鋼5より高い値を有する。   Invention steel 1 has values higher than those of comparative steel 4 and comparative steel 5 in terms of tensile strength, number of twists, and fatigue properties.

撚り回数は、優れた強度を維持しながらも鋼線の加工性または延性が良好であることを示す。ここで、発明鋼が比較鋼より優れた物性を有することが分かる。優れた延性は線材の伸線加工時に断線率を低減させ、層間剥離(delamination)を抑制する。   The number of twists indicates that the workability or ductility of the steel wire is good while maintaining excellent strength. Here, it can be seen that the inventive steel has better physical properties than the comparative steel. The excellent ductility reduces the disconnection rate during wire drawing of the wire and suppresses delamination.

また、疲労特性は、使用寿命が増加し耐久性が増加することを示す。ここで、発明鋼は、比較鋼の約2倍の疲労特性を有することが示された。よって、SiとCrの複合添加により、発明鋼1は、伸線加工後にも、強度だけでなく、優れた延性及び疲労特性を有することが分かる。   Fatigue properties also indicate increased service life and increased durability. Here, the inventive steel was shown to have about twice the fatigue properties of the comparative steel. Therefore, it can be seen that the invention steel 1 has not only strength but also excellent ductility and fatigue characteristics even after the wire drawing by the combined addition of Si and Cr.

Figure 2011509345
Figure 2011509345

Claims (7)

優れた強度と延性を有する伸線用線材であって、
重量%で、C:0.87〜1.0%、Mn:0.1〜0.60%、Si:0.3〜1.0%、S:0.010%以下(0%を含まない)、P:0.011%以下(0%を含まない)、Cr:0.1〜0.5%、及びN:0.007%以下(0%を含まない)、並びに残部Fe及びその他の不可避な不純物を含み、
前記Si、Cr含有量の合計(重量%)が次式、0.6≦Si+Cr≦1.2を満たし、
前記伸線用線材はパーライト組織を含む
ことを特徴とする、伸線用線材。
A wire rod for wire drawing having excellent strength and ductility,
By weight, C: 0.87 to 1.0%, Mn: 0.1 to 0.60%, Si: 0.3 to 1.0%, S: 0.010% or less (excluding 0%) ), P: 0.011% or less (not including 0%), Cr: 0.1 to 0.5%, and N: 0.007% or less (not including 0%), and the balance Fe and other Contains inevitable impurities,
The total content of Si and Cr (% by weight) satisfies the following formula, 0.6 ≦ Si + Cr ≦ 1.2,
The wire rod for wire drawing includes a pearlite structure.
0.3重量%以上のNiをさらに含むことを特徴とする、請求項1に記載の伸線用線材。   The wire rod for wire drawing according to claim 1, further comprising 0.3% by weight or more of Ni. 前記線材の引張強度が1300MPa以上であり、断面減少率が30%以上であることを特徴とする、請求項1に記載の伸線用線材。   The wire rod for wire drawing according to claim 1, wherein the wire rod has a tensile strength of 1300 MPa or more and a cross-sectional reduction rate of 30% or more. 前記線材のパーライト組織の層状間隔が130nm以下であることを特徴とする、請求項1に記載の強度と延性に優れた伸線用線材。   The wire rod for wire drawing excellent in strength and ductility according to claim 1, wherein a layer interval of a pearlite structure of the wire rod is 130 nm or less. 前記線材をLP(Lead Patenting)熱処理した後の、前記線材のパーライト組織の層状間隔が50nm以下であることを特徴とする、請求項1に記載の伸線用線材。   The wire rod for wire drawing according to claim 1, wherein a lamellar spacing of the pearlite structure of the wire rod is 50 nm or less after the wire rod is subjected to LP (Lead Patenting) heat treatment. 前記線材を伸線加工した後の、前記線材の撚り回数が50回以上であることを特徴とする、請求項1〜5のいずれか一項に記載の強度と延性に優れた伸線用線材。   The wire rod for wire drawing excellent in strength and ductility according to any one of claims 1 to 5, wherein the number of twists of the wire rod after drawing the wire rod is 50 or more. . 優れた強度と延性を有する伸線用線材の製造方法であって、
線材を1100〜1300℃に加熱するステップであって、前記線材は重量%で、C:0.87〜1.0%、Mn:0.1〜0.60%、Si:0.3〜1.0%、S:0.010%以下(0%を含まない)、P:0.011%以下(0%を含まない)、Cr:0.1〜0.5%、及びN:0.007%以下(0%を含まない)、並びに残部Fe及びその他の不可避な不純物を含み、前記Si、Cr含有量の合計(重量%)が次式、0.6≦Si+Cr≦1.2を満たすステップと、
加熱した線材を圧延するステップと、
前記加熱した線材を10〜20℃/秒の速度で冷却するステップ
とを含むことを特徴とする、伸線用線材の製造方法。
A method of manufacturing a wire for wire drawing having excellent strength and ductility,
It is a step of heating the wire to 1100-1300 ° C., wherein the wire is in% by weight, C: 0.87 to 1.0%, Mn: 0.1 to 0.60%, Si: 0.3 to 1 0.0%, S: 0.010% or less (excluding 0%), P: 0.011% or less (not including 0%), Cr: 0.1-0.5%, and N: 0.0. 007% or less (excluding 0%), and the balance including Fe and other inevitable impurities, the total of Si and Cr contents (% by weight) satisfies the following formula, 0.6 ≦ Si + Cr ≦ 1.2 Steps,
Rolling the heated wire;
A step of cooling the heated wire at a rate of 10 to 20 ° C./second.
JP2010540556A 2007-12-27 2008-11-12 Wire rod for wire drawing excellent in strength and ductility and manufacturing method thereof Pending JP2011509345A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070139434A KR100979006B1 (en) 2007-12-27 2007-12-27 Wire Rods Having Superior Strength And Ductility For Drawing And Method For Manufacturing The Same
PCT/KR2008/006660 WO2009084811A1 (en) 2007-12-27 2008-11-12 Wire rods having superior strength and ductility for drawing and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011509345A true JP2011509345A (en) 2011-03-24

Family

ID=40824498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010540556A Pending JP2011509345A (en) 2007-12-27 2008-11-12 Wire rod for wire drawing excellent in strength and ductility and manufacturing method thereof

Country Status (6)

Country Link
US (1) US20100263772A1 (en)
EP (1) EP2238271A4 (en)
JP (1) JP2011509345A (en)
KR (1) KR100979006B1 (en)
CN (1) CN101910440A (en)
WO (1) WO2009084811A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112703A (en) * 2017-12-26 2019-07-11 日本製鉄株式会社 Hot rolled wire
WO2020080415A1 (en) * 2018-10-16 2020-04-23 日本製鉄株式会社 Hot-rolled wire rod

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069409A (en) * 2006-09-14 2008-03-27 Bridgestone Corp High strength high carbon steel wire and producing method therefor
KR101309881B1 (en) * 2009-11-03 2013-09-17 주식회사 포스코 Wire Rod For Drawing With Excellent Drawability, Ultra High Strength Steel Wire And Manufacturing Method Of The Same
US20120318410A1 (en) * 2010-04-08 2012-12-20 Toshimi Tarui Strand for saw wire and manufacturing method thereof
EP2583792B1 (en) * 2010-06-15 2014-10-08 Nippon Steel & Sumitomo Metal Corporation Saw wire
JP5411820B2 (en) * 2010-09-06 2014-02-12 株式会社神戸製鋼所 Flux-cored welding wire and overlay welding arc welding method using the same
US20120128524A1 (en) * 2010-11-22 2012-05-24 Chun Young Soo Steel wire rod having excellent cold heading quality and hydrogen delayed fracture resistance, method of manufacturing the same, and mehod of manufacturing bolt using the same
KR101271956B1 (en) * 2011-06-28 2013-06-07 주식회사 포스코 High strength wire rod having excellent fatigue strength and method for manifacturing the same
KR101353649B1 (en) * 2011-12-23 2014-01-20 주식회사 포스코 Wire rod and steel wire having high corrosion resistance, method of manufacturing spring and steel wire for spring
KR101428174B1 (en) 2012-07-13 2014-08-07 주식회사 포스코 Steel wire having excellent torsion property and method for manufacturing thereof
KR101518602B1 (en) * 2013-10-29 2015-05-07 주식회사 포스코 Method for manufacturing high-strength drawn wire having excellent twist property
US10329646B2 (en) 2014-08-15 2019-06-25 Nippon Steel & Sumitomo Metal Corporation Steel wire for drawing
JP6416709B2 (en) * 2015-07-21 2018-10-31 新日鐵住金株式会社 High strength PC steel wire
KR101696095B1 (en) 2015-08-28 2017-01-13 주식회사 포스코 Method for manufacturing heat treated wire rod having excellent drawability
MX2018004711A (en) * 2015-10-23 2018-06-20 Nippon Steel & Sumitomo Metal Corp Steel wire for wire drawing.
KR101758477B1 (en) * 2015-12-11 2017-07-27 주식회사 포스코 High carbon stell wire rod and steel wire having excellent strength and corrosion resistance and method for manufacturing thereof
CN105568134A (en) * 2016-01-05 2016-05-11 江阴兴澄特种钢铁有限公司 Steel for carbon hub bearing of microalloying car and production method thereof
JP6762131B2 (en) * 2016-04-28 2020-09-30 株式会社神戸製鋼所 Flux-cored wire

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263951A (en) * 1988-12-28 1990-10-26 Nippon Steel Corp Manufacture of high strength high ductility steel wire rod and high strength high ductility extra thin steel wire
JPH06158223A (en) * 1992-11-24 1994-06-07 Nippon Steel Corp Low alloy steel wire rod for high strength extra fine wire excellent in wire drawability and production thereof
JPH06293938A (en) * 1993-04-08 1994-10-21 Nippon Steel Corp High strength extra fine steel wire excellent in stranding property and its production
KR0143499B1 (en) * 1994-12-21 1998-08-17 김만제 The manufacturing method of carbon steel wire-rod
JP2003183778A (en) * 2001-12-13 2003-07-03 Sumitomo Metal Ind Ltd Steel wire rod, steel wire, and manufacturing methods therefor
JP2005002413A (en) * 2003-06-12 2005-01-06 Sumitomo Metal Ind Ltd Steel wire rod, and method of producing steel wire
JP2007262496A (en) * 2006-03-28 2007-10-11 Nippon Steel Corp High-strength extra-fine steel wire superior in ductility

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240520A (en) * 1990-11-19 1993-08-31 Nippon Steel Corporation High strength, ultra fine steel wire having excellent workability in stranding and process and apparatus for producing the same
KR100256334B1 (en) * 1995-12-26 2000-05-15 이구택 The manufacturing method for wire rod with excellent wire drawing property
JPH11315349A (en) * 1998-04-30 1999-11-16 Kobe Steel Ltd High strength wire rod excellent in delayed fracture resistance, its production, and high strength bolt
JP4464511B2 (en) * 2000-02-08 2010-05-19 新日本製鐵株式会社 Method for producing high-strength ultrafine steel wire with excellent ductility and fatigue properties
JP3940270B2 (en) * 2000-04-07 2007-07-04 本田技研工業株式会社 Method for producing high-strength bolts with excellent delayed fracture resistance and relaxation resistance
JP3997867B2 (en) * 2002-09-04 2007-10-24 住友金属工業株式会社 Steel wire, method for producing the same, and method for producing steel wire using the steel wire
JP4088220B2 (en) 2002-09-26 2008-05-21 株式会社神戸製鋼所 Hot-rolled wire rod with excellent wire drawing workability that can omit heat treatment before wire drawing
US6949149B2 (en) * 2002-12-18 2005-09-27 The Goodyear Tire & Rubber Company High strength, high carbon steel wire
JP4374357B2 (en) * 2005-06-29 2009-12-02 新日本製鐵株式会社 High-strength wire rod excellent in wire drawing characteristics, manufacturing method thereof, and high-strength steel wire excellent in wire drawing properties

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263951A (en) * 1988-12-28 1990-10-26 Nippon Steel Corp Manufacture of high strength high ductility steel wire rod and high strength high ductility extra thin steel wire
JPH06158223A (en) * 1992-11-24 1994-06-07 Nippon Steel Corp Low alloy steel wire rod for high strength extra fine wire excellent in wire drawability and production thereof
JPH06293938A (en) * 1993-04-08 1994-10-21 Nippon Steel Corp High strength extra fine steel wire excellent in stranding property and its production
KR0143499B1 (en) * 1994-12-21 1998-08-17 김만제 The manufacturing method of carbon steel wire-rod
JP2003183778A (en) * 2001-12-13 2003-07-03 Sumitomo Metal Ind Ltd Steel wire rod, steel wire, and manufacturing methods therefor
JP2005002413A (en) * 2003-06-12 2005-01-06 Sumitomo Metal Ind Ltd Steel wire rod, and method of producing steel wire
JP2007262496A (en) * 2006-03-28 2007-10-11 Nippon Steel Corp High-strength extra-fine steel wire superior in ductility

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112703A (en) * 2017-12-26 2019-07-11 日本製鉄株式会社 Hot rolled wire
WO2020080415A1 (en) * 2018-10-16 2020-04-23 日本製鉄株式会社 Hot-rolled wire rod
CN112840044A (en) * 2018-10-16 2021-05-25 日本制铁株式会社 Hot-rolled wire
KR20210072067A (en) 2018-10-16 2021-06-16 닛폰세이테츠 가부시키가이샤 hot rolled wire rod
JPWO2020080415A1 (en) * 2018-10-16 2021-09-09 日本製鉄株式会社 Hot rolled wire
JP7063394B2 (en) 2018-10-16 2022-05-09 日本製鉄株式会社 Hot rolled wire
CN112840044B (en) * 2018-10-16 2022-11-22 日本制铁株式会社 Hot-rolled wire
KR102534998B1 (en) 2018-10-16 2023-05-26 닛폰세이테츠 가부시키가이샤 hot rolled wire rod

Also Published As

Publication number Publication date
US20100263772A1 (en) 2010-10-21
KR100979006B1 (en) 2010-08-30
KR20090071206A (en) 2009-07-01
EP2238271A4 (en) 2014-10-01
CN101910440A (en) 2010-12-08
EP2238271A1 (en) 2010-10-13
WO2009084811A1 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
JP2011509345A (en) Wire rod for wire drawing excellent in strength and ductility and manufacturing method thereof
JP4486516B2 (en) ERW steel pipe excellent in cold workability and hardenability and its manufacturing method
US10329646B2 (en) Steel wire for drawing
JP6626571B2 (en) Wire rod excellent in cold forgeability and its manufacturing method
US10597748B2 (en) Steel wire rod for wire drawing
JP2024060017A (en) Ultra-high strength spring wire rod, steel wire and manufacturing method thereof
JP5813888B2 (en) Spring wire and steel wire excellent in corrosion resistance, method for producing spring steel wire, and method for producing spring
US20140150934A1 (en) Wire rod having superior hydrogen delayed fracture resistance, method for manufacturing same, high strength bolt using same and method for manufacturing bolt
KR101318383B1 (en) Hot rolled steel sheet and methdo for manufacturing the same
KR102147701B1 (en) Manufacturing method of high carbon steel wire having excellent torsional characteristics and strength
KR101461717B1 (en) Steel wire rod and steel wire for ultra-high strength tirecord and method for manufacturing thereof
JP3975110B2 (en) Steel wire, manufacturing method thereof and spring
KR102030157B1 (en) Steel wire for spring with excellent fatigue properties, high carbon steel wire rod therefor and method for manufacturing thereof
KR101271978B1 (en) Hyper eutectoid wire rod having high strength and ductility and method for manufacturing the same
KR101518583B1 (en) High strength wire rod, steel wire having excellent drawability and manufacturing method thereof
JP7427764B2 (en) High-strength spring wire rod and steel wire and manufacturing method thereof
KR101328320B1 (en) Hyper eutectoid wire rod having high strength and method for manufacturing the same
KR101443445B1 (en) Non-heated type high strength hot-rolled steel sheet and method of manufacturing the same
KR102470032B1 (en) Manufacturing method for alloy steel having excellent strength and elongation
JP7018138B2 (en) Heat treatment curable high carbon steel sheet and its manufacturing method
JP5246036B2 (en) Manufacturing method of hot-rolled steel sheet
KR101665825B1 (en) Wire rod and steel wire having high strength and manufacturing method for the same
KR101403267B1 (en) High strength wire rod having execellent drawability and steel wire and method for manufacturing thereof
KR101461724B1 (en) High strength steel wire
KR101344563B1 (en) High carbon steel and method of manufacturing the high carbon steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140729

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140805

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20141003