JP2011252638A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2011252638A
JP2011252638A JP2010125597A JP2010125597A JP2011252638A JP 2011252638 A JP2011252638 A JP 2011252638A JP 2010125597 A JP2010125597 A JP 2010125597A JP 2010125597 A JP2010125597 A JP 2010125597A JP 2011252638 A JP2011252638 A JP 2011252638A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
evaporator
heat exchanger
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010125597A
Other languages
Japanese (ja)
Inventor
Shoichi Yokoyama
昭一 横山
Kazuhiko Marumoto
一彦 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010125597A priority Critical patent/JP2011252638A/en
Publication of JP2011252638A publication Critical patent/JP2011252638A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the energy consumption efficiency of a refrigeration cycle from dropping when HFO1234yf or the like is used as an alternative for R410A.SOLUTION: When a temperature at the refrigerant inlet port of an evaporator is more than the dew point temperature of air sucked by the evaporator, the air conditioner is configured to enlarge the diameter of a heat transfer pipe of the evaporator 3, shorten the length thereof, and increase the number of refrigerant flow passages. This configuration allows the absolute value of a difference between the temperature at the refrigerant inlet port of the evaporator and a temperature of a saturated gas corresponding to a pressure at a refrigerant outlet port of the evaporator to become less than half the absolute value of a difference between the temperature of the air sucked by the evaporator and the temperature of the saturated gas corresponding to the pressure at the refrigerant outlet port of the evaporator.

Description

本発明は、R410Aより地球温暖化係数(GWP)が小さい冷媒を用いる、業務用あるいは家庭用の据え置きタイプの冷凍サイクル装置に関するものである。   The present invention relates to a stationary refrigeration cycle apparatus for business use or home use that uses a refrigerant having a smaller global warming potential (GWP) than R410A.

冷凍サイクル装置、例えば空気調和機は、図5に示すように冷媒を圧縮する圧縮機1、四方弁2、室外熱交換器3、絞り装置4、及び室内熱交換器5を接続管12,13で環状に接続して構成してあり、冷媒としては、CFCやHCFCの使用によるオゾン層破壊が問題化した後、代替冷媒としてHFCが用いられ、現在では家庭用空気調和機には、HFC−32とHFC−125の混合冷媒であるR410Aが多く用いられている(特許文献1)。   As shown in FIG. 5, the refrigeration cycle apparatus, for example, the air conditioner, connects the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion device 4, and the indoor heat exchanger 5, as shown in FIG. As a refrigerant, HFC is used as an alternative refrigerant after the ozone layer destruction due to the use of CFC or HCFC has become a problem. At present, HFC- R410A, which is a mixed refrigerant of 32 and HFC-125, is often used (Patent Document 1).

特開2000−81223号公報JP 2000-81223 A

しかし、R410A冷媒の地球温暖化係数(GWP)は2088と大きく、地球温暖化防止の観点から問題であった。   However, the global warming potential (GWP) of the R410A refrigerant is as large as 2088, which is a problem from the viewpoint of preventing global warming.

そこで、GWPの小さな冷媒として、例えばGWPが4のHFO1234yfやGWPが6のHFO1234ze、あるいは少なくともそのいずれか一方を含む混合冷媒が提案されているが、それらはR410A冷媒で使用する熱交換器をそのまま使うと、その熱交換器が蒸発器として作用するとき、冷媒の入口温度と出口飽和温度の差が大きくなり、その結果、空気と冷媒の平均温度差が小さくなり、能力が小さくなってしまうという課題を有している。   Therefore, as a refrigerant having a small GWP, for example, HFO1234yf having a GWP of 4, HFO1234ze having a GWP of 6, or a mixed refrigerant including at least one of them has been proposed. However, they use a heat exchanger used in the R410A refrigerant as it is. When used, when the heat exchanger acts as an evaporator, the difference between the refrigerant inlet temperature and the outlet saturation temperature is increased, resulting in a smaller average temperature difference between the air and the refrigerant, resulting in reduced capacity. Has a problem.

そこで、本発明は、同じ蒸発器を使うと、R410A冷媒に比べて、冷媒の入口温度と出口飽和温度の差が大きくなる冷媒を用いた場合に、蒸発器の構成を変更して、吸い込み空気の温度と冷媒の平均温度の差があまり小さくならないようにして、熱交換能力の低下を抑えることを目的とする。   Therefore, in the present invention, when the same evaporator is used, when the refrigerant having a difference between the refrigerant inlet temperature and the outlet saturation temperature is larger than that of the R410A refrigerant, the configuration of the evaporator is changed, and the intake air is changed. The purpose is to suppress the decrease in heat exchange capacity by preventing the difference between the temperature of the refrigerant and the average temperature of the refrigerant from becoming too small.

前記従来の課題を解決するために、請求項1記載の発明は、少なくとも圧縮機、凝縮器、絞り装置、及び蒸発器を順次接続して環状の冷媒回路を構成し、前記冷媒回路に充填する冷媒として、R410Aより地球温暖化係数(GWP)が低く、同じ前記蒸発器を用いると、R410Aに比べ、前記蒸発器の冷媒入口温度と冷媒出口圧力に対する飽和ガス温度の差の絶対値が大きくなる冷媒を使用する冷凍サイクル装置であって、前記蒸発器の冷媒入口温度または冷媒出口圧力に対する飽和ガス温度の高いほうの温度が、前記蒸発器の吸い込み空気の露点温度以上の場合は、前記蒸発器の冷媒入口温度と冷媒出口圧力に対する飽和ガス温度の差の絶対値が、前記蒸発器の吸い込み空気の温度と、前記蒸発器の冷媒入口温度または冷媒出口圧力に対する飽和ガス温度の低いほうの温度との差の絶対値の半分以下になるように、あるいは、前記蒸発器の冷媒入口温度または冷媒出口圧力に対する飽和ガス温度の高いほうの温度が、前記蒸発器の吸い込み空気の露点温度未満の場合は、前記蒸発器の冷媒入口温度と等しい温度の飽和空気の比エンタルピと、冷媒出口圧力に対する飽和ガス温度に等しい温度の飽和空気の比エンタルピの差の絶対値が、前記蒸発器の
吸い込み空気の比エンタルピと、前記蒸発器の冷媒入口温度または冷媒出口圧力に対する飽和ガス温度の低いほうの温度と等しい温度の飽和空気の比エンタルピとの差の絶対値の半分以下になるように、前記蒸発器の伝熱管を形成したものである。
In order to solve the conventional problem, according to the first aspect of the present invention, at least a compressor, a condenser, a throttle device, and an evaporator are sequentially connected to form an annular refrigerant circuit, and the refrigerant circuit is filled. As the refrigerant, the global warming potential (GWP) is lower than that of R410A, and when the same evaporator is used, the absolute value of the difference between the refrigerant inlet temperature of the evaporator and the saturated gas temperature relative to the refrigerant outlet pressure is larger than that of R410A. In the refrigeration cycle apparatus using a refrigerant, when the temperature of the saturated gas temperature higher than the refrigerant inlet temperature or the refrigerant outlet pressure of the evaporator is equal to or higher than the dew point temperature of the intake air of the evaporator, the evaporator The absolute value of the difference between the refrigerant inlet temperature and the saturated gas temperature with respect to the refrigerant outlet pressure is the temperature of the intake air of the evaporator and the refrigerant inlet temperature or refrigerant outlet pressure of the evaporator. The temperature of the saturated gas temperature is less than half of the absolute value of the difference from the lower temperature of the saturated gas, or the higher temperature of the saturated gas temperature with respect to the refrigerant inlet temperature or the refrigerant outlet pressure of the evaporator The absolute value of the difference between the specific enthalpy of saturated air at a temperature equal to the refrigerant inlet temperature of the evaporator and the specific enthalpy of saturated air at a temperature equal to the saturated gas temperature relative to the refrigerant outlet pressure Is half the absolute value of the difference between the specific enthalpy of the intake air of the evaporator and the specific enthalpy of saturated air at a temperature equal to the lower temperature of the saturated gas temperature with respect to the refrigerant inlet temperature or the refrigerant outlet pressure of the evaporator. The heat transfer tube of the evaporator is formed as follows.

請求項2記載の本発明は、請求項1に記載の空気調和機に四方弁を設けて、冷媒が流れる向きを変え、冷房運転のときは室内熱交換器を蒸発器、室外熱交換器を凝縮器として作用させ、暖房運転のときは室内熱交換器を凝縮器、室外熱交換器を蒸発器として作用させるように構成したものであり、冷房・暖房を切り替え可能としたことを特徴とする。   According to a second aspect of the present invention, the air conditioner according to the first aspect is provided with a four-way valve to change the direction in which the refrigerant flows, and during cooling operation, the indoor heat exchanger is an evaporator, and the outdoor heat exchanger is Acting as a condenser, during heating operation, the indoor heat exchanger is configured to act as a condenser, and the outdoor heat exchanger as an evaporator, and is characterized by being able to switch between cooling and heating. .

請求項3記載の本発明は、請求項1または請求項2のいずれかに記載の冷凍サイクル装置に充填する前記冷媒として、HFO1234yfまたはHFO1234zeとしたこと特徴とする。   The present invention described in claim 3 is characterized in that the refrigerant filled in the refrigeration cycle apparatus according to claim 1 or 2 is HFO1234yf or HFO1234ze.

請求項4記載の本発明は、請求項1または請求項2のいずれかに記載の冷凍サイクル装置に前記冷媒として、HFO1234yfとHFO1234zeの混合冷媒あるいは、少なくともHFO1234yfまたはHFO1234zeのいずれか一方を含む混合冷媒としたことを特徴とする。   According to a fourth aspect of the present invention, in the refrigeration cycle apparatus according to the first or second aspect, the refrigerant includes a mixed refrigerant of HFO1234yf and HFO1234ze, or a mixed refrigerant including at least one of HFO1234yf and HFO1234ze. It is characterized by that.

本発明の冷凍サイクル装置は、R410A冷媒に比べて、冷媒の入口温度と出口飽和温度の差が大きくなる冷媒を用いた場合に、吸い込み空気の温度と冷媒の平均温度の差があまり小さくならないようにして、蒸発器の熱交換能力の低下を抑え、空気調和機のエネルギー消費効率の低下を抑制することができる。   In the refrigeration cycle apparatus of the present invention, when a refrigerant having a large difference between the refrigerant inlet temperature and the outlet saturation temperature is used as compared with the R410A refrigerant, the difference between the intake air temperature and the refrigerant average temperature does not become so small. Thus, it is possible to suppress a decrease in the heat exchange capacity of the evaporator and to suppress a decrease in the energy consumption efficiency of the air conditioner.

本発明の実施の形態1または実施の形態2による空気調和機の構成図The block diagram of the air conditioner by Embodiment 1 or Embodiment 2 of this invention 従来のR410A冷媒用の室内熱交換器を用いた場合のPH線図PH diagram when using a conventional indoor heat exchanger for R410A refrigerant 本発明の実施の形態1における空気調和機のPH線図PH diagram of air conditioner according to Embodiment 1 of the present invention 本発明の実施の形態2における空気調和機のPH線図PH diagram of air conditioner according to Embodiment 2 of the present invention 従来技術の冷凍サイクル装置におけるPH線図PH diagram in prior art refrigeration cycle equipment

本発明の第1の実施の形態は、少なくとも圧縮機、凝縮器、絞り装置、及び蒸発器を順次接続して環状の冷媒回路を構成し、前記冷媒回路に充填する冷媒として、R410Aより地球温暖化係数(GWP)が低く、同じ前記蒸発器を用いると、R410Aに比べ、前記蒸発器の冷媒入口温度と冷媒出口圧力に対する飽和ガス温度の差の絶対値が大きくなる冷媒を使用する冷凍サイクル装置であって、前記蒸発器の冷媒入口温度または冷媒出口圧力に対する飽和ガス温度の高いほうの温度が、前記蒸発器の吸い込み空気の露点温度以上の場合は、前記蒸発器の冷媒入口温度と冷媒出口圧力に対する飽和ガス温度の差の絶対値が、前記蒸発器の吸い込み空気の温度と、前記蒸発器の冷媒入口温度または冷媒出口圧力に対する飽和ガス温度の低いほうの温度との差の絶対値の半分以下になるように、あるいは、前記蒸発器の冷媒入口温度または冷媒出口圧力に対する飽和ガス温度の高いほうの温度が、前記蒸発器の吸い込み空気の露点温度未満の場合は、前記蒸発器の冷媒入口温度と等しい温度の飽和空気の比エンタルピと、冷媒出口圧力に対する飽和ガス温度に等しい温度の飽和空気の比エンタルピの差の絶対値が、前記蒸発器の吸い込み空気の比エンタルピと、前記蒸発器の冷媒入口温度または冷媒出口圧力に対する飽和ガス温度の低いほうの温度と等しい温度の飽和空気の比エンタルピとの差の絶対値の半分以下になるように、前記蒸発器の伝熱管を形成してある。   In the first embodiment of the present invention, at least a compressor, a condenser, a throttling device, and an evaporator are sequentially connected to form an annular refrigerant circuit, and a refrigerant that fills the refrigerant circuit has a global warming than R410A. Refrigeration cycle apparatus using a refrigerant having a low conversion coefficient (GWP) and using the same evaporator, the absolute value of the difference between the refrigerant inlet temperature of the evaporator and the saturated gas temperature relative to the refrigerant outlet pressure is larger than that of R410A When the higher temperature of the saturated gas temperature relative to the refrigerant inlet temperature or the refrigerant outlet pressure of the evaporator is equal to or higher than the dew point temperature of the intake air of the evaporator, the refrigerant inlet temperature and the refrigerant outlet of the evaporator The absolute value of the difference between the saturated gas temperature and the pressure is such that the temperature of the intake air of the evaporator and the saturated gas temperature relative to the refrigerant inlet temperature or the refrigerant outlet pressure of the evaporator are lower. Or the higher of the saturated gas temperature with respect to the refrigerant inlet temperature or the refrigerant outlet pressure of the evaporator is less than the dew point temperature of the intake air of the evaporator. In this case, the absolute value of the difference between the specific enthalpy of saturated air having a temperature equal to the refrigerant inlet temperature of the evaporator and the specific enthalpy of saturated air having a temperature equal to the saturated gas temperature to the refrigerant outlet pressure is the suction of the evaporator. The absolute enthalpy of air and the absolute value of the difference between the specific enthalpy of saturated air having a temperature equal to the lower temperature of the saturated gas temperature with respect to the refrigerant inlet temperature or the refrigerant outlet pressure of the evaporator is less than half of the absolute value. An evaporator heat transfer tube is formed.

これにより、R410A冷媒に比べて、冷媒の入口温度と出口飽和温度の差が大きくな
る冷媒を用いた場合に、吸い込み空気の温度と冷媒の平均温度の差があまり小さくならないようにして、蒸発器の熱交換能力の低下を抑え、空気調和機のエネルギー消費効率の低下を抑制することができるという効果を有する。
Thus, when a refrigerant having a larger difference between the refrigerant inlet temperature and the outlet saturation temperature than the R410A refrigerant is used, the difference between the intake air temperature and the refrigerant average temperature is not reduced so much. This has the effect of suppressing a decrease in the heat exchange capacity of the air conditioner and suppressing a decrease in energy consumption efficiency of the air conditioner.

本発明の第2の実施の形態は、第1の実施の形態による冷凍サイクル装置において、冷媒回路に四方弁を設けて、冷媒が流れる向きを変え、冷房運転のときは室内熱交換器を蒸発器、室外熱交換器を凝縮器として作用させ、暖房運転のときは室内熱交換器を凝縮器、室外熱交換器を蒸発器として作用させる構成としてあり、冷房運転時、蒸発器として作用する室内熱交換器の熱交換能力の低下を抑え、また、暖房運転時、蒸発器として作用する室外熱交換器の熱交換能力の低下を抑え、冷房運転時、暖房運転時、それぞれのエネルギー消費効率の低下を抑制することができるという効果を有する。   According to the second embodiment of the present invention, in the refrigeration cycle apparatus according to the first embodiment, a four-way valve is provided in the refrigerant circuit to change the direction in which the refrigerant flows, and the indoor heat exchanger is evaporated during the cooling operation. The outdoor heat exchanger acts as a condenser, and in the heating operation, the indoor heat exchanger acts as a condenser and the outdoor heat exchanger acts as an evaporator. During the cooling operation, the indoor heat exchanger acts as an evaporator. Reduces the heat exchange capacity of the heat exchanger, reduces the heat exchange capacity of the outdoor heat exchanger that acts as an evaporator during heating operation, and reduces the energy consumption efficiency during cooling operation and heating operation. It has the effect that a fall can be suppressed.

本発明の第3の実施の形態は、第1または第2の実施の形態による冷凍サイクル装置において、冷媒として、HFO1234yfまたはHFO1234zeを用いており、吸い込み空気の温度と冷媒の平均温度の差があまり小さくならないようにして、蒸発器の熱交換能力の低下を抑え、冷凍サイクル装置のエネルギー消費効率の低下を抑制することができる。   In the refrigeration cycle apparatus according to the first or second embodiment, the third embodiment of the present invention uses HFO1234yf or HFO1234ze as the refrigerant, and the difference between the temperature of the intake air and the average temperature of the refrigerant is very small. It is possible to suppress a decrease in the heat exchange capacity of the evaporator and a decrease in the energy consumption efficiency of the refrigeration cycle apparatus without being reduced.

本発明の第4の実施の形態は、第1または第2の実施の形態による冷凍サイクル装置において、冷媒として、HFO1234yfとHFO1234zeの混合冷媒あるいは、少なくともHFO1234yfまたはHFO1234zeのいずれか一方を含む混合冷媒を用いており、吸い込み空気の温度と冷媒の平均温度の差があまり小さくならないようにして、蒸発器の熱交換能力の低下を抑え、冷凍サイクル装置のエネルギー消費効率の低下を抑制することができるという効果を有する。   According to the fourth embodiment of the present invention, in the refrigeration cycle apparatus according to the first or second embodiment, as the refrigerant, a mixed refrigerant including HFO1234yf and HFO1234ze or a mixed refrigerant including at least one of HFO1234yf or HFO1234ze is used. It is said that the difference between the temperature of the intake air and the average temperature of the refrigerant is not so small that the decrease in the heat exchange capacity of the evaporator can be suppressed and the decrease in the energy consumption efficiency of the refrigeration cycle apparatus can be suppressed. Has an effect.

以下に、本発明を冷暖房装置に応用した場合を例にして説明する。なお、この実施の形態によって本発明が限定されるものではない。   Below, the case where this invention is applied to an air-conditioning apparatus is demonstrated to an example. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は本発明の実施の形態1による冷房・暖房が切り替え可能な空気調和機の構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram of an air conditioner capable of switching between cooling and heating according to Embodiment 1 of the present invention.

本実施の形態1による空気調和機は、冷媒を圧縮する圧縮機1、冷房暖房運転時の冷媒回路を切り替える四方弁2、冷媒と室外空気との間で熱交換する室外熱交換器3、冷媒を減圧する絞り装置4、冷媒と室内空気との間で熱交換する室内熱交換器5で構成される。圧縮機1、四方弁2、室外熱交換器3、絞り装置4、及び室内熱交換器5は接続管で環状に接続され、冷媒回路内部には冷媒6が充填されている。通常、室外ユニット10には、圧縮機1、四方弁2、室外熱交換器3、絞り装置4を設け、室内ユニット11には、室内熱交換器5を設けている。そして室外ユニット10と室内ユニット11とは、接続管12と接続管13とで接続されている。   The air conditioner according to Embodiment 1 includes a compressor 1 that compresses a refrigerant, a four-way valve 2 that switches a refrigerant circuit during cooling and heating operation, an outdoor heat exchanger 3 that exchanges heat between the refrigerant and outdoor air, and a refrigerant Is composed of an expansion device 4 for reducing the pressure and an indoor heat exchanger 5 for exchanging heat between the refrigerant and the room air. The compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the expansion device 4, and the indoor heat exchanger 5 are connected in a ring shape with a connecting pipe, and the refrigerant circuit 6 is filled with the refrigerant 6. Usually, the outdoor unit 10 is provided with a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, and an expansion device 4, and the indoor unit 11 is provided with an indoor heat exchanger 5. The outdoor unit 10 and the indoor unit 11 are connected by a connecting pipe 12 and a connecting pipe 13.

冷房運転時には、圧縮機1によって圧縮された冷媒6は、高温高圧の過熱ガス冷媒となって四方弁2を通って室外熱交換器3に送られる。そして、室外空気と熱交換して放熱し、冷却され高圧の過冷却液冷媒となり、絞り装置4に送られる。絞り装置4では減圧されて低温低圧の二相冷媒となり、接続管13を通って、室内熱交換器5に入り室内空気と熱交換して吸熱し、蒸発気化して若干過熱されたガス冷媒となる。このとき室内空気は冷媒6に冷却されて室内を冷房する。さらに冷媒6は接続管12を通って、四方弁2を経由して圧縮機1に戻される。   During the cooling operation, the refrigerant 6 compressed by the compressor 1 becomes a high-temperature and high-pressure superheated gas refrigerant and is sent to the outdoor heat exchanger 3 through the four-way valve 2. Then, it exchanges heat with outdoor air to dissipate heat, and is cooled to become high-pressure supercooled liquid refrigerant, which is sent to the expansion device 4. In the expansion device 4, the gas refrigerant is decompressed to become a low-temperature and low-pressure two-phase refrigerant, enters the indoor heat exchanger 5 through the connecting pipe 13, absorbs heat by exchanging heat with the indoor air, evaporates, and is slightly heated. Become. At this time, the room air is cooled by the refrigerant 6 to cool the room. Furthermore, the refrigerant 6 is returned to the compressor 1 through the connection pipe 12 and the four-way valve 2.

暖房運転時には、圧縮機1によって圧縮された冷媒6は高温高圧の過熱ガス冷媒となっ
て四方弁2を通って接続管12に送られる。そして、室内熱交換器5に入り、室内空気と熱交換して放熱し、冷却され高圧の過冷却液冷媒となる。このとき室内空気は冷媒6に加熱されて室内を暖房する。その後、冷媒6は接続管13を通って絞り装置4に送られ、絞り装置4において減圧されて低温低圧の二相冷媒となり、室外熱交換器3に送られて室外空気と熱交換して吸熱し、蒸発気化して若干過熱されたガス冷媒となり、四方弁2を経由して圧縮機1へ戻される。
During the heating operation, the refrigerant 6 compressed by the compressor 1 becomes a high-temperature and high-pressure superheated gas refrigerant and is sent to the connection pipe 12 through the four-way valve 2. Then, it enters the indoor heat exchanger 5 and exchanges heat with indoor air to dissipate heat, and is cooled to become a high-pressure supercooled liquid refrigerant. At this time, the room air is heated by the refrigerant 6 to heat the room. Thereafter, the refrigerant 6 is sent to the expansion device 4 through the connecting pipe 13 and is decompressed in the expansion device 4 to become a low-temperature and low-pressure two-phase refrigerant, and is sent to the outdoor heat exchanger 3 to exchange heat with outdoor air to absorb heat. Then, the gas refrigerant is evaporated and becomes a slightly superheated gas refrigerant, and is returned to the compressor 1 via the four-way valve 2.

このようにして冷暖房運転がなされる。   In this way, the air conditioning operation is performed.

本実施の形態1による空気調和機を構成する冷媒回路には、R410A冷媒に比べて、地球温暖化係数(GWP)が低く、同じ蒸発器を用いると、R410Aに比べ、前記蒸発器の冷媒入口温度と冷媒出口圧力に対する飽和ガス温度の差の絶対値が大きくなる冷媒6を封入している。この冷媒6は具体的には、HFO1234yfまたはHFO1234zeの単一冷媒あるいは、HFO1234yfとHFO1234zeの混合冷媒あるいは、少なくともHFO1234yfまたはHFO1234zeのいずれか一方を含む混合冷媒である。ここでは具体例として、HFO1234yfを用いる場合を説明する。   In the refrigerant circuit constituting the air conditioner according to the first embodiment, the global warming potential (GWP) is lower than that of the R410A refrigerant. When the same evaporator is used, the refrigerant inlet of the evaporator is higher than that of the R410A. The refrigerant 6 in which the absolute value of the difference between the temperature and the saturated gas temperature relative to the refrigerant outlet pressure is increased is enclosed. Specifically, the refrigerant 6 is a single refrigerant of HFO1234yf or HFO1234ze, a mixed refrigerant of HFO1234yf and HFO1234ze, or a mixed refrigerant containing at least one of HFO1234yf or HFO1234ze. Here, a case where HFO1234yf is used will be described as a specific example.

次に、冷房運転時の室内熱交換器5が蒸発器として作用する場合について詳しく説明する。   Next, the case where the indoor heat exchanger 5 during the cooling operation acts as an evaporator will be described in detail.

図2は図5におけるR410A冷媒用の室内熱交換器5をそのまま用い、HFO1234yf冷媒を使用したときのPH線図を示している。   FIG. 2 shows a PH diagram when the indoor heat exchanger 5 for the R410A refrigerant in FIG. 5 is used as it is and the HFO1234yf refrigerant is used.

A点は圧縮機1の吸入部、B点は圧縮機1の吐出部、C点は凝縮器すなわち室外熱交換器3の入口部、D点は凝縮器すなわち室外熱交換器3の出口部、E点は蒸発器すなわち室内熱交換器5の入口部そしてG点は蒸発器すなわち室内熱交換器5の出口部をそれぞれ示している。   Point A is the suction part of the compressor 1, point B is the discharge part of the compressor 1, point C is the inlet of the condenser, that is, the outdoor heat exchanger 3, point D is the outlet of the condenser, that is, the outdoor heat exchanger 3, Point E indicates the inlet of the evaporator, that is, the indoor heat exchanger 5, and point G indicates the outlet of the evaporator, that is, the indoor heat exchanger 5, respectively.

図2から蒸発器の出入口部のE点からG点の線の傾きが大きくなっているのは、R410Aに比べて、HFO1234yfは冷媒流速が増加しており、圧力損失が大きいためである。また、E点の冷媒温度は、G点の冷媒圧力に対する飽和ガス冷媒温度より高いが、その差はR410Aのそれに比べて、約3倍である。このため、冷媒6と被熱交換流体である室内空気との温度差が小さくなり、特に室内熱交換器5の入口であるE点では温度差は僅少となる。このように冷媒6と室内空気の温度の差が小さくなることにより熱交換量が小さくなり、所定の冷房能力やエネルギー消費効率を確保できなくなる。   The reason why the slope of the line from point E to point G of the evaporator inlet / outlet portion of FIG. 2 is larger is that HFO1234yf has an increased refrigerant flow velocity and a larger pressure loss than R410A. The refrigerant temperature at point E is higher than the saturated gas refrigerant temperature relative to the refrigerant pressure at point G, but the difference is about three times that of R410A. For this reason, the temperature difference between the refrigerant 6 and the indoor air that is the heat exchange fluid is reduced, and the temperature difference is particularly small at the point E that is the inlet of the indoor heat exchanger 5. As described above, the difference in temperature between the refrigerant 6 and the room air becomes small, so that the heat exchange amount becomes small, and a predetermined cooling capacity and energy consumption efficiency cannot be secured.

そこで、本発明の実施の形態1では、室内熱交換器5の冷媒入口温度が、室内熱交換器5の吸い込み空気の露点温度以上の場合は、室内熱交換器5の冷媒入口温度と冷媒出口圧力に対する飽和ガス温度の差の絶対値が、室内熱交換器5の吸い込み空気の温度と、室内熱交換器5の冷媒出口圧力に対する飽和ガス温度との差の絶対値の半分以下になるように、あるいは室内熱交換器5の冷媒入口温度が、室内熱交換器5の吸い込み空気の露点温度未満の場合は、室内熱交換器5の冷媒入口温度と等しい温度の飽和空気の比エンタルピと、冷媒出口圧力に対する飽和ガス温度に等しい温度の飽和空気の比エンタルピの差の絶対値が、室内熱交換器5の吸い込み空気の比エンタルピと、室内熱交換器5の冷媒出口圧力に対する飽和ガス温度と等しい温度の飽和空気の比エンタルピとの差の絶対値の半分以下になるように、室内熱交換器の伝熱管の直径を大きくしたり、伝熱管の長さを短くしたり、冷媒流路数を多くしたりしてある。例えば具体的には、冷媒流路数をR410A冷媒のときのおよそ2倍に増やしてある。   Therefore, in Embodiment 1 of the present invention, when the refrigerant inlet temperature of the indoor heat exchanger 5 is equal to or higher than the dew point temperature of the intake air of the indoor heat exchanger 5, the refrigerant inlet temperature and the refrigerant outlet of the indoor heat exchanger 5 The absolute value of the difference between the saturated gas temperature and the pressure is less than half the absolute value of the difference between the temperature of the intake air of the indoor heat exchanger 5 and the saturated gas temperature with respect to the refrigerant outlet pressure of the indoor heat exchanger 5. Alternatively, when the refrigerant inlet temperature of the indoor heat exchanger 5 is lower than the dew point temperature of the intake air of the indoor heat exchanger 5, the specific enthalpy of saturated air having a temperature equal to the refrigerant inlet temperature of the indoor heat exchanger 5 and the refrigerant The absolute value of the difference in specific enthalpy of saturated air at a temperature equal to the saturated gas temperature relative to the outlet pressure is equal to the specific enthalpy of the suction air of the indoor heat exchanger 5 and the saturated gas temperature relative to the refrigerant outlet pressure of the indoor heat exchanger 5. Increase the diameter of the heat exchanger tube of the indoor heat exchanger, shorten the length of the heat exchanger tube, or reduce the number of refrigerant channels so that the absolute value of the difference from the specific enthalpy of saturated air is less than half the absolute value. There are many. For example, specifically, the number of refrigerant channels is increased to about twice that of the R410A refrigerant.

このようにした場合のHFO1234yf冷媒使用時のPH線図を図3に示す。   FIG. 3 shows a PH diagram when the HFO1234yf refrigerant is used in such a case.

図3において、A点は圧縮機1の吸入部、B点は圧縮機1の吐出部、C点は凝縮器すなわち室外熱交換器3の入口部、D点は凝縮器すなわち室外熱交換器3の出口部、F点は蒸発器すなわち室内熱交換器5の入口部そしてG点は蒸発器すなわち室内熱交換器5の出口部をそれぞれ示している。   In FIG. 3, point A is the suction part of the compressor 1, point B is the discharge part of the compressor 1, point C is the inlet of the condenser, that is, the outdoor heat exchanger 3, and point D is the condenser, that is, the outdoor heat exchanger 3. , The point F indicates the evaporator, that is, the inlet of the indoor heat exchanger 5, and the point G indicates the evaporator, that is, the outlet of the indoor heat exchanger 5.

また、E点はR410A用の室内熱交換器5をそのまま使用した場合の室内熱交換器5の入口部を示している。   Moreover, the E point has shown the inlet_port | entrance part of the indoor heat exchanger 5 at the time of using the indoor heat exchanger 5 for R410A as it is.

図3から、R410A用の室内熱交換器5をそのまま使用した場合には圧力損失が大きくE点の冷媒温度はG点の冷媒温度よりかなり高く、吸い込み空気との温度差があまりなくなって、熱交換能力が低くなっていたのに対して、本実施の形態1の室内熱交換器5を用いた場合にはF点からG点への圧力損失を抑え、F点の冷媒温度がG点の冷媒圧力の飽和ガス温度よりあまり大きくないようにして、蒸発器内の冷媒6と吸い込み空気の温度差を適切に確保することにより、蒸発器の熱交換能力の低下を抑え、所定の冷房能力を確保し、エネルギー消費効率の低下を抑制することができるという効果を有することがわかる。   From FIG. 3, when the indoor heat exchanger 5 for R410A is used as it is, the pressure loss is large and the refrigerant temperature at the point E is considerably higher than the refrigerant temperature at the point G. Whereas the exchange capacity was low, when the indoor heat exchanger 5 of Embodiment 1 was used, the pressure loss from the F point to the G point was suppressed, and the refrigerant temperature at the F point was the G point. By ensuring that the temperature difference between the refrigerant 6 in the evaporator and the intake air is not so much higher than the saturated gas temperature of the refrigerant pressure, a decrease in the heat exchange capacity of the evaporator is suppressed, and a predetermined cooling capacity is achieved. It can be seen that it has the effect of ensuring and suppressing a decrease in energy consumption efficiency.

(実施の形態2)
本発明の実施の形態2による冷房・暖房が切り替え可能な空気調和機の構成は、実施の形態1の図1と同じである。
(Embodiment 2)
The configuration of the air conditioner capable of switching between cooling and heating according to the second embodiment of the present invention is the same as that of FIG.

本実施の形態2は、冷媒回路に充填する冷媒6として、質量濃度20%のHFC32冷媒と質量濃度80%のHFO1234yf冷媒の混合冷媒を用いるもので、ここでは、その空気調和機を暖房運転して、室外熱交換器3が蒸発器として作用する場合について説明する。   The second embodiment uses a mixed refrigerant of an HFC32 refrigerant having a mass concentration of 20% and an HFO1234yf refrigerant having an mass concentration of 80% as the refrigerant 6 filled in the refrigerant circuit. Here, the air conditioner is operated for heating. The case where the outdoor heat exchanger 3 acts as an evaporator will be described.

この場合のPH線図を図4に示す。図4には、R410A冷媒用の室外熱交換器3をそのまま用い、質量濃度20%のHFC32冷媒と質量濃度80%のHFO1234yf冷媒の混合冷媒を使用したときのPH線図と、質量濃度20%のHFC32冷媒と質量濃度80%のHFO1234yf冷媒の混合冷媒を充填した場合に室外熱交換器3を本発明の実施の形態2の適切な構成にしたときのPH線図の両方を示している。   The PH diagram in this case is shown in FIG. FIG. 4 shows a PH diagram when the outdoor heat exchanger 3 for R410A refrigerant is used as it is, and a mixed refrigerant of HFC32 refrigerant having a mass concentration of 20% and HFO1234yf refrigerant having a mass concentration of 80% is used, and a mass concentration of 20%. Both PH diagrams are shown when the outdoor heat exchanger 3 has the appropriate configuration according to the second embodiment of the present invention when the mixed refrigerant of the HFC32 refrigerant and the HFO1234yf refrigerant having the mass concentration of 80% is filled.

図4において、A点は圧縮機1の吸入部、B点は圧縮機1の吐出部、C点は凝縮器すなわち室内熱交換器5の入口部、D点は凝縮器すなわち室内熱交換器5の出口部、E’点は蒸発器すなわち室外熱交換器3の入口部をそれぞれ示しており、蒸発器すなわち室外熱交換器3の出口部は、室外熱交換器3がR410A使用時のままのときは点F‘が、室外熱交換器3を質量濃度20%のHFC32冷媒と質量濃度80%のHFO1234yf冷媒の混合冷媒を充填した場合であって室外熱交換器3の伝熱管を本発明の実施の形態2により適切な構成にしたときは点G’が、それぞれ示している。   In FIG. 4, point A is the suction part of the compressor 1, point B is the discharge part of the compressor 1, point C is the inlet of the condenser, that is, the indoor heat exchanger 5, and point D is the condenser, that is, the indoor heat exchanger 5. , E ′ point indicates the evaporator, that is, the inlet portion of the outdoor heat exchanger 3, and the outlet portion of the evaporator, that is, the outdoor heat exchanger 3 is the same as when the outdoor heat exchanger 3 is used in the R410A. The point F ′ is when the outdoor heat exchanger 3 is filled with a mixed refrigerant of HFC32 refrigerant having a mass concentration of 20% and HFO1234yf refrigerant having a mass concentration of 80%, and the heat transfer tube of the outdoor heat exchanger 3 is When the configuration is appropriate according to the second embodiment, each point G ′ is shown.

質量濃度20%のHFC32冷媒と質量濃度80%のHFO1234yf冷媒の混合冷媒は非共沸冷媒で、0.5MPa前後では、同じ圧力において飽和液冷媒の温度が飽和ガス冷媒の温度より8.5度くらい低くなる。このため、図4において、室外熱交換器3をR410A冷媒用のままで使用した場合の室外熱交換器3の出口のF’点の冷媒圧力に対する飽和ガス冷媒の温度は、室外熱交換器3の入口のE’点の温度よりかなり高く、室外熱交換器3の吸い込み空気との温度差が僅少になる。このように、冷媒6と被熱交換流体である室外空気との温度差が小さくなり、特に室外熱交換器3の出口であるE点では温度差は僅少となり、冷媒6と室内空気の温度の差が小さくなることにより室外熱交換器3での熱交換量が小さくなり、所定の暖房能力やエネルギー消費効率を確保できなくなる。   The mixed refrigerant of the HFC32 refrigerant having a mass concentration of 20% and the HFO1234yf refrigerant having a mass concentration of 80% is a non-azeotropic refrigerant, and at around 0.5 MPa, the temperature of the saturated liquid refrigerant is 8.5 degrees from the temperature of the saturated gas refrigerant at the same pressure. It will be much lower. Therefore, in FIG. 4, when the outdoor heat exchanger 3 is used as it is for the R410A refrigerant, the temperature of the saturated gas refrigerant with respect to the refrigerant pressure at the point F ′ of the outlet of the outdoor heat exchanger 3 is the outdoor heat exchanger 3. The temperature is considerably higher than the temperature at the point E ′ at the inlet of the outdoor heat exchanger 3 and the temperature difference from the intake air of the outdoor heat exchanger 3 becomes small. In this way, the temperature difference between the refrigerant 6 and the outdoor air that is the heat exchange fluid becomes small, and particularly at the point E, which is the outlet of the outdoor heat exchanger 3, the temperature difference becomes small, and the temperature difference between the refrigerant 6 and the indoor air. As the difference becomes smaller, the amount of heat exchange in the outdoor heat exchanger 3 becomes smaller, and it becomes impossible to ensure a predetermined heating capacity and energy consumption efficiency.

そこで、本発明の実施の形態2では、室外熱交換器3の冷媒出口の圧力に対する飽和ガス冷媒温度が、室外熱交換器3の吸い込み空気の露点温度以上の場合は、室外熱交換器3の冷媒入口温度と冷媒出口圧力に対する飽和ガス温度の差の絶対値が、室外熱交換器3の吸い込み空気の温度と、室外熱交換器3の冷媒出口圧力に対する飽和ガス温度との差の絶対値の半分以下になるように、あるいは室外熱交換器3の冷媒入口の圧力に対する飽和ガス冷媒温度が、室外熱交換器3の吸い込み空気の露点温度未満の場合は、室外熱交換器3の冷媒入口温度と等しい温度の飽和空気の比エンタルピと、冷媒出口圧力に対する飽和ガス冷媒温度に等しい温度の飽和空気の比エンタルピの差の絶対値が、室外熱交換器3の吸い込み空気の比エンタルピと、室内熱交換器5の冷媒出口圧力に対する飽和ガス冷媒温度と等しい温度の飽和空気の比エンタルピとの差の絶対値の半分以下になるように、室外熱交換器の伝熱管の直径を小さくしたり、伝熱管の長さを長くしたり、冷媒流路数を減らしたりしてある。例えば具体的には、室外熱交換器3の伝熱管の直径をすべて8mmから7mmしてある。   Therefore, in Embodiment 2 of the present invention, when the saturated gas refrigerant temperature relative to the refrigerant outlet pressure of the outdoor heat exchanger 3 is equal to or higher than the dew point temperature of the intake air of the outdoor heat exchanger 3, the outdoor heat exchanger 3 The absolute value of the difference between the refrigerant inlet temperature and the saturated gas temperature with respect to the refrigerant outlet pressure is the absolute value of the difference between the temperature of the intake air of the outdoor heat exchanger 3 and the saturated gas temperature with respect to the refrigerant outlet pressure of the outdoor heat exchanger 3. When the saturated gas refrigerant temperature with respect to the refrigerant inlet pressure of the outdoor heat exchanger 3 is less than half or below the dew point temperature of the intake air of the outdoor heat exchanger 3, the refrigerant inlet temperature of the outdoor heat exchanger 3 And the absolute value of the difference between the specific enthalpy of saturated air at a temperature equal to and the specific enthalpy of saturated air at a temperature equal to the saturated gas refrigerant temperature to the refrigerant outlet pressure is the specific enthalpy of the intake air of the outdoor heat exchanger 3; The diameter of the heat transfer tube of the outdoor heat exchanger is reduced so that the absolute value of the difference from the specific enthalpy of the saturated air having a temperature equal to the saturated gas refrigerant temperature with respect to the refrigerant outlet pressure of the internal heat exchanger 5 is less than half. The length of the heat transfer tube is increased or the number of refrigerant flow paths is decreased. For example, specifically, the diameters of the heat transfer tubes of the outdoor heat exchanger 3 are all 8 mm to 7 mm.

このようにした場合、図4において、室外熱交換器3の出口はPH線図でG’点にてあらわされる。   In this case, in FIG. 4, the outlet of the outdoor heat exchanger 3 is represented by a point G ′ in the PH diagram.

図4において、R410A用の室外熱交換器3をそのまま使用した場合には、冷媒6と吸い込み空気との温度差があまりなくなって、熱交換能力が低くなっていたのに対して、本発明の室外熱交換器3を用いた場合にはE’点の冷媒温度とG’点の圧力の飽和ガス冷媒温度との差は小さくすることができ、蒸発器内の冷媒6と吸い込み空気の温度差を適切に確保することにより、蒸発器の熱交換能力の低下を抑え、所定の冷房能力を確保し、エネルギー消費効率の低下を抑制することができるという効果を有することがわかる。   In FIG. 4, when the outdoor heat exchanger 3 for R410A is used as it is, the temperature difference between the refrigerant 6 and the intake air is not so much, and the heat exchange capacity is low. When the outdoor heat exchanger 3 is used, the difference between the refrigerant temperature at the point E ′ and the saturated gas refrigerant temperature at the point G ′ can be reduced, and the temperature difference between the refrigerant 6 in the evaporator and the intake air. It can be seen that, by appropriately ensuring the above, it is possible to suppress the decrease in the heat exchange capacity of the evaporator, ensure the predetermined cooling capacity, and suppress the decrease in the energy consumption efficiency.

なお、上記実施の形態1および形態2では冷房暖房の切り替えが可能な空気調和機として説明したが、四方弁を有しない加熱専用、例えば給湯機等や、冷却専用、例えばクーラーや冷凍庫等としても応用できるものであり、加熱専用の場合は室外熱交換器が、冷却専用の場合は室内熱交換器が、蒸発器として作用する。   In Embodiments 1 and 2 described above, the air conditioner is capable of switching between cooling and heating. However, the heating only unit that does not have a four-way valve, such as a water heater, and the cooling only unit, such as a cooler or a freezer, may be used. An outdoor heat exchanger can be used for heating only, and an indoor heat exchanger for cooling only can function as an evaporator.

また、上記各実施の形態では冷媒として、HFO1234yfとHFO1234zeを例にして説明したが、冷媒としてはHFO1234yfとHFO1234zeの総称であるテトラフルオロプロペン、更にはこれを含むハイドロフルオロオレフィンであればよく、これらと混合する冷媒としてハイドロフルオロカーボン、例えばペンタフルオロエタン(HFC125)やジフルオロメタン(HFC32)とした、3成分からなる混合冷媒としてもよい。   In each of the above embodiments, HFO1234yf and HFO1234ze have been described as examples of the refrigerant. However, as the refrigerant, tetrafluoropropene, which is a general term for HFO1234yf and HFO1234ze, and further a hydrofluoroolefin containing the same may be used. The refrigerant to be mixed may be a mixed refrigerant composed of three components such as hydrofluorocarbon, such as pentafluoroethane (HFC125) or difluoromethane (HFC32).

そして、上記いずれの場合も地球温暖化係数が5以上、750以下となるように、望ましくは350以下となるようにそれぞれ2成分混合もしくは3成分混合したものが好ましい。   In either case, a mixture of two or three components is preferably used so that the global warming potential is 5 or more and 750 or less, and preferably 350 or less.

また、上記作動冷媒に用いる冷凍機油としては、ポリオキシアルキレングリコール類、ポリビニルエーテル類、ポリ(オキシ)アルキレングリコールまたはそのモノエーテルとポリビニルエーテルの共重合体、ポリオールエステル類およびポリカーボネート類の含酸素化合物を主成分とする合成油か、アルキルベンゼン類やαオレフィン類を主成分とする合成油が好ましい。   The refrigerating machine oil used for the working refrigerant includes polyoxyalkylene glycols, polyvinyl ethers, poly (oxy) alkylene glycols or their monoether and polyvinyl ether copolymers, polyol esters, and oxygen-containing compounds of polycarbonates. Or a synthetic oil mainly composed of alkylbenzenes or α-olefins.

以上のように、本発明にかかる空気調和機は、R410A冷媒に比べて、冷媒の入口温度と出口飽和温度の差が大きくなる冷媒を用いた場合に、蒸発器の構成を変更して、吸い
込み空気の温度と冷媒の平均温度の差があまり小さくならないようにして、熱交換能力の低下を抑え、空気調和機のエネルギー消費効率の低下を抑制するという効果を有し、家庭用や業務用の空気調和機だけでなく、同様の冷凍サイクルを用いる各種冷凍機にも応用することができる。
As described above, the air conditioner according to the present invention changes the configuration of the evaporator when using a refrigerant in which the difference between the refrigerant inlet temperature and the outlet saturation temperature is larger than that of the R410A refrigerant. The difference between the temperature of the air and the average temperature of the refrigerant does not become too small, and it has the effect of suppressing the decrease in heat exchange capacity and the energy consumption efficiency of the air conditioner. The present invention can be applied not only to air conditioners but also to various refrigerators using the same refrigeration cycle.

1 圧縮機
2 四方弁
3 室外熱交換器
4 絞り装置
5 室内熱交換器
6 単位体積当たりの冷凍能力が小さな冷媒
12 接続管
13 接続管
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Throttle device 5 Indoor heat exchanger 6 Refrigerant with small refrigerating capacity per unit volume 12 Connection pipe 13 Connection pipe

Claims (4)

少なくとも圧縮機、凝縮器、絞り装置、及び蒸発器を順次接続して環状の冷媒回路を構成し、前記冷媒回路に充填する冷媒として、R410Aより地球温暖化係数(GWP)が低く、同じ前記蒸発器を用いると、R410Aに比べ、前記蒸発器の冷媒入口温度と冷媒出口圧力に対する飽和ガス温度の差の絶対値が大きくなる冷媒を使用する冷凍サイクル装置であって、前記蒸発器の冷媒入口温度または冷媒出口圧力に対する飽和ガス温度の高いほうの温度が、前記蒸発器の吸い込み空気の露点温度以上の場合は、前記蒸発器の冷媒入口温度と冷媒出口圧力に対する飽和ガス温度の差の絶対値が、前記蒸発器の吸い込み空気の温度と、前記蒸発器の冷媒入口温度または冷媒出口圧力に対する飽和ガス温度の低いほうの温度との差の絶対値の半分以下になるように、あるいは、前記蒸発器の冷媒入口温度または冷媒出口圧力に対する飽和ガス温度の高いほうの温度が、前記蒸発器の吸い込み空気の露点温度未満の場合は、前記蒸発器の冷媒入口温度と等しい温度の飽和空気の比エンタルピと、冷媒出口圧力に対する飽和ガス温度に等しい温度の飽和空気の比エンタルピの差の絶対値が、前記蒸発器の吸い込み空気の比エンタルピと、前記蒸発器の冷媒入口温度または冷媒出口圧力に対する飽和ガス温度の低いほうの温度と等しい温度の飽和空気の比エンタルピとの差の絶対値の半分以下になるように、前記蒸発器の伝熱管を形成した冷凍サイクル装置。 At least a compressor, a condenser, a throttling device, and an evaporator are sequentially connected to form an annular refrigerant circuit, and the refrigerant that fills the refrigerant circuit has a lower global warming potential (GWP) than R410A, and the same evaporation. When the evaporator is used, it is a refrigeration cycle apparatus that uses a refrigerant in which the absolute value of the difference between the refrigerant inlet temperature of the evaporator and the saturated gas temperature relative to the refrigerant outlet pressure is larger than that of R410A, and the refrigerant inlet temperature of the evaporator Alternatively, if the higher temperature of the saturated gas temperature relative to the refrigerant outlet pressure is equal to or higher than the dew point temperature of the intake air of the evaporator, the absolute value of the difference between the refrigerant inlet temperature of the evaporator and the saturated gas temperature relative to the refrigerant outlet pressure is The absolute value of the difference between the temperature of the intake air of the evaporator and the lower temperature of the saturated gas temperature with respect to the refrigerant inlet temperature or the refrigerant outlet pressure of the evaporator Or when the higher temperature of the saturated gas temperature relative to the refrigerant inlet temperature or refrigerant outlet pressure of the evaporator is lower than the dew point temperature of the intake air of the evaporator, the refrigerant inlet of the evaporator The absolute value of the difference between the specific enthalpy of saturated air at a temperature equal to the temperature and the specific enthalpy of saturated air at a temperature equal to the saturated gas temperature relative to the refrigerant outlet pressure is the specific enthalpy of the intake air of the evaporator and the A refrigeration cycle in which the heat transfer tube of the evaporator is formed so that the absolute value of the difference between the specific enthalpy of saturated air having a temperature equal to the lower temperature of the saturated gas temperature relative to the refrigerant inlet temperature or the refrigerant outlet pressure is less than half of the absolute value. apparatus. 請求項1に記載の冷凍サイクル装置に四方弁を設けて、冷媒が流れる向きを変え、冷房運転のときは室内熱交換器を蒸発器、室外熱交換器を凝縮器として作用させ、暖房運転のときは室内熱交換器を凝縮器、室外熱交換器を蒸発器として作用させるようにした請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1 is provided with a four-way valve to change the direction in which the refrigerant flows, and during cooling operation, the indoor heat exchanger acts as an evaporator and the outdoor heat exchanger acts as a condenser. 2. The refrigeration cycle apparatus according to claim 1, wherein the indoor heat exchanger acts as a condenser and the outdoor heat exchanger acts as an evaporator. 前記冷媒として、HFO1234yfまたはHFO1234zeを充填した請求項1または請求項2のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 and 2, wherein the refrigerant is filled with HFO1234yf or HFO1234ze. 前記冷媒として、HFO1234yfとHFO1234zeの混合冷媒あるいは、少なくともHFO1234yfまたはHFO1234zeのいずれか一方を含む混合冷媒を充填した請求項1または請求項2のいずれか1項に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 and 2, wherein the refrigerant is filled with a mixed refrigerant of HFO1234yf and HFO1234ze or a mixed refrigerant containing at least one of HFO1234yf and HFO1234ze.
JP2010125597A 2010-06-01 2010-06-01 Air conditioner Pending JP2011252638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010125597A JP2011252638A (en) 2010-06-01 2010-06-01 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010125597A JP2011252638A (en) 2010-06-01 2010-06-01 Air conditioner

Publications (1)

Publication Number Publication Date
JP2011252638A true JP2011252638A (en) 2011-12-15

Family

ID=45416713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010125597A Pending JP2011252638A (en) 2010-06-01 2010-06-01 Air conditioner

Country Status (1)

Country Link
JP (1) JP2011252638A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050060A (en) * 2001-08-03 2003-02-21 Mitsubishi Electric Corp Refrigerant circuit of air conditioner
JP2008121995A (en) * 2006-11-13 2008-05-29 Fujitsu General Ltd Air conditioner
JP2009257740A (en) * 2008-03-25 2009-11-05 Daikin Ind Ltd Refrigerating apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050060A (en) * 2001-08-03 2003-02-21 Mitsubishi Electric Corp Refrigerant circuit of air conditioner
JP2008121995A (en) * 2006-11-13 2008-05-29 Fujitsu General Ltd Air conditioner
JP2009257740A (en) * 2008-03-25 2009-11-05 Daikin Ind Ltd Refrigerating apparatus

Similar Documents

Publication Publication Date Title
JP7284405B2 (en) refrigeration cycle equipment
JP6065429B2 (en) Air conditioner
JP2017145975A (en) Refrigeration cycle device, process of manufacture of refrigeration cycle device, drop-in method for refrigeration cycle device, and replace method for refrigeration cycle device
WO2009110228A1 (en) Refrigerating apparatus
JP2011002217A (en) Refrigerating device and air conditioning apparatus
WO2019124329A1 (en) Refrigerant cycling device
EP3118541B1 (en) Refrigeration cycle apparatus
JP5936785B1 (en) Air conditioner
KR20140116159A (en) Bubble-removal device, outdoor heat-exchange device, and refrigeration/air-conditioning system
JP2011094841A (en) Refrigerating device
JP2011112327A (en) Air conditioner and refrigerating device
JPWO2002095302A1 (en) Refrigeration cycle device
JP2010112693A (en) Air conditioner
JP2001241780A (en) Refrigerating air conditioner
JP2000274789A (en) Refrigerating air conditioner and method for controlling the refrigerating air conditioner
EP2578966A1 (en) Refrigeration device and cooling and heating device
US20150000330A1 (en) Air conditioner
JP2011033289A (en) Refrigerating cycle device
WO2013084455A1 (en) Heat exchanger and air conditioner provided with same
WO2023047440A1 (en) Air conditioner
JP2012057849A (en) Heat transfer tube, heat exchanger, and refrigerating cycle device
JP2011252638A (en) Air conditioner
JP2011158177A (en) Refrigeration cycle apparatus
WO2017145243A1 (en) Refrigeration cycle apparatus
CN214039017U (en) Air conditioner and outdoor unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130530

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130612

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140722