JP2011501751A - 無機系ナノ粒子を水系媒質に分散させる生体適合性分散安定化剤 - Google Patents

無機系ナノ粒子を水系媒質に分散させる生体適合性分散安定化剤 Download PDF

Info

Publication number
JP2011501751A
JP2011501751A JP2010529855A JP2010529855A JP2011501751A JP 2011501751 A JP2011501751 A JP 2011501751A JP 2010529855 A JP2010529855 A JP 2010529855A JP 2010529855 A JP2010529855 A JP 2010529855A JP 2011501751 A JP2011501751 A JP 2011501751A
Authority
JP
Japan
Prior art keywords
och
biocompatible polymer
group
shell
chemical formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010529855A
Other languages
English (en)
Inventor
テーワン ヒョン
サンウク キム
ヒョン ビン ナ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajou University Industry Academic Cooperation Foundation
Original Assignee
Ajou University Industry Academic Cooperation Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajou University Industry Academic Cooperation Foundation filed Critical Ajou University Industry Academic Cooperation Foundation
Publication of JP2011501751A publication Critical patent/JP2011501751A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/22Amides of acids of phosphorus
    • C07F9/24Esteramides
    • C07F9/2404Esteramides the ester moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/2408Esteramides the ester moiety containing a substituent or a structure which is considered as characteristic of hydroxyalkyl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/22Amides of acids of phosphorus
    • C07F9/24Esteramides
    • C07F9/2454Esteramides the amide moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/2458Esteramides the amide moiety containing a substituent or a structure which is considered as characteristic of aliphatic amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Abstract

本発明は、無機系ナノ粒子を水系媒質に分散させるための分散安定化剤に関する。より詳しくは、本発明は、ポリエチレングリコール系生体適合性高分子を、離脱基を有するホスフィンオキシドと反応させ、無機系ナノ粒子の表面に親和性を持つホスホリル基部分、および水系媒質に親和性を持つポリエチレングリコールを含んでなる、生体適合性分散安定化剤に関する。

Description

本発明は、無機系ナノ粒子を水系媒質に分散させるための生体適合性分散安定化剤に関する。さらに詳しくは、本発明は、ポリエチレングリコール系生体適合性高分子を、離脱基を有するホスフィンオキシドと反応させ、無機系ナノ粒子の表面に親和性を持つホスホリル基部分、および水系媒質に親和性を持つポリエチレングリコールを含んでなる、生体適合性分散安定化剤に関する。
ナノ粒子は、ナノ−電子融合技術、生体撮像技術、医療分野などの多様な分野に応用されている。特に、超常磁性酸化鉄ナノ粒子は、例えば磁気共鳴画像(MRI)の造影剤、細胞水準の治療、発熱療法、薬物伝達、細胞分離、核酸分離などの様々な生命−医学分野で使われている。
ナノ粒子を生命医学分野に応用するための最も重要な要件は、一次的に高品質のナノ粒子が確保されなければならないこと、および生物学的媒質でナノ粒子が優れた分散度を示さなければならないとともに水系媒質内における分散安定性を持たなければならないことである。ここで、「高品質ナノ粒子」は、i)粒子サイズの均一性、ii)粒子サイズ調節の容易性、iii)粒子の結晶性、およびiv)粒子形状の調節可能性などによって把握することができる。
ところが、現在商用化されているナノ粒子の場合、大部分が水系での合成または気相での合成過程によって得られる。このような過程により得られたナノ粒子は、均一な粒子形状を保ち難く、結晶性が低下する場合が大部分である。均一なサイズのナノ粒子の製造が容易ではなく、そのサイズの調節も難しい。
最近、多くの研究者が従来の水系で合成していたナノ粒子に比べて比較的高品質、すなわち均一なサイズと結晶性を有する金属酸化物ナノ粒子を有機系で製造する新規方法を開発してきた。
このように有機溶媒内でナノ粒子を合成するとき、ナノ粒子の均一性とそのサイズの調節が合成過程中に有機添加剤による安定化過程によって行われる場合がある。結果として、ナノ粒子の表面状態は有機添加剤の疎水性部分に影響されるため、金属酸化物ナノ粒子は、疎水性有機溶媒には容易に分散するが、水には容易に分散せず、水に分散させた場合には分散状態が十分な安定性を示さない。
このような有機溶媒中で製造されたナノ粒子の表面の疎水性特性は、水における安定な分散を妨害することにより、生命−医学分野で使用するには問題がある。よって、このような応用分野に適用するために、ナノ粒子の表面を親水性に改質して水系媒質への均質な分散に適した状態に造るための生体適合性分散安定化剤の開発が要請されているうえ、このような生体適合性分散安定化剤の使用によって安定に分散状態が維持されるナノ粒子分散安定化剤の開発も要求されている。
無機系ナノ粒子を水系に分散させるための本発明に係る生体適合性分散安定化剤は、無機系ナノ粒子の表面を親水性に改質することにより、無機系ナノ粒子を水系に分散安定化させて生命−医学分野に応用可能にする分散安定化剤であり、これを用いて水系媒質で安定化された無機系ナノ粒子を提供することができる。
無機系ナノ粒子を水系に分散させるこのような本発明の生体適合性分散安定化剤によって分散安定化される無機系ナノ粒子は、量子ドット(Q−Dot)発光素子などのナノ−電子融合技術分野、磁気共鳴画像造影剤などの生体撮像分野、細胞水準の治療などの組織工学分野、発熱療法、薬物伝達などの生命−医学分野で応用できる。
無機系ナノ粒子を水系に分散させるための従来の技術に係る方法として、薄いシリカ層を用いてナノ粒子を水に分散させる方法が学会誌に最近発表されたことがある(非特許文献1)。この論文では、有機溶媒内で製造されたナノ粒子をポリオキシエチレンノニルフェニルエーテル(polyoxyethylene nonylphenyl ether)のシクロヘキサン溶液に導入、混合して微細ミセル乳化液滴を形成させた後、テトラエチルオルソシリケート(TEOS)のゾルゲル反応を誘導してナノ粒子をシリカ層で被覆させて水に分散させる。
前記文献では、ナノ粒子を水に分散させるために、ナノ粒子の外部に親水性を示すシリカ層をコートさせる過程を開示しており、ここで使用された微細エマルジョンを用いたシリカコーティング方法は、1回の工程で被覆させることが可能なナノ粒子の量が非常に少ないため、結果として1回の工程で製造することが可能なナノ粒子水系分散物の量が非常に少ないという問題点があった。
また、1回の工程で製造することが可能なナノ粒子分散物の量またはポリオキシエチレンノニルフェニルエーテルなどの量によって微細エマルジョンの条件が変化するため、必要とするシリカ層の厚さを微細に調節することが難しく、シリカ層の内部に含まれたナノ粒子の個数も変化するので、必要とする粒子の均一性を得ることが難しいという問題点もある。また、このような従来の技術は、シリカ層を介してナノ粒子を安定化させる場合、シリカ表面のシラン機能基が十分に安定な状態ではないため、互いに反応し、シリカで被覆されたままで水に分散しているナノ粒子が時間経過に伴って互いに結合して凝集するという問題点が発生し、長時間にわたっての分散物の保管安定性を確保することが難しいという問題点がある。
また、最近では、ポリエチレングリコールが末端に結合したデンドロンリガンドを用いてナノ粒子を水に分散させる方法が発表されたことがある(非特許文献2)。この方法は、ポリエチレングリコールが末端に結合しているデンドロンリガンドを合成することにより、疎水性溶媒に分散しているナノ粒子に共に混ぜた後、超音波を加えるリガンド交換法を数回行ってナノ粒子の表面にデンドロンリガンドを結合、安定化させた後、これを水に分散させる方法である。
前述した技術では、実施が比較的容易なリガンド交換法を使用したが、ポリエチレングリコールが末端に結合しているデンドロンリガンドの場合、合成方法が多段階の複雑な過程を経るうえ、収率が低くて少量のナノ粒子のみを水に分散させることができるという問題点があって、大規模の商業的生産工程への適用が難しいという問題点が依然として残っている。また、生体適合性高分子で被覆されて水系に安定化されている酸化鉄ナノ粒子が開示されている(特許文献1)。このように安定化された酸化鉄ナノ粒子は、デキストラン上で塩化鉄の還元によって製造されるものと説明されている。
この方法を使用する場合、比較的簡単な合成過程によって、生体適合性高分子で取り囲まれている酸化鉄ナノ粒子を製造することはできるが、そのナノ粒子サイズの分布が広範囲であり、酸化鉄の品質も低下するという欠点がある。また、酸化鉄粒子サイズの調節が容易ではなく、製造されたナノ粒子のサイズが数百ナノ範囲に該当するほど大きいという制限がある。
最近、ホスフィンオキシドとポリエチレングリコールからなる高分子を用いてナノ粒子を水に分散させる方法が米国化学会誌に発表された(非特許文献3)。ポリエチレングリコールを1,2−ビス(ジクロロホスフィノ)エタンと反応させ、ポリエチレングリコール同士が互いに連結された高分子を合成した後、これを、疎水性溶媒に分散しているナノ粒子とリガンド交換する方法を用いて、ナノ粒子を分散安定化させてこれを水に均一に分散させる方法が公開された。
この方法は、比較的簡単な製造方法を用いており、リガンド交換法を用いてナノ粒子を水に分散させるが、リン(P)原子が容易にホスホリル基に酸化するため、アルゴンまたは窒素を用いた不活性雰囲気状態で被覆用高分子を合成しなければならないという問題点がある。また、前記高分子が架橋されているため、DNA、RNA、モノクローナル抗体またはその他の機能性タンパク質などの生体内の機能性リガンドを結合させるための機能基の導入が容易ではないという問題点が依然として存在する。
米国特許第5,492,814号明細書(Ralph Weisslder 1996年)
Journal of Chemical Society, 2005, 127, 4990 Advanced Materials, 20005, 17, 1429 Journal of American Chemical Society, 2005, 127, 4556
したがって、本発明の目的は、従来の技術の問題点を克服するために、単純な工程によって無機系ナノ粒子の表面を親水性に改質させて水系媒質における分散を安定化させながら生命−医学分野に応用し得るように、生体内活性を有するリガンドを容易に導入させる分散安定化剤を提供することを基本的な目的とする。すなわち、本発明の目的は、不活性雰囲気ではない場合でも合成可能であり;生体適合性高分子間の架橋反応が起こらず;生体内活性リガンドと結合することが可能な機能基が導入された活性部位を有する、ホスホリル基を含む生体適合性分散安定化剤を提供する。
本発明の他の目的は、i)有機溶媒に生体適合性高分子を溶解させて生体適合性高分子有機溶液を製造する段階と、ii)前記i)段階で製造された生体適合性高分子有機溶液に、離脱基を有するホスフィンオキシドを添加して前記生体適合性高分子と結合させる段階と、iii)前記ii)段階のホスフィンオキシドと結合した生体適合性高分子の前記離脱基の位置に、機能性リガンドと結合することが可能な機能基を導入するために、機能基を含む化合物を反応させる段階とを含むことを特徴とする、ホスホリル基を含む生体適合性分散安定化剤の製造方法を提供することにある。
上記目的は、無機系ナノ粒子の表面を親水性に改質させて水系媒質に分散させるために、ポリエチレングリコール系生体適合性高分子とホルホリル基を含む、下記化学式(I)のホスフィンオキシドを提供することにより達成される。
化学式(I)
前記化学式(I)において、
およびXは(OCHCHOH、(OCH(CH)CO)OHまたは(OCHCO)OHであり、nは1〜50であり、XはOH、(OCHOH、(OCHCHOH、(NCHNH、(NCHCHNH)H、S(CHSHまたはNHCHCHCH(OCHCH34OCHCHCHNHであり、mは1〜5であり;または
は(OCHCHOH、(OCH(CH)CO)OHまたは(OCHCO)OHであり、nは1〜50であり、XはOH、(OCHOH、(OCHCHOH、(NCHNH、(NCHCHNH)H、S(CHSHまたはNHCHCHCH(OCHCH34OCHCHCHNHであり、mは1〜5であり、XはOHである。
本明細書において、生体適合性高分子とは、生体組織または血液と接触して組織を壊死させないあるいは血液を凝固させない組織適合性または抗凝血性を有する高分子物質をいう。
生体適合性高分子には、ポリウレタン、PVC、ポリカーボネート、ポリテトラフルオロエチレン、ポリプロピレン、シリコン、ポリメチルメタクリレート、ポリアミド、セルロース、ポリエステル、ポリ乳酸(PLA、polylactic acid)、ポリグリコール酸(PGA、polyglycolic acid)、PLGA(poly(lactic-co-glycolic acid)、超高分子量ポリエチレン(UHMWPE)およびポリエチレングリコールなどがある。
本発明では、生体適合性高分子物質としてポリエチレングリコール系高分子物質、ポリ乳酸またはポリグリコール酸を使用する。
また、本明細書において、離脱基とは、化学物質から分離される原子または原子団をいう。本発明において、離脱基はハロゲン、TsO、N 、NH、S、SiO、CHCOOなどから選択され、好ましくはハロゲンから選択され、最も好ましくはClである。
前述した本発明の他の目的は、i)有機溶媒に生体適合性高分子を溶解させて生体適合性高分子有機溶液を製造する段階と、ii)前記i)段階で製造された生体適合性高分子有機溶液に、離脱基を有するホスフィンオキシドを添加して前記生体適合性高分子と結合させることにより、下記化学式(II)の化合物を生成させる段階と、iii)前記ii)段階のホスフィンオキシドと結合した生体適合性高分子の前記離脱基の位置に、生体内活性を有するリガンドと結合することが可能な機能基を導入するために、前記機能基を含む化合物を反応させる段階とを含んでなる、ホルホリル基を含む前記化学式(I)の生体適合性分散安定化剤の製造方法を提供することにより達成される。
テトラヒドロフランなどの有機溶媒にポリエチレングリコールなどの生体適合性高分子を溶解させた後、前記溶液に、塩化ホスホリルのようにホスフィンオキシド基を含む化合物を添加して室温で反応させると、下記化学式(II)の化合物が生成される。
化学式(II)
前記ii)段階で生成された前記化学式(II)の化合物において、
およびYは(OCHCHOH、(OCH(CH)CO)OHまたは(OCHCO)OHであり、nは1〜50であり;または
は(OCHCHOH、(OCH(CH)CO)OHまたは(OCHCO)OHであり、nは1〜50であり、YはClである。
前記化学式(II)の化合物を含む溶液にDNA、RNAまたはモノクローナル抗体などの機能性リガンドを結合させることが可能な機能基を導入するために、1,2−エチレングリコール、1,3−プロピレングリコールなどのC1−5アルキルジオール(HO(CHOH、n=1〜5);ジエチレングリコール、トリエチレングリコールなどのC、C、C、CまたはC10エチレングリコール(H(OCHCHOH、n=1〜5);1,2−エチレンジアミン、1,3−プロピルジアミンなどのC1−5アルキルジアミン(HN(CHNH、n=1〜5);ジエチレンジアミン、トリエチレンジアミンなどのC、C、C、CまたはC10エチレンジアミン(HN(CHCHNH)H、n=1〜5);1,2−エチレンジチオール、1,3−プロピレンジチオールなどのC1−5アルキルジチオール(HS(CHSH、n=1〜5)などのチオール基化合物;またはビス(3−アミノプロピル)末端基を有するポリエチレングリコール(poly(ethylene glycol)bis(3-aminopropyl)terminated)などの多機能基生体適合性高分子よりなる群から選択される化合物を添加して反応させることにより、前記化学式(I)の化合物を製造する。
前記無機系ナノ粒子を水系媒質に分散安定化させるための本発明のポリエチレングリコール系生体適合性高分子とホスホリル基を含む生体適合性界面活性剤において、ポリエチレングリコール系生体適合性高分子の数平均分子量(M)は、好ましくは300〜20000である。
本発明のポリエチレングリコール系生体適合性高分子からなる、ホスホリル基を含む生体適合性分散安定化剤は、無機系ナノ粒子を水系媒質に分散させることにより安定化するのに使用できる。
本発明のホスホリル基を含む生体適合性分散安定化剤によって安定化される無機系ナノ粒子としては、マグネタイト(Fe)、磁赤鉄鉱(gamma−Fe)、CoFe、MnFe、Fe−Pt合金、Co−Pt合金、Co、CdSe、CdTe、CdSe/ZnSコア/シェル、CdSe/ZnSeコア/シェル、CdSe/CdSコア/シェル、CdTe/ZnSコア/シェル、CdTe/ZnSeコア/シェル、CdTe/CdSコア/シェル、CdTe/CdSeコア/シェル、ZnS、CdS、InAs、InP、InAs/InPコア/シェル、InAs/CdSeコア/シェル、Ins/ZnSコア/シェル、InAs/ZnSe コア/シェル、InP/CdSeコア/シェル、InP/ZnSコア/シェル、InP/ZnSeコア/シェル、Au、PdまたはPtなどの金属粒子よりなる群から選択されることが好ましい。
本発明の無機系ナノ粒子を水系媒質に分散させるための、ホスホリル基を含む生体適合性分散安定化剤の製造方法の第i)段階で使用される生体適合性高分子としては、ポリエチレングリコール(PEG、poly(ethylene glycol))、ポリ乳酸(PLA、poly(lactic acid))、ポリグリコール酸(PGA、poly(glycolic acid))などよりなる群から選択されることが好ましい。
本発明の無機系ナノ粒子を水系媒質に分散させるための、ホスホリル基を含む生体適合性分散安定化剤の製造方法の第ii)段階で使用されるホスフィンオキシドに結合した離脱基は、前述したとおりである。
本発明の別の目的は、本発明の方法によって製造された界面活性剤に機能基を導入するための添加物を反応させる段階をさらに含む、無機系ナノ粒子を水系媒質に分散させるための、ホスホリル基を含む生体適合性分散安定化剤の製造方法を提供することにより達成される。
本発明によれば、無機系ナノ粒子の表面を改質して水溶液内で安定に分散させる生体適合性分散安定化剤を合成することができる。こうして製造された生体適合性分散安定化剤は、無機系ナノ粒子を水溶液内で安定に分散させてQ−Dot発光素子などのナノ−電子融合技術分野、磁気共鳴画像造影剤などの生体撮像分野、細胞水準の治療などの組織工学分野、発熱療法、薬物伝達などの生命−医学分野に応用することができ、従来の技術によって製造された分散安定化剤により分散したナノ粒子に比べて優れた分散安定性を有する。
本発明のホスホリル基を含むポリエチレングリコール系分散安定化剤の製造過程を段階的に示す図である。 本発明に係る生体適合性分散安定化剤の使用により安定化されて水に分散した酸化鉄ナノ粒子(右)と、安定化される前に疎水性溶媒に分散していた酸化鉄ナノ粒子(左)とを比較した透過電子顕微鏡(transmission electron microscopy、TEM)写真である。 本発明に係る生体適合性分散安定化剤の使用により安定化されて水に分散した多様な無機系ナノ粒子の写真である。 本発明に係る生体適合性分散安定化剤の使用により安定化されて水に分散した高濃度の酸化鉄ナノ粒子が磁場によって配列されることを撮影した写真である。 酸化鉄ナノ粒子を、アミノ基を含む生体適合性分散安定化剤を用いて安定化させて水に分散させた後、ナノ粒子の表面に導入された機能基にフルオレセインイソチオシアネートを反応させ、緑色発光特性を示す光探測磁性ナノ粒子を製造して紫外線に晒すことにより、発光特性が現れる様子を撮影した写真である。 ホスフィンオキシド−ポリエチレングリコールで安定化されて水に分散したa)酸化コバルト(II)(CoO)、b)酸化ニッケル(II)(NiO)、c)酸化マンガン(II)(MnO)、およびd)二酸化チタン(TiO)ナノ粒子のTEM写真である。 図1の第1段階反応の反応物である(a)mPEG(メチル−ポリエチレングリコール、数平均分子量(M)は750)、およびその生成物である(b)前記化学式(II)の化合物に対するMALDI−TOF(Matrix assisted laser desorption ionization time-of-flight)を用いた質量分析データである。 図1の第2段階反応物として分子量(a)550、(b)750および(c)2000のmPEGを使用した場合の前記化学式(I)の化合物に対する31P NMR分析結果である。ここで、左はCDCl、右はDOをそれぞれ溶媒として使用した。 CDClを溶媒として使用した場合における、(a)POCl、(b)分子量2000のmPEGで反応した図1の第1段階生成物、(c)エチレンジアミンで反応した図1の第2段階生成物に対する31P NMR分析結果である。
以下、本発明の構成要素と技術的特徴を次の実施例によってさらに詳細に説明する。しかし、下記の実施例は本発明を詳細に説明するためのものに過ぎず、本発明の構成要素の技術的範囲は実施例に例示したものに限定されない。
本発明の方法によって製造された生体適合性分散安定化剤を用いて水に分散した酸化鉄ナノ粒子の透過電子顕微鏡(Transmission Electron Microscopy)の写真(右)、およびリガンド交換以前に疎水性溶媒に溶けている酸化鉄ナノ粒子の透過電子顕微鏡の写真(左)が図2に示されている。
図2を参照すると、本発明の方法で製造された生体適合性分散安定化剤を用いて水に分散した酸化鉄ナノ粒子と、リガンド交換以前に疎水性溶媒に溶けている酸化鉄ナノ粒子との形状およびサイズが同一であることが分かる。これはナノ粒子がリガンド交換後にも変わらないことを示す。
図3は、多様な無機系ナノ粒子が、本発明の方法で製造された生体適合性分散安定化剤を用いて水に安定に分散していることを示す。これにより、本発明の方法で製造された生体適合性分散安定化剤が疎水性有機溶媒に分散している多様なナノ粒子を水に安定に分散させることができ、その安定性も長らく維持されることが分かる。
図7は、図1の第1段階反応の反応物である(a)mPEG(メチル−ポリエチレングリコール、数平均分子量(M)は750)と、その生成物である(b)前記化学式(II)の化合物に対するMLADI−TOF(Matrix assisted laser desorption ionization time-of-flight)を用いた質量分析データである。前記データより、mPEGがそれぞれ1つ、2つおよび3つ結合しているPO−PEGが生成されることが分かる。本明細書において、PO−PEGとは、ホスフィンオキシドとPEGとが結合してなる化合物をいう。
図8は図1の第2段階反応物として分子量(a)550、(b)750および(c)2000のmPEGを使用した場合の前記化学式(I)の化合物に対する31P NMR分析結果である。ここで、左はCDCl、右はDOをそれぞれ溶媒として使用した。ここで、−10付近のピークは未反応ホスホリルオキシドのP−Cl結合によるものと判断される。
図9の(a)はPOClの固有ピークである。図9の(b)はmPEGがそれぞれ1つ、2つおよび3つ結合している生成物に関する3つのピーク、および−12付近の未反応P−Clによるピークである。図9の(c)は前記第2段階生成物に関するもので、中央に3つのピーク、9.8付近には新しいピークがそれぞれ現れるが、これは生成物のP−Nによるピークである。
本発明の離脱基を有するホスホリル基を含む生体適合性分散安定化剤の活用について説明するために、磁性ナノ粒子と緑色発光染料としてのフルオレセインイソチオシアネート(fluorescein isothiocyanate、FITC)を、ホスホリル基を含む生体的合成分散安定化剤で安定化された酸化鉄ナノ粒子に反応させて蛍光特性を試験した。
まず、ホスホリル基を含むポリエチレングリコール界面活性剤に1,2−エチレンジアミンを反応させてアミノ基を導入し、アミノ基を有するポリエチレングリコール界面活性剤を合成した。酸化鉄ナノ粒子を前記界面活性剤で処理し、安定化させて水に分散させた。ナノ粒子の表面に導入されたアミノ基にFITC染料を反応させることにより、緑色発光特性を示す光探測磁性ナノ粒子を製造した。図5はこうして製造された緑色発光特性を示す光探測磁性ナノ粒子を紫外線に曝し、発光特性が現れる様子を撮影した写真である。
[実施例1]
ホスホリル基を含むポリエチレングリコール系分散安定化剤の合成
分子量2000のポリエチレングリコールメチルエーテル(mPEG)10gを20mLのテトラヒドロフラン(THF)溶媒に溶かし、これに塩化ホスホリル0.16mLを添加して室温で攪拌した。12時間攪拌した後、THFを蒸発させ、100℃の真空下でこれを12時間維持した後、真空を解除して室温に戻した。
[実施例2]
アミノ基とホスホリル基を含むポリエチレングリコール系分散安定化剤の合成
分子量2000のポリエチレングリコールメチルエーテル(mPEG)6.7gを20mLのテトラヒドロフラン(THF)溶媒に溶かし、これに塩化ホスホリル0.16mLを添加して室温で攪拌した。12時間攪拌の後、THFを蒸発させ、100℃の真空下でこれを維持した後、真空を解除し、室温で20mLのTHFを添加した。ここに1,2−エチレンジアミン0.3mL〜1.0mLを添加して室温で12時間攪拌した。12時間攪拌の後、THFを蒸発させ、100℃の真空下でこれを12時間維持した後、真空を解除し、室温に戻した。
[実施例3]
ホスホリル基を含むポリエチレングリコール系分散安定化剤で安定化させた磁性酸化鉄ナノ粒子の合成
有機溶媒中で合成し、オレイン酸で安定化させた磁性ナノ粒子(Fe)500mgを10mLのTHFに分散させ、0.2〜1gのホスホリル基を含むポリエチレングリコール系分散安定化剤を5mLのTHFに溶かして添加した。THFを蒸発させ、150℃の真空下で1時間維持した後、真空を解除し、室温に戻した。結果物に10mLの蒸留水を添加した後、分散した結果物を200nmの注射器フィルターで濾過した。
[実施例4]
ホスホリル基を含むポリエチレングリコール系分散安定化剤で安定化させた光触媒チタン酸化物ナノ粒子の合成
実施例3と同様の方法により、有機溶媒で合成した10mgの光触媒チタン酸化物ナノ粒子を、ホスホリル基を含むポリエチレングリコール系分散安定化剤で安定化させて水に分散させた。
[実施例5]
ホスホリル基を含むポリエチレングリコール系分散安定化剤で安定化させたマンガン酸化物ナノ粒子の合成
実施例3と同様の方法により、有機溶媒で合成した10mgのマンガンナノ粒子を、ホスホリル基を含むポリエチレングリコール系分散安定化剤で安定化させて水に分散させた。

Claims (15)

  1. 下記化学式(I)のホスフィンオキシド:
    化学式(I)
    前記化学式(I)において、
    およびXは(OCHCHOH、(OCH(CH)CO)OHまたは(OCHCO)OHであり、nは1〜50であり、XはOH、(OCHOH、(OCHCHOH、(NCHNH、(NCHCHNH)H、S(CHSHまたはNHCHCHCH(OCHCH34OCHCHCHNHであり、mは1〜5であり;または
    は(OCHCHOH、(OCH(CH)CO)OHまたは(OCHCO)OHであり、nは1〜50であり、XはOH、(OCHOH、(OCHCHOH、(NCHNH、(NCHCHNH)H、S(CHSHまたはNHCHCHCH(OCHCH34OCHCHCHNHであり、mは1〜5であり、XはOHである。
  2. i)有機溶媒に生体適合性高分子を溶解させて生体適合性高分子有機溶液を製造する段階と、
    ii)前記i)段階で製造された生体適合性高分子有機溶液に、離脱基を有するホスフィンオキシドを添加して前記生体適合性高分子と結合させる段階と、
    iii)前記ii)段階のホスフィンオキシドと結合した生体適合性高分子の前記離脱基の位置に、生体内活性を有するリガンドと結合することが可能な機能基を導入するために、前記機能基を含む化合物を反応させる段階とを含んでなることを特徴とする、前記化学式(I)の化合物の製造方法。
  3. 前記生体適合性高分子が、ポリエチレングリコール(poly(ethylene glycol))、ポリ乳酸(poly(lactic acid))およびポリグリコール酸(poly(glycolic acid))よりなる群から選ばれることを特徴とする、請求項2に記載の前記化学式(I)の化合物の製造方法。
  4. 前記離脱基が、ハロゲン、TsO、N 、NH、S、SiOおよびCHCOOよりなる群から選ばれることを特徴とする、請求項2に記載の前記化学式(I)の化合物の製造方法。
  5. 前記機能基を含む化合物が、C1−5アルキルジオール(HO(CHOH、n=1〜5);C、C、C、CおよびC10エチレングリコール(H(OCHCHOH、n=1〜5);C1-5アルキルジアミン(HN(CHNH、n=1〜5);C、C、C、CおよびC10エチレンジアミン(HN(CHCHNH)H、n=1〜5);C1−5アルキルジチオール(HS(CHSH、n=1〜5);およびビス(3−アミノプロピル)末端基を有するポリエチレングリコールよりなる群から選ばれることを特徴とする、請求項2に記載の前記化学式(I)の化合物の製造方法。
  6. 下記化学式(I)のホスフィンオキシドを含む無機系ナノ粒子を水系媒質に分散させるための分散安定化剤:
    化学式(I)
    前記化学式(I)において、X、XおよびXは請求項1で定義したものと同一である。
  7. 前記無機系ナノ粒子が、マグネタイト(Fe)、磁赤鉄鉱(gamma−Fe)、CoFe、MnFe、Fe−Pt合金、Co−Pt合金、Co、CdSe、CdTe、CdSe/ZnSコア/シェル、CdSe/ZnSeコア/シェル、CdSe/CdSコア/シェル、CdTe/ZnSコア/シェル、CdTe/ZnSeコア/シェル、CdTe/CdSコア/シェル、CdTe/CdSeコア/シェル、ZnS、CdS、InAs、InP、InAs/InPコア/シェル、InAs/CdSeコア/シェル、InAs/ZnSコア/シェル、InAs/ZnSe コア/シェル、InP/CdSeコア/シェル、InP/ZnSコア/シェル、InP/ZnSeコア/シェル、Au、PdまたはPtよりなる群から選択されることを特徴とする、請求項6に記載の分散安定化剤。
  8. i)有機溶媒に生体適合性高分子を溶解させて生体適合性高分子有機溶液を製造する段階と、
    ii)前記i)段階で製造された生体適合性高分子有機溶液に、離脱基を有するホスフィンオキシドを添加し、前記生体適合性高分子と結合させる段階と、
    iii)前記ii)段階のホスフィンオキシドと結合した生体適合性高分子の前記離脱基の位置に、生体内活性を有するリガンドに結合することが可能な機能基を導入するために、前記機能基を含む化合物を反応させる段階とを含んでなることを特徴とする、前記化学式(I)の分散安定化剤の製造方法。
  9. 前記生体適合性高分子が、ポリエチレングリコール(PEG)、ポリ乳酸(PLA)、およびポリグリコール酸(PLGA)よりなる群から選ばれることを特徴とする、請求項8に記載の前記化学式(I)の分散安定化剤の製造方法。
  10. 前記離脱基が、ハロゲン、TsO、N 、NH、S、SiOおよびCHCOOよりなる群から選ばれることを特徴とする、請求項8に記載の前記化学式(I)の分散安定化剤の製造方法。
  11. 前記添加物が、C1−5アルキルジオール(HO(CHOH、n=1〜5);C、C、C、C8-およびC10エチレングリコール(H(OCHCHOH、n=1〜5);C1−5アルキルジアミン(HN(CHNH、n=1〜5);C、C、C、CおよびC10エチレンジアミン(HN(CHCHNH)H、n=1〜5);C1−5アルキルジチオール(HS(CHSH、n=1〜5)、およびビス(3−アミノプロピル)末端基を有するポリエチレングリコールよりなる群から選ばれることを特徴とする、請求項8に記載の前記化学式(I)の分散安定化剤の製造方法。
  12. 下記化学式(II)のホスフィンオキシド:
    化学式(II)
    前記化学式(II)において、
    およびYは(OCHCHOH、(OCH(CH)CO)OHまたは(OCHCO)OHであり、nは1〜50であり;または
    は(OCHCHOH、(OCH(CH)CO)OHまたは(OCHCO)OHであり、nは1〜50であり、YはClである。
  13. i)有機溶媒に生体適合性高分子を溶解させて生体適合性高分子有機溶液を製造する段階と、
    ii)前記i)段階で製造された生体適合性高分子有機溶液に、離脱基を有するホスフィンオキシドを添加して前記生体適合性高分子と結合させる段階とを含んでなることを特徴とする、前記化学式(II)の化合物の製造方法。
  14. 前記生体適合性高分子が、ポリエチレングリコール(PEG)、ポリ乳酸(PLA)、およびポリグリコール酸(PLGA)よりなる群から選ばれることを特徴とする、請求項13に記載の前記化学式(II)の化合物の製造方法。
  15. 前記離脱基が、ハロゲン、TsO、N 、NH、S、SiOおよびCHCOOよりなる群から選ばれることを特徴とする、請求項13に記載の前記化学式(II)の化合物の製造方法。
JP2010529855A 2007-10-15 2008-10-15 無機系ナノ粒子を水系媒質に分散させる生体適合性分散安定化剤 Withdrawn JP2011501751A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070103783A KR20090038337A (ko) 2007-10-15 2007-10-15 무기계 나노입자를 수계 매질에 분산시키는 생체적합성분산 안정화제
PCT/KR2008/006063 WO2009051392A2 (en) 2007-10-15 2008-10-15 Biocompatible suspension stabilizer for dispersing inorganic nanoparticles into aqueous solution

Publications (1)

Publication Number Publication Date
JP2011501751A true JP2011501751A (ja) 2011-01-13

Family

ID=40567945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010529855A Withdrawn JP2011501751A (ja) 2007-10-15 2008-10-15 無機系ナノ粒子を水系媒質に分散させる生体適合性分散安定化剤

Country Status (5)

Country Link
US (1) US20100228045A1 (ja)
EP (1) EP2205613A4 (ja)
JP (1) JP2011501751A (ja)
KR (1) KR20090038337A (ja)
WO (1) WO2009051392A2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020044365A (ja) * 2012-05-15 2020-03-26 パルス セラピューティクス インコーポレイテッド 磁性粒子の操作のための磁気ベースのシステムと方法
US11612655B2 (en) 2009-11-02 2023-03-28 Pulse Therapeutics, Inc. Magnetic particle control and visualization
US11918315B2 (en) 2018-05-03 2024-03-05 Pulse Therapeutics, Inc. Determination of structure and traversal of occlusions using magnetic particles

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2277544A1 (en) * 2009-07-08 2011-01-26 Nelica Ciobanu Biocompatible magnetic nano-clusters containing iron oxide respectively iron oxide - boron with primary use in magnetic drug targeting and boron neutron capture therapy
GB2472446A (en) * 2009-08-07 2011-02-09 Ct Fuer Angewandte Nanotechnologie Metal oxide particles coated with polyethylene glycol and their synthesis
US9205155B2 (en) * 2009-10-30 2015-12-08 General Electric Company Treating water insoluble nanoparticles with hydrophilic alpha-hydroxyphosphonic acid conjugates, the so modified nanoparticles and their use as contrast agents
US8889103B2 (en) 2010-12-15 2014-11-18 General Electric Company Diagnostic agent composition and associated methods thereof
CA2819795A1 (en) * 2010-12-15 2012-06-21 General Electric Company Nanoparticle composition and associated methods thereof
US8895068B2 (en) 2010-12-15 2014-11-25 General Electric Company Nanoparticle composition and associated methods thereof
KR101456333B1 (ko) * 2012-06-26 2014-11-03 연세대학교 산학협력단 요오드와 고분자를 포함하는 리간드 화합물, 이 화합물을 포함하는 나노입자 복합체, 및 이 복합체를 포함하는 조영제
CN103071806B (zh) * 2012-12-18 2015-05-13 上海纳米技术及应用国家工程研究中心有限公司 一种水溶性纳米粒子的制备方法
CN109163739B (zh) * 2018-08-20 2020-06-09 河南工业大学 一种制备磁光玻璃基单层磁等离激元太赫兹传感薄膜的方法
CN111991563A (zh) * 2020-09-03 2020-11-27 西北师范大学 pH响应型纳米药物递送***及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57125259A (en) * 1981-01-27 1982-08-04 Katsuta Kako Kk Stabilized halogen-containing resin composition
JPS6438286A (en) * 1987-08-03 1989-02-08 Toyo Boseki Optical recording medium
JPH01238991A (ja) * 1988-03-18 1989-09-25 Ricoh Co Ltd 光情報記録媒体
US5322883A (en) * 1992-09-24 1994-06-21 Basf Corporation Thermoplastic polyester with reduced flammability
CA2242647A1 (en) * 1996-01-10 1997-07-17 Amersham Health As Contrast media
US5855868A (en) * 1996-04-01 1999-01-05 Nycomed Imaging As Method of T1 -weighted resonance imaging of RES organs
JPH11315418A (ja) * 1998-04-30 1999-11-16 Nippon Ester Co Ltd 抗ピリング繊維用ポリエステルの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11612655B2 (en) 2009-11-02 2023-03-28 Pulse Therapeutics, Inc. Magnetic particle control and visualization
JP2020044365A (ja) * 2012-05-15 2020-03-26 パルス セラピューティクス インコーポレイテッド 磁性粒子の操作のための磁気ベースのシステムと方法
JP7037536B2 (ja) 2012-05-15 2022-03-16 パルス セラピューティクス インコーポレイテッド 磁性粒子の操作のための磁気ベースのシステムと方法
US11918315B2 (en) 2018-05-03 2024-03-05 Pulse Therapeutics, Inc. Determination of structure and traversal of occlusions using magnetic particles

Also Published As

Publication number Publication date
KR20090038337A (ko) 2009-04-20
WO2009051392A2 (en) 2009-04-23
EP2205613A4 (en) 2012-09-12
WO2009051392A3 (en) 2009-07-02
US20100228045A1 (en) 2010-09-09
EP2205613A2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP2011501751A (ja) 無機系ナノ粒子を水系媒質に分散させる生体適合性分散安定化剤
JP5569837B2 (ja) 表面被覆無機物粒子の製造方法
US8287952B2 (en) Colloidal core-shell assemblies and methods of preparation
JP5766808B2 (ja) ナノ粒子を水性媒質に分散させるための、イガイ類接着タンパク質模倣型ポリマーを用いた生体適合性分散安定化剤
Boyer et al. The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications
Bloemen et al. Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications
Yang et al. One-step hydrothermal synthesis of highly water-soluble secondary structural Fe3O4 nanoparticles
US8871310B2 (en) Surface-modified tantalum oxide nanoparticles, preparation method thereof, and contrast medium for X-ray computed tomography and highly dielectric thin film using same
Kaup et al. Dendroids, discrete covalently cross-linked dendrimer superstructures
US9549996B2 (en) Matrix incorporated fluorescent porous and non-porous silica particles for medical imaging
CN109825294B (zh) 一种锰掺杂型二硫化钼量子点由下而上一步水热制备法
Chang et al. Silica nanoparticles
Yao et al. Synthesis and self‐assembly of multiple‐responsive magnetic nanogels
KR20090085435A (ko) 나노 복합체 입자 및 그의 제조방법
CN111599588B (zh) 一种中心-径向填充型复合超顺磁微球及其制备方法与应用
KR101136190B1 (ko) 생체 적합 고분자가 코팅된 상자성 나노입자 및 그 제조방법
Jaskolska et al. Competition-Driven Ligand Exchange for Functionalizing Nanoparticles and Nanoparticle Clusters without Colloidal Destabilization
Rosu Silica Polypeptide-Based Colloids: Physical Properties and Novel Materials
Thong-On et al. Controlled nanoclustering of magnetic nanoparticles using telechelic polysiloxane and disiloxane
Wang Surface Functionalization and DNA-Mediated Colloidal Crystal Engineering of Metal-Organic Framework Nanoparticles
Weir Development of microwave synthetic routes to silica and gadolinium oxide nanoparticles for potential bio-imaging applications
Xie Synthesis, modification, and bioapplications of magnetic nanoparticles
Rondolo Novel methods in the synthesis of iron oxide nanoparticle/polymer conjugates for potential biomedical applications
Grancharov Study of magnetic nanoparticles and overcoatings for biological applications including a sensor device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120110