JP2011252847A - Moisture concentration detector - Google Patents

Moisture concentration detector Download PDF

Info

Publication number
JP2011252847A
JP2011252847A JP2010128083A JP2010128083A JP2011252847A JP 2011252847 A JP2011252847 A JP 2011252847A JP 2010128083 A JP2010128083 A JP 2010128083A JP 2010128083 A JP2010128083 A JP 2010128083A JP 2011252847 A JP2011252847 A JP 2011252847A
Authority
JP
Japan
Prior art keywords
temperature
moisture concentration
electrolyte membrane
solid electrolyte
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010128083A
Other languages
Japanese (ja)
Other versions
JP5274515B2 (en
Inventor
Yoshiyuki Tamura
佳之 田村
Chieko Nishida
智恵子 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010128083A priority Critical patent/JP5274515B2/en
Publication of JP2011252847A publication Critical patent/JP2011252847A/en
Application granted granted Critical
Publication of JP5274515B2 publication Critical patent/JP5274515B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a moisture concentration detector which can suppress a variation in a measurement result of a moisture concentration in a gas due to a change in environmental temperature and accurately measure a moisture concentration.SOLUTION: A temperature of a hydrogen ion-conductive solid electrolyte membrane 2 at which the solid electrolyte membrane 2 establishes equilibrium with a moisture concentration in a gas insulation apparatus 10 is detected by a temperature sensor 3, and electric current flowing through a heating element 4 is controlled, thereby keeping a temperature of the solid electrolyte membrane 2 at a constant high temperature.

Description

本発明は、ガス絶縁機器内部のSF6ガス中の水分濃度を検出する装置に関する。   The present invention relates to an apparatus for detecting a moisture concentration in SF6 gas inside a gas insulating device.

ガス絶縁機器内部は、ガスシール機能が低下するなどにより外部から水分が浸入すると、機器の絶縁性能が低下する。このため、ガス絶縁機器内に対向して設置された多孔性電極間に、含水率がガス中の水分濃度と平衡状態となる水素イオン導電性の固体電解質膜を設け、多孔性電極間に交流電圧を印加しガス中の水分濃度に対応して変化する電極間電気量を計測することにより、水分濃度を計測する技術が開示されている(例えば、下記特許文献1)。   If moisture enters the inside of the gas insulation device from the outside due to a decrease in the gas sealing function or the like, the insulation performance of the device deteriorates. For this reason, a hydrogen ion conductive solid electrolyte membrane in which the moisture content is in equilibrium with the moisture concentration in the gas is provided between the porous electrodes placed opposite to each other in the gas-insulated equipment. A technique for measuring a moisture concentration by applying a voltage and measuring an inter-electrode electric quantity that changes corresponding to the moisture concentration in a gas is disclosed (for example, Patent Document 1 below).

特開2006−308502号公報JP 2006-308502 A

固体電解質膜(例えば、デュポン社の登録商標であるNafion(登録商標))の交流インピーダンスは、固体電解質膜の含水率に依存して変化し、ガス絶縁機器内の水分濃度が減少するに従い増加する。ここで、固体電解質膜は、温度が高いほど含水率が高く(すなわち、固体電解質膜の交流インピーダンスが小さく)なり、温度が低いほど含水率が低く(すなわち、固体電解質膜の交流インピーダンスが大きく)なるという温度特性を有している。一方、屋外に設置されるガス絶縁機器内部は、環境温度の変化に伴いガス絶縁機器内の温度が数十℃も変化する。このため、特許文献1に示された技術では、環境温度の変化によって水分濃度の測定結果が変化する、という問題があった。   The AC impedance of a solid electrolyte membrane (for example, Nafion (registered trademark), a registered trademark of DuPont) changes depending on the moisture content of the solid electrolyte membrane, and increases as the moisture concentration in the gas insulating device decreases. . Here, the solid electrolyte membrane has a higher moisture content (that is, the AC impedance of the solid electrolyte membrane is smaller) as the temperature is higher, and a lower moisture content (that is, the AC impedance of the solid electrolyte membrane is larger) as the temperature is lower. It has a temperature characteristic. On the other hand, inside the gas insulation device installed outdoors, the temperature in the gas insulation device changes by several tens of degrees Celsius as the environmental temperature changes. For this reason, the technique disclosed in Patent Document 1 has a problem that the measurement result of the moisture concentration changes due to a change in environmental temperature.

また、水分濃度が十数ppmまで下がると、固体電解質膜の交流インピーダンスは、指数関数的に増加し、数MΩ〜数十MΩにまで達する。固体電解質膜に印加できる交流電圧は、水の電気分解が生じない程度の低電圧(約10mV〜約1V)であるので、固体電解質膜に流れる交流電流は極めて小さくなり、測定環境におけるノイズの影響が無視できなくなる。このため、特許文献1に示された技術では、測定結果に誤差を生じ易い、という問題があった。   Further, when the water concentration is lowered to several tens of ppm, the AC impedance of the solid electrolyte membrane increases exponentially and reaches several MΩ to several tens MΩ. Since the alternating voltage that can be applied to the solid electrolyte membrane is a low voltage (about 10 mV to about 1 V) that does not cause water electrolysis, the alternating current flowing through the solid electrolyte membrane becomes extremely small, and the influence of noise in the measurement environment Cannot be ignored. For this reason, the technique disclosed in Patent Document 1 has a problem that an error is likely to occur in the measurement result.

本発明は、上記に鑑みてなされたものであって、環境温度の変化によるガス中の水分濃度の測定結果の変化を抑制すると共に、高精度に水分濃度を測定することができる水分濃度検出装置を得ることを目的とする。   The present invention has been made in view of the above, and suppresses a change in the measurement result of the moisture concentration in the gas due to a change in the environmental temperature, and can also measure the moisture concentration with high accuracy. The purpose is to obtain.

上述した課題を解決し、目的を達成するために、本発明は、ガス絶縁機器内に設置され、対向して設けられた一対の多孔性電極と、一対の前記多孔性電極間に固着された水素イオン導電性の固体電解質膜と、前記ガス絶縁機器内に設けられた発熱体と、前記ガス絶縁機器内に設けられた温度センサと、一対の前記多孔性電極間に交流電圧を印加するとともに、前記ガス絶縁機器内の水分濃度に対応して変化する電極間電気量を計測する計測部と、前記温度センサからの温度を検出し、前記発熱体の温度を制御して、前記固体電解質膜の温度を予め設定された一定の設定温度に保つ温度制御部と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention is installed in a gas-insulated device, and is fixed between a pair of porous electrodes provided opposite to each other and the pair of porous electrodes. While applying an alternating voltage between a pair of the porous electrodes, a hydrogen ion conductive solid electrolyte membrane, a heating element provided in the gas insulation device, a temperature sensor provided in the gas insulation device A solid-state electrolyte membrane that detects a temperature from the temperature sensor, controls a temperature of the heating element, and measures a temperature of the interelectrode electricity corresponding to a moisture concentration in the gas insulation device And a temperature control unit that keeps the temperature at a predetermined preset temperature.

この発明によれば、環境温度の変化によるガス中の水分濃度の測定結果の変化を抑制すると共に、高精度に水分濃度を測定することができるという効果を奏する。   According to this invention, while suppressing the change of the measurement result of the moisture concentration in the gas by the change of environmental temperature, there exists an effect that a moisture concentration can be measured with high precision.

図1は、実施の形態にかかる水分濃度検出装置の一構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a moisture concentration detection apparatus according to an embodiment. 図2は、ガス中の水分濃度と固体電解質膜の交流インピーダンスとの関係を示す図である。FIG. 2 is a graph showing the relationship between the moisture concentration in the gas and the AC impedance of the solid electrolyte membrane. 図3は、交流電源の印加電圧に対する分圧抵抗の両端電圧の比率とガス中の水分濃度との関係を示す図である。FIG. 3 is a diagram showing the relationship between the ratio of the voltage across the voltage dividing resistor to the applied voltage of the AC power supply and the moisture concentration in the gas.

以下に、添付図面を参照して、本発明の実施の形態にかかる水分濃度検出装置を詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。   Hereinafter, a moisture concentration detection apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by the following embodiment.

実施の形態.
図1は、実施の形態にかかる水分濃度検出装置の一構成例を示す図である。図1に示すように、実施の形態にかかる水分濃度検出器は、対向して設けられた一対の多孔性電極1と、一対の多孔性電極1間に固着された固体電解質膜2と、一対の多孔性電極1の一方に接して設けられた発熱体4と、一対の多孔性電極1の他方に接して設けられた温度センサ3と、一対の多孔性電極1間の電気量を計測する計測部60と、温度センサ3の信号を読み取り、発熱体4の温度を制御する温度制御部70と、を備えている。
Embodiment.
FIG. 1 is a diagram illustrating a configuration example of a moisture concentration detection apparatus according to an embodiment. As shown in FIG. 1, the moisture concentration detector according to the embodiment includes a pair of porous electrodes 1 provided opposite to each other, a solid electrolyte membrane 2 fixed between the pair of porous electrodes 1, and a pair of The heating element 4 provided in contact with one of the porous electrodes 1, the temperature sensor 3 provided in contact with the other of the pair of porous electrodes 1, and the amount of electricity between the pair of porous electrodes 1 are measured. A measurement unit 60 and a temperature control unit 70 that reads a signal from the temperature sensor 3 and controls the temperature of the heating element 4 are provided.

一対の多孔性電極1、固体電解質膜2、発熱体4、および温度センサ3は、ガス絶縁機器10の内部に設けられ、計測部60および温度制御部70は、ガス絶縁機器10の外部に設けられている。   The pair of porous electrodes 1, the solid electrolyte membrane 2, the heating element 4, and the temperature sensor 3 are provided inside the gas insulating device 10, and the measuring unit 60 and the temperature control unit 70 are provided outside the gas insulating device 10. It has been.

計測部60は、交流電源5、固体電解質膜2と直列に接続された分圧抵抗6、および分圧抵抗6にかかる交流電圧を水分濃度に対応して変化する電気量として読み取る電圧計7を備え構成される。   The measuring unit 60 includes an AC power source 5, a voltage dividing resistor 6 connected in series with the solid electrolyte membrane 2, and a voltmeter 7 that reads an AC voltage applied to the voltage dividing resistor 6 as an electric quantity that changes in accordance with the moisture concentration. It is configured.

温度制御部70は、温度センサ3の信号を読み取る温度検出器8、および温度検出器8からの信号に基づき発熱体4の温度を予め設定された設定温度値に保つ発熱量制御器9を備え構成されている。   The temperature control unit 70 includes a temperature detector 8 that reads a signal from the temperature sensor 3, and a heat generation amount controller 9 that maintains the temperature of the heating element 4 at a preset temperature value based on a signal from the temperature detector 8. It is configured.

固体電解質膜2は、水素イオン導電性ポリマで構成され、その含水率はSF6ガス中の水分濃度と平衡状態となる。すなわち、ガス中の水分濃度が高くなると含水率が増加し、逆にガス中の水分濃度が低くなると含水率が低下する。固体電解質膜2の含水率が増加すると、固体電解質膜2の交流インピーダンスが低くなり、逆に固体電解質膜2の含水率が低下すると、固体電解質膜2の交流インピーダンスが高くなる。この固体電解質膜2には、例えばデュポン社の登録商標であるNafion(登録商標)を用いることができる。   The solid electrolyte membrane 2 is composed of a hydrogen ion conductive polymer, and its moisture content is in equilibrium with the moisture concentration in the SF6 gas. That is, when the moisture concentration in the gas increases, the moisture content increases. Conversely, when the moisture concentration in the gas decreases, the moisture content decreases. When the moisture content of the solid electrolyte membrane 2 increases, the AC impedance of the solid electrolyte membrane 2 decreases, and conversely, when the moisture content of the solid electrolyte membrane 2 decreases, the AC impedance of the solid electrolyte membrane 2 increases. For example, Nafion (registered trademark), which is a registered trademark of DuPont, can be used for the solid electrolyte membrane 2.

多孔性電極1は、例えば白金を無電解メッキすることによって形成され、微視的には多孔性材である。このようなここで、このような多孔性材を用いるのは、ガス中の水分が固体電解質膜2 に浸透し易くするためである。   The porous electrode 1 is formed by, for example, electroless plating of platinum, and is microscopically a porous material. The reason why such a porous material is used here is to make it easy for water in the gas to penetrate into the solid electrolyte membrane 2.

発熱体4は、ガス中の水分が固体電解質膜2 に浸透することを阻害しないように、多孔性電極1と同様の多孔性材もしくは細いワイヤー状の発熱体であるのが望ましい。   The heating element 4 is preferably a porous material similar to the porous electrode 1 or a thin wire-like heating element so as not to prevent moisture in the gas from penetrating the solid electrolyte membrane 2.

交流電源5としては、例えば50Hz、60Hzの商用電源等の交流電源を使用する。この交流電源5から分圧抵抗6を介して一対の多孔性電極1間に固着された固体電解質膜2に交流電圧を印加する。なお、固体電解質膜2に印加する交流電圧値は、水の電気分解が生じない程度の低電圧(約10mv〜約1V)とする。   As the AC power source 5, for example, an AC power source such as a commercial power source of 50 Hz or 60 Hz is used. An AC voltage is applied from the AC power source 5 to the solid electrolyte membrane 2 fixed between the pair of porous electrodes 1 via the voltage dividing resistor 6. The alternating voltage applied to the solid electrolyte membrane 2 is set to a low voltage (about 10 mV to about 1 V) that does not cause water electrolysis.

温度センサ3は、多孔性電極1を介して固体電解質膜2の温度を検出する。温度検出器8は、温度センサ3からの信号を読み取り発熱量制御器9に出力する。   The temperature sensor 3 detects the temperature of the solid electrolyte membrane 2 through the porous electrode 1. The temperature detector 8 reads the signal from the temperature sensor 3 and outputs it to the calorific value controller 9.

発熱量制御器9は、予め設定された設定温度値と検出された温度値とを比較して発熱体4へ流す電流を制御することにより、固体電解質膜2の温度を設定温度値に保つ。   The calorific value controller 9 keeps the temperature of the solid electrolyte membrane 2 at the set temperature value by comparing the preset temperature value set in advance with the detected temperature value and controlling the current flowing to the heating element 4.

つぎに、実施の形態にかかる水分濃度検出装置の動作について、図1〜図3を参照して説明する。図2は、ガス中の水分濃度と固体電解質膜の交流インピーダンスとの関係を示す図である。図2において、横軸はガス中の水分濃度を示し、縦軸は固体電解質膜2の交流インピーダンスを示している。図2に示す例では、環境温度を20℃とした例を示している。図2に示すように、ガス中の水分濃度が減少するに従い、交流インピーダンスが単調に増加する。   Next, the operation of the moisture concentration detection apparatus according to the embodiment will be described with reference to FIGS. FIG. 2 is a graph showing the relationship between the moisture concentration in the gas and the AC impedance of the solid electrolyte membrane. In FIG. 2, the horizontal axis indicates the moisture concentration in the gas, and the vertical axis indicates the AC impedance of the solid electrolyte membrane 2. In the example illustrated in FIG. 2, an example in which the environmental temperature is 20 ° C. is illustrated. As shown in FIG. 2, the AC impedance increases monotonously as the moisture concentration in the gas decreases.

図3は、交流電源の印加電圧に対する分圧抵抗の両端電圧の比率とガス中の水分濃度との関係を示す図である。図3において、横軸はガス中の水分濃度を示し、縦軸は交流電源5の印加電圧に対する分圧抵抗6の両端電圧の比率を示している。図3に示す例では、図2と同様に環境温度を20℃とした例を示し、分圧抵抗6として100kΩの抵抗素子を用いている。   FIG. 3 is a diagram showing the relationship between the ratio of the voltage across the voltage dividing resistor to the applied voltage of the AC power supply and the moisture concentration in the gas. In FIG. 3, the horizontal axis indicates the moisture concentration in the gas, and the vertical axis indicates the ratio of the voltage across the voltage dividing resistor 6 to the applied voltage of the AC power supply 5. In the example shown in FIG. 3, an example in which the environmental temperature is set to 20 ° C. as in FIG. 2 is shown, and a 100 kΩ resistive element is used as the voltage dividing resistor 6.

固体電解質膜2の交流インピーダンスの変化を捉えるため、ガス絶縁機器10の外部に設けた分圧抵抗6の両端電圧を電圧計7で測定する。分圧抵抗6の抵抗値は一定(ここでは、100kΩ)であり、固体電解質膜2の交流インピーダンスがガス絶縁機器10内の水分濃度に対応して変化することから、分圧抵抗6の両端電圧がガス中の水分濃度に応じて変化する。   In order to capture the change in AC impedance of the solid electrolyte membrane 2, the voltage across the voltage dividing resistor 6 provided outside the gas insulating device 10 is measured with a voltmeter 7. Since the resistance value of the voltage dividing resistor 6 is constant (here, 100 kΩ), and the AC impedance of the solid electrolyte membrane 2 changes corresponding to the moisture concentration in the gas insulating device 10, the voltage across the voltage dividing resistor 6 is Varies depending on the moisture concentration in the gas.

ここで、交流電源5の印加電圧をV、分圧抵抗6の両端電圧をv、固体電解質膜2の交流インピーダンスをZ、分圧抵抗6の抵抗値をR、固体電解質膜2と分圧抵抗6とで構成される直列回路に流れる電流をIとすると、各パラメータの関係は、次式(1)および(2)で表される。なお、交流電源5の印加電圧Vおよび分圧抵抗6の抵抗値Rは一定である。
v=RI ・・・(1)
V=(R+Z)I ・・・(2)
Here, the applied voltage of the AC power source 5 is V, the voltage across the voltage dividing resistor 6 is v, the AC impedance of the solid electrolyte membrane 2 is Z, the resistance value of the voltage dividing resistor 6 is R, the solid electrolyte membrane 2 and the voltage dividing resistor 6 is represented by the following equations (1) and (2). The applied voltage V of the AC power supply 5 and the resistance value R of the voltage dividing resistor 6 are constant.
v = RI (1)
V = (R + Z) I (2)

したがって、交流電源5の印加電圧に対する分圧抵抗6の両端電圧の比率は、次式(3)で表すことができる。
v/V=R/(R+Z) ・・・(3)
Therefore, the ratio of the voltage across the voltage dividing resistor 6 with respect to the applied voltage of the AC power supply 5 can be expressed by the following equation (3).
v / V = R / (R + Z) (3)

(3)式に示されるように、ガス中の水分濃度が低下して、固体電解質膜2の交流インピーダンスZが増加すると(図2参照)、分圧抵抗6の両端電圧vは逆に低下する。また、ガス中の水分濃度が増加して、固体電解質膜2の交流インピーダンスZが低下すると(図2参照)、分圧抵抗6の両端電圧vは逆に増加する。つまり、ガス中の水分濃度に応じて、分圧抵抗6の両端電圧が変化する。したがって、図3に示す交流電源5の印加電圧に対する分担抵抗6の両端電圧の比率とガス中の水分濃度との関係から、ガス中の水分濃度を求めることができる。   As shown in the equation (3), when the moisture concentration in the gas decreases and the AC impedance Z of the solid electrolyte membrane 2 increases (see FIG. 2), the voltage v across the voltage dividing resistor 6 decreases conversely. . Further, when the moisture concentration in the gas increases and the AC impedance Z of the solid electrolyte membrane 2 decreases (see FIG. 2), the voltage v across the voltage dividing resistor 6 increases conversely. That is, the voltage across the voltage dividing resistor 6 changes according to the moisture concentration in the gas. Therefore, the moisture concentration in the gas can be obtained from the relationship between the ratio of the voltage across the sharing resistor 6 to the applied voltage of the AC power source 5 shown in FIG. 3 and the moisture concentration in the gas.

例えば、ガス中の水分濃度が30ppmの低濃度である場合、固体電解質膜2の交流インピーダンスが大きくなり、交流電源5から供給される交流電圧の大部分が固体電解質膜2に分担され、図3中の縦軸に示す交流電源5の印加電圧に対する分圧抵抗6の両端電圧の比率は0.1以下となる。一方、ガス中の水分濃度が500ppmの高濃度である場合、固体電解質膜2の交流インピーダンスが逆に小さくなり、交流電源5から供給される交流電圧の大部分が分圧抵抗6に分担されるので、交流電源5の印加電圧に対する分圧抵抗6の両端電圧の比率は0.9以上となる。   For example, when the moisture concentration in the gas is a low concentration of 30 ppm, the AC impedance of the solid electrolyte membrane 2 becomes large, and most of the AC voltage supplied from the AC power source 5 is shared by the solid electrolyte membrane 2. The ratio of the voltage across the voltage dividing resistor 6 to the applied voltage of the AC power source 5 shown on the vertical axis in the middle is 0.1 or less. On the other hand, when the moisture concentration in the gas is a high concentration of 500 ppm, the alternating current impedance of the solid electrolyte membrane 2 is conversely reduced, and most of the alternating voltage supplied from the alternating current power source 5 is shared by the voltage dividing resistor 6. Therefore, the ratio of the voltage across the voltage dividing resistor 6 to the applied voltage of the AC power supply 5 is 0.9 or more.

一方、温度が高いほど固体電解質膜2の含水率が高くなり、それに伴い固体電解質膜2の交流インピーダンスは小さくなる。また、逆に、温度が低いほど固体電解質膜2の含水率が低くなり、それに伴い固体電解質膜2の交流インピーダンスは大きくなる。つまり、ガス中の水分濃度と固体電解質膜2の交流インピーダンスとの関係は、図2に示すように、温度が高くなると実線で示す矢印の方向に変化し、温度が低くなると、破線で示す矢印の方向に変化する。したがって、交流電源5の印加電圧に対する分圧抵抗6の両端電圧の比率とガス中の水分濃度との関係は、図3に示すように、温度が高くなると実線で示す矢印の方向に変化し、温度が低くなると、破線で示す矢印の方向に変化する。このため、環境温度の変化に伴いガス絶縁機器10内の温度が変化した場合、ガス中の水分濃度の測定結果が変化することとなる。つまり、ガス絶縁機器10内の温度を一定に保つようにすれば、ガス中の水分濃度の測定結果の変化を抑制することができる。   On the other hand, the higher the temperature, the higher the moisture content of the solid electrolyte membrane 2, and the AC impedance of the solid electrolyte membrane 2 decreases accordingly. Conversely, the lower the temperature, the lower the water content of the solid electrolyte membrane 2, and the AC impedance of the solid electrolyte membrane 2 increases accordingly. That is, as shown in FIG. 2, the relationship between the moisture concentration in the gas and the AC impedance of the solid electrolyte membrane 2 changes in the direction of the arrow indicated by the solid line when the temperature increases, and the arrow indicated by the broken line when the temperature decreases. Change in the direction of. Therefore, as shown in FIG. 3, the relationship between the ratio of the voltage across the voltage dividing resistor 6 to the voltage applied to the AC power supply 5 and the moisture concentration in the gas changes in the direction of the arrow indicated by the solid line as the temperature rises. When the temperature is lowered, it changes in the direction of the arrow indicated by a broken line. For this reason, when the temperature in the gas insulation apparatus 10 changes with the change of environmental temperature, the measurement result of the moisture concentration in gas will change. That is, if the temperature in the gas insulation apparatus 10 is kept constant, a change in the measurement result of the moisture concentration in the gas can be suppressed.

なお、(3)式に示されるように、固体電解質膜2の交流インピーダンスZが小さくなると、交流電源5の印加電圧に対する分圧抵抗6の両端電圧の比率は1に収束し、固体電解質膜2の交流インピーダンスZが大きくなると、交流電源5の印加電圧に対する分圧抵抗6の両端電圧の比率は0に収束する。このため、図3に示すように、実線および破線で示した矢印の変化量は、交流電源5の印加電圧に対する分圧抵抗6の両端電圧の比率が0.5付近である場合に大きくなり、比率が0.5から離れるに従い小さくなる。つまり、交流電源5の印加電圧に対する分圧抵抗6の両端電圧の比率が0.5付近である場合に、環境温度の変化によるガス中の水分濃度の測定結果の変化量が最も大きくなる。   As shown in the equation (3), when the AC impedance Z of the solid electrolyte membrane 2 decreases, the ratio of the voltage across the voltage dividing resistor 6 to the applied voltage of the AC power supply 5 converges to 1, and the solid electrolyte membrane 2 When the AC impedance Z of the voltage increases, the ratio of the voltage across the voltage dividing resistor 6 to the voltage applied to the AC power supply 5 converges to zero. For this reason, as shown in FIG. 3, the amount of change of the arrows shown by the solid line and the broken line becomes large when the ratio of the voltage across the voltage dividing resistor 6 to the applied voltage of the AC power supply 5 is around 0.5, The ratio decreases as the ratio goes away from 0.5. That is, when the ratio of the voltage across the voltage dividing resistor 6 to the applied voltage of the AC power supply 5 is around 0.5, the amount of change in the measurement result of the moisture concentration in the gas due to the change in the environmental temperature is the largest.

また、特にガス中の水分濃度が低濃度(例えば、十数ppm程度)である場合は、固体電解質膜2の交流インピーダンスが高くなり、常温(例えば、20℃)環境下において数MΩ〜数十MΩにまで達するため、分圧抵抗6の抵抗値(ここでは100kΩ)に対して極めて大きな値となる。また、固体電解質膜2に印加する交流電圧値は、水の電気分解が生じない程度の低電圧(約10mv〜約1V)とする必要があるため、固体電解質膜2と分圧抵抗6とで構成される直列回路に流れる電流値は、数百pA〜数百nAと極めて小さな値となる。このため、電圧計7に流れる電流や測定環境におけるノイズの影響も無視できなくなる。   In particular, when the moisture concentration in the gas is low (for example, about several tens of ppm), the AC impedance of the solid electrolyte membrane 2 is high, and several MΩ to several tens in a normal temperature (for example, 20 ° C.) environment. Since it reaches MΩ, it becomes a very large value with respect to the resistance value of the voltage dividing resistor 6 (here, 100 kΩ). Moreover, since the AC voltage value applied to the solid electrolyte membrane 2 needs to be a low voltage (about 10 mv to about 1 V) that does not cause water electrolysis, the solid electrolyte membrane 2 and the voltage dividing resistor 6 The value of current flowing through the configured series circuit is an extremely small value of several hundred pA to several hundred nA. For this reason, the current flowing through the voltmeter 7 and the influence of noise in the measurement environment cannot be ignored.

したがって、実施の形態にかかる水分濃度検出装置では、固体電解質膜2の温度が一定の高温となるように、発熱量制御器9に予め設定される設定温度値を設定し、この設定温度値と検出された固体電解質膜2の温度値とを比較して発熱体4へ流す電流を制御することにより、固体電解質膜2の温度を一定の高温に保つようにしている。これにより、環境温度の変化によりガス中の水分濃度の測定結果が変化することを抑制することができる。   Therefore, in the moisture concentration detection apparatus according to the embodiment, a preset temperature value set in advance in the heat generation amount controller 9 is set so that the temperature of the solid electrolyte membrane 2 becomes a constant high temperature. By comparing the detected temperature value of the solid electrolyte membrane 2 and controlling the current flowing to the heating element 4, the temperature of the solid electrolyte membrane 2 is kept at a constant high temperature. Thereby, it can suppress that the measurement result of the moisture concentration in gas changes by the change of environmental temperature.

なお、設定温度値は、ガス絶縁機器10が設置される環境において想定されるガス絶縁機器10内の最高温度以上に設定するのが好ましい。これにより、固体電解質膜2の交流インピーダンスは、ガス絶縁機器が設置される環境の温度変化に依存することなく、ガス中の水分濃度のみに応じて変化するため、固体電解質膜2の交流インピーダンスの温度依存性による影響を排除することができる。   The set temperature value is preferably set to be equal to or higher than the maximum temperature in the gas insulating device 10 assumed in the environment where the gas insulating device 10 is installed. As a result, the AC impedance of the solid electrolyte membrane 2 does not depend on the temperature change of the environment in which the gas insulating device is installed, and changes only according to the moisture concentration in the gas. The influence of temperature dependency can be eliminated.

また、設定温度値がガス絶縁機器10内の最高温度より低い場合でも、設定温度値がガス絶縁機器10内の最高温度の近傍であれば、固体電解質膜2の温度の上昇幅は、発熱体4および温度制御部70を具備していない場合と比較するとより小さくなる。したがって、発熱体4および温度制御部70を具備する効果は大きいと言える。   Even when the set temperature value is lower than the maximum temperature in the gas insulating device 10, if the set temperature value is close to the maximum temperature in the gas insulating device 10, the temperature rise of the solid electrolyte membrane 2 is the heating element. 4 and the temperature control unit 70 are smaller than the case where the temperature control unit 70 is not provided. Therefore, it can be said that the effect of including the heating element 4 and the temperature control unit 70 is great.

また、固体電解質膜の温度を常に一定の高温に保つことにより、固体電解質膜2の含水率の上昇に伴い固体電解質膜2の交流インピーダンスが下がり、固体電解質膜2と分圧抵抗6とで構成される直列回路に流れる電流値が大きくなるため、高精度に水分濃度を測定することが可能となる。   Further, by always keeping the temperature of the solid electrolyte membrane at a constant high temperature, the alternating current impedance of the solid electrolyte membrane 2 is lowered as the moisture content of the solid electrolyte membrane 2 is increased, and the solid electrolyte membrane 2 and the voltage dividing resistor 6 are configured. Since the value of the current flowing through the series circuit is increased, the moisture concentration can be measured with high accuracy.

以上のように、本発明の実施の形態にかかる水分濃度検出装置によれば、固体電解質膜の温度を一定の高温に保つようにしたので、環境温度の変化によりガス中の水分濃度の測定結果が変化することを抑制することができる。   As described above, according to the moisture concentration detection apparatus according to the embodiment of the present invention, the temperature of the solid electrolyte membrane is kept at a constant high temperature, so the measurement result of the moisture concentration in the gas due to the change in the environmental temperature. Can be prevented from changing.

さらに、設定温度値をガス絶縁機器が設置される環境において想定されるガス絶縁機器内の最高温度以上に設定することにより、固体電解質膜の交流インピーダンスは、ガス絶縁機器が設置される環境の温度変化に依存することなく、ガス中の水分濃度のみに応じて変化するため、固体電解質膜の交流インピーダンスの温度依存性による影響を排除し、より安定して水分濃度を検出することが可能となる。   Furthermore, the AC impedance of the solid electrolyte membrane is set to the temperature of the environment in which the gas insulation device is installed by setting the set temperature value to be higher than the maximum temperature in the gas insulation device assumed in the environment in which the gas insulation device is installed. Since it changes only depending on the moisture concentration in the gas without depending on the change, it is possible to eliminate the influence due to the temperature dependence of the AC impedance of the solid electrolyte membrane and to detect the moisture concentration more stably. .

また、固体電解質膜の温度を常に一定の高温に保つことにより、固体電解質膜の含水率の上昇に伴い固体電解質膜の交流インピーダンスが下がり、固体電解質膜に流れる電流値が大きくなるため、高精度に水分濃度を測定することができる。   In addition, by maintaining the temperature of the solid electrolyte membrane at a constant high temperature, the AC impedance of the solid electrolyte membrane decreases as the moisture content of the solid electrolyte membrane increases, and the value of the current flowing through the solid electrolyte membrane increases. The moisture concentration can be measured.

なお、実施の形態では、一対の多孔性電極の一方に発熱体を備え、多孔性電極の他方に温度センサを多孔性電極上に備える例について説明したが、多孔性電極の一方に発熱体および温度センサを取り付けることも可能である。この場合は、発熱体の温度が直接温度センサに伝わらないように、発熱体と温度センサとの間の距離を離して設置するのが好ましい。   In the embodiment, the example in which the heating element is provided on one of the pair of porous electrodes and the temperature sensor is provided on the porous electrode on the other of the porous electrodes has been described. It is also possible to attach a temperature sensor. In this case, it is preferable to install the heating element at a distance from the temperature sensor so that the temperature of the heating element is not directly transmitted to the temperature sensor.

また、例えば、多孔性電極及び固体電解質膜をガス絶縁機器内に通気可能に設けられた容器内に収容し、発熱体および温度センサをその容器内に配置して、その容器内の温度を一定の温度に保つように構成しても、実施の形態と同様の効果を得ることができる。   In addition, for example, the porous electrode and the solid electrolyte membrane are accommodated in a container provided to be able to vent into the gas insulating device, and the heating element and the temperature sensor are arranged in the container, and the temperature in the container is kept constant. Even if it is configured to maintain the temperature, the same effect as in the embodiment can be obtained.

また、以上の実施の形態に示した構成は、本発明の構成の一例であり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは言うまでもない。   The configurations described in the above embodiments are examples of the configurations of the present invention, and can be combined with other known techniques, and a part of the configurations is omitted without departing from the gist of the present invention. Needless to say, it is possible to change the configuration.

以上のように、本発明にかかる水分濃度検出装置は、環境温度の変化によるガス中の水分濃度の測定結果の変化を抑制すると共に、高精度に水分濃度を測定することができる発明として有用である。   As described above, the moisture concentration detection device according to the present invention is useful as an invention capable of suppressing the change in the measurement result of the moisture concentration in the gas due to the change in the environmental temperature and measuring the moisture concentration with high accuracy. is there.

1 多孔性電極
2 固体電解質膜
3 温度センサ
4 発熱体
5 交流電源
6 分圧抵抗
7 電圧計
8 温度検出器
9 発熱量制御器
10 ガス絶縁機器
60 計測部
70 温度制御部
DESCRIPTION OF SYMBOLS 1 Porous electrode 2 Solid electrolyte membrane 3 Temperature sensor 4 Heating body 5 AC power supply 6 Voltage dividing resistance 7 Voltmeter 8 Temperature detector 9 Heat generation amount controller 10 Gas insulation apparatus 60 Measurement part 70 Temperature control part

Claims (6)

ガス絶縁機器内に設置され、対向して設けられた一対の多孔性電極と、
前記多孔性電極間に固着された固体電解質膜と、
前記ガス絶縁機器内に設けられた発熱体と、
前記ガス絶縁機器内に設けられた温度センサと、
前記多孔性質電極間に交流電圧を印加するとともに、前記ガス絶縁機器内の水分濃度に対応して変化する電極間電気量を計測する計測部と、
前記温度センサからの温度を検出し、前記発熱体の温度を制御して、前記固体電解質膜の温度を予め設定された一定の設定温度に保つ温度制御部と、
を備える
ことを特徴とする水分濃度検出装置。
A pair of porous electrodes installed in and opposed to each other in a gas insulating device;
A solid electrolyte membrane fixed between the porous electrodes;
A heating element provided in the gas insulating device;
A temperature sensor provided in the gas insulation device;
A measurement unit that applies an alternating voltage between the porous electrodes and measures an electrical quantity between electrodes that changes in accordance with a moisture concentration in the gas insulating device,
Detecting a temperature from the temperature sensor, controlling a temperature of the heating element, and maintaining a temperature of the solid electrolyte membrane at a preset constant temperature; and
A moisture concentration detection device comprising:
前記発熱体は、前記多孔性電極のいずれか一方に接して設けられたことを特徴とする請求項1に記載の水分濃度検出装置。   The moisture concentration detection device according to claim 1, wherein the heating element is provided in contact with one of the porous electrodes. 前記温度センサは、前記多孔性電極のいずれか一方に接して設けられたことを特徴とする請求項1に記載の水分濃度検出装置。   The moisture concentration detection device according to claim 1, wherein the temperature sensor is provided in contact with one of the porous electrodes. 前記発熱体は、前記多孔性電極の一方に接して設けられ、前記温度センサは、前記多孔性電極の他方に接して設けられたことを特徴とする請求項1に記載の水分濃度検出装置。   The moisture concentration detecting device according to claim 1, wherein the heating element is provided in contact with one of the porous electrodes, and the temperature sensor is provided in contact with the other of the porous electrodes. 前記温度制御部は、前記ガス絶縁機器が設置される環境において想定される当該ガス絶縁機器内の最高温度以上に前記設定温度が設定されることを特徴とする請求項1〜4のいずれか一項に記載の水分濃度検出装置。   The said temperature control part sets the said preset temperature more than the highest temperature in the said gas insulation apparatus assumed in the environment where the said gas insulation apparatus is installed, The any one of Claims 1-4 characterized by the above-mentioned. The water concentration detection device according to item. 前記ガス絶縁機器内に通気可能に設けられた容器をさらに備え、
一対の前記多孔性電極、前記固体電解質膜、前記発熱体、および前記温度センサは、前記容器内に収容されることを特徴とする請求項1〜5のいずれか一項に記載の水分濃度検出装置。
Further comprising a container provided in the gas insulating device so as to allow ventilation,
The moisture concentration detection according to any one of claims 1 to 5, wherein the pair of the porous electrodes, the solid electrolyte membrane, the heating element, and the temperature sensor are accommodated in the container. apparatus.
JP2010128083A 2010-06-03 2010-06-03 Moisture concentration detector Active JP5274515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010128083A JP5274515B2 (en) 2010-06-03 2010-06-03 Moisture concentration detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010128083A JP5274515B2 (en) 2010-06-03 2010-06-03 Moisture concentration detector

Publications (2)

Publication Number Publication Date
JP2011252847A true JP2011252847A (en) 2011-12-15
JP5274515B2 JP5274515B2 (en) 2013-08-28

Family

ID=45416885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010128083A Active JP5274515B2 (en) 2010-06-03 2010-06-03 Moisture concentration detector

Country Status (1)

Country Link
JP (1) JP5274515B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2594596A1 (en) 2011-11-18 2013-05-22 Nitto Denko Corporation Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP5214067B2 (en) * 2011-04-07 2013-06-19 三菱電機株式会社 Moisture concentration detector
CN106383067A (en) * 2015-07-30 2017-02-08 上海欧秒电力监测设备有限公司 Sulfur hexafluoride gas density micro water monitor for GIS
CN113109518A (en) * 2021-04-23 2021-07-13 浙江工业大学 Gas water content detection device of sulfur hexafluoride circuit breaker

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158340A (en) * 1987-09-03 1989-06-21 Murata Mfg Co Ltd Humidity sensor
JP2002350394A (en) * 2001-05-29 2002-12-04 Mitsubishi Electric Corp Electrochemical detecting device
JP2003222605A (en) * 2002-01-29 2003-08-08 Ngk Spark Plug Co Ltd Gas sensor
JP2004294127A (en) * 2003-03-25 2004-10-21 Ngk Spark Plug Co Ltd Humidity sensor
JP2006308502A (en) * 2005-05-02 2006-11-09 Mitsubishi Electric Corp Device for detecting moisture density in sf6 gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158340A (en) * 1987-09-03 1989-06-21 Murata Mfg Co Ltd Humidity sensor
JP2002350394A (en) * 2001-05-29 2002-12-04 Mitsubishi Electric Corp Electrochemical detecting device
JP2003222605A (en) * 2002-01-29 2003-08-08 Ngk Spark Plug Co Ltd Gas sensor
JP2004294127A (en) * 2003-03-25 2004-10-21 Ngk Spark Plug Co Ltd Humidity sensor
JP2006308502A (en) * 2005-05-02 2006-11-09 Mitsubishi Electric Corp Device for detecting moisture density in sf6 gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5214067B2 (en) * 2011-04-07 2013-06-19 三菱電機株式会社 Moisture concentration detector
EP2594596A1 (en) 2011-11-18 2013-05-22 Nitto Denko Corporation Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
CN106383067A (en) * 2015-07-30 2017-02-08 上海欧秒电力监测设备有限公司 Sulfur hexafluoride gas density micro water monitor for GIS
CN106383067B (en) * 2015-07-30 2020-04-07 上海欧秒电力监测设备有限公司 Sulfur hexafluoride gas density micro-water monitor for GIS
CN113109518A (en) * 2021-04-23 2021-07-13 浙江工业大学 Gas water content detection device of sulfur hexafluoride circuit breaker

Also Published As

Publication number Publication date
JP5274515B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP4616069B2 (en) Device for detecting moisture concentration in SF6 gas
KR960009768B1 (en) Flammable-gas sensor
US11085896B2 (en) Auxiliary micro-electrodes for diagnostics of electrochemical gas sensors
JP5274515B2 (en) Moisture concentration detector
GB2491005B (en) Electrochemical sensors
CN105026899A (en) Method and apparatus for monitoring a predefined filling level of a medium in a container
KR101302531B1 (en) Electrochemical gas detection device
JP5214067B2 (en) Moisture concentration detector
AU3919999A (en) Gas sensor with dual electrolytes
KR102223882B1 (en) An apparatus for detecting low amount of gas leak
US9417200B2 (en) Moisture concentration detecting device
JP5159992B2 (en) Moisture concentration detector
CN203688666U (en) Lithium battery diaphragm area resistance testing device
KR950009267A (en) Insulation oil deterioration measuring method and its measuring device
Jasinski Influence of operation temperature instability on gas sensor performance
US8947110B2 (en) Suspension device for a membrane test system
KR102086975B1 (en) Chemical leak detection device using cable type sensor
CN112525292A (en) Liquid level detection device and method
CN205786429U (en) A kind of all solid state type high-temperature gas sensors
JP2005183296A (en) Fuel cell
JP5266287B2 (en) Gas concentration detector
JP5362687B2 (en) Oxygen partial pressure detection method
JP6511282B2 (en) Oxygen concentration measuring device and oxygen concentration measuring method
CN102305654A (en) Sensor capable of measuring water level by using temperature sensors and using method thereof
SU381991A1 (en) DEVICE FOR AUTOLATIC CONTROL OF OXYGEN CONCENTRATION IN THE MINE ATMOSPHERE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5274515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250