JP2011252799A - Temperature measurement apparatus using infrared sensor and correction method of the same - Google Patents

Temperature measurement apparatus using infrared sensor and correction method of the same Download PDF

Info

Publication number
JP2011252799A
JP2011252799A JP2010126925A JP2010126925A JP2011252799A JP 2011252799 A JP2011252799 A JP 2011252799A JP 2010126925 A JP2010126925 A JP 2010126925A JP 2010126925 A JP2010126925 A JP 2010126925A JP 2011252799 A JP2011252799 A JP 2011252799A
Authority
JP
Japan
Prior art keywords
temperature
infrared sensor
measurement
unit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010126925A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sasaki
裕之 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2010126925A priority Critical patent/JP2011252799A/en
Publication of JP2011252799A publication Critical patent/JP2011252799A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature measurement apparatus using an infrared sensor of which measurement accuracy is sufficiently assured, measurement work is simplified, configuration is simple and cost can be reduced, and a correction method of the same.SOLUTION: When a temperature of an object to be measure is Tb, an output from an infrared sensor unit 1 (an output measured by an infrared sensor output measurement unit 3 corresponding to the output) is V, an offset related to the output from the infrared sensor unit 1 is c, a temperature coefficient is b, a temperature of the infrared sensor unit 1 (the infrared sensor unit 1 itself) is Tr, and an exponent in a temperature operational expression is α, the temperature Tb for the object to be measured is calculated by the operation, Tb={(V-c)/b+Trα}. In this case, a temperature measurement apparatus 10 retains a constant of each of the exponent α, the temperature coefficient b and the offset c in advance. Each constant is calculated as a value for satisfying a condition where a predetermined function value indicating a variation, which is obtained by squaring a difference between the actual value and the estimated value of the output from the infrared sensor unit and summing it for the number N of times of data acquisition, becomes a minimum.

Description

本発明は、温度測定装置およびその補正方法に関し、より詳細には、赤外線センサ部を用いた温度測定において簡易な操作で高精度の測定値を得ることが可能な温度測定装置およびその補正方法に関する。   The present invention relates to a temperature measurement device and a correction method thereof, and more particularly to a temperature measurement device capable of obtaining a highly accurate measurement value by a simple operation in a temperature measurement using an infrared sensor unit and a correction method thereof. .

従来から、赤外線センサ部を用いて対象物の温度を非接触で測定する温度測定装置が知られている。
それらの具体例として、非接触温度計(もしくは放射温度計)、サーモグラフィ、赤外線カメラ等が製品化されている。
これらの製品群における温度測定の原理は概ね以下の通りである。即ち、一般に、赤外線センサ部は、対象物の温度と赤外線センサ部自体の温度、及び赤外線センサ部が対象物を見込む立体角(両者の相互距離と相互の向き)によって出力が定まる。赤外線センサ部の持つこの性質を利用して、立体角を一定に保つことにより対象物の温度を測定する。
Conventionally, a temperature measurement device that measures the temperature of an object in a non-contact manner using an infrared sensor unit is known.
As specific examples thereof, non-contact thermometers (or radiation thermometers), thermography, infrared cameras, and the like have been commercialized.
The principle of temperature measurement in these product groups is as follows. That is, in general, the output of the infrared sensor unit is determined by the temperature of the object, the temperature of the infrared sensor unit itself, and the solid angle (the mutual distance and the mutual direction) at which the infrared sensor unit looks at the object. Using this property of the infrared sensor unit, the temperature of the object is measured by keeping the solid angle constant.

しかしながら、上述のように立体角を一定に維持した状態で対象物の温度を測定する場合、仮に赤外線センサ部自体の温度を一定にすることができたとしても、通常、対象物の温度と赤外線センサ部の出力値とは比例関係にはない。
その理由は、電磁波のエネルギーと温度とが比例関係にはないからである。周知の通り、通常の赤外線センサ部の出力は、赤外線センサ部が吸収する電磁波のエネルギーと赤外線センサ部が放出する電磁波のエネルギーの差分(に比例する何がしかの物理量)として得られる。このため、他の方式のセンサでは一般的である比例関係式を適用して出力を得ることができない。
However, when the temperature of the object is measured with the solid angle kept constant as described above, even if the temperature of the infrared sensor unit itself can be made constant, the temperature of the object and the infrared ray are usually detected. It is not proportional to the output value of the sensor unit.
The reason is that the energy of electromagnetic waves and temperature are not in a proportional relationship. As is well known, the output of a normal infrared sensor unit is obtained as the difference between the energy of electromagnetic waves absorbed by the infrared sensor unit and the energy of electromagnetic waves emitted by the infrared sensor unit (some physical quantity proportional to the energy). For this reason, it is not possible to obtain an output by applying a proportional relational expression, which is common in other types of sensors.

この対策として、電磁波のエネルギーと温度(絶対温度)との関係について黒体放射に関するステファンボルツマンの法則が成立することを利用した温度測定方法がよく知られている。
ステファンボルツマンの法則に従えば、赤外線センサ部の出力Vは、赤外線センサ部自体の温度をTr、対象物の温度をTbとすると、
V=k・(Tb4−Tr4)………………(1)
で与えられることとなる。ここに、kは適当な変換係数であるが、特別な場合にはステファンボルツマン定数と呼ばれる物理定数となる。
As a countermeasure against this, a temperature measurement method using the fact that Stefan Boltzmann's law regarding black body radiation is established with respect to the relationship between electromagnetic energy and temperature (absolute temperature) is well known.
According to Stefan-Boltzmann's law, the output V of the infrared sensor unit is represented by Tr as the temperature of the infrared sensor unit itself and Tb as the temperature of the object.
V = k · (Tb 4 −Tr 4 ) (1)
Will be given. Here, k is an appropriate conversion coefficient, but in a special case, k is a physical constant called a Stefan Boltzmann constant.

但し、上記のステファンボルツマンの法則を利用する場合には、赤外線センサ部がすべての波長の電磁波を吸収・放出できるという重要な前提条件を満たしている必要がある。
このような前提条件を充足するような赤外線センサ部を作ることは事実上不可能であるばかりか、赤外線領域(一般には、波長が0.7マイクロメートルから1ミリメートルの電磁波)の一部分のみ、更には、ごく僅かな波長領域のみが吸収・放出可能な赤外線センサ部も存在する。
従って、赤外線センサ部を用いた温度測定においては、上掲の式(1)からのずれが、測定による偶然誤差ではなく理論的な系統誤差として生じることとなる。
However, when using the above Stefan-Boltzmann law, it is necessary to satisfy an important precondition that the infrared sensor unit can absorb and emit electromagnetic waves of all wavelengths.
It is practically impossible to make an infrared sensor unit that satisfies such preconditions, and only a part of the infrared region (generally, an electromagnetic wave having a wavelength of 0.7 to 1 millimeter), There is also an infrared sensor unit that can absorb and emit only a very small wavelength region.
Accordingly, in temperature measurement using the infrared sensor unit, a deviation from the above equation (1) occurs as a theoretical systematic error rather than a coincidence error due to measurement.

また、仮に、全ての波長の電磁波を吸収・放出できる赤外線センサ部を製造することが可能であったとしても、その赤外線センサ部をそのまま放射温度計に適用することには、次のような問題がある。即ち、空気中の水蒸気(H2O)や二酸化炭素(CO2)などの分子が或る特定の波長の赤外線を吸収するという自然現象により、対象物と赤外線センサ部間の距離の変化に伴い、上述の各分子等の分子数が変わり、赤外線吸収量が変化する。このため、結果的に、対象物の温度が変化していないにもかかわらず赤外線センサ部の出力が変化してしまうという問題が生じる。この問題に対処すべく、現在製造されている殆どの放射温度計には、上述のような問題が生じない範囲内の波長のみを透過させる赤外線フィルタが設けられている。従って、赤外線センサ部を用いた放射温度計では、上掲の式(1)におけるステファンボルツマンの法則からの誤差を一掃することは原理的に不可能である。   Moreover, even if it is possible to manufacture an infrared sensor unit that can absorb and emit electromagnetic waves of all wavelengths, there are the following problems in applying the infrared sensor unit to a radiation thermometer as it is. There is. That is, due to the natural phenomenon that molecules such as water vapor (H 2 O) and carbon dioxide (CO 2) in the air absorb infrared rays of a specific wavelength, the above-described change in the distance between the object and the infrared sensor unit causes The number of molecules such as each molecule changes, and the amount of infrared absorption changes. For this reason, as a result, there arises a problem that the output of the infrared sensor unit changes even though the temperature of the object does not change. In order to cope with this problem, most radiation thermometers currently manufactured are provided with an infrared filter that transmits only wavelengths within a range in which the above-described problems do not occur. Therefore, in a radiation thermometer using an infrared sensor unit, it is impossible in principle to wipe out an error from Stefan Boltzmann's law in the above equation (1).

一方、この誤差を小さくする補正方法が提案されている(例えば特許文献1参照)。特許文献1の提案では、上掲の式(1)からのずれを解消するため、測定対象物の基準温度、赤外線センサ部の基準温度、赤外線センサ部の基準出力値、に加えて、赤外線センサ部の基準温度からの差分、赤外線センサ部の基準出力値からの差分、を測定し、それらの測定結果に基づいて、測定対象物の温度を上記2種類の差分の関数に当てはめ、その関数の係数値を最小二乗法で求めている。   On the other hand, a correction method for reducing this error has been proposed (see, for example, Patent Document 1). In the proposal of Patent Document 1, in order to eliminate the deviation from the above formula (1), in addition to the reference temperature of the measurement object, the reference temperature of the infrared sensor unit, and the reference output value of the infrared sensor unit, an infrared sensor The difference from the reference temperature of the part and the difference from the reference output value of the infrared sensor part are measured, and based on those measurement results, the temperature of the measurement object is applied to the above two types of difference functions, The coefficient value is obtained by the method of least squares.

特開2001−4451号公報Japanese Patent Laid-Open No. 2001-4451

しかしながら、特許文献1に開示された手法には、以下に示すような4つの問題点がある。
第1の問題点は、特許文献1に開示された手法だけでは上掲の式(1)に対応するようなセンサ出力と各温度との間に成立する関数形として、4次より大きい次数(冪指数)を持った多項式の次数を定めることができないことである。そして、更に、冪指数として任意の実数を持った関数形を定めることも不可能なことである。仮に4次式でなく更に高次の多項式で補正しようとしても、いったい何次の補正が適切なのかがそもそもこの手法だけで導くことができない。特許文献1に開示された手法では、冪指数として自然数だけを用いているのであるから、実数を用いた場合に比し真値との差異が含まれてしまい高い測定精度が得られない。
However, the technique disclosed in Patent Document 1 has the following four problems.
The first problem is that the order larger than the fourth order (ie, the function form established between the sensor output and each temperature corresponding to the above-described equation (1) only by the method disclosed in Patent Document 1 (order 4). It is impossible to determine the degree of a polynomial having a power index. Furthermore, it is impossible to define a function form having an arbitrary real number as a power index. Even if an attempt is made to correct with a higher order polynomial instead of a quartic equation, it is impossible to derive from this method only what degree of correction is appropriate. In the method disclosed in Patent Document 1, since only a natural number is used as a power index, a difference from a true value is included as compared with the case where a real number is used, and high measurement accuracy cannot be obtained.

第2の問題点は、特許文献1に開示された手法では基準となる測定対象温度に係る情報が必要なことである。即ち、赤外線センサ部を使って本来の測定対象の温度を測定する際に、予め本来の目的である測定と同じ測定をせざるを得ず、さらにその測定結果を記憶する必要まである。従って、本来の目的たる測定対象の温度の測定を行うには非常に効率が悪い。   The second problem is that the method disclosed in Patent Document 1 requires information on the measurement target temperature as a reference. That is, when measuring the temperature of the original measurement object using the infrared sensor unit, the same measurement as the original measurement must be performed in advance, and the measurement result needs to be stored. Therefore, it is very inefficient to measure the temperature of the measurement target that is the original purpose.

第3の問題点は、上述の基準温度或いは基準出力値を非常に多く必要とすることである。既述の通り、一般の赤外線センサ部そのものが既にステファンボルツマンの法則から系統的にずれた出力を出すのであるから、特許文献1に開示された手法では基準温度および基準出力値にごく近い条件下でしか精度の高い測定は実現できない。換言すれば、広い温度範囲で精度の高い測定を可能にするためには、極めて多数の基準温度或いは基準出力値が必要であり手間がかかる。   The third problem is that the above-mentioned reference temperature or reference output value is very large. As described above, since the general infrared sensor unit itself already outputs an output systematically deviated from Stefan Boltzmann's law, the method disclosed in Patent Document 1 is under conditions very close to the reference temperature and the reference output value. Only accurate measurement is possible. In other words, in order to enable highly accurate measurement over a wide temperature range, an extremely large number of reference temperatures or reference output values are required, which is troublesome.

第4の問題点は、仮に関数を上掲の式(1)のような4次式の多項式で近似できたとしても、その係数を求めるのに基準温度や基準出力値だけでなく、更にそれらの差分の測定までもが必要なことである。しかも、特許文献1に開示された手法では、赤外線センサ部の温度と赤外線センサ部の出力の一方を基準点に固定し、他方を変化させる必要がある(この点については後に詳述する)。従って、誤差補正のために非常に多くの測定を非常に複雑な制御条件のもとで行わねばならなくなり、必然的に装置自体のコスト高に直結する。
本発明は、上述のような状況に鑑みてなされたものであり、十分な測定精度を確保しつつ、測定作業が簡素化され、構成が簡単でコスト低減をはかることが可能な、赤外線センサを用いた温度測定装置およびその補正方法を提供することを目的とする。
The fourth problem is that even if the function can be approximated by a quaternary polynomial such as the above equation (1), not only the reference temperature and the reference output value but also the coefficients can be obtained. It is also necessary to measure the difference between the two. Moreover, in the method disclosed in Patent Document 1, it is necessary to fix one of the temperature of the infrared sensor unit and the output of the infrared sensor unit at a reference point and change the other (this point will be described in detail later). Therefore, a large number of measurements must be performed under very complicated control conditions for error correction, which inevitably directly leads to high cost of the apparatus itself.
The present invention has been made in view of the above-described situation, and an infrared sensor that can simplify measurement, simplify the configuration, and achieve cost reduction while ensuring sufficient measurement accuracy. It is an object of the present invention to provide a temperature measuring device and a correction method thereof.

上記課題を解決するために、ここに、次に列記するような技術を提案する。
(1)測定対象の温度を非接触で測定する温度測定装置であって、
赤外線センサ部と、
前記測定対象の温度をTb、前記赤外線センサ部の出力をV、前記赤外線センサ部の出力に関するオフセットをc、温度係数をb、前記赤外線センサ部の温度をTr、温度の演算式における冪指数をαとするとき、
Tb={(V―c)/b+Trα}1/α
なる演算によって測定対象の温度Tbを算出する測定対象温度演算部と、
前記赤外線センサ部の出力Vを測定して前記測定対象温度演算部に供給する赤外線センサ出力測定部と、
前記赤外線センサ部の温度Trを測定して前記測定対象温度演算部に供給する赤外線センサ温度測定部と、
前記冪指数の値αを保持し該保持した値を前記測定対象温度演算部に供給する冪指数保持部と、
前記温度係数の値bを保持し該保持した値を前記測定対象温度演算部に供給する温度係数値保持部と、
前記赤外線センサ部の出力に関するオフセットcの値を保持し該保持した値を前記測定対象温度演算部に供給するオフセット値保持部と、
を備えたことを特徴とする赤外線センサを用いた温度測定装置。
In order to solve the above problems, the following technologies are proposed here.
(1) A temperature measuring device that measures the temperature of a measurement object in a non-contact manner,
An infrared sensor unit;
The temperature of the measurement target is Tb, the output of the infrared sensor unit is V, the offset relating to the output of the infrared sensor unit is c, the temperature coefficient is b, the temperature of the infrared sensor unit is Tr, and the power exponent in the temperature calculation formula is When α is
Tb = {(V−c) / b + Trα} 1 / α
A measurement target temperature calculation unit that calculates the temperature Tb of the measurement target by the calculation
An infrared sensor output measurement unit that measures the output V of the infrared sensor unit and supplies the measured output temperature to the measurement target temperature calculation unit;
An infrared sensor temperature measurement unit that measures the temperature Tr of the infrared sensor unit and supplies the temperature Tr to the measurement target temperature calculation unit;
A power index holding unit that holds the power value α of the power index and supplies the stored value to the measurement target temperature calculation unit;
A temperature coefficient value holding unit that holds the temperature coefficient value b and supplies the held value to the measurement target temperature calculation unit;
An offset value holding unit that holds the value of the offset c related to the output of the infrared sensor unit and supplies the held value to the measurement target temperature calculation unit;
A temperature measuring device using an infrared sensor characterized by comprising:

(2)前記冪指数保持部は、前記赤外線センサ出力測定部と等しい測定特性を有する測定器により赤外線センサ部の出力Vを既定の回数以上繰り返し測定して得た赤外線センサ出力データと、前記赤外線センサ温度測定部と等しい測定特性を有する測定器により赤外線センサ部の温度Trを既定の回数以上繰り返し測定して得た赤外線センサ温度データと、前記測定対象の温度Tbを既定の回数以上繰り返し実測して得た測定対象温度データとの各データに基づいて、ばらつきを表す既定の関数の値を最小とする4以外の値に設定された当該冪指数の値αを保持していることを特徴とする(1)に記載の赤外線センサを用いた温度測定装置。 (2) The power index holding unit includes infrared sensor output data obtained by repeatedly measuring the output V of the infrared sensor unit a predetermined number of times or more with a measuring instrument having measurement characteristics equal to those of the infrared sensor output measurement unit, and the infrared ray Infrared sensor temperature data obtained by repeatedly measuring the temperature Tr of the infrared sensor unit a predetermined number of times or more with a measuring instrument having the same measurement characteristics as the sensor temperature measurement unit, and repeatedly measuring the temperature Tb of the measurement target a predetermined number of times or more And holding the value α of the power index set to a value other than 4 that minimizes the value of a predetermined function representing variation based on each data with the measurement target temperature data obtained A temperature measuring device using the infrared sensor according to (1).

(3)前記温度係数値保持部は、前記赤外線センサ出力測定部と等しい測定特性を有する測定器により赤外線センサ部の出力Vを既定の回数以上繰り返し測定して得た赤外線センサ出力データと、前記赤外線センサ温度測定部と等しい測定特性を有する測定器により赤外線センサ部の温度Trを既定の回数以上繰り返し測定して得た赤外線センサ温度データと、前記測定対象の温度Tbを既定の回数以上繰り返し実測して得た測定対象温度データとの各データに基づいて、ばらつきを表す既定の関数の値を最小とする値に設定された当該温度係数の値bを保持していることを特徴とする(1)または(2)に記載の赤外線センサを用いた温度測定装置。 (3) The temperature coefficient value holding unit is infrared sensor output data obtained by repeatedly measuring the output V of the infrared sensor unit a predetermined number of times or more with a measuring instrument having measurement characteristics equal to the infrared sensor output measurement unit, Infrared sensor temperature data obtained by repeatedly measuring the temperature Tr of the infrared sensor unit a predetermined number of times or more by a measuring instrument having the same measurement characteristics as the infrared sensor temperature measurement unit, and the actual measurement of the temperature Tb of the measurement object more than the predetermined number The temperature coefficient value b, which is set to a value that minimizes the value of a predetermined function representing the variation, is stored based on each data with the measurement target temperature data obtained in this manner ( A temperature measuring device using the infrared sensor according to 1) or (2).

(4)前記オフセット値保持部は、前記赤外線センサ出力測定部と等しい測定特性を有する測定器により赤外線センサ部の出力Vを既定の回数以上繰り返し測定して得た赤外線センサ出力データと、前記赤外線センサ温度測定部と等しい測定特性を有する測定器により赤外線センサ部の温度Trを既定の回数以上繰り返し測定して得た赤外線センサ温度データと、前記測定対象の温度Tbを既定の回数以上繰り返し実測して得た測定対象温度データとの各データに基づいて、ばらつきを表す既定の関数の値を最小とする値に設定された当該オフセット値cを保持していること特徴とする(1)乃至(3)のいずれか一に記載の赤外線センサを用いた温度測定装置。 (4) The offset value holding unit includes infrared sensor output data obtained by repeatedly measuring the output V of the infrared sensor unit a predetermined number of times or more with a measuring instrument having measurement characteristics equal to those of the infrared sensor output measurement unit, and the infrared ray Infrared sensor temperature data obtained by repeatedly measuring the temperature Tr of the infrared sensor unit a predetermined number of times or more with a measuring instrument having the same measurement characteristics as the sensor temperature measurement unit, and repeatedly measuring the temperature Tb of the measurement target a predetermined number of times or more The offset value c set to a value that minimizes the value of a predetermined function representing variation is held based on each data with the measurement target temperature data obtained in (1) to ( A temperature measuring device using the infrared sensor according to any one of 3).

(5)前記ばらつきを表す既定の関数は、赤外線センサ部の出力の実測値と予測値との差を2乗して前記既定の回数N分の和をとったものであることを特徴とする(1)乃至(4)のいずれか一に記載の赤外線センサを用いた温度測定装置。 (5) The predetermined function representing the variation is obtained by squaring the difference between the actual measurement value and the predicted value of the output of the infrared sensor unit and taking the sum of the predetermined number N. (1) The temperature measurement apparatus using the infrared sensor as described in any one of (4).

(6)赤外線センサ部を用いて測定対象の温度を非接触で測定する温度測定装置の補正方法であって、
前記測定対象の温度をTb、前記赤外線センサ部の出力をV、前記赤外線センサ部の出力に関するオフセットをc、温度係数をb、前記赤外線センサ部の温度をTr、温度の演算式における冪指数をαとするとき、
Tb={(V―c)/b+Trα}1/α
なる演算式によって測定対象の温度Tbを算出するようにし、且つ、
前記演算式における冪指数αを、前記赤外線センサ部の出力Vの測定に適用する測定器と等しい測定特性を有する測定器により赤外線センサ部の出力Vを既定の回数以上繰り返し測定して得た赤外線センサ出力データと、前記赤外線センサ部の温度の測定に適用する測定器と等しい測定特性を有する測定器により前記赤外線センサ部の温度Trを既定の回数以上繰り返し測定して得た赤外線センサ温度データと、前記演算と同じ演算により前記測定対象の温度Tbを既定の回数以上繰り返し算出して得た測定対象温度データとの各データに基づいて、ばらつきを表す既定の関数の値を最小とする4以外の値として設定し、
前記演算式における温度係数の値bを、前記赤外線センサ部の出力Vの測定に適用する測定器と等しい測定特性を有する測定器により赤外線センサ部の出力Vを既定の回数以上繰り返し測定して得た赤外線センサ出力データと、前記赤外線センサ部の温度の測定に適用する測定器と等しい測定特性を有する測定器により前記赤外線センサ部の温度Trを既定の回数以上繰り返し測定して得た赤外線センサ温度データと、前記演算と同じ演算により前記測定対象の温度Tbを既定の回数以上繰り返し算出して得た測定対象温度データとの各データに基づいて、ばらつきを表す既定の関数の値を最小とする値として設定し、
前記演算式におけるオフセット値cを、前記赤外線センサ部の出力Vの測定に適用する測定器と等しい測定特性を有する測定器により赤外線センサ部の出力Vを既定の回数以上繰り返し測定して得た赤外線センサ出力データと、前記赤外線センサ部の温度の測定に適用する測定器と等しい測定特性を有する測定器により前記赤外線センサ部の温度Trを既定の回数以上繰り返し測定して得た赤外線センサ温度データと、前記演算と同じ演算により前記測定対象の温度Tbを既定の回数以上繰り返し算出して得た測定対象温度データとの各データに基づいて、ばらつきを表す既定の関数の値を最小とする値として設定することを特徴とする赤外線センサを用いた温度測定装置の補正方法。
(6) A method for correcting a temperature measuring device that measures the temperature of an object to be measured in a non-contact manner using an infrared sensor unit,
The temperature of the measurement target is Tb, the output of the infrared sensor unit is V, the offset relating to the output of the infrared sensor unit is c, the temperature coefficient is b, the temperature of the infrared sensor unit is Tr, and the power exponent in the temperature calculation formula is When α is
Tb = {(V−c) / b + Trα} 1 / α
The temperature Tb of the object to be measured is calculated by the following equation, and
The infrared ray obtained by repeatedly measuring the output V of the infrared sensor unit a predetermined number of times or more by a measuring device having measurement characteristics equal to the measuring device applied to the measurement of the output V of the infrared sensor unit. Sensor output data and infrared sensor temperature data obtained by repeatedly measuring the temperature Tr of the infrared sensor unit a predetermined number of times or more by a measuring device having the same measurement characteristics as the measuring device applied to the temperature measurement of the infrared sensor unit; Other than 4 which minimizes the value of a predetermined function representing variation based on each data with measurement target temperature data obtained by repeatedly calculating the temperature Tb of the measurement target more than a predetermined number of times by the same calculation as the above calculation As the value of
The temperature coefficient value b in the arithmetic expression is obtained by repeatedly measuring the output V of the infrared sensor unit a predetermined number of times or more by a measuring device having the same measurement characteristics as the measuring device applied to the measurement of the output V of the infrared sensor unit. Infrared sensor temperature obtained by repeatedly measuring the temperature Tr of the infrared sensor unit a predetermined number of times or more by a measuring device having the same measurement characteristics as the measurement device applied to the measurement of the temperature of the infrared sensor unit. Based on the data and the measurement target temperature data obtained by repeatedly calculating the temperature Tb of the measurement target a predetermined number of times or more by the same calculation as the calculation, the value of the predetermined function representing the variation is minimized. Set as value,
An infrared ray obtained by repeatedly measuring the output V of the infrared sensor unit a predetermined number of times or more by a measuring device having the same measurement characteristics as the measuring device applied to the measurement of the output V of the infrared sensor unit. Sensor output data and infrared sensor temperature data obtained by repeatedly measuring the temperature Tr of the infrared sensor unit a predetermined number of times or more by a measuring device having the same measurement characteristics as the measuring device applied to the temperature measurement of the infrared sensor unit; Based on the data with the measurement target temperature data obtained by repeatedly calculating the temperature Tb of the measurement target a predetermined number of times or more by the same calculation as the above calculation, the value of the predetermined function representing the variation is minimized. A correction method for a temperature measuring device using an infrared sensor, wherein the infrared sensor is set.

(7)前記ばらつきを表す既定の関数は、赤外線センサ部の出力の実測値と予測値との差を2乗して前記既定の回数N分の和をとったものであることを特徴とする(6)に記載の赤外線センサを用いた温度測定装置の補正方法。 (7) The predetermined function representing the variation is obtained by squaring the difference between the actual measurement value and the predicted value of the output of the infrared sensor unit and taking the sum of the predetermined number N. A method for correcting a temperature measuring device using the infrared sensor according to (6).

十分な測定精度を確保しつつ、測定作業が簡素化され、構成が簡単でコストが低減可能な、温度測定装置および温度測定方法を実現することができる。   It is possible to realize a temperature measuring device and a temperature measuring method that can simplify measurement work, have a simple configuration, and can reduce costs while ensuring sufficient measurement accuracy.

本発明の一つの実施の形態としての温度測定装置を表す機能ブロック図である。It is a functional block diagram showing the temperature measuring device as one embodiment of the present invention. 図1の温度測定装置に保持される各定数を得るための定数算出装置を表す機能ブロック図である。It is a functional block diagram showing the constant calculation apparatus for obtaining each constant hold | maintained at the temperature measuring apparatus of FIG. 本発明の実施の形態としての温度測定方法の一例を表すフローチャートである。It is a flowchart showing an example of the temperature measurement method as embodiment of this invention.

以下に、図面を参照して本発明の実施の形態につき詳述する。これにより本発明を明らかにする。
(本発明の実施の形態としての温度測定装置の構成)
図1は、本発明の一つの実施の形態としての温度測定装置を表す機能ブロック図である。
この温度測定装置10は、図示しない測定対象から放射される赤外線を受光して測定出力を得る赤外線センサ部1を用いて、測定対象温度演算部2における演算によって非接触で当該測定対象の温度を測定する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. This clarifies the present invention.
(Configuration of temperature measuring apparatus as an embodiment of the present invention)
FIG. 1 is a functional block diagram showing a temperature measuring apparatus as one embodiment of the present invention.
This temperature measuring device 10 uses an infrared sensor unit 1 that receives infrared rays radiated from a measurement target (not shown) and obtains measurement output, and uses the measurement target temperature calculation unit 2 to calculate the temperature of the measurement target in a non-contact manner. taking measurement.

この赤外線センサ部1としては、量子型、熱型等種類の如何を問わず適用可能である。また、赤外線センサ部を用いて対象物の温度を非接触で測定する温度計(放射温度計ないしは非接触温度計)においては、対象物の一部分の領域のみを測定の対象とするために赤外線集束レンズを併用することが一般的である。また、対象物との距離によって測定誤差が生じるのを防止するために赤外線透過フィルタを併用すること等も一般的である。しかしながら、本発明の技術思想においては、上述のような赤外線集束レンズや赤外線透過フィルタ等の適用の有無を問わない。   The infrared sensor unit 1 can be applied regardless of the type such as a quantum type and a thermal type. In addition, in a thermometer (radiation thermometer or non-contact thermometer) that measures the temperature of an object in a non-contact manner using an infrared sensor unit, infrared focusing is performed in order to measure only a partial area of the object. It is common to use a lens together. It is also common to use an infrared transmission filter in combination in order to prevent measurement errors from occurring due to the distance to the object. However, in the technical idea of the present invention, it does not matter whether the above-described infrared focusing lens, infrared transmission filter, or the like is applied.

測定対象温度演算部2は、上記測定対象の温度をTb、赤外線センサ部1の出力(後述するように該出力に対応する赤外線センサ出力測定部3による測定出力)をV、赤外線センサ部1の出力に関するオフセットをc、温度係数をb、赤外線センサ部1(赤外線センサ部1自体)の温度をTr、温度の演算式における冪指数をαとするとき、
Tb={(V−c)/b+Trα}1/α………………(2)
なる演算によって測定対象の温度Tbを算出する。
The measurement target temperature calculation unit 2 sets the temperature of the measurement target to Tb, the output of the infrared sensor unit 1 (measurement output by the infrared sensor output measurement unit 3 corresponding to the output as described later) V, and the infrared sensor unit 1 When the offset relating to the output is c, the temperature coefficient is b, the temperature of the infrared sensor unit 1 (infrared sensor unit 1 itself) is Tr, and the power exponent in the temperature calculation formula is α,
Tb = {(V−c) / b + Trα} 1 / α (2)
The temperature Tb to be measured is calculated by the following calculation.

そして、赤外線センサ部1の出力Vを測定して測定対象温度演算部2に供給する赤外線センサ出力測定部3、赤外線センサ部の温度Trを測定して前記測定対象温度演算部に供給する赤外線センサ温度測定部4、冪指数の値αを保持し該保持した値を測定対象温度演算部2に供給する冪指数保持部5、温度係数の値bを保持し該保持した値を記測定対象温度演算部2に供給する温度係数値保持部6、および、赤外線センサ部1の出力に関するオフセットの値cを保持し該保持した値を測定対象温度演算部2に供給するオフセット値保持部7、が設けられている。   And the infrared sensor output measurement part 3 which measures the output V of the infrared sensor part 1 and supplies it to the measurement object temperature calculation part 2, the infrared sensor which measures the temperature Tr of the infrared sensor part and supplies it to the measurement object temperature calculation part Temperature measurement unit 4, 保持 index holding unit 5 that holds α index value α and supplies the held value to measurement target temperature calculation unit 2, holds temperature coefficient value b and describes the held value as measurement target temperature A temperature coefficient value holding unit 6 to be supplied to the calculation unit 2 and an offset value holding unit 7 to hold an offset value c related to the output of the infrared sensor unit 1 and supply the held value to the measurement target temperature calculation unit 2; Is provided.

赤外線センサ出力測定部3は、一般的には微小な値である赤外線センサ部1の出力Vを電気的に増幅して測定するために設けられている。このため、例えば、赤外線センサ部1の出力Vをオペアンプ(Operational Amplifier)等の電子デバイスを用いて電気的に増幅する構成を採る。また必要に応じて、該増幅された電気的信号をAD(Analog to Digital)変換回路によってデジタル値に変換する構成を採る。尚、赤外線センサ出力測定部3で得られた測定出力値を、これ以降、適宜Vと表記する。このVは、AD変換前のアナログ値でも変換後のデジタル値でもよい。また、Vと表記しているが電圧出力と限る必要もなく、電流出力でもよい。一般的には、熱型の赤外線センサ部を適用する場合には電圧出力を、量子型の赤外線センサ部を適用する場合には電流出力を測定するのがよい。   The infrared sensor output measuring unit 3 is provided to electrically amplify and measure the output V of the infrared sensor unit 1 which is generally a minute value. For this reason, for example, a configuration is employed in which the output V of the infrared sensor unit 1 is electrically amplified using an electronic device such as an operational amplifier. If necessary, the amplified electrical signal is converted into a digital value by an AD (Analog to Digital) conversion circuit. Note that the measurement output value obtained by the infrared sensor output measurement unit 3 is hereinafter appropriately expressed as V. This V may be an analog value before AD conversion or a digital value after conversion. Moreover, although expressed as V, it is not necessarily limited to voltage output, and may be current output. Generally, it is preferable to measure a voltage output when applying a thermal infrared sensor unit and a current output when applying a quantum infrared sensor unit.

赤外線センサ温度測定部4は、最も一般的には赤外線センサパッケージの内部にサーミスタを内蔵する態様を採る。この態様の場合には、サーミスタが赤外線センサ部の直近に存在するため、赤外線センサ部の温度を非常に精度よく測定することが可能である。
尚、赤外線センサ温度測定部4によって測定される赤外線センサ部1自体の温度Tr、および、これ以降の説明で用いる温度に関する表記は(別段の注記を伴わない場合には)全て絶対温度であるものとする。周知の如く、摂氏0℃は絶対温度では273.15K(ケルビン)である。
The infrared sensor temperature measuring unit 4 most commonly takes a form in which a thermistor is built in an infrared sensor package. In the case of this aspect, since the thermistor exists in the immediate vicinity of the infrared sensor unit, it is possible to measure the temperature of the infrared sensor unit with very high accuracy.
In addition, the temperature Tr of the infrared sensor unit 1 itself measured by the infrared sensor temperature measuring unit 4 and the notation related to the temperature used in the following description are all absolute temperatures (unless otherwise noted). And As is well known, 0 ° C. is 273.15 K (Kelvin) in absolute temperature.

一方、測定対象温度演算部2における演算の式(2)は以下の式(3)をTbについて解いたものである。
V=b・(Tbα−Trα)+c………………(3)
式(2)および式(3)において、αを4なる定数として扱う方法が従来から公知の方法である(例えば、特許文献1の式1参照)。
しかしながら、冪指数αを4なる定数として扱う方法は、上掲の式(1)によって表されるステファンボルツマンの法則に依拠したものである。そして、この法則に依拠する限り、赤外線センサ部の感度波長帯域が全波長帯域(0〜+∞)に渡って検出可能であるという特別な条件下においてのみ適合し、この条件が充足されない場合には、温度測定において系統誤差を生じることは既述の通りである。
On the other hand, the calculation formula (2) in the measurement target temperature calculation unit 2 is obtained by solving the following formula (3) for Tb.
V = b · (Tbα−Trα) + c (3)
In formula (2) and formula (3), a method of treating α as a constant of 4 is a conventionally known method (for example, see formula 1 of Patent Document 1).
However, the method of treating the power exponent α as a constant of 4 relies on Stefan Boltzmann's law expressed by the above equation (1). As long as this rule is followed, the sensitivity wavelength band of the infrared sensor unit is only applicable under special conditions that it can be detected over the entire wavelength band (0 to + ∞), and this condition is not satisfied. As described above, a systematic error is caused in the temperature measurement.

即ち、赤外線センサ部の感度波長帯域が有限の場合、もしくは赤外線フィルタを併用することにより感度波長帯域を制限している場合にα=4と予め決定してしまう限りは、少なくとも理論的には正確な測定ができない。また、実際の放射温度計への適用を想定した場合に(感度波長帯域が無限に及ぶものでない限り)、赤外線センサ部がすでに理論から外れた測定値を出力するのであるから、ある一定以上の誤差が(偶発的に発生する)偶然誤差としてではなく(必然的に発生する)系統誤差として生じてしまうことになる。   In other words, if the sensitivity wavelength band of the infrared sensor unit is finite or if the sensitivity wavelength band is limited by using an infrared filter together, as long as α = 4 is determined in advance, it is at least theoretically accurate. Can not be measured properly. In addition, when the application to an actual radiation thermometer is assumed (unless the sensitivity wavelength band reaches infinite), the infrared sensor section outputs a measured value that is already out of theory, The error will occur as a systematic error (which inevitably occurs) rather than as a random error (which occurs accidentally).

本発明では、冪指数αを無条件で4なる定数として扱うことはせず、様々な感度波長帯域を持った赤外線センサ部、及びその赤外線センサ部で構成された放射温度計等の様々なフィルタで波長帯域制限を施した温度測定装置において、上掲の式(2)を適用することによって既述のような系統誤差が根本的に生じない温度測定を可能にしている。
また、本発明では、冪指数αを無条件で4なる定数として扱うことをしないため、当然ながら、このαの値は別段の手段を講じることなくして定まることがない。従って、本発明では、冪指数αを如何様に設定するかの具体的手法を与えることを一つの特徴としており、この手法については次に図2等を参照して詳述する。
In the present invention, the power exponent α is not treated as a constant of 4 unconditionally, but various filters such as an infrared sensor unit having various sensitivity wavelength bands and a radiation thermometer configured by the infrared sensor unit. In the temperature measuring device in which the wavelength band is limited in (1), the above-described equation (2) is applied to enable temperature measurement that does not cause a systematic error as described above.
In the present invention, since the power exponent α is not treated as a constant of 4 unconditionally, naturally, the value of α is not determined without taking other measures. Therefore, one feature of the present invention is to provide a specific method for setting the power index α. This method will be described in detail with reference to FIG.

(測定対象温度演算の各定数を得るための定数算出装置)
図2は、図1の温度測定装置に保持される上述の冪指数の値α、温度係数の値b、および、オフセットの値cである各定数を得るための定数算出装置20を表す機能ブロック図である。なお、図2では説明の便宜上、定数算出装置20だけでなく、これに接続して用いられる赤外線センサ部及び測定対象物も併せて描いてある。図示のように、この定数算出装置20は、赤外線センサ出力繰り返し測定部22、赤外線センサ温度繰り返し測定部23、対象物温度繰り返し測定部24、測定データ蓄積部25、および、ばらつき最小化演算部26の各機能ブロックを含む。
(Constant calculation device to obtain each constant for temperature calculation of measurement object)
FIG. 2 is a functional block showing a constant calculation device 20 for obtaining each constant which is the above-mentioned power index value α, temperature coefficient value b, and offset value c held in the temperature measurement device of FIG. FIG. In FIG. 2, for convenience of explanation, not only the constant calculation device 20 but also an infrared sensor unit and a measurement object used in connection with the device are drawn. As shown in the figure, the constant calculation device 20 includes an infrared sensor output repetition measurement unit 22, an infrared sensor temperature repetition measurement unit 23, an object temperature repetition measurement unit 24, a measurement data storage unit 25, and a variation minimization calculation unit 26. Each function block is included.

赤外線センサ部21は図1の温度測定装置10に適用される赤外線センサ部1と同一物であり、この赤外線センサ部21の出力が赤外線センサ出力繰り返し測定部22に入力され、該出力が測定されるように構成されている。この赤外線センサ出力繰り返し測定部22は、図1における赤外線センサ出力測定部3とその測定特性が同様であり、且つ、測定を繰り返し行う。   The infrared sensor unit 21 is the same as the infrared sensor unit 1 applied to the temperature measuring device 10 of FIG. 1, and the output of the infrared sensor unit 21 is input to the infrared sensor output repetition measuring unit 22, and the output is measured. It is comprised so that. The infrared sensor output repeat measurement unit 22 has the same measurement characteristics as the infrared sensor output measurement unit 3 in FIG. 1 and repeats measurement.

また、赤外線センサ部21自体の温度を測定する赤外線センサ温度繰り返し測定部23が設けられている。この赤外線センサ温度繰り返し測定部23は、図1の赤外線センサ温度測定部4とその測定特性が同様であり、且つ、測定を繰り返し行う。
更にまた、測定対象物100の温度を測定する対象物温度繰り返し測定部24が設けられている。この対象物温度繰り返し測定部24は、既述の赤外線センサ温度繰り返し測定部23による赤外線センサ部21自体の温度の測定と同様に、測定対象物100の温度をサーミスタ等の温度測定素子を用いて測定する。即ち、このような温度測定素子を測定対象物100に取り付けて温度の測定を行う。
Moreover, the infrared sensor temperature repetition measurement part 23 which measures the temperature of the infrared sensor part 21 itself is provided. The infrared sensor temperature repetitive measurement unit 23 has the same measurement characteristics as the infrared sensor temperature measurement unit 4 of FIG. 1 and repeats measurement.
Furthermore, an object temperature repetition measurement unit 24 that measures the temperature of the object 100 to be measured is provided. Similar to the measurement of the temperature of the infrared sensor unit 21 itself by the infrared sensor temperature repetition measurement unit 23, the object temperature repetition measurement unit 24 uses the temperature measurement element such as a thermistor to measure the temperature of the measurement object 100. taking measurement. That is, the temperature is measured by attaching such a temperature measuring element to the measuring object 100.

上述の赤外線センサ出力繰り返し測定部22、赤外線センサ温度繰り返し測定部23、および、対象物温度繰り返し測定部24は、図示しないコントローラ等によって、繰り返し行う各測定のタイミングが同期するように管理される。また、この定数算出装置20によって、上述の冪指数の値α、温度係数の値b、および、オフセットの値cの3つの定数を求めることから、各測定は3回以上繰り返される。そして、各測定のタイミングの同期をとることによって測定値の同時性が確保され、赤外線センサ出力繰り返し測定部22の各測定値が赤外線センサ温度繰り返し測定部23の各対応する測定値によって適切に補償され得る。同様に、対象物温度繰り返し測定部24の各測定値に関し、赤外線センサ出力繰り返し測定部22および赤外線センサ温度繰り返し測定部23の各対応する測定値の同時性が確保され、後の処理において、適切な演算が実行され得る。   The infrared sensor output repetition measurement unit 22, the infrared sensor temperature repetition measurement unit 23, and the object temperature repetition measurement unit 24 described above are managed by a controller (not shown) so that the timings of repeated measurements are synchronized. In addition, since the constant calculating device 20 obtains the three constants of the above-mentioned power index value α, temperature coefficient value b, and offset value c, each measurement is repeated three or more times. By synchronizing the timing of each measurement, the simultaneity of the measurement values is ensured, and each measurement value of the infrared sensor output repetition measurement unit 22 is appropriately compensated by each corresponding measurement value of the infrared sensor temperature repetition measurement unit 23. Can be done. Similarly, with respect to each measurement value of the object temperature repetition measurement unit 24, the simultaneity of the corresponding measurement values of the infrared sensor output repetition measurement unit 22 and the infrared sensor temperature repetition measurement unit 23 is ensured. Various operations can be performed.

このようにして得られた、赤外線センサ出力繰り返し測定部22による測定データ、赤外線センサ温度繰り返し測定部23による測定データ、および対象物温度繰り返し測定部24による測定データは、測定データ蓄積部25に転送され、ここに蓄積される。本例では、上述の3通りの各測定項目毎にN個のデータを取得した場合、合計3N個のデータが蓄積されることになる。
そして、測定データ蓄積部25に蓄積されたこれらのデータに基づいて、ばらつき最小化演算部26における演算処理によって、冪指数の値α、温度係数の値b、および、オフセットの値cの各定数が算出される。
The measurement data obtained by the infrared sensor output repetition measurement unit 22, the measurement data by the infrared sensor temperature repetition measurement unit 23, and the measurement data by the object temperature repetition measurement unit 24 thus obtained are transferred to the measurement data storage unit 25. And accumulated here. In this example, when N pieces of data are acquired for each of the three measurement items described above, a total of 3N pieces of data are accumulated.
Based on these data stored in the measurement data storage unit 25, the constants of the power index value α, the temperature coefficient value b, and the offset value c are calculated by the variation minimizing calculation unit 26. Is calculated.

ばらつき最小化演算部26においてこれら各定数の割り出しに適用される方法について次に説明する。
上述のN個のデータのうち、赤外線センサ出力繰り返し測定部22によるi番目の測定データをVi、赤外線センサ温度繰り返し測定部23によるi番目の測定データをTri、対象物温度繰り返し測定部24によるi番目の測定データをTbiとすれば、上掲の式(3)と全く同様の考察により、未知数α、b、および、cに関して、次の方程式が成立する。
Vi=b・(Tbiα−Triα)+c (i=1〜N)…………(4)
この式(4)の方程式は、未知数3個、本数N本の連立方程式である。このような場合には一般に3変数の最小2乗法(もしくは重回帰分析)が用いられる。この連立方程式から上述の未知数α、b、および、cを求める。
ばらつき最小化演算部26において、先ず始めに式(4)に鑑み以下の値Sを定義する。
Next, a method applied to the determination of each of these constants in the variation minimizing calculation unit 26 will be described.
Of the N pieces of data described above, Vi is the i-th measurement data by the infrared sensor output repetition measurement unit 22, Tri is the i-th measurement data by the infrared sensor temperature repetition measurement unit 23, and i by the object temperature repetition measurement unit 24. Assuming that the second measurement data is Tbi, the following equation is established with respect to the unknowns α, b, and c by the same consideration as the above equation (3).
Vi = b · (Tbiα−Triα) + c (i = 1 to N) (4)
The equation (4) is a simultaneous equation with three unknowns and N number. In such a case, a three-variable least square method (or multiple regression analysis) is generally used. From the simultaneous equations, the above-mentioned unknowns α, b, and c are obtained.
In the variation minimizing calculation unit 26, first, the following value S is defined in view of the equation (4).

Figure 2011252799
Figure 2011252799

式(5)おいてSは、実測値Viと予測値b・(Tbiα−Triα)との差を2乗して上述のデータ取得回数N分の和をとったものであるから、ばらつきの指標を表す関数である。従って、α、b、および、cの最適値は、このS値が最小となる場合の値である。
S値が最小となるためには、α、b、および、cの全てに関する偏微分の値が0とならなければならない。従って、以下の式(6)、(7)、および、(8)が成り立つ。
In Equation (5), S is the difference between the actual measurement value Vi and the predicted value b · (Tbiα−Triα) and squared to obtain the sum of the above-mentioned N times of data acquisition. Is a function that represents Accordingly, the optimum values of α, b, and c are values when the S value is minimized.
In order for the S value to be minimized, the partial differential values for all of α, b, and c must be zero. Therefore, the following expressions (6), (7), and (8) are established.

Figure 2011252799
Figure 2011252799

尚、式(6)におけるlogは、全てeを底とする自然対数である。
上掲の式(6)、(7)、および、(8)は、未知数α、b、および、cに関する3元連立方程式であるが、未知数αが絶対温度の冪指数となっているため、非線形の連立方程式である。従って、クラメールの解法等の解析的な手法ではこれら未知数を演算することはできない。このため、ニュートン・ラプソン法などの反復数値計算法で求めるのがごく一般的な手法である。但し、この手法には次の2つの弱点がある。
第1点は、初期値が真の解から離れていると収束せず、解がいつになっても求まらないということである。
第2点は、仮に初期値が近くても収束が遅い場合がり、この場合には計算に時間がかかるということである。
It should be noted that log in equation (6) is a natural logarithm with e as the base.
The above equations (6), (7), and (8) are ternary simultaneous equations concerning the unknowns α, b, and c, but the unknown α is a power exponent of absolute temperature. It is a nonlinear simultaneous equation. Therefore, these unknowns cannot be calculated by analytical methods such as the Kramer solution. For this reason, it is a very common method to obtain by an iterative numerical calculation method such as Newton-Raphson method. However, this method has the following two weak points.
The first point is that if the initial value is far from the true solution, it does not converge and cannot be obtained anytime.
The second point is that convergence may be slow even if the initial value is close, and in this case, the calculation takes time.

上述のような弱点を克服するために、上掲の式(6)〜(8)の方程式の形に鑑み、以下のような手法を用いることも可能である。この手法によれば確実に解が求まる。
即ち、上掲の(6)〜(8)の方程式は、αを未知数でなく既知の定数と仮定すれば、全てbとcに関する線型連立方程式である。一方で、αは4と決め付けることこそできないものの、負の数になることは理論上あり得ない。また、赤外線領域を感度波長帯域とする限り、冪指数であるαが20以上という大きな数になったりすることは通常ない。この物理的要請を利用する。
先ず、式(6)は以後すべて無視する。一方で、式(7)と式(8)でαを0に近い数字(たとえばα=0.1)と仮定すると、これら2本の式はb、cに関する線型連立方程式である。従って、上記クラメールの解法などによって解析的に解くことができる。
In order to overcome the above-mentioned weak points, it is also possible to use the following method in view of the equations (6) to (8) above. According to this method, a solution can be obtained reliably.
That is, the above equations (6) to (8) are linear simultaneous equations relating to b and c, assuming that α is not an unknown but a known constant. On the other hand, although α cannot be determined to be 4, it cannot theoretically be a negative number. In addition, as long as the infrared wavelength region is a sensitivity wavelength band, α, which is a power index, does not normally become a large number of 20 or more. Use this physical request.
First, all the expressions (6) are ignored thereafter. On the other hand, assuming that α is a number close to 0 (for example, α = 0.1) in Equations (7) and (8), these two equations are linear simultaneous equations relating to b and c. Therefore, it can be solved analytically by the above-mentioned Kramer solution.

次に、この解いたbとcの値、及び仮定したαの値を用いて、式5(5)S値を算出する。そして、得られたα、b、cとS値を記憶しておく。続いて、式(7)と式(8)において、αを先に仮定した値よりも少し増加させる(たとえばα=0.2)。このような仮定のもとで再びクラメールの解法などを用いてb、cを解き、同様に式5のS値を算出する。   Next, using the solved values of b and c and the assumed value of α, Equation 5 (5) S value is calculated. Then, the obtained α, b, c and S value are stored. Subsequently, in Expressions (7) and (8), α is slightly increased from the previously assumed value (for example, α = 0.2). Under these assumptions, b and c are solved again using the Kramer solution, and the S value of Equation 5 is similarly calculated.

以上のような計算をαが20程度になるまで繰り返すと、式(5)のS値がαの関数として(離散的に)定められる。その中でS値を最小(乃至は極小でもよい)にするαの値、更にそのα値のときのbとcが、取りも直さず式(6)〜(8)の非線型連立方程式の解である。
ここでα値を更に精度よく求めたければ、その要求精度に応じてαの増加分割量を小さく設定して分解能を高めた操作をすればよい。即ち、既述の例では、α値を0.1ずつ変化させていたところ、これを、例えば、0.01もしくは0.001とすればよい。
When the above calculation is repeated until α reaches about 20, the S value of Equation (5) is determined (discretely) as a function of α. Among them, the value of α that minimizes the S value (or may be minimal), and b and c at that α value are not corrected, but the nonlinear simultaneous equations of equations (6) to (8) are not corrected. It is a solution.
Here, if it is desired to obtain the α value with higher accuracy, an operation may be performed in which the resolution is increased by setting the increased division amount of α to be small in accordance with the required accuracy. That is, in the example described above, the α value is changed by 0.1, and this may be set to 0.01 or 0.001, for example.

(実施の形態における作用・効果のまとめ)
以上に述べた本発明の実施の形態としての温度測定装置に関する作用・効果について要約的に列記する。
(1)ステファンボルツマンの法則からずれる現実の赤外線センサ部に対しても精度の高い温度測定が可能となる。一般に、室温付近(摂氏25℃、絶対温度300ケルビン程度)の環境および測定対象物に対して、吸収・放出可能な波長領域が10ミクロン以下の赤外線センサ部を用いて測定すると、ステファンボルツマンの法則である4乗則よりも高いべき乗値が得られる。この場合には、特に本発明装置および方法が有用である。この場合、冪指数を「4」等の自然数だけに限定していないため、4乗に近い特性を示す赤外線センサ部に対してもさらに精密な補正が可能となる。
(Summary of actions and effects in the embodiment)
The actions and effects relating to the temperature measuring apparatus as the embodiment of the present invention described above will be summarized.
(1) Highly accurate temperature measurement is possible even for an actual infrared sensor unit that deviates from Stefan Boltzmann's law. In general, when measuring an environment around room temperature (25 degrees Celsius, absolute temperature of about 300 Kelvin) and an object to be measured using an infrared sensor with a wavelength range of 10 microns or less, Stefan Boltzmann's law A power value higher than the fourth power law is obtained. In this case, the apparatus and method of the present invention are particularly useful. In this case, since the power index is not limited to only a natural number such as “4”, it is possible to perform more precise correction even for an infrared sensor unit exhibiting characteristics close to the fourth power.

(2)精度の高い温度測定をするための前準備として、3個の未知数を決めることができればよい。即ち、最小測定回数は3回である。
(3)一旦演算式における各定数を決めると、基準となる測定対象温度の測定や記憶などは一切必要なく、測定の回数を大幅に低減できる。因みに、上掲の特許文献1所載の手法では、基準値(調整点)を1点につき3個、さらに差分に係る情報として4次式の係数が上記基準値1点につき10個必要であり、それらの基準値を予め求めるための測定回数は最低でも13回必要である。
(4)測定条件には何の束縛もない。従って、測定条件は用途や特性に合わせて自由に決めることが可能である。
(5)上記を総じて、利便性の向上とコストの低減との双方が実現可能となる。
(2) It is sufficient that three unknowns can be determined as preparations for measuring temperature with high accuracy. That is, the minimum number of measurements is three.
(3) Once each constant in the arithmetic expression is determined, there is no need to measure or store the reference temperature to be measured, and the number of measurements can be greatly reduced. Incidentally, in the method described in the above-mentioned Patent Document 1, three reference values (adjustment points) are required for each point, and 10 coefficients of a quaternary equation are required for each reference value as information relating to the difference. The number of measurements for obtaining these reference values in advance is at least 13 times.
(4) There are no restrictions on the measurement conditions. Therefore, the measurement conditions can be freely determined according to the application and characteristics.
(5) Overall, it is possible to achieve both improvement in convenience and reduction in cost.

(応用例について)
最後に、これまで説明した本発明の温度測定装置は、前述のさまざまな装置、非接触温度計、サーモグラフィ、赤外線カメラ等の製品への適用が可能である。以下に3つの例を挙げて説明する。
第一の例としては、1個の赤外線センサ部にレンズとアダプタを取り付けて向きを変えながらデータを取得すると、平面内の温度分布を取得することが可能となる。この取得された温度分布はまさに「サーモグラフィ」とほぼ同等のものである。
第二の例としては、赤外線センサ複数個を平面状に(アレイ状)に配置し、レンズとアダプタを取り付けると「赤外線カメラ」が完成する。
第三の例としては、赤外線センサ複数個を直線状に配置し、レンズとアダプタを取り付けるとともに、たとえば上記直線と直交する方向に対して向きを変えながらデータを取得すると、やはり平面内の温度分布を取得することが可能となる。この第三の例は、エアコンの風向制御等によく適用されているものである。
(Application examples)
Finally, the temperature measuring device of the present invention described so far can be applied to products such as the various devices described above, non-contact thermometers, thermography, infrared cameras, and the like. Three examples will be described below.
As a first example, if a lens and an adapter are attached to one infrared sensor unit and data is acquired while changing the direction, it is possible to acquire a temperature distribution in a plane. This acquired temperature distribution is exactly equivalent to “thermography”.
As a second example, an “infrared camera” is completed when a plurality of infrared sensors are arranged in a plane (array) and a lens and an adapter are attached.
As a third example, when a plurality of infrared sensors are arranged in a straight line, a lens and an adapter are attached, and data is acquired while changing the direction with respect to a direction orthogonal to the straight line, for example, the temperature distribution in the plane is also obtained. Can be obtained. This third example is often applied to air direction control of an air conditioner.

(本発明の実施の形態としての温度補正方法)
図3は、本発明の実施の形態としての温度補正測定方法の一例を表すフローチャートである。特に、このフローの順番に従って測定する必要はなく、あくまで一例である。 この温度測定方法では、測定対象の温度をTb、前記赤外線センサ部の出力をV、前記赤外線センサ部の出力に関するオフセットをc、温度係数をb、前記赤外線センサ部の温度をTr、温度の演算式における冪指数をαとするとき、
Tb={(V―c)/b+Trα}1/α
なる上掲の式(2)によって測定対象の温度Tbを算出するべく、各定数α、b、および、cを得る。
このために、上掲の式(5)で定義されるばらつきSの関数値を最小とする条件を充足する値として、定数α、b、および、cを得る(ステップS301)。
次いで、ステップS301で取得した定数α、b、および、cを上掲の式(2)に適用する(ステップS302)。
ステップS302で各定数α、b、および、cが定まった式(2)における変数VおよびTrを測定し、該測定値に基づいて式(2)の演算を実行し、測定対象の温度をTbを算出する(ステップS303)。
(Temperature correction method as an embodiment of the present invention)
FIG. 3 is a flowchart showing an example of a temperature correction measurement method as an embodiment of the present invention. In particular, it is not necessary to measure according to the order of this flow, and is merely an example. In this temperature measurement method, the temperature of the measurement target is Tb, the output of the infrared sensor unit is V, the offset related to the output of the infrared sensor unit is c, the temperature coefficient is b, the temperature of the infrared sensor unit is Tr, and the temperature is calculated. When the power index in the equation is α,
Tb = {(V−c) / b + Trα} 1 / α
The constants α, b, and c are obtained in order to calculate the temperature Tb to be measured by the above-described equation (2).
For this purpose, constants α, b, and c are obtained as values that satisfy the condition that minimizes the function value of the variation S defined by the above equation (5) (step S301).
Next, the constants α, b, and c acquired in step S301 are applied to the above equation (2) (step S302).
In step S302, the variables V and Tr in the equation (2) in which the constants α, b, and c are determined are measured, the calculation of the equation (2) is performed based on the measured value, and the temperature of the measurement target is determined as Tb. Is calculated (step S303).

1,21………………………………………赤外線センサ部
2………………………………………………測定対象温度演算部
3………………………………………………赤外線センサ出力測定部
4………………………………………………赤外線センサ温度測定部
5………………………………………………冪指数保持部
6………………………………………………温度係数値保持部
7………………………………………………オフセット値保持部
10……………………………………………温度測定装置
20……………………………………………定数算出装置
22……………………………………………赤外線センサ出力繰り返し測定部
23……………………………………………赤外線センサ温度繰り返し測定部
24……………………………………………対象物温度繰り返し測定部
25……………………………………………測定データ蓄積部
26……………………………………………ばらつき最小化演算部
1, 21 ……………………………………… Infrared sensor unit 2 ……………………………………………… Measurement target temperature calculation unit 3 ………… …………………………………… Infrared sensor output measuring unit 4 ……………………………………………… Infrared sensor temperature measuring unit 5 ……………… ……………………………… 冪 Index holding unit 6 ……………………………………………… Temperature coefficient value holding unit 7 ……………………… ……………………… Offset value holding unit 10 …………………………………………… Temperature measuring device 20 ……………………………………… …… Constant calculation device 22 ……………………………………………… Infrared sensor output repeat measurement unit 23 ……………………………………………… Infrared sensor temperature Repeat measurement unit 24 ……………………………………………… Target Temperature repeated measurement unit 25 ................................................... measurement data storage unit 26 ................................................... variation minimization calculation unit

Claims (7)

測定対象の温度を非接触で測定する温度測定装置であって、
赤外線センサ部と、
前記測定対象の温度をTb、前記赤外線センサ部の出力をV、前記赤外線センサ部の出力に関するオフセットをc、温度係数をb、前記赤外線センサ部の温度をTr、温度の演算式における冪指数をαとするとき、Tb={(V―c)/b+Trα}1/αなる演算によって測定対象の温度Tbを算出する測定対象温度演算部と、
前記赤外線センサ部の出力Vを測定して前記測定対象温度演算部に供給する赤外線センサ出力測定部と、
前記赤外線センサ部の温度Trを測定して前記測定対象温度演算部に供給する赤外線センサ温度測定部と、
前記冪指数の値αを保持し該保持した値を前記測定対象温度演算部に供給する冪指数保持部と、
前記温度係数の値bを保持し該保持した値を前記測定対象温度演算部に供給する温度係数値保持部と、
前記赤外線センサ部の出力に関するオフセットcの値を保持し該保持した値を前記測定対象温度演算部に供給するオフセット値保持部と、
を備えたことを特徴とする赤外線センサを用いた温度測定装置。
A temperature measuring device that measures the temperature of a measurement object in a non-contact manner,
An infrared sensor unit;
The temperature of the measurement target is Tb, the output of the infrared sensor unit is V, the offset relating to the output of the infrared sensor unit is c, the temperature coefficient is b, the temperature of the infrared sensor unit is Tr, and the power exponent in the temperature calculation formula is a measurement target temperature calculator that calculates a temperature Tb of the measurement target by a calculation of Tb = {(V−c) / b + Trα} 1 / α, where α is
An infrared sensor output measurement unit that measures the output V of the infrared sensor unit and supplies the measured output temperature to the measurement target temperature calculation unit;
An infrared sensor temperature measurement unit that measures the temperature Tr of the infrared sensor unit and supplies the temperature Tr to the measurement target temperature calculation unit;
A power index holding unit that holds the power value α of the power index and supplies the stored value to the measurement target temperature calculation unit;
A temperature coefficient value holding unit that holds the temperature coefficient value b and supplies the held value to the measurement target temperature calculation unit;
An offset value holding unit that holds the value of the offset c related to the output of the infrared sensor unit and supplies the held value to the measurement target temperature calculation unit;
A temperature measuring device using an infrared sensor characterized by comprising:
前記冪指数保持部は、前記赤外線センサ出力測定部と等しい測定特性を有する測定器により赤外線センサ部の出力Vを既定の回数以上繰り返し測定して得た赤外線センサ出力データと、前記赤外線センサ温度測定部と等しい測定特性を有する測定器により赤外線センサ部の温度Trを既定の回数以上繰り返し測定して得た赤外線センサ温度データと、前記測定対象の温度Tbを既定の回数以上繰り返し実測して得た測定対象温度データとの各データに基づいて、ばらつきを表す既定の関数の値を最小とする4以外の値に設定された当該冪指数の値αを保持していることを特徴とする請求項1に記載の赤外線センサを用いた温度測定装置。   The power index holding unit includes infrared sensor output data obtained by repeatedly measuring the output V of the infrared sensor unit a predetermined number of times or more using a measuring device having measurement characteristics equal to those of the infrared sensor output measurement unit, and the infrared sensor temperature measurement. Infrared sensor temperature data obtained by repeatedly measuring the temperature Tr of the infrared sensor unit a predetermined number of times or more with a measuring instrument having the same measurement characteristics as the unit, and obtained by repeatedly measuring the temperature Tb of the measurement object a predetermined number of times or more The value α of the power index set to a value other than 4 that minimizes the value of a predetermined function representing variation based on each data with measurement target temperature data is held. A temperature measuring device using the infrared sensor according to 1. 前記温度係数値保持部は、前記赤外線センサ出力測定部と等しい測定特性を有する測定器により赤外線センサ部の出力Vを既定の回数以上繰り返し測定して得た赤外線センサ出力データと、前記赤外線センサ温度測定部と等しい測定特性を有する測定器により赤外線センサ部の温度Trを既定の回数以上繰り返し測定して得た赤外線センサ温度データと、前記測定対象の温度Tbを既定の回数以上繰り返し実測して得た測定対象温度データとの各データに基づいて、ばらつきを表す既定の関数の値を最小とする値に設定された当該温度係数の値bを保持していることを特徴とする請求項1または請求項2に記載の赤外線センサを用いた温度測定装置。   The temperature coefficient value holding unit includes infrared sensor output data obtained by repeatedly measuring the output V of the infrared sensor unit a predetermined number of times or more with a measuring device having measurement characteristics equal to those of the infrared sensor output measurement unit, and the infrared sensor temperature. Infrared sensor temperature data obtained by repeatedly measuring the temperature Tr of the infrared sensor unit a predetermined number of times or more with a measuring instrument having the same measurement characteristics as the measurement unit, and obtained by repeatedly measuring the temperature Tb of the measurement object a predetermined number of times or more. The temperature coefficient value b, which is set to a value that minimizes the value of a predetermined function representing variation, is held based on each data with the measured temperature data. A temperature measuring device using the infrared sensor according to claim 2. 前記オフセット値保持部は、前記赤外線センサ出力測定部と等しい測定特性を有する測定器により赤外線センサ部の出力Vを既定の回数以上繰り返し測定して得た赤外線センサ出力データと、前記赤外線センサ温度測定部と等しい測定特性を有する測定器により赤外線センサ部の温度Trを既定の回数以上繰り返し測定して得た赤外線センサ温度データと、前記測定対象の温度Tbを既定の回数以上繰り返し実測して得た測定対象温度データとの各データに基づいて、ばらつきを表す既定の関数の値を最小とする値に設定された当該オフセット値cを保持していること特徴とする請求項1乃至3のいずれか一項に記載の赤外線センサを用いた温度測定装置。   The offset value holding unit includes infrared sensor output data obtained by repeatedly measuring the output V of the infrared sensor unit a predetermined number of times or more by a measuring device having measurement characteristics equal to those of the infrared sensor output measurement unit, and the infrared sensor temperature measurement. Infrared sensor temperature data obtained by repeatedly measuring the temperature Tr of the infrared sensor unit a predetermined number of times or more with a measuring instrument having the same measurement characteristics as the unit, and obtained by repeatedly measuring the temperature Tb of the measurement object a predetermined number of times or more 4. The offset value c set to a value that minimizes a value of a predetermined function representing variation based on each data with measurement target temperature data is held. A temperature measuring device using the infrared sensor according to one item. 前記ばらつきを表す既定の関数は、赤外線センサ出力の実測値と予測値との差を2乗して前記既定の回数N分の和をとったものであることを特徴とする請求項1乃至4のいずれか一項に記載の赤外線センサを用いた温度測定装置。   5. The predetermined function representing the variation is obtained by squaring a difference between an actually measured value and an estimated value of an infrared sensor output and taking a sum of the predetermined number of times N. The temperature measurement apparatus using the infrared sensor as described in any one of. 赤外線センサ部を用いて測定対象の温度を非接触で測定する温度測定装置の補正方法であって、
前記測定対象の温度をTb、前記赤外線センサ部の出力をV、前記赤外線センサ部の出力に関するオフセットをc、温度係数をb、前記赤外線センサ部の温度をTr、温度の演算式における冪指数をαとするとき、Tb={(V―c)/b+Trα}1/αなる演算式によって測定対象の温度Tbを算出するようにし、且つ、
前記演算式における冪指数αを、前記赤外線センサ部の出力Vの測定に適用する測定器と等しい測定特性を有する測定器により赤外線センサ部の出力Vを既定の回数以上繰り返し測定して得た赤外線センサ出力データと、前記赤外線センサ部の温度の測定に適用する測定器と等しい測定特性を有する測定器により前記赤外線センサ部の温度Trを既定の回数以上繰り返し測定して得た赤外線センサ温度データと、前記演算と同じ演算により前記測定対象の温度Tbを既定の回数以上繰り返し算出して得た測定対象温度データとの各データに基づいて、ばらつきを表す既定の関数の値を最小とする4以外の値として設定し、
前記演算式における温度係数の値bを、前記赤外線センサ部の出力Vの測定に適用する測定器と等しい測定特性を有する測定器により赤外線センサ部の出力Vを既定の回数以上繰り返し測定して得た赤外線センサ出力データと、前記赤外線センサ部の温度の測定に適用する測定器と等しい測定特性を有する測定器により前記赤外線センサ部の温度Trを既定の回数以上繰り返し測定して得た赤外線センサ温度データと、前記演算と同じ演算により前記測定対象の温度Tbを既定の回数以上繰り返し算出して得た測定対象温度データとの各データに基づいて、ばらつきを表す既定の関数の値を最小とする値として設定し、
前記演算式におけるオフセット値cを、前記赤外線センサ部の出力Vの測定に適用する測定器と等しい測定特性を有する測定器により赤外線センサ部の出力Vを既定の回数以上繰り返し測定して得た赤外線センサ出力データと、前記赤外線センサ部の温度の測定に適用する測定器と等しい測定特性を有する測定器により前記赤外線センサ部の温度Trを既定の回数以上繰り返し測定して得た赤外線センサ温度データと、前記演算と同じ演算により前記測定対象の温度Tbを既定の回数以上繰り返し算出して得た測定対象温度データとの各データに基づいて、ばらつきを表す既定の関数の値を最小とする値として設定することを特徴とする赤外線センサを用いた温度測定装置の補正方法。
A temperature measuring device correction method for measuring the temperature of an object to be measured in a non-contact manner using an infrared sensor unit,
The temperature of the measurement target is Tb, the output of the infrared sensor unit is V, the offset relating to the output of the infrared sensor unit is c, the temperature coefficient is b, the temperature of the infrared sensor unit is Tr, and the power exponent in the temperature calculation formula is When α is set, Tb = {(V−c) / b + Trα} 1 / α is used to calculate the temperature Tb to be measured, and
The infrared ray obtained by repeatedly measuring the output V of the infrared sensor unit a predetermined number of times or more by a measuring device having measurement characteristics equal to the measuring device applied to the measurement of the output V of the infrared sensor unit. Sensor output data and infrared sensor temperature data obtained by repeatedly measuring the temperature Tr of the infrared sensor unit a predetermined number of times or more by a measuring device having the same measurement characteristics as the measuring device applied to the temperature measurement of the infrared sensor unit; Other than 4 which minimizes the value of a predetermined function representing variation based on each data with measurement target temperature data obtained by repeatedly calculating the temperature Tb of the measurement target more than a predetermined number of times by the same calculation as the above calculation As the value of
The temperature coefficient value b in the arithmetic expression is obtained by repeatedly measuring the output V of the infrared sensor unit a predetermined number of times or more by a measuring device having the same measurement characteristics as the measuring device applied to the measurement of the output V of the infrared sensor unit. Infrared sensor temperature obtained by repeatedly measuring the temperature Tr of the infrared sensor unit a predetermined number of times or more by a measuring device having the same measurement characteristics as the measurement device applied to the measurement of the temperature of the infrared sensor unit. Based on the data and the measurement target temperature data obtained by repeatedly calculating the temperature Tb of the measurement target a predetermined number of times or more by the same calculation as the calculation, the value of the predetermined function representing the variation is minimized. Set as value,
An infrared ray obtained by repeatedly measuring the output V of the infrared sensor unit a predetermined number of times or more by a measuring device having the same measurement characteristics as the measuring device applied to the measurement of the output V of the infrared sensor unit. Sensor output data and infrared sensor temperature data obtained by repeatedly measuring the temperature Tr of the infrared sensor unit a predetermined number of times or more by a measuring device having the same measurement characteristics as the measuring device applied to the temperature measurement of the infrared sensor unit; Based on the data with the measurement target temperature data obtained by repeatedly calculating the temperature Tb of the measurement target a predetermined number of times or more by the same calculation as the above calculation, the value of the predetermined function representing the variation is minimized. A correction method for a temperature measuring device using an infrared sensor, wherein the infrared sensor is set.
前記ばらつきを表す既定の関数は、赤外線センサ出力の実測値と予測値との差を2乗して前記既定の回数N分の和をとったものであることを特徴とする請求項6に記載の赤外線センサを用いた温度測定装置の補正方法。   The predetermined function representing the variation is obtained by squaring the difference between the actual value and the predicted value of the infrared sensor output and taking the sum of the predetermined number of times N. Method of temperature measuring apparatus using the infrared sensor.
JP2010126925A 2010-06-02 2010-06-02 Temperature measurement apparatus using infrared sensor and correction method of the same Pending JP2011252799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010126925A JP2011252799A (en) 2010-06-02 2010-06-02 Temperature measurement apparatus using infrared sensor and correction method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010126925A JP2011252799A (en) 2010-06-02 2010-06-02 Temperature measurement apparatus using infrared sensor and correction method of the same

Publications (1)

Publication Number Publication Date
JP2011252799A true JP2011252799A (en) 2011-12-15

Family

ID=45416846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010126925A Pending JP2011252799A (en) 2010-06-02 2010-06-02 Temperature measurement apparatus using infrared sensor and correction method of the same

Country Status (1)

Country Link
JP (1) JP2011252799A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113701901A (en) * 2021-08-23 2021-11-26 北京市计量检测科学研究院 Infrared temperature measurement method for reducing ambient temperature contrast

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140006A (en) * 1993-11-19 1995-06-02 Nec San-Ei Instr Co Ltd Method of measuring temperatures of multiple colors
JP2007198745A (en) * 2006-01-23 2007-08-09 Seiko Npc Corp Apparats and method for temperature detection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140006A (en) * 1993-11-19 1995-06-02 Nec San-Ei Instr Co Ltd Method of measuring temperatures of multiple colors
JP2007198745A (en) * 2006-01-23 2007-08-09 Seiko Npc Corp Apparats and method for temperature detection

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014000718; KALMA.J.D. 他: '"CALIBRATION OF SMALL INFRA-RED SURFACE TEMPERATURE TRANSDUCERS"' Agricultural and Forest Meteorology Volume 43, 1988, Pages 83-98 *
JPN6014000722; FANG,T.: '"NEW RELATIONSHIPS FOR TEMPERATURE SENSITIVITY OF RADIATION"' International Communications in Heat and Mass Transfer Volume 30, Number 2, 2003, Pages 173-184 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113701901A (en) * 2021-08-23 2021-11-26 北京市计量检测科学研究院 Infrared temperature measurement method for reducing ambient temperature contrast
CN113701901B (en) * 2021-08-23 2023-09-12 北京市计量检测科学研究院 Infrared temperature measurement method for reducing ambient temperature contrast

Similar Documents

Publication Publication Date Title
RU2523775C2 (en) Method and system for correction on basis of quantum theory to increase accuracy of radiation thermometer
Zhang et al. An experimental method for improving temperature measurement accuracy of infrared thermal imager
ES2705433T3 (en) Method for temperature drift compensation of temperature measurement device using thermocouple
CN203216634U (en) High temperature measurement and temperature field reconstruction device based on turnable diode laser absorption spectroscopy
US10018517B2 (en) Optical fiber temperature distribution measuring device
Zhang et al. An improved algorithm for spectral emissivity measurements at low temperatures based on the multi-temperature calibration method
JP6996879B2 (en) Radiation temperature measuring device
US20110310925A1 (en) Optical fiber temperature distribution measuring device
JP5975064B2 (en) Optical fiber temperature distribution measuring device
CN103528694A (en) Method for measuring temperature of target object by using thermal infrared imager
WO2022104816A1 (en) Temperature compensation method and system for thermal camera
US7630835B2 (en) Terahertz sensor to measure humidity and water vapor
Grgić et al. Analysis of thermal imagers
CN111272290B (en) Temperature measurement thermal infrared imager calibration method and device based on deep neural network
JP2006053024A (en) Temperature correction processing device
CN111947785A (en) Temperature measurement thermal infrared imager noise equivalent temperature difference calibration method
JP5737210B2 (en) Temperature measuring method and temperature measuring system using radiation thermometer
CN110702274A (en) Space calibration method based on accurate miniature phase-change fixed point blackbody model
CN103256999B (en) Distributed type optical fiber temperature measuring method
CN114018416A (en) Thermal infrared camera radiation calibration method and system
JP2011252799A (en) Temperature measurement apparatus using infrared sensor and correction method of the same
CN113588099B (en) Infrared thermopile array environment temperature compensation method and related components
Boivin et al. Wideband filter radiometers for blackbody temperature measurements
JP6418028B2 (en) Optical fiber temperature distribution measuring device
JP2011089983A (en) Temperature measuring device using infrared sensor, and correction method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141111