JP2011258699A - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
JP2011258699A
JP2011258699A JP2010131115A JP2010131115A JP2011258699A JP 2011258699 A JP2011258699 A JP 2011258699A JP 2010131115 A JP2010131115 A JP 2010131115A JP 2010131115 A JP2010131115 A JP 2010131115A JP 2011258699 A JP2011258699 A JP 2011258699A
Authority
JP
Japan
Prior art keywords
air
flow path
cooling
partition wall
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010131115A
Other languages
Japanese (ja)
Inventor
Takeshi Nakajima
中島  剛
Makoto Nakagawa
誠 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Nichicon Corp
Original Assignee
Nissan Motor Co Ltd
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Nichicon Corp filed Critical Nissan Motor Co Ltd
Priority to JP2010131115A priority Critical patent/JP2011258699A/en
Publication of JP2011258699A publication Critical patent/JP2011258699A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance cooling performance by reducing reduction margin of a medium surface in a cooling medium passage by air locally accumulated at the upper part of the cooling medium passage as much as possible.SOLUTION: The air 79, which is generated when cooling liquid flows through the passage 3 in the cooling device 1, enters from an air inlet part 59 provided at the uppermost part of the passage 3 into an air circulation passage 29 and stays therein. The passage 3 is formed between a cooling device body 5 and a lid body 7 and an extension part 25 corresponding to the air circulation passage 29 is provided at the top end of a swollen part 19 formed at the lid body 7, thereby enlarging a cross sectional area of the air circulation passage 29 where the air 79 stays.

Description

本発明は、冷却媒体流路を備える冷却装置に関する。   The present invention relates to a cooling device including a cooling medium flow path.

従来から、電気自動車の充電器や内燃機関の排気循環装置などに冷却装置が設けられている(例えば、下記特許文献1参照)。   Conventionally, a cooling device is provided in a charger of an electric vehicle, an exhaust circulation device of an internal combustion engine, or the like (see, for example, Patent Document 1 below).

この特許文献1に記載された排気冷却器は、外形が円筒状に形成されており、水平方向に延設された複数の伝熱管をクーラケース内に収容すると共に、前記伝熱管を網目状の仕切板を介して保持し、該クーラケースの上端部にエア抜き口を設けている。   The exhaust cooler described in Patent Document 1 has a cylindrical outer shape, and accommodates a plurality of heat transfer tubes extending in a horizontal direction in a cooler case, and the heat transfer tubes are mesh-shaped. An air vent is provided at the upper end of the cooler case.

そして、前記伝熱管内の流路には高温の排気が流通し、クーラケース内には冷却水が流通する。これによって、排気の熱が伝熱管を介して冷却水に移動して、排気を冷却すると共に、前記エア抜き口を通してエア抜きを行う。   And high temperature exhaust gas distribute | circulates the flow path in the said heat exchanger tube, and a cooling water distribute | circulates in a cooler case. As a result, the heat of the exhaust moves to the cooling water through the heat transfer tube, cools the exhaust, and vents air through the air vent.

特開2000−274990号公報JP 2000-274990 A

しかしながら、水平方向の大きさを小さくするために冷却装置を扁平状にして縦置きに配置すると、冷却水中に混入したエアが流路最上部に局所的に溜まることになり、該溜まったエアによって流路内の水面が押し下げられて下がり、水面が下がる分冷却性能が低下することになる。   However, if the cooling device is flattened and placed vertically in order to reduce the size in the horizontal direction, air mixed in the cooling water will locally accumulate at the top of the flow path, and the accumulated air The water surface in the flow path is pushed down and lowered, and the cooling performance is lowered as the water surface is lowered.

そこで、本発明は、冷却媒体流路の上部に局所的に溜まるエアによる冷却媒体流路内の媒体面の低下代を極力小さくして冷却性能を高めることを目的としている。   Therefore, an object of the present invention is to improve the cooling performance by minimizing the margin of reduction of the medium surface in the cooling medium flow path due to air locally accumulated in the upper part of the cooling medium flow path.

本発明は、冷却媒体流路の上部に設けたエア抜き部は、冷却媒体流路の上部に連通するエア入口部に対し、該エア入口部より上方の通路断面積を大きくしたことを特徴とする。   The present invention is characterized in that the air vent provided in the upper part of the cooling medium flow path has a larger passage cross-sectional area above the air inlet part than the air inlet part communicating with the upper part of the cooling medium flow path. To do.

本発明によれば、冷却媒体流路の上部に設けたエア抜き部に局所的に溜まるエアは、エア入口部より通路断面積を大きくしたエア入口部の上方に入り込むことで、エアがより上方に移動し、溜まったエアの下面がより上方に位置することになり、その結果エアによって押し下げられる冷媒面の低下代を極力小さくして冷却性能を高めることができる。   According to the present invention, the air locally accumulated in the air vent provided in the upper part of the cooling medium flow path enters above the air inlet having a passage cross-sectional area larger than that of the air inlet so that the air is further upward. Thus, the lower surface of the accumulated air is positioned higher, and as a result, the cooling margin of the refrigerant surface pushed down by the air can be reduced as much as possible to improve the cooling performance.

本発明の実施形態に係る冷却装置を示す分解斜視図である。It is a disassembled perspective view which shows the cooling device which concerns on embodiment of this invention. 図1の冷却装置本体を示す拡大斜視図である。It is an expansion perspective view which shows the cooling device main body of FIG. 図2の冷却装置本体の正面図である。It is a front view of the cooling device main body of FIG. 図3のA−A線による断面図である。It is sectional drawing by the AA line of FIG. 図3のB−B線による断面図である。It is sectional drawing by the BB line of FIG. 図3のC−C線による断面図である。It is sectional drawing by CC line of FIG. (a)は本発明の実施形態に係るエア流通路に水泡が溜まったときの水面高さを示す断面図であって図6に対応しており、(b)は比較例に係るエア流通路に水泡が溜まったときの水面高さを示す断面図であって(a)に対応している。(A) is sectional drawing which shows the water surface height when a water bubble accumulates in the air flow path which concerns on embodiment of this invention, and respond | corresponds to FIG. 6, (b) is the air flow path which concerns on a comparative example. It is sectional drawing which shows the water surface height when a water bubble accumulates, and it corresponds to (a). 本発明の実施形態に係る冷却装置に、冷却させる対象物である被冷却物を当接させた状態を示す正面図である。It is a front view which shows the state which made the to-be-cooled object which is the target object cooled contact the cooling device which concerns on embodiment of this invention.

以下、本発明の実施形態を図面と共に詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の実施形態に係る冷却装置1を示す分解斜視図、図2は図1の冷却装置1の冷却装置本体5を示す拡大斜視図、および、図3は図2の冷却装置本体5の正面図である。   1 is an exploded perspective view showing a cooling device 1 according to an embodiment of the present invention, FIG. 2 is an enlarged perspective view showing a cooling device body 5 of the cooling device 1 of FIG. 1, and FIG. 3 is a cooling device body of FIG. 5 is a front view of FIG.

図1に示すように、本実施形態に係る冷却装置1は、冷却媒体である冷却液(例えば水)が流通する冷却媒体流路としての流路3を設けた冷却装置本体5と、該冷却装置本体5を封鎖するように冷却装置本体5に取り付ける蓋体7と、を備え、上下方向に沿って配置している。これらの冷却装置本体5および蓋体7は、正面視で略矩形状に形成してある。冷却装置本体5の外周縁部に形成した取付孔9に、蓋体7の外周縁に形成した貫通孔11を対応させて配置し、前記貫通孔11と取付孔9に図外のボルトを挿入して締結することにより冷却装置1を組み付けることができる。   As shown in FIG. 1, the cooling device 1 according to the present embodiment includes a cooling device main body 5 provided with a flow path 3 as a cooling medium flow path through which a cooling liquid (for example, water) as a cooling medium flows, and the cooling apparatus And a lid body 7 attached to the cooling device main body 5 so as to seal the device main body 5 and arranged along the vertical direction. The cooling device main body 5 and the lid body 7 are formed in a substantially rectangular shape when viewed from the front. A through hole 11 formed in the outer peripheral edge of the lid 7 is arranged in correspondence with the mounting hole 9 formed in the outer peripheral edge of the cooling device main body 5, and a bolt (not shown) is inserted into the through hole 11 and the mounting hole 9. Then, the cooling device 1 can be assembled by fastening.

前記蓋体7は、アルミニウム等の金属製の平板からなる。蓋体7の下端部には、冷却装置1内に冷却液が流入する流入管13と、冷却装置1から冷却液が排出される流出管15と、冷却液に混入したエア(水泡)が排出されるエア排出管17とが左右方向に並列して接続している。この際、エア排出管17を蓋体7における図1の右端の角部に配置している。   The lid 7 is made of a flat plate made of metal such as aluminum. At the lower end of the lid 7, an inflow pipe 13 into which the cooling liquid flows into the cooling device 1, an outflow pipe 15 through which the cooling liquid is discharged from the cooling apparatus 1, and air (water bubbles) mixed in the cooling liquid are discharged. The air discharge pipe 17 is connected in parallel in the left-right direction. At this time, the air discharge pipe 17 is arranged at the corner of the right end of FIG.

また、蓋体7における図1の右端部には、正面視逆L字状の膨出部19を上下方向に沿って形成している。該膨出部19の下端部21には、前記エア排出管17を接続しており、膨出部19の下端部21から上端部23にかけて左右方向の幅寸法を略同一に形成している。   Further, a bulging portion 19 having an inverted L-shape when viewed from the front is formed at the right end portion in FIG. The air discharge pipe 17 is connected to the lower end portion 21 of the bulging portion 19, and the width dimension in the left-right direction is formed substantially the same from the lower end portion 21 to the upper end portion 23 of the bulging portion 19.

しかし、上端部23においては、図1の左側に突出した延設部25を形成しているため、上端部23の左右方向の幅寸法は、下端部21から上端部23の直前までの幅寸法よりも大きく形成している。   However, since the extended portion 25 protruding to the left in FIG. 1 is formed at the upper end portion 23, the width dimension in the left-right direction of the upper end portion 23 is the width dimension from the lower end portion 21 to immediately before the upper end portion 23. It is formed larger than.

なお、前記膨出部19は、冷却装置本体5の右端部に形成した突設部27を覆うようにして係合してあり、その際冷却装置1内において、突設部27の図3中で左側の面27aと、上面27bと、右側の面27cとの間に、エア流通路29(図3参照)を画成する。このエア流通路29については、詳細に後述する。   The bulging portion 19 is engaged so as to cover the protruding portion 27 formed at the right end portion of the cooling device main body 5, and in this case, the protruding portion 27 in FIG. Thus, an air flow passage 29 (see FIG. 3) is defined between the left surface 27a, the upper surface 27b, and the right surface 27c. The air flow passage 29 will be described later in detail.

図2,3に示すように、冷却装置本体5には、上下方向に配置した縦壁部31から、複数の横壁部が略水平方向に突出している。具体的には、前記横壁部は、流路3の外周側を画成する外周側壁部33と、流路3の内周側を画成する内周側壁部35と、図3の左側に配置した3つの上流側仕切壁37と、該上流側仕切壁37の右側に配置した3つの下流側仕切壁39とを有する。   As shown in FIGS. 2 and 3, in the cooling device main body 5, a plurality of horizontal wall portions protrude in a substantially horizontal direction from a vertical wall portion 31 arranged in the vertical direction. Specifically, the lateral wall portion is disposed on the left side of FIG. 3, an outer peripheral side wall portion 33 that defines the outer peripheral side of the flow channel 3, an inner peripheral side wall portion 35 that defines the inner peripheral side of the flow channel 3. Three upstream partition walls 37 and three downstream partition walls 39 arranged on the right side of the upstream partition wall 37.

さらに、上記横壁部は、この3つの下流側仕切壁39相互間および、外周側壁部33と下流側仕切壁39との間ならびに、内周側壁部35と下流側仕切壁39との間に、それぞれ配置した4つの中間仕切壁41と、流路3の最も下流側に配置した1つの下流端部仕切壁43とを有する。   Further, the lateral wall portion is between the three downstream side partition walls 39, between the outer peripheral side wall portion 33 and the downstream side partition wall 39, and between the inner peripheral side wall portion 35 and the downstream side partition wall 39. Each has four intermediate partition walls 41 disposed and one downstream end partition wall 43 disposed on the most downstream side of the flow path 3.

なお、上記した内周側壁部35は、縦壁部31から略水平方向に突出するボス部44の外周壁部で構成している。また、外周側壁部33は、流路3の下流側では縦壁部31から略水平方向に突出するボス部46の外周壁部で構成している。これらボス部44からなる内周側壁部35および、ボス部46を含む外周側壁部33は、冷却装置本体5の外周縁部48に連続して形成されて、その各先端面が互いに同一面であって蓋体7の裏面69に密着して流路3を形成することになる。   The inner peripheral side wall portion 35 described above is constituted by an outer peripheral wall portion of a boss portion 44 that protrudes from the vertical wall portion 31 in a substantially horizontal direction. Further, the outer peripheral side wall portion 33 is configured by an outer peripheral wall portion of a boss portion 46 that protrudes in a substantially horizontal direction from the vertical wall portion 31 on the downstream side of the flow path 3. The inner peripheral side wall part 35 including the boss part 44 and the outer peripheral side wall part 33 including the boss part 46 are formed continuously to the outer peripheral edge part 48 of the cooling device main body 5, and their front end surfaces are flush with each other. Thus, the flow path 3 is formed in close contact with the back surface 69 of the lid body 7.

上記した上流側仕切壁37と下流側仕切壁39と中間仕切壁41と下流端部仕切壁43とによって、冷却液が流通する流路3を各部位において複数に分割している。例えば、3つの上流側仕切壁37によって4つの分割流路100a,100b,100c,100dを形成し、3つの下流側仕切壁39によって4つの分割流路200a,200b,200c,200dを形成している。   The upstream partition wall 37, the downstream partition wall 39, the intermediate partition wall 41, and the downstream end partition wall 43 divide the flow path 3 through which the coolant flows into a plurality of portions at each portion. For example, four divided flow paths 100a, 100b, 100c, and 100d are formed by three upstream partition walls 37, and four divided flow paths 200a, 200b, 200c, and 200d are formed by three downstream partition walls 39. Yes.

さらに、上記4つの分割流路200a,200b,200c,200dは、4つの中間仕切壁41を設けた部位において、該4つの中間仕切壁41と、4つの下流側仕切壁39と、外周側壁部33(ボス部46)と、内周側壁部35(ボス部44)とによって8つの分割流路300a,300b,300c,300d,300e,300f,300g,300hに分割形成している。   Further, the four divided flow paths 200a, 200b, 200c, and 200d are provided in the four intermediate partition walls 41, the four intermediate partition walls 41, the four downstream partition walls 39, and the outer peripheral side wall portions. 33 (the boss portion 46) and the inner peripheral side wall portion 35 (the boss portion 44) are divided into eight divided flow paths 300a, 300b, 300c, 300d, 300e, 300f, 300g, and 300h.

ここで、本実施形態では、冷却装置1を扁平に形成して縦置きとしている。このため、流路3も扁平となってコンパクト化した冷却装置1内に流路3を充分確保するには流路3の幅をある程度広くするとともに、湾曲部分も適宜形成する必要がある。   Here, in this embodiment, the cooling device 1 is formed flat and is set vertically. For this reason, in order to sufficiently secure the flow path 3 in the cooling device 1 that is flattened and made compact, it is necessary to widen the width of the flow path 3 to some extent and to appropriately form a curved portion.

流路3が幅広になると、仕切壁を設けない場合には、特に湾曲部分で冷却液が外周側に偏って流れることになる。このため、本実施形態では仕切壁を設けて流路3を複数に分割することで、湾曲部分であっても冷却液の偏りを抑えて冷却効果を確保している。   When the flow path 3 becomes wider, the cooling liquid flows in a biased manner toward the outer peripheral side particularly in the curved portion when the partition wall is not provided. For this reason, in this embodiment, the partition wall is provided and the flow path 3 is divided into a plurality of parts, thereby suppressing the unevenness of the coolant even in the curved portion and ensuring the cooling effect.

また、仕切壁は冷却フィンの役目も果たすので、流路3を複数に分割する際に必要となる仕切壁を設けることで、冷却効果を高めることができる。   Moreover, since the partition wall also plays the role of a cooling fin, the cooling effect can be enhanced by providing the partition wall required when the flow path 3 is divided into a plurality of parts.

前記上流側仕切壁37は、図3に示すように、上流端45から下流端47に至るまで正面視略円弧状に図3中で右回りに湾曲している。また、前記下流側仕切壁39は、上流端49から中間部51に至る正面視略コ字状の部分と、中間部51から下流端53に至る図3中で左回りに湾曲する正面視略半円状に部分と、を有してこれらを連続して一体に形成している。さらに、下流端部仕切壁43は、正面視略円弧状に図3中で右回りに湾曲している。   As shown in FIG. 3, the upstream partition wall 37 is curved clockwise in FIG. 3 from the upstream end 45 to the downstream end 47 in a substantially arc shape when viewed from the front. Further, the downstream partition wall 39 is substantially U-shaped in a front view from the upstream end 49 to the intermediate portion 51, and substantially in a front view curved in the counterclockwise direction in FIG. 3 from the intermediate portion 51 to the downstream end 53. And a semicircular portion, and these are continuously formed integrally. Further, the downstream end partition wall 43 is curved clockwise in FIG. 3 in a substantially arc shape when viewed from the front.

なお、下流側仕切壁39の上流端49から中間部51に至る正面視略コ字状の部分は、略直線状の3つの部分を直角に組み合わせて一体に形成される。そして、上流側仕切壁37の下流端47と下流側仕切壁39の上流端49との間は、二点鎖線で示すように、仕切壁がなく、分岐のない合流部としての1つの合流流路55に形成してある。   In addition, the substantially U-shaped portion in front view from the upstream end 49 of the downstream partition wall 39 to the intermediate portion 51 is integrally formed by combining three substantially straight portions at right angles. And, as shown by a two-dot chain line, there is no partition wall between the downstream end 47 of the upstream partition wall 37 and the upstream end 49 of the downstream partition wall 39, and one merging flow as a merging portion without branching. A path 55 is formed.

上記仕切壁のない1つの合流流路55は、下流側仕切壁39側が上流側仕切壁37側よりも上方となるよう図3中で右上がりに傾斜している。この合流流路55と同様にして、合流流路55の上流側の下流端47を含む上流側仕切壁37の下流側端部の一部37a及び、合流流路55の下流側の上流端49を含む下流側仕切壁39の上流側端部の一部39aも、図3中で右上がりに傾斜している。   One merging channel 55 without the partition wall is inclined upward in FIG. 3 so that the downstream partition wall 39 side is higher than the upstream partition wall 37 side. Similarly to the merging channel 55, a part 37 a of the downstream end of the upstream partition wall 37 including the downstream end 47 on the upstream side of the merging channel 55 and an upstream end 49 on the downstream side of the merging channel 55. A part 39a of the upstream side end portion of the downstream partition wall 39 including the slope is also inclined upward in FIG.

すなわち、上流側仕切壁37の下流側端部の一部37aと下流側仕切壁39の上流側端部の一部39aとは、合流流路55を間に挟んで互いに同一直線上に位置し、図3中で右上がりに傾斜する合流流路55を含む流路3の直線部分3bを形成する。   That is, the part 37a of the downstream end of the upstream partition wall 37 and the part 39a of the upstream end of the downstream partition wall 39 are located on the same straight line with the merge channel 55 interposed therebetween. 3, the straight line portion 3 b of the flow path 3 including the merge flow path 55 inclined upward to the right is formed.

したがって、本実施形態における流路3は、冷却液の流通する方向に沿って湾曲する湾曲部分3aと、この湾曲部分3aの下流側に連続して形成されて、前記流通する方向に沿って直線的に延びる直線部分3bとを備えていることになる。そして、この湾曲部分3aを経てその下流側の直線部分3bの一部における複数の分割流路100a,100b,100c,100dを流れるそれぞれの冷却媒体が合流する合流流路55を設けたことになる。   Therefore, the flow path 3 in the present embodiment is formed continuously from the curved portion 3a that is curved along the direction in which the coolant flows, and the downstream side of the curved portion 3a. And a linear portion 3b extending in a straight line. And the confluence | merging flow path 55 in which each cooling medium which flows through several division | segmentation flow paths 100a, 100b, 100c, 100d in a part of the linear part 3b on the downstream side via this curved part 3a is provided. .

これにより、湾曲部分3aにおける4つの分割流路100a〜100dを流れる冷却液が、上流側仕切壁37の下流端47から流出し、一つの合流流路55で合流したのち、下流側仕切壁39の上流端49から該下流側仕切壁39を備える下流側流路の4つの分割流路200a〜200dに均等に流れ込むことになる。   As a result, the coolant flowing through the four divided flow paths 100a to 100d in the curved portion 3a flows out from the downstream end 47 of the upstream partition wall 37 and joins in one merge flow path 55, and then the downstream partition wall 39. From the upstream end 49 to the four divided flow paths 200 a to 200 d of the downstream flow path including the downstream partition wall 39.

また、図3に示すように、下流側仕切壁39における最も上側の角部57(図3中で右側上部)の上方には、冷却液中に混入した水泡(エア)を排出する前記したエア流通路29を形成している。   Further, as shown in FIG. 3, above the uppermost corner 57 (upper right side in FIG. 3) of the downstream partition wall 39, the above-mentioned air that discharges water bubbles (air) mixed in the coolant is discharged. A flow passage 29 is formed.

このエア流通路29は、正面視逆L字状に形成され、その一方の端部であるエア入口部59は下方に開口して下流側仕切壁39を備える流路3に連通し、他方の端部は下端部に配置したエア出口部61となって、前記蓋体7に設けたエア排出管17に連通している。   The air flow passage 29 is formed in an inverted L shape when viewed from the front, and an air inlet portion 59 that is one end portion thereof opens downward and communicates with the flow path 3 including the downstream partition wall 39, and the other end. The end portion is an air outlet portion 61 disposed at the lower end portion, and communicates with the air discharge pipe 17 provided on the lid body 7.

なお、上記したエア流通路29は、流路3に下端が連通して上下方向に延びる入口流通路29aと、入口流通路29aの上端に一端が連通する水平流通路29bと、水平流通路29bの他端に上端が連通して上下方向に延びる出口流通路29cと、を備えている。そして、出口流通路29cの下端が上記したエア出口部61に連通する。   The air flow passage 29 described above has an inlet flow passage 29a whose lower end communicates with the flow passage 3 and extends in the vertical direction, a horizontal flow passage 29b whose one end communicates with the upper end of the inlet flow passage 29a, and a horizontal flow passage 29b. An outlet flow passage 29c having an upper end communicating with the other end and extending in the vertical direction. The lower end of the outlet flow passage 29c communicates with the air outlet portion 61 described above.

なお、前記流入管13には流路入口部62を接続し、流出管15には流路出口部64を接続し、エア排出管17にはエア出口部61を接続している。   A flow path inlet 62 is connected to the inflow pipe 13, a flow path outlet 64 is connected to the outflow pipe 15, and an air outlet 61 is connected to the air discharge pipe 17.

そして、流路入口部62から流路3に流入する冷却液は、流路3の下流側ほど広がる拡開部3cを経て上流側仕切壁37を備えた4つの分割流路100a〜100dに分岐して流入する。一方、下流側仕切壁39の下流端53から流出する冷却液は、冷却媒体の流通方向に沿って水平方向に直線的に延びる合流流路3dを経て、下流端部仕切壁43で仕切られた分割流路400a,400bに流入した後、流路出口部64に流出する。   Then, the coolant flowing into the flow channel 3 from the flow channel inlet 62 is branched into four divided flow channels 100 a to 100 d provided with the upstream partition wall 37 through the widened portion 3 c spreading toward the downstream side of the flow channel 3. Inflow. On the other hand, the coolant flowing out from the downstream end 53 of the downstream partition wall 39 is partitioned by the downstream end partition wall 43 through the merge channel 3d that linearly extends in the horizontal direction along the flow direction of the cooling medium. After flowing into the divided flow paths 400a and 400b, it flows out to the flow path outlet 64.

図4は図3のA−A線による断面図、図5は図3のB−B線による断面図である。   4 is a cross-sectional view taken along line AA in FIG. 3, and FIG. 5 is a cross-sectional view taken along line BB in FIG.

図2,3に示すように、下流側仕切壁39のうち前記正面視略コ字状の部分における上流側の直線部には、切欠部63を複数形成している。即ち、図4,5に示すように、前記切欠部63の先端面65を、他の部位の先端面67よりも略水平方向の高さを低く形成して縦壁部31により近づけている。   As shown in FIGS. 2 and 3, a plurality of notches 63 are formed in the upstream linear portion of the substantially U-shaped portion in the front view of the downstream partition wall 39. That is, as shown in FIGS. 4 and 5, the front end surface 65 of the notch 63 is made closer to the vertical wall 31 by forming a substantially horizontal height lower than the front end surface 67 of other portions.

具体的には、図5に示すように、前記切欠部63は、下流側仕切壁39の端部を平面視略台形状に切り欠いて形成される。また、蓋体7の裏面69と下流側仕切壁39の先端面65,67との間には、略水平方向に沿った隙間71,73を形成しているが、前記切欠部63の先端面65と蓋体7の裏面69との隙間71は、他の部位の先端面67と蓋体7の裏面69との隙間73よりも大きく形成している。   Specifically, as shown in FIG. 5, the notch 63 is formed by notching the end of the downstream partition wall 39 into a substantially trapezoidal shape in plan view. In addition, gaps 71 and 73 are formed along the substantially horizontal direction between the back surface 69 of the lid body 7 and the front end surfaces 65 and 67 of the downstream partition wall 39. The gap 71 between 65 and the back surface 69 of the lid body 7 is formed larger than the gap 73 between the tip surface 67 of the other part and the back surface 69 of the lid body 7.

さらに、図4に示すように、下流側仕切壁39の下面75と上面77とは、先端方向(略水平方向)に向かうにつれて徐々に先細りする断面台形状に形成している。下流側仕切壁39の下面75と水平方向とのなす傾斜角度はαであり、上面77と水平方向とのなす角度はβであり、αはβよりも大きく形成している(α>β)。   Furthermore, as shown in FIG. 4, the lower surface 75 and the upper surface 77 of the downstream partition wall 39 are formed in a trapezoidal shape that gradually tapers in the distal direction (substantially horizontal direction). The inclination angle between the lower surface 75 of the downstream partition wall 39 and the horizontal direction is α, the angle between the upper surface 77 and the horizontal direction is β, and α is larger than β (α> β). .

このように、下流側仕切壁39の下面75は先端に向かうにつれて上方に傾斜する傾斜面に形成してあり、上面77は先端に向かうにつれて下方に傾斜する傾斜面に形成してある。従って、図4のように、冷却液中に混入した水泡(エア)79は、下流側仕切壁39の下面に沿って移動し、前記隙間71,73から上方に移動する。   Thus, the lower surface 75 of the downstream partition wall 39 is formed as an inclined surface that is inclined upward toward the tip, and the upper surface 77 is formed as an inclined surface that is inclined downward toward the tip. Therefore, as shown in FIG. 4, the water bubbles (air) 79 mixed in the coolant move along the lower surface of the downstream partition wall 39 and move upward from the gaps 71 and 73.

なお、中間仕切壁41や下流端部仕切壁43についても、その先端は、蓋体7の裏面69との間に隙間を形成しているものとする。   It is assumed that the intermediate partition wall 41 and the downstream end partition wall 43 also form a gap between the front end and the back surface 69 of the lid body 7.

これらの隙間(隙間71,73を含む)を有する状態で、蓋体7を冷却装置本体5に被せて前記図外のボルトにより固定して組み付けると、蓋体7の裏面69が、前述したように冷却装置本体5の外周縁部48、ボス部44からなる内周側壁部35および、ボス部46を含む外周側壁部33のそれぞれの先端面に密着して流路3を形成することになる。   When the lid body 7 is put on the cooling device main body 5 and fixed with the bolts not shown in the drawing with these gaps (including gaps 71 and 73), the back surface 69 of the lid body 7 is as described above. The flow path 3 is formed in close contact with the respective distal end surfaces of the outer peripheral side wall portion 35 including the outer peripheral edge portion 48 of the cooling device body 5, the boss portion 44, and the outer peripheral side wall portion 33 including the boss portion 46. .

図6は図3のC−C線による断面図、図7(a)は、本発明の実施形態に係るエア入口部59から水泡がエア流通路29内に入り込んで溜まったときの液面高さを示す断面図であり、図6に対応している。また、図7(b)は、比較例に係る液面高さを示す、図7(a)に対応する断面図である。   6 is a cross-sectional view taken along the line CC of FIG. 3, and FIG. 7A is a liquid level height when water bubbles enter and accumulate in the air flow passage 29 from the air inlet portion 59 according to the embodiment of the present invention. It is sectional drawing which shows this, and respond | corresponds to FIG. Moreover, FIG.7 (b) is sectional drawing corresponding to Fig.7 (a) which shows the liquid level height concerning a comparative example.

図1で説明したように、蓋体7の膨出部19における上端部23には、図1中で左側に延びる延設部25を形成してあり、前記蓋体7を冷却装置本体5に組み付けた状態では、図7(a)に示すように、エア入口部59より上方のエア抜き部としてのエア流通路29における冷却装置1の厚さ方向の断面積が、延設部を設けない図7(b)の比較例よりも大きく形成されている。   As described with reference to FIG. 1, the extended portion 25 extending to the left in FIG. 1 is formed at the upper end portion 23 of the bulging portion 19 of the lid body 7, and the lid body 7 is attached to the cooling device main body 5. In the assembled state, as shown in FIG. 7A, the cross-sectional area in the thickness direction of the cooling device 1 in the air flow passage 29 as the air vent portion above the air inlet portion 59 does not provide the extending portion. It is formed larger than the comparative example of FIG.

すなわち、上記したエア抜き部としてのエア流通路29は、流路3の上部に連通するエア入口部59に対し、該エア入口部59より上方のエア流通路29の通路断面積を大きくし形成している。また、一対の縦壁部に相当する縦壁部31と蓋体7との間に、流路3およびエア流通路29が形成され、このエア流通路29のエア入口部59より上方における縦壁部31と蓋体7との間隔を、流路3に連通するエア入口部59おける縦壁部31と蓋体7との間隔よりも大きく形成していることになる。   That is, the air flow passage 29 as the air vent portion is formed by increasing the cross-sectional area of the air flow passage 29 above the air inlet portion 59 with respect to the air inlet portion 59 communicating with the upper portion of the flow path 3. is doing. Further, the flow path 3 and the air flow passage 29 are formed between the vertical wall portion 31 corresponding to the pair of vertical wall portions and the lid body 7, and the vertical wall above the air inlet portion 59 of the air flow passage 29 is formed. The interval between the portion 31 and the lid body 7 is formed to be larger than the interval between the vertical wall portion 31 and the lid body 7 in the air inlet portion 59 communicating with the flow path 3.

以下、図7を用いて簡単に説明する。図7(b)では、蓋体107と縦壁部131とによってエア流通路129が形成されている。   Hereinafter, this will be briefly described with reference to FIG. In FIG. 7B, the air flow passage 129 is formed by the lid body 107 and the vertical wall portion 131.

図7(a)に示すように、本実施形態に係るエア流通路29の厚さはエア入口部59より厚いD、図7(b)に示す比較例に係るエア流通路129の厚さはエア入口部159と同等のdであり、D>dの大小関係に設定している。   As shown in FIG. 7A, the thickness of the air flow passage 29 according to this embodiment is D thicker than the air inlet 59, and the thickness of the air flow passage 129 according to the comparative example shown in FIG. D is the same as that of the air inlet 159, and the magnitude relationship of D> d is set.

このように、本実施形態に係るエア流通路29の方が、厚さ方向の断面積を大きく形成している。ここで、エア流通路29,129には、冷却液内に混入した水泡(エア)79が上方に移動して液面H1,H2が低下している。流路3内の水泡79の全量を同等とした場合に、図7(a)に示すように、本実施形態の場合の液面はH1であり、図7(b)に示す比較例の場合はH2である。従って、本実施形態の方が比較例よりも△Hだけ液面が高い位置になっている。   Thus, the air flow passage 29 according to this embodiment has a larger cross-sectional area in the thickness direction. Here, in the air flow passages 29 and 129, the water bubbles (air) 79 mixed in the coolant move upward and the liquid levels H1 and H2 are lowered. When the total amount of water bubbles 79 in the flow path 3 is made equal, as shown in FIG. 7A, the liquid level in this embodiment is H1, and in the case of the comparative example shown in FIG. Is H2. Therefore, the liquid level of this embodiment is higher by ΔH than the comparative example.

また、図8は本発明の実施形態に係る冷却装置に、冷却させる対象物である被冷却物を当接させた状態を示す正面図である。なお、被冷却物の構成を明瞭に示すために仕切壁を簡略化して示しているが、実際には傾斜面を設けている。   FIG. 8 is a front view showing a state where an object to be cooled, which is an object to be cooled, is brought into contact with the cooling device according to the embodiment of the present invention. In addition, in order to show clearly the structure of a to-be-cooled object, although the partition wall is simplified and shown, the inclined surface is actually provided.

この破線で示した被冷却物は、例えば基板81であり、該基板81上に複数の発熱素子83を配置している。この発熱素子83は、下流側仕切壁39および中間仕切壁41によって画成された流路に対向して配置している。   The object to be cooled indicated by the broken line is, for example, a substrate 81, and a plurality of heating elements 83 are arranged on the substrate 81. The heat generating element 83 is disposed to face the flow path defined by the downstream partition wall 39 and the intermediate partition wall 41.

特に、中間仕切壁41を設けた流路は該中間仕切壁41が下流側仕切壁39とともに放熱フィンの役目を果たすことから冷却効果が高く、この部位に発熱素子83を多く配置することが好ましい。また、流路3の屈曲部の上流側の冷却液の流速が低下する直前に発熱素子83を多く配置することが冷却効果を高める上で好ましい。   In particular, the flow path provided with the intermediate partition wall 41 has a high cooling effect because the intermediate partition wall 41 serves as a heat radiating fin together with the downstream partition wall 39, and it is preferable to dispose a large number of heating elements 83 in this portion. . In addition, it is preferable to increase the number of heat generating elements 83 immediately before the flow rate of the coolant upstream of the bent portion of the flow path 3 is lowered in order to enhance the cooling effect.

このように構成した冷却装置1においては、例えば図外の冷却液ポンプによって、冷却液が、流入管13から流入して流路3を順次流れるが、その際被冷却物である発熱素子83を冷却した後、流出管15から外部に排出される。なお、このとき、エア出口部61もしくはエア排出管17は、図外のバルブなどによって閉じてある。   In the cooling device 1 configured as described above, for example, the coolant flows from the inflow pipe 13 and flows through the flow path 3 sequentially by a coolant pump (not shown). After cooling, it is discharged from the outflow pipe 15 to the outside. At this time, the air outlet 61 or the air discharge pipe 17 is closed by a valve or the like not shown.

そして、縦置きで扁平とした冷却装置1内の流路3を冷却液が流れる際には、流路3内で発生したエアが上方に向けて移動して集中する。特に本実施形態では、上流側、下流側、中間および下流端部の各仕切壁37,39,41および43の各先端面と、蓋体7の裏面69との間に隙間(図4の隙間71,73を含む)を形成してある。このため、各分割流路100a〜100d,200a〜200dおよび、300a〜300iなどを備える流路3で発生したエアは、上記隙間を通して上方に移動しやすいものとなっている。   When the coolant flows through the channel 3 in the cooling device 1 that is flat and flat, the air generated in the channel 3 moves upward and concentrates. In particular, in the present embodiment, there are gaps (the gaps in FIG. 4) between the front end surfaces of the partition walls 37, 39, 41, and 43 on the upstream side, downstream side, middle and downstream end portions, and the back surface 69 of the lid body 7. 71, 73). For this reason, the air generated in the flow path 3 including the respective divided flow paths 100a to 100d, 200a to 200d, and 300a to 300i is likely to move upward through the gap.

上方に移動したエアは、図7(a)に示したようにエア入口部59からエア流通路29に入り込んで効率よく滞留させることができる。これにより、流路3内にはエアを極力排除した冷却液が流通することになり、冷却効果向上に寄与することができる。   As shown in FIG. 7A, the air that has moved upward can enter the air flow passage 29 from the air inlet portion 59 and be efficiently retained. As a result, the coolant from which air is eliminated as much as possible flows in the flow path 3, which can contribute to an improvement in the cooling effect.

その際、本実施形態では、蓋体7を冷却装置本体5に組み付けた状態で、図7(a)に示すように、エア入口部59より上方のエア抜き部となるエア流通路29における冷却装置1の厚さ方向の断面積を、延設部を設けない図7(b)の比較例よりも大きく形成している。   At this time, in the present embodiment, in the state where the lid 7 is assembled to the cooling device main body 5, as shown in FIG. The cross-sectional area in the thickness direction of the device 1 is formed larger than that of the comparative example of FIG.

このため、エア流通路29,129に溜まったエア79の量を同等とした場合に、本実施形態のエア流通路29では、断面積が大きい分エア79の下面がより上方に位置し、これに伴ない液面H1は、比較例のH2より上方となる。その結果、本実施形態ではエア79によって押し下げられる液面の低下代を極力小さくして冷却性能を高めることができる。   For this reason, when the amount of the air 79 accumulated in the air flow passages 29 and 129 is made equal, in the air flow passage 29 of the present embodiment, the lower surface of the air 79 is positioned higher due to the larger cross-sectional area. Accordingly, the liquid level H1 is higher than H2 in the comparative example. As a result, in this embodiment, it is possible to increase the cooling performance by minimizing the cost of lowering the liquid level pushed down by the air 79.

しかも、本実施形態では、エア流通路29における縦壁部31と蓋体7との間隔を、流路3における縦壁部31と蓋体7との間隔より単に大きくすることで、具体的には蓋体7に膨出部19(延設部25)を設けるだけで、エア流通路29における冷却装置1の厚さ方向の断面積を、延設部を設けない図8の比較例よりも大きく形成することが容易に達成できる。   Moreover, in the present embodiment, the interval between the vertical wall portion 31 and the lid body 7 in the air flow passage 29 is simply made larger than the interval between the vertical wall portion 31 and the lid body 7 in the flow path 3, thereby specifically 8 merely provides the bulging part 19 (extension part 25) on the lid 7, and the cross-sectional area in the thickness direction of the cooling device 1 in the air flow passage 29 is made larger than that of the comparative example of FIG. Large formation can be easily achieved.

エア流通路29に滞留したエアを外部に排出する際には、上記したエア出口部61もしくはエア排出管17に設けた図外のバルブを開放させた状態で、図外の冷却液ポンプの駆動により流路3内の冷却液をエア流通路29に流通させればよい。   When the air staying in the air flow passage 29 is discharged to the outside, the above-described valve provided on the air outlet 61 or the air discharge pipe 17 is opened and the coolant pump outside the figure is driven. Thus, the coolant in the flow path 3 may be circulated through the air flow passage 29.

また、本実施形態では、上流側仕切壁37や下流側仕切壁39を、一方の縦壁部である縦壁部31から他方の縦壁部である蓋体7の裏面69に向けて突出させ、これら上流側仕切壁37や下流側仕切壁39の先端と、該先端に対向する蓋体7の裏面69との間に隙間を設けている。   In the present embodiment, the upstream partition wall 37 and the downstream partition wall 39 are projected from the vertical wall portion 31 that is one vertical wall portion toward the back surface 69 of the lid body 7 that is the other vertical wall portion. A gap is provided between the distal ends of the upstream partition wall 37 and the downstream partition wall 39 and the back surface 69 of the lid 7 facing the distal ends.

これにより、前述したように流路3中で発生するエアを効率よく上方に移動させることができ、この上方に効率よく移動したエアをエア流通路29に溜めることで、液面H1の低下代を極力小さく抑えることができる。   As a result, as described above, the air generated in the flow path 3 can be efficiently moved upward, and the air that has been efficiently moved upward is stored in the air flow passage 29, thereby reducing the liquid level H1. Can be kept as small as possible.

3 流路(冷却媒体流路)
7 蓋体(他方の縦壁部)
29 エア流通路(エア抜き部)
29a 入口流通路(エア入口部より上方のエア流通路)
29b 水平流通路(エア入口部より上方のエア流通路)
31 冷却装置本体の縦壁部(一方の縦壁部)
37 上流側仕切壁(仕切壁)
39 下流側仕切壁(仕切壁)
59 エア入口部
71,73 隙間
3 Flow path (cooling medium flow path)
7 Lid (the other vertical wall)
29 Air passage (air vent)
29a Inlet flow passage (air flow passage above the air inlet)
29b Horizontal flow passage (air flow passage above the air inlet)
31 Vertical wall of the cooling device (one vertical wall)
37 Upstream partition wall (partition wall)
39 Downstream partition wall (partition wall)
59 Air inlet 71, 73 Clearance

Claims (3)

冷却媒体が流通する冷却媒体流路を上下方向に沿って設け、この冷却媒体流路の上部に、前記冷却媒体に混入するエアを外部に排出するためのエア抜き部を設け、このエア抜き部は、前記冷却媒体流路の上部に連通するエア入口部に対し、該エア入口部より上方の通路断面積を大きくしたことを特徴とする冷却装置。   A cooling medium flow path through which the cooling medium flows is provided along the vertical direction, and an air vent for discharging the air mixed in the cooling medium to the outside is provided above the cooling medium flow path. Is a cooling device characterized in that the passage cross-sectional area above the air inlet portion is increased with respect to the air inlet portion communicating with the upper portion of the cooling medium flow path. それぞれ上下方向に沿って配置すると共に前記上下方向に対して交差する方向に離間して配置した一対の縦壁部を有し、この一対の縦壁部相互間に前記冷却媒体流路および前記エア抜き部が形成され、このエア抜き部の前記エア入口部より上方における前記一対の縦壁部相互間の間隔を、前記エア入口部における前記一対の縦壁部相互間の間隔よりも大きくしたことを特徴とする請求項1に記載の冷却装置。   Each of the vertical wall portions is disposed along the vertical direction and spaced apart in a direction intersecting the vertical direction, and the cooling medium flow path and the air are disposed between the pair of vertical wall portions. A vent portion is formed, and the distance between the pair of vertical wall portions above the air inlet portion of the air vent portion is larger than the interval between the pair of vertical wall portions at the air inlet portion. The cooling device according to claim 1. 前記冷却媒体が流通する冷却媒体流路を前記流通する方向に沿って延設される仕切壁により複数に分割し、前記仕切壁は、前記一対の縦壁部のうちの一方から他方に向けて前記交差する方向に突出し、前記仕切壁の先端と、該先端に対向する前記他方の縦壁部との間に隙間を設けたことを特徴とする請求項2に記載の冷却装置。   The cooling medium flow path through which the cooling medium flows is divided into a plurality of partition walls extending along the flowing direction, and the partition walls are directed from one of the pair of vertical wall portions to the other. The cooling device according to claim 2, wherein a gap is provided between the front end of the partition wall that protrudes in the intersecting direction and the other vertical wall portion facing the front end.
JP2010131115A 2010-06-08 2010-06-08 Cooling device Pending JP2011258699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010131115A JP2011258699A (en) 2010-06-08 2010-06-08 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010131115A JP2011258699A (en) 2010-06-08 2010-06-08 Cooling device

Publications (1)

Publication Number Publication Date
JP2011258699A true JP2011258699A (en) 2011-12-22

Family

ID=45474588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010131115A Pending JP2011258699A (en) 2010-06-08 2010-06-08 Cooling device

Country Status (1)

Country Link
JP (1) JP2011258699A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047922A (en) * 2002-05-15 2004-02-12 Matsushita Electric Ind Co Ltd Cooling unit for electronic apparatus
JP2005026498A (en) * 2003-07-03 2005-01-27 Matsushita Electric Ind Co Ltd Cooling device
JP2007200915A (en) * 2006-01-23 2007-08-09 Toyota Motor Corp Cooling fin and cooling device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047922A (en) * 2002-05-15 2004-02-12 Matsushita Electric Ind Co Ltd Cooling unit for electronic apparatus
JP2005026498A (en) * 2003-07-03 2005-01-27 Matsushita Electric Ind Co Ltd Cooling device
JP2007200915A (en) * 2006-01-23 2007-08-09 Toyota Motor Corp Cooling fin and cooling device

Similar Documents

Publication Publication Date Title
US8291967B2 (en) Heat sink and cooler
KR101488027B1 (en) Liquid-cooled-type cooling device
JP2010056131A (en) Liquid-cooled-type cooling device
JP2017180445A (en) Reservoir tank
JP2009231677A (en) Liquid-cooled type cooling device
JPWO2010150747A1 (en) heatsink
CN107709917B (en) Inner fin of heat exchanger
JP2011102681A (en) Evaporative cooling type heat exchanger
US8899307B2 (en) Cooling device
KR101211888B1 (en) Hybrid type radiator for transformer
JP5556397B2 (en) Cooling system
JP2011258699A (en) Cooling device
JP5264792B2 (en) Plate heat exchanger
JP2006336575A (en) Radiator
CN110850939B (en) Heat dissipation device for reinforcing server
JP2023126992A (en) cooling member
JP7224727B2 (en) Reserve tank
JP6222460B2 (en) Engine cooling circuit
JP2022016079A (en) Cooling unit
JP5477178B2 (en) Cooling system
JP5664433B2 (en) Heat exchanger
JP2022060088A (en) Cooler and cooling system
JP5577863B2 (en) Cooling system
WO2022130660A1 (en) Cooling device
JP2019079836A (en) Liquid-cooled cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140624