JP2011249263A - Transparent conductive film with good durability - Google Patents

Transparent conductive film with good durability Download PDF

Info

Publication number
JP2011249263A
JP2011249263A JP2010123874A JP2010123874A JP2011249263A JP 2011249263 A JP2011249263 A JP 2011249263A JP 2010123874 A JP2010123874 A JP 2010123874A JP 2010123874 A JP2010123874 A JP 2010123874A JP 2011249263 A JP2011249263 A JP 2011249263A
Authority
JP
Japan
Prior art keywords
transparent conductive
layer
thin film
film layer
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010123874A
Other languages
Japanese (ja)
Other versions
JP5505840B2 (en
Inventor
Yoshitaka Sakamoto
好隆 坂本
Shiro Ikuhara
志郎 幾原
Shinichi Iwasaki
伸一 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reiko Co Ltd
Original Assignee
Reiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reiko Co Ltd filed Critical Reiko Co Ltd
Priority to JP2010123874A priority Critical patent/JP5505840B2/en
Publication of JP2011249263A publication Critical patent/JP2011249263A/en
Application granted granted Critical
Publication of JP5505840B2 publication Critical patent/JP5505840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a transparent conductive film having a good durability, whose surface resistivity (Ω/sq.) hardly changes (specifically, it shows a rate of change of 10% or lower) before and after a heat resistance acceleration test (a subject of the test is left at a temperature of 80°C for 500 hours), and a moisture-and-heat resistance acceleration test (a subject of the test is left at a temperature of 85°C and a moisture of 85% for 500 hours).SOLUTION: A transparent conductive film has at least a transparent conductive layer (A-1), a low-refraction index thin-film layer (B) having a refraction index of 1.2-1.5, and a transparent conductive layer (A-2), which are formed on one face of a plastic film in this order, and a silicon oxide thin-film layer (C) formed between the plastic film and the transparent conductive layer (A-1).

Description

本発明は、タッチパネル、太陽電池、有機EL等に用いる低抵抗型透明電極として使用可能な透明導電フイルムに関し、特に耐久性に優れた透明導電フイルムに関する。 The present invention relates to a transparent conductive film that can be used as a low-resistance transparent electrode for use in touch panels, solar cells, organic EL, and the like, and particularly relates to a transparent conductive film excellent in durability.

従来、タッチパネル等の低抵抗型透明電極として使用可能な透明導電フイルムであって、透明性とペン摺動耐久性に優れた透明導電フイルムが知られている。
特許文献1には、透明基体(1)上に、透明導電性金属酸化物からなる抵抗膜層(2)、二酸化ケイ素よりなる薄膜層(3)、及び透明導電性金属酸化物からなる抵抗膜層(4)が順次形成された抵抗膜型透明タッチパネル用電極部材(透明導電フイルム)が記載されている。
また、上記透明導電性金属酸化物としては、酸化インジウム薄膜、酸化インジウムに酸化スズをドープした薄膜(ITO薄膜)等が使用できる旨、抵抗膜層(2)と抵抗膜層(4)とは同種の透明導電性金属酸化物を使用するのが好ましい旨も記載されている。
2. Description of the Related Art Conventionally, a transparent conductive film that can be used as a low-resistance transparent electrode such as a touch panel and has excellent transparency and pen sliding durability is known.
Patent Document 1 discloses a resistance film layer (2) made of a transparent conductive metal oxide, a thin film layer (3) made of silicon dioxide, and a resistance film made of a transparent conductive metal oxide on a transparent substrate (1). A resistive film type transparent touch panel electrode member (transparent conductive film) in which layers (4) are sequentially formed is described.
Further, as the transparent conductive metal oxide, an indium oxide thin film, a thin film in which tin oxide is doped in indium oxide (ITO thin film), etc. can be used, and the resistive film layer (2) and the resistive film layer (4) It is also described that it is preferable to use the same kind of transparent conductive metal oxide.

さらに、上記抵抗膜層(2)、二酸化ケイ素(SiO)よりなる薄膜層(3)、及び抵抗膜層(4)が、透明基材上にこの順に形成されていることにより、透明性とペン摺動耐久性に優れたものとなる旨、抵抗膜層(2)と抵抗膜層(4)との間に、本来であれば電気絶縁性を有する二酸化ケイ素よりなる薄膜層(3)が存在するにもかかわらず、該二酸化ケイ素よりなる薄膜層(3)が導電性を発現するため、抵抗膜層(2)、二酸化ケイ素よりなる薄膜層(3)、及び抵抗膜層(4)全体が導電性を有する旨、さらに抵抗膜層(2)の厚さを厚くしておけばタッチパネルとして必要な電気抵抗は該層で得られるため、仮に抵抗膜層(4)が抵抗膜層(2)よりもかなり薄い厚さでもタッチパネルとしての機能は問題なく発現する旨が記載されている。 Further, the resistance film layer (2), the thin film layer (3) made of silicon dioxide (SiO 2 ), and the resistance film layer (4) are formed in this order on the transparent base material, so that transparency and Between the resistive film layer (2) and the resistive film layer (4), there is a thin film layer (3) made of silicon dioxide that has electrical insulation properties, so that the pen sliding durability is excellent. In spite of the presence, the thin film layer (3) made of silicon dioxide exhibits conductivity, so that the resistive film layer (2), the thin film layer (3) made of silicon dioxide, and the entire resistive film layer (4) If the resistance film layer (2) is made thicker, the electrical resistance necessary for the touch panel can be obtained from the layer. Therefore, the resistance film layer (4) is assumed to be the resistance film layer (2 ) Even if the thickness is much thinner than that, the function as a touch panel will appear without problems It has been mounting.

特許第4132191号公報Japanese Patent No. 4132191

しかし、上記特許文献1記載の抵抗膜型透明タッチパネル用電極部材には、耐熱性や耐湿熱性などの耐久性に劣るという欠点があった。
具体的には、一般的に透明導電フイルムをタッチパネル用に使用する場合には、耐熱性試験(温度60℃の環境下で3000時間放置)、及び耐湿熱性試験(温度60℃、湿度95%の環境下で3000時間放置)で、透明導電フイルムの表面抵抗率(Ω/□)が試験の前後でほとんど変化しない(変化率10%以下である)ことが必要である。
しかし、上記特許文献1記載の抵抗膜型透明タッチパネル用電極部材は、上記試験をクリアできないという問題があった。
However, the electrode member for a resistive film type transparent touch panel described in Patent Document 1 has a drawback that it is inferior in durability such as heat resistance and moist heat resistance.
Specifically, when a transparent conductive film is generally used for a touch panel, a heat resistance test (stands for 3000 hours in an environment at a temperature of 60 ° C.) and a heat and humidity resistance test (at a temperature of 60 ° C. and a humidity of 95%). It is necessary that the surface resistivity (Ω / □) of the transparent conductive film hardly changes before and after the test (change rate is 10% or less) after standing in the environment for 3000 hours.
However, the electrode member for resistance film type transparent touch panel described in Patent Document 1 has a problem that the above test cannot be cleared.

本発明は、上記欠点を解決したものであり、耐久性に優れた透明導電フイルムを提供するものである。 This invention solves the said fault and provides the transparent conductive film excellent in durability.

尚、本発明においては、上記耐熱性試験、及び耐湿熱性試験に替えて、該試験の評価と同等の評価を得られる促進試験である、耐熱性促進試験(温度80℃の環境下で500時間放置)、及び耐湿熱性促進試験(温度85℃、湿度85%の環境下で500時間放置)で耐久性を評価した。 In the present invention, in place of the heat resistance test and the moist heat resistance test, a heat resistance acceleration test (500 hours in an environment at a temperature of 80 ° C.) is an accelerated test that can obtain an evaluation equivalent to the evaluation of the test. And durability) were evaluated by a moist heat resistance acceleration test (left at 500 ° C. in an environment of temperature 85 ° C. and humidity 85%).

[1]本発明は、プラスチックフイルムの片面に、少なくとも、透明導電層(A−1)、屈折率1.2〜1.5である低屈折率薄膜層(B)、及び透明導電層(A−2)が順次形成されている透明導電フイルムにおいて、プラスチックフイルムと透明導電層(A−1)との間にケイ素酸化物薄膜層(C)が形成されていることを特徴とする透明導電フイルムである。
[2]本発明は、ケイ素酸化物薄膜層(C)が、SiOx(x=1.0〜2.0)薄膜層である上記[1]記載の透明導電フイルムである。
[3]本発明は、ケイ素酸化物薄膜層(C)が、プラスチックフイルム側から、SiOx(x=1.0 〜1.8)薄膜層(C−1)、及びSiO薄膜層(C−2)が順次形成されたものである上記[1]、又は[2]記載の透明導電フイルムである。
[4]本発明は、低屈折率薄膜層(B)が、SiO薄膜層(B)である上記[1]〜[3]記載の透明導電フイルムである。
[5]本発明は、透明導電層(A−2)の厚さが、透明導電層(A−1)の厚さ以下である上記[1]〜[4]記載の透明導電フイルムである。
[6]本発明は、プラスチックフイルムとケイ素酸化物薄膜層(C)との間に樹脂からなるハードコート層が形成されている上記[1]〜[5]記載の透明導電フイルムである。
[7]本発明は、少なくとも、透明導電層(A−1)、低屈折率薄膜層(B)、及び透明導電層(A−2)が回路状に形成されている上記[1]〜[6]記載の透明導電フイルムである。
[1] The present invention provides at least a transparent conductive layer (A-1), a low refractive index thin film layer (B) having a refractive index of 1.2 to 1.5, and a transparent conductive layer (A) on one side of a plastic film. -2) is a transparent conductive film in which a silicon oxide thin film layer (C) is formed between the plastic film and the transparent conductive layer (A-1). It is.
[2] The transparent conductive film according to the above [1], wherein the silicon oxide thin film layer (C) is a SiOx (x = 1.0 to 2.0) thin film layer.
[3] The present invention is a silicon oxide thin film layer (C) is a plastic film side, SiOx (x = 1.0 ~1.8) thin film layer (C-1), and SiO 2 thin film layer (C- The transparent conductive film according to [1] or [2], wherein 2) is sequentially formed.
[4] The transparent conductive film according to the above [1] to [3], wherein the low refractive index thin film layer (B) is a SiO 2 thin film layer (B).
[5] The transparent conductive film according to the above [1] to [4], wherein the thickness of the transparent conductive layer (A-2) is not more than the thickness of the transparent conductive layer (A-1).
[6] The transparent conductive film according to the above [1] to [5], wherein the hard coat layer made of a resin is formed between the plastic film and the silicon oxide thin film layer (C).
[7] In the present invention, at least the transparent conductive layer (A-1), the low refractive index thin film layer (B), and the transparent conductive layer (A-2) are formed in a circuit shape. 6] The transparent conductive film described in [6].

本発明の透明導電フイルムは、プラスチックフイルムの片面に、透明導電層(A−1)、低屈折率薄膜層(B)、及び透明導電層(A−2)が順次形成されている透明導電フイルムにおいて、プラスチックフイルムと透明導電層(A−1)との間にケイ素酸化物薄膜層(C)が形成されているので、耐熱性促進試験(温度80℃の環境下で500時間放置)、及び耐湿熱性促進試験(温度85℃、湿度85%の環境下で500時間放置)の前後で、表面抵抗率(Ω/□)がほとんど変化せず(変化率10%以下)耐久性に優れている。 The transparent conductive film of the present invention is a transparent conductive film in which a transparent conductive layer (A-1), a low refractive index thin film layer (B), and a transparent conductive layer (A-2) are sequentially formed on one side of a plastic film. , Since the silicon oxide thin film layer (C) is formed between the plastic film and the transparent conductive layer (A-1), a heat resistance acceleration test (left at 500 ° C. for 500 hours), and The surface resistivity (Ω / □) hardly changed before and after the moist heat resistance accelerated test (left for 500 hours in an environment of temperature 85 ° C. and humidity 85%) (change rate of 10% or less) and excellent durability. .

本発明の透明導電フイルムの一例を示す一部拡大断面図であり、プラスチックフイルム1の片面に、ケイ素酸化物薄膜層(C)2、透明導電層(A−1)3、低屈折率薄膜層(B)4、及び透明導電層(A−2)5が順次全面に形成されている。It is a partial expanded sectional view which shows an example of the transparent conductive film of this invention, and the silicon oxide thin film layer (C) 2, the transparent conductive layer (A-1) 3, and the low refractive index thin film layer are formed on one side of the plastic film 1 (B) 4 and the transparent conductive layer (A-2) 5 are sequentially formed on the entire surface. 本発明の透明導電フイルムの一例を示す一部拡大断面図であり、プラスチックフイルム1の片面に、ハードコート層6、ケイ素酸化物薄膜層(C)2、透明導電層(A−1)3、低屈折率薄膜層(B)4、及び透明導電層(A−2)5が順次全面に形成されており、かつケイ素酸化物薄膜層(C)2が、プラスチックフイルム1側から順にSiOx(x=1.0 〜1.8)薄膜層(C−1)2−a、SiO薄膜層(C−2)2−bが形成されている。It is a partial expanded sectional view which shows an example of the transparent conductive film of this invention, the hard coat layer 6, the silicon oxide thin film layer (C) 2, the transparent conductive layer (A-1) 3, on one side of the plastic film 1, The low refractive index thin film layer (B) 4 and the transparent conductive layer (A-2) 5 are sequentially formed on the entire surface, and the silicon oxide thin film layer (C) 2 is formed in order from the plastic film 1 side by SiOx (x = 1.0 to 1.8) thin film layer (C-1) 2-a , SiO 2 thin film layer (C-2) 2-b is formed. 本発明の透明導電フイルムの一例を示す一部拡大断面図であり、プラスチックフイルム1の片面に、ハードコート層6、ケイ素酸化物薄膜層(C)2が順次全面に形成され、その上に透明導電層(A−1)3、低屈折率薄膜層(B)4、及び透明導電層(A−2)5が順次回路状に形成されており、かつケイ素酸化物薄膜層(C)2が、プラスチックフイルム1側から順にSiOx(x=1.0 〜1.8)薄膜層(C−1)2−a、SiO薄膜層(C−2)2−bが形成されている1 is a partially enlarged cross-sectional view showing an example of a transparent conductive film of the present invention. A hard coat layer 6 and a silicon oxide thin film layer (C) 2 are sequentially formed on one surface of a plastic film 1 and transparent on the surface. The conductive layer (A-1) 3, the low refractive index thin film layer (B) 4, and the transparent conductive layer (A-2) 5 are sequentially formed in a circuit shape, and the silicon oxide thin film layer (C) 2 is formed. , SiOx sequentially from plastic film 1 side (x = 1.0 ~1.8) thin film layer (C-1) 2-a , SiO 2 thin film layer (C-2) 2-b is formed

本発明の透明導電フイルムに使用するプラスチックフイルムはポリエチレンテレフタレートフイルム、ポリエチレンナフタレートフイルム、ポリプロピレンフイルム、アクリルフイルム、ポリカーボネートフイルム、フッ素フイルム等が使用できるが、中でも耐熱性等の点からポリエチレンテレフタレートフイルムが好ましい。 As the plastic film used in the transparent conductive film of the present invention, polyethylene terephthalate film, polyethylene naphthalate film, polypropylene film, acrylic film, polycarbonate film, fluorine film, and the like can be used. Among them, polyethylene terephthalate film is preferable from the viewpoint of heat resistance. .

プラスチックフイルムの厚さは、10〜300μmが好ましく、50〜260μmがより好ましい。
厚さが、10μmより薄いと、特にタッチパネルに使用した場合に、指やペン等で入力する際にプラスチックフイルムの強度が十分ではないため、透明導電フイルムの変形が大きくなりすぎて透明導電層(A−1)、及び透明導電層(A−2)にクラックが生じ、その結果表面抵抗率が不安定となるので好ましくない。
また、透明導電フイルムがカールしてしまい、その結果、透明導電フイルムをタッチパネルに組み込むなどの後作業で、作業性が悪くなるので好ましくない。
厚さが、300μmより厚いと、特にタッチパネルに使用した場合に、指やペン等で入力する際、透明導電フイルムに荷重をかけて相対する透明導電フイルムに接触させるために必要以上に荷重をかけなければならない問題が生じたり、また透明導電フイルムのコストも上がるため好ましくない。
10-300 micrometers is preferable and, as for the thickness of a plastic film, 50-260 micrometers is more preferable.
When the thickness is less than 10 μm, especially when used for a touch panel, the strength of the plastic film is not sufficient when inputting with a finger or a pen, so the deformation of the transparent conductive film becomes too large and the transparent conductive layer ( A-1) and a transparent conductive layer (A-2) are not preferable because cracks are generated, resulting in unstable surface resistivity.
Further, the transparent conductive film is curled, and as a result, workability is deteriorated in the subsequent work such as incorporating the transparent conductive film into the touch panel, which is not preferable.
If the thickness is greater than 300 μm, especially when used with a touch panel, when inputting with a finger or a pen, a load is applied to the transparent conductive film so that it is in contact with the opposite transparent conductive film. This is not preferable because a necessary problem arises and the cost of the transparent conductive film increases.

本発明の透明導電フイルムに形成される透明導電層(A−1)、及び透明導電層(A−2)は何れも、透明な導電性金属酸化物の薄膜からなり、本発明の透明導電フイルムに導電性を付与する役割を果たすものである。
透明導電層(A−1)、及び透明導電層(A−2)に使用する透明な導電性金属酸化物薄膜としては、酸化インジウム薄膜、酸化スズ薄膜、酸化亜鉛薄膜、酸化カドミウム薄膜、酸化インジウムに酸化スズをドープした薄膜(ITO薄膜)等、従来透明導電フイルムの透明導電層として使用されている導電性金属酸化物薄膜が使用できる。
中でも、導電性に優れたITO薄膜が特に好ましい。
Each of the transparent conductive layer (A-1) and the transparent conductive layer (A-2) formed on the transparent conductive film of the present invention comprises a transparent conductive metal oxide thin film, and the transparent conductive film of the present invention. It plays the role which provides electroconductivity.
The transparent conductive metal oxide thin film used for the transparent conductive layer (A-1) and the transparent conductive layer (A-2) includes an indium oxide thin film, a tin oxide thin film, a zinc oxide thin film, a cadmium oxide thin film, and indium oxide. A conductive metal oxide thin film conventionally used as a transparent conductive layer of a transparent conductive film such as a thin film doped with tin oxide (ITO thin film) can be used.
Among these, an ITO thin film excellent in conductivity is particularly preferable.

透明導電層(A−2)は、本発明の透明導電フイルムの最表層に形成され、また透明導電層(A−1)は、後で詳述する低屈折率薄膜層(B)の透明導電層(A−2)が形成されている側と反対面側に形成される。
従って、透明導電層(A−1)、及び透明導電層(A−2)の間に低屈折率薄膜層(B)が形成される。
低屈折率薄膜層(B)は、本来電気絶縁性を有するが、本発明においては透明導電層(A−1)、及び透明導電層(A−2)間の導電性を阻害せず電気絶縁性を有しないため、本発明の透明導電フイルムの表面抵抗率は、最表層の透明導電層(A−2)自体が本来有する表面抵抗率とはならず、透明導電層(A−1)、及び透明導電層(A−2)の両層を合わせたあたかも単層の表面抵抗率となる。
例えば、本発明の透明導電フイルムが、プラスチックフイルム側から順に、厚さ45nmの透明導電層(A−1)、厚さ50nmの低屈折率薄膜層(B)、及び厚さ15nmの透明導電層(A−2)が形成されたものである場合、表面抵抗率は、厚さ15nmの透明導電層(A−2)が有する表面抵抗率ではなく、厚さ45nmの透明導電層(A−1)、及び厚さ15nmの透明導電層(A−2)を合わせた、厚さ60nmのあたかも単層の透明導電層の表面抵抗率を有するものとなるのである。
The transparent conductive layer (A-2) is formed on the outermost layer of the transparent conductive film of the present invention, and the transparent conductive layer (A-1) is a transparent conductive layer of the low refractive index thin film layer (B) described in detail later. It is formed on the side opposite to the side on which the layer (A-2) is formed.
Therefore, a low refractive index thin film layer (B) is formed between the transparent conductive layer (A-1) and the transparent conductive layer (A-2).
The low refractive index thin film layer (B) originally has electrical insulation, but in the present invention, electrical insulation is not hindered by the conductivity between the transparent conductive layer (A-1) and the transparent conductive layer (A-2). Therefore, the surface resistivity of the transparent conductive film of the present invention is not the surface resistivity inherent in the outermost transparent conductive layer (A-2) itself, but the transparent conductive layer (A-1), And the surface resistivity of a single layer is obtained by combining both the transparent conductive layer (A-2).
For example, the transparent conductive film of the present invention comprises a transparent conductive layer (A-1) having a thickness of 45 nm, a low refractive index thin film layer (B) having a thickness of 50 nm, and a transparent conductive layer having a thickness of 15 nm in this order from the plastic film side. When (A-2) is formed, the surface resistivity is not the surface resistivity of the transparent conductive layer (A-2) having a thickness of 15 nm, but a transparent conductive layer (A-1 having a thickness of 45 nm). ) And the transparent conductive layer (A-2) having a thickness of 15 nm, the surface resistivity of the single transparent conductive layer having a thickness of 60 nm is obtained.

このように、透明導電層(A−1)、及び透明導電層(A−2)の間に形成された低屈折率薄膜層(B)が、透明導電層(A−1)の導電性を阻害しない理由ははっきりしないが、低屈折率薄膜層(B)上に透明導電層(A−2)を形成する際に、透明導電層(A−2)の一部が、すなわち透明導電層(A−2)を形成するための材料である透明な導電性金属酸化物の一部が、低屈折率薄膜層(B)の内部に拡散侵入すると推測することもできる。 Thus, the low-refractive-index thin film layer (B) formed between the transparent conductive layer (A-1) and the transparent conductive layer (A-2) improves the conductivity of the transparent conductive layer (A-1). Although the reason for not inhibiting is not clear, when forming the transparent conductive layer (A-2) on the low refractive index thin film layer (B), a part of the transparent conductive layer (A-2), that is, the transparent conductive layer ( It can also be assumed that a part of the transparent conductive metal oxide which is a material for forming A-2) diffuses and penetrates into the low refractive index thin film layer (B).

透明導電層(A−1)は、本発明の透明導電フイルムが有する表面抵抗率の大部分を決定する役割を果たすものであり、その表面抵抗率は大よそ5〜1000Ω/□が好ましい。
また、厚さは、上記表面抵抗率を有する程度の厚さであればよく、使用する金属酸化物薄膜層の種類にもよるが大よそ10〜800nmが好ましい。
厚さが10nmより薄いと、所望の導電性を安定して得られないので好ましくない。
厚さが800nmより厚いと、透明導電層(A−1)及び透明導電層(A−2)にクラックが生じて導電性が悪くなる場合があるので好ましくない。
The transparent conductive layer (A-1) plays a role of determining most of the surface resistivity of the transparent conductive film of the present invention, and the surface resistivity is preferably about 5 to 1000 Ω / □.
Further, the thickness may be a thickness having the above surface resistivity, and is preferably about 10 to 800 nm although it depends on the type of the metal oxide thin film layer to be used.
If the thickness is less than 10 nm, the desired conductivity cannot be obtained stably, which is not preferable.
When the thickness is greater than 800 nm, the transparent conductive layer (A-1) and the transparent conductive layer (A-2) may be cracked and conductivity may be deteriorated.

透明導電層(A−2)は、タッチパネルとして使用する際に指やペン等で軽く触れても、瞬時にかつ正確に、対向する電極(対向する本発明の透明導電フイルム)表面に電流を流す役割、すなわち電極の接点としての役割を果たすものである。
従って、上記役割を果たせる程度の導電性があれば足り、厚さは、使用する金属酸化物薄膜層の種類にもよるが大よそ5〜800nmが好ましい。
しかし、前記の通り、透明導電層(A−1)は、本発明の透明導電フイルムが有する表面抵抗率の大部分を決定する役割を果たすものであること、さらには本発明の透明導電フイルムの表面抵抗率は、透明導電層(A−1)、及び透明導電層(A−2)の両層を合わせたあたかも単層の表面抵抗率となることから、透明導電層(A−2)の厚さを必要以上に厚くする必要はなく、またコストも高くなることから、透明導電層(A−2)の厚さは、透明導電層(A−1)の厚さ以下であるのが好ましい。
透明導電層(A−2)の厚のより好ましい範囲は5〜20nmである。
When the transparent conductive layer (A-2) is used as a touch panel, even if it is lightly touched with a finger or a pen, the current is instantaneously and accurately applied to the surface of the opposing electrode (the opposing transparent conductive film of the present invention). It serves as a role, that is, as a contact point of the electrode.
Therefore, it is sufficient if the conductivity is sufficient to fulfill the above role, and the thickness is preferably about 5 to 800 nm, although it depends on the type of the metal oxide thin film layer to be used.
However, as described above, the transparent conductive layer (A-1) plays a role of determining most of the surface resistivity of the transparent conductive film of the present invention, and further the transparent conductive film of the present invention. Since the surface resistivity is a single-layer surface resistivity of both the transparent conductive layer (A-1) and the transparent conductive layer (A-2), the surface resistivity of the transparent conductive layer (A-2) The thickness of the transparent conductive layer (A-2) is preferably equal to or less than the thickness of the transparent conductive layer (A-1) because it is not necessary to increase the thickness more than necessary and the cost is increased. .
A more preferable range of the thickness of the transparent conductive layer (A-2) is 5 to 20 nm.

透明導電層(A−1)、及び透明導電層(A−2)の厚さの比率は、透明導電フイルムの所望の表面抵抗率により適宜決定すればよい。 What is necessary is just to determine suitably the ratio of the thickness of a transparent conductive layer (A-1) and a transparent conductive layer (A-2) with the desired surface resistivity of a transparent conductive film.

本発明の透明導電フイルムに形成される低屈折率薄膜層(B)は、透明導電層(A−1)、及び透明導電層(A−2)の間に形成され、本発明の透明導電フイルムの透明性を向上する役割を果たすものである。
上記役割を果たすためには、屈折率が1.2〜1.5で、厚さが20〜100nmであるのが好ましい。
低屈折率層(B)は、上記屈折率と厚さの範囲を満足する層であれば特に制限はなく、SiO薄膜層などの無機酸化物薄膜層、MgF2薄膜層などの無機化合物薄膜層、フッ素系樹脂やシリコーン系樹脂などの樹脂からなる樹脂薄膜層等が使用できる。
特に、透明導電層(A−1)、及び透明導電層(A−2)間の導電性を阻害しない点や、耐熱性、耐湿熱性の点から、低屈折率層(B)をSiO薄膜層(B)としておくのが好ましい。
尚、低屈折率層(B)は、前記の通り基本的に電気絶縁性を有するものであるが、上記屈折率を満足する範囲内であれば、ポリチオフェン系、ポリアセリレン系、ポリアニリン系、ポリピロール系等の導電性ポリマーや、樹脂にITOや酸化スズなどの透明導電性微粒子を混入した導電性樹脂薄膜層であっても構わない。
The low refractive index thin film layer (B) formed in the transparent conductive film of the present invention is formed between the transparent conductive layer (A-1) and the transparent conductive layer (A-2), and the transparent conductive film of the present invention. It plays a role of improving transparency.
In order to fulfill the above role, it is preferable that the refractive index is 1.2 to 1.5 and the thickness is 20 to 100 nm.
The low refractive index layer (B) is not particularly limited as long as it satisfies the above refractive index and thickness range, and is an inorganic oxide thin film layer such as a SiO 2 thin film layer, or an inorganic compound thin film layer such as a MgF 2 thin film layer A resin thin film layer made of a resin such as a fluorine resin or a silicone resin can be used.
In particular, the low refractive index layer (B) is made of an SiO 2 thin film from the viewpoint of not hindering the conductivity between the transparent conductive layer (A-1) and the transparent conductive layer (A-2), heat resistance and moist heat resistance. The layer (B) is preferably used.
The low refractive index layer (B) is basically electrically insulating as described above, but if within the range satisfying the above refractive index, polythiophene-based, polyacetylene-based, polyaniline-based, polypyrrole-based It may be a conductive polymer such as a conductive resin thin film layer in which transparent conductive fine particles such as ITO and tin oxide are mixed in a resin.

尚、低屈折率薄膜層(B)をSiO薄膜層(B)とした場合、SiO薄膜層(B)は、必ずしもSiに対するOの比率が厳密に1:2である必要はなく、上記屈折率を満足する範囲で、Siに対するOの比率が多少大きくなったり小さくなったりしているものも、本発明のSiO薄膜層(B)に含まれる。 When the low refractive index thin film layer (B) is an SiO 2 thin film layer (B), the SiO 2 thin film layer (B) is not necessarily required to have a ratio of O to Si of 1: 2 strictly. The SiO 2 thin film layer (B) of the present invention also includes those in which the ratio of O to Si is slightly increased or decreased within a range satisfying the refractive index.

本発明の透明導電フイルムに形成されるケイ素酸化物薄膜層(C)は、プラスチックフイルムと透明導電層(A−1)との間に形成され、本発明の透明導電フイルムの耐久性を向上する役割を果たすものである。
尚、本発明の透明導電フイルムを特にタッチパネルに使用した場合に、指やペン等での入力を繰り返すと、透明導電層(A−1)や透明導電層(A−2)にクラックが発生するなどして導電性が不安定となるが、導電性の安定を目的として、本発明の透明導電フイルムのプラスチックフイルム上に、樹脂からなるハードコート層を形成してもよく、その場合には、ケイ素酸化物薄膜層(C)は該ハードコート層と透明導電層(A−1)との間に形成される。
ハードコート層に使用する樹脂は、該ハードコート層が鉛筆硬度2H以上になるものが好ましく、メラミン系樹脂、紫外線硬化型アクリル系樹脂等の樹脂が使用でき、厚さは、1〜7μmが好ましい。
The silicon oxide thin film layer (C) formed on the transparent conductive film of the present invention is formed between the plastic film and the transparent conductive layer (A-1), and improves the durability of the transparent conductive film of the present invention. It plays a role.
In addition, when the transparent conductive film of the present invention is used particularly for a touch panel, cracks occur in the transparent conductive layer (A-1) and the transparent conductive layer (A-2) when input with a finger or a pen is repeated. However, for the purpose of stabilizing the conductivity, a hard coat layer made of a resin may be formed on the plastic film of the transparent conductive film of the present invention. The silicon oxide thin film layer (C) is formed between the hard coat layer and the transparent conductive layer (A-1).
The resin used for the hard coat layer is preferably such that the hard coat layer has a pencil hardness of 2H or more, and a resin such as a melamine resin or an ultraviolet curable acrylic resin can be used, and the thickness is preferably 1 to 7 μm. .

ケイ素酸化物薄膜層(C)は、単層でもよく、2層としても構わない。
ケイ素酸化物薄膜層(C)を単層とする場合には、SiOx(x=1.0〜2.0)薄膜層とするのが好ましい。
SiOx(x=1.0〜2.0)薄膜層の厚さは、SiOx(x=1.0〜2.0)薄膜層が黄色に着色することを防止する点から、さらに本発明の透明導電フイルムの可視光透過率が下がり透明性が悪くなることを防止する点から5〜200nmが好ましい。
また、ケイ素酸化物薄膜層(C)を2層とする場合には、プラスチックフイルム側から、SiOx(x=1.0〜1.8)薄膜層(C−1)、及びSiO薄膜層(C−2)が順次形成された構成とするのが好ましい。
SiOx(x=1.0〜1.8)薄膜層(C−1)、及びSiO薄膜層(C−2)の厚さも、上記SiOx(x=1.0〜2.0)薄膜層と同様の点から、何れも5〜200nmが好ましい。
The silicon oxide thin film layer (C) may be a single layer or two layers.
When the silicon oxide thin film layer (C) is a single layer, it is preferably a SiOx (x = 1.0 to 2.0) thin film layer.
The thickness of the SiOx (x = 1.0 to 2.0) thin film layer is further reduced from the point of preventing the SiOx (x = 1.0 to 2.0) thin film layer from being colored yellow. 5 to 200 nm is preferable from the viewpoint that the visible light transmittance of the conductive film is lowered and the transparency is deteriorated.
When the silicon oxide thin film layer (C) has two layers, the SiOx (x = 1.0 to 1.8) thin film layer (C-1) and the SiO 2 thin film layer (from the plastic film side) It is preferable that C-2) is sequentially formed.
The thicknesses of the SiOx (x = 1.0 to 1.8) thin film layer (C-1) and the SiO 2 thin film layer (C-2) are also the same as those of the SiOx (x = 1.0 to 2.0) thin film layer. From the same point, 5 to 200 nm is preferable for all.

ここで、SiOx(x=1.0〜2.0)薄膜層や、SiOx(x=1.0〜1.8)薄膜層(C−1)は、xの値が上記範囲内でひとつの数字で表せる均一な薄膜層であってもよく、あるいはxの値が上記範囲内にあるものの、該薄膜層の厚さ方向や面方向で異なった(例えば、厚さ方向や面方向でxの値が除々に増加したり減少したりして変化している)不均一な薄膜層であってもよい。
また、SiO薄膜層(C−2)は、必ずしもSiに対するOの比率が厳密に1:2である必要はなく、Siに対するOの比率が多少大きくなったり小さくなったりしているものも、本発明のSiO薄膜層(C−2)に含まれる。
Here, the SiOx (x = 1.0 to 2.0) thin film layer and the SiOx (x = 1.0 to 1.8) thin film layer (C-1) have a single x value within the above range. It may be a uniform thin film layer that can be expressed by a number, or although the value of x is in the above range, it differs depending on the thickness direction or the surface direction of the thin film layer (for example, x in the thickness direction or the surface direction). It may be a non-uniform thin film layer whose value gradually increases or decreases.
Further, the SiO 2 thin film layer (C-2) does not necessarily have a ratio of O to Si of strictly 1: 2, and the ratio of O to Si is slightly larger or smaller. It included in the SiO 2 thin-film layer of the present invention (C-2).

前記した通り、低屈折率薄膜層(B)は、透明導電層(A−1)、及び透明導電層(A−2)の間に形成され、本発明の透明導電フイルムの透明性を向上する役割を果たすものであるが、ケイ素酸化物薄膜層(C)の屈折率を特定の範囲としておけば、本発明の透明導電フイルムの透明性をより向上することができるので好ましい。
具体的には、ケイ素酸化物薄膜層(C)がSiOx(x=1.0〜2.0)薄膜層単層である場合には、SiOx(x=1.0〜2.0)薄膜層の屈折率を1.2〜1.8の範囲にしておけば、また、ケイ素酸化物薄膜層(C)がSiOx(x=1.0〜1.8)薄膜層(C−1)、及びSiO薄膜層(C−2)の2層である場合には、SiOx(x=1.0〜1.8)薄膜層(C−1)の屈折率を1.6〜1.8の範囲に、SiO薄膜層(C−2)の屈折率を1.2〜1.5の範囲にしておけば、本発明の透明導電フイルムの透明性がより向上するものである。
As described above, the low refractive index thin film layer (B) is formed between the transparent conductive layer (A-1) and the transparent conductive layer (A-2), and improves the transparency of the transparent conductive film of the present invention. Although it plays a role, it is preferable to set the refractive index of the silicon oxide thin film layer (C) within a specific range because the transparency of the transparent conductive film of the present invention can be further improved.
Specifically, when the silicon oxide thin film layer (C) is a single layer of SiOx (x = 1.0 to 2.0), the SiOx (x = 1.0 to 2.0) thin film layer If the refractive index is in the range of 1.2 to 1.8, the silicon oxide thin film layer (C) is SiOx (x = 1.0 to 1.8) thin film layer (C-1), and In the case of two SiO 2 thin film layers (C-2), the refractive index of the SiO x (x = 1.0 to 1.8) thin film layer (C-1) is in the range of 1.6 to 1.8. If the refractive index of the SiO 2 thin film layer (C-2) is in the range of 1.2 to 1.5, the transparency of the transparent conductive film of the present invention is further improved.

透明導電層(A−1)、低屈折率薄膜層(B)であるSiO薄膜層(B)、透明導電層(A−2)、ケイ素酸化物薄膜層(C)であるSiOx(x=1.0〜2.0)薄膜層、SiOx(x=1.0〜1.8)薄膜層(C−1)、及びSiO薄膜層(C−2)の形成方法は、従来公知の形成方法が使用でき、真空蒸着法、スパッタリング蒸着法、電子ビーム蒸着法、CVD法等の蒸着法や、ゾル−ゲル法などのコーティング法等が使用できる。 The transparent conductive layer (A-1), the SiO 2 thin film layer (B) as the low refractive index thin film layer (B), the transparent conductive layer (A-2), and the SiOx thin film layer (C) as SiOx (x = 1.0 to 2.0) thin film layer, SiOx (x = 1.0 to 1.8) thin film layer (C-1), and SiO 2 thin film layer (C-2) are formed by conventionally known methods. A method such as a vacuum evaporation method, a sputtering evaporation method, an electron beam evaporation method, a CVD method, or a coating method such as a sol-gel method can be used.

また、本発明の透明導電フイルムをタッチパネルだけでなく、太陽電池や有機EL等の透明電極用に使用可能とするために、少なくとも、透明導電層(A−1)、低屈折率薄膜層(B)、及び透明導電層(A−2)を回路状に形成しておいても構わない。 In order to make the transparent conductive film of the present invention usable not only for touch panels but also for transparent electrodes such as solar cells and organic EL, at least a transparent conductive layer (A-1), a low refractive index thin film layer (B ) And the transparent conductive layer (A-2) may be formed in a circuit shape.

少なくとも、透明導電層(A−1)、低屈折率薄膜層(B)、及び透明導電層(A−2)を回路状に形成した本発明の透明導電フイルムを製造する方法として、例えば、プラスチックフイルムの片面に、ハードコート層、及びケイ素酸化物薄膜層(C)を順次全面に形成した後、該ケイ素酸化物薄膜層(C)上に回路を形成する部分以外の部分に水溶性樹脂層を形成し、その上から、透明導電層(A−1)、低屈折率薄膜層(B)、及び透明導電層(A−2)を順次全面に形成した後、水に浸漬するなどして、水溶性樹脂層と該水溶性樹脂層上の透明導電層(A−1)、低屈折率薄膜層(B)、及び透明導電層(A−2)を除去するとともに、水溶性樹脂層が形成されていない部分(回路状)の透明導電層(A−1)、低屈折率薄膜層(B)、及び透明導電層(A−2)を残存させることにより、プラスチックフイルムの片面に、ハードコート層、及びケイ素酸化物薄膜層(C)が順次全面に形成された上に、透明導電層(A−1)、低屈折率薄膜層(B)、及び透明導電層(A−2)が順次回路状に形成された透明導電フイルムを製造する方法が挙げられる。
あるいは、プラスチックフイルムの片面に、ハードコート層を全面に形成した後、ハードコート層上に回路を形成する部分以外の部分に水溶性樹脂層を形成し、その上から、ケイ素酸化物薄膜層(C)、透明導電層(A−1)、低屈折率薄膜層(B)、及び透明導電層(A−2)を順次全面に形成した後、水に浸漬するなどして、水溶性樹脂層と該水溶性樹脂層上のケイ素酸化物薄膜層(C)、透明導電層(A−1)、低屈折率薄膜層(B)、及び透明導電層(A−2)を除去するとともに、水溶性樹脂層が形成されていない部分(回路状)のケイ素酸化物薄膜層(C)、透明導電層(A−1)、低屈折率薄膜層(B)、及び透明導電層(A−2)を残存させることにより、プラスチックフイルムの片面に、ハードコート層が全面に形成された上に、ケイ素酸化物薄膜層(C)、透明導電層(A−1)、低屈折率薄膜層(B)、及び透明導電層(A−2)が順次回路状に形成された透明導電フイルムを製造する方法が挙げられる。
さらには、プラスチックフイルム上あるいはハードコート層上に、ケイ素酸化物薄膜層(C)、透明導電層(A−1)、低屈折率薄膜層(B)、及び透明導電層(A−2)を順次全面に形成した後、酸などの薬品やレーザーを使用して、少なくとも、透明導電層(A−1)、低屈折率薄膜層(B)、及び透明導電層(A−2)を回路状に除去(エッチング)する方法により、上記のように、少なくとも、透明導電層(A−1)、低屈折率薄膜層(B)、及び透明導電層(A−2)が回路状に形成された本発明の透明導電フイルムを製造することができる。
As a method for producing the transparent conductive film of the present invention in which at least the transparent conductive layer (A-1), the low refractive index thin film layer (B), and the transparent conductive layer (A-2) are formed in a circuit shape, for example, plastic A hard coat layer and a silicon oxide thin film layer (C) are sequentially formed on the entire surface of one side of the film, and then a water-soluble resin layer is formed on the silicon oxide thin film layer (C) except for a portion where a circuit is formed. The transparent conductive layer (A-1), the low refractive index thin film layer (B), and the transparent conductive layer (A-2) are sequentially formed on the entire surface, and then immersed in water. The water-soluble resin layer and the transparent conductive layer (A-1), the low refractive index thin film layer (B), and the transparent conductive layer (A-2) on the water-soluble resin layer are removed, and the water-soluble resin layer Unformed part (circuit-like) transparent conductive layer (A-1), low refractive index thin film layer (B) In addition, by leaving the transparent conductive layer (A-2), the hard coat layer and the silicon oxide thin film layer (C) are sequentially formed on one surface of the plastic film, and then the transparent conductive layer (A- 1), a method of producing a transparent conductive film in which a low refractive index thin film layer (B) and a transparent conductive layer (A-2) are sequentially formed in a circuit shape.
Alternatively, after a hard coat layer is formed on the entire surface of one side of the plastic film, a water-soluble resin layer is formed on the hard coat layer at a portion other than a portion where a circuit is formed, and a silicon oxide thin film layer ( C), a transparent conductive layer (A-1), a low refractive index thin film layer (B), and a transparent conductive layer (A-2) are sequentially formed on the entire surface, and then immersed in water to form a water-soluble resin layer. And the silicon oxide thin film layer (C), the transparent conductive layer (A-1), the low refractive index thin film layer (B), and the transparent conductive layer (A-2) on the water-soluble resin layer, Part (circuit-like) silicon oxide thin film layer (C), transparent conductive layer (A-1), low refractive index thin film layer (B), and transparent conductive layer (A-2) where the conductive resin layer is not formed Leaving a hard coat layer on one side of the plastic film. A transparent conductive film in which a silicon oxide thin film layer (C), a transparent conductive layer (A-1), a low refractive index thin film layer (B), and a transparent conductive layer (A-2) are sequentially formed in a circuit shape The method of manufacturing is mentioned.
Furthermore, a silicon oxide thin film layer (C), a transparent conductive layer (A-1), a low refractive index thin film layer (B), and a transparent conductive layer (A-2) are formed on a plastic film or a hard coat layer. After sequentially forming on the entire surface, at least the transparent conductive layer (A-1), the low refractive index thin film layer (B), and the transparent conductive layer (A-2) are formed into a circuit using chemicals such as acid and laser. As described above, at least the transparent conductive layer (A-1), the low refractive index thin film layer (B), and the transparent conductive layer (A-2) were formed in a circuit shape by the method of removing (etching) the film. The transparent conductive film of the present invention can be produced.

[実施例]
厚さ100μmのポリエチレンテレフタレートフイルムの片面に、ケイ素酸化物薄膜層(C)として厚さ55nmのSiOx(x=1.7)薄膜層(C−1)、及び厚さ10nmのSiO薄膜層(C−2)をスパッタリング蒸着法にて形成し、次に透明導電層(A−1)として厚さ45nmのITO薄膜層をスパッタリング蒸着法にて形成し、次に低屈折率薄膜層(B)として厚さ50nmのSiO薄膜層(B)をスパッタリング蒸着法にて形成し、さらに透明導電層(A−2)として厚さ14nmのITO薄膜層をスパッタリング蒸着法にて形成し、本発明の透明導電フイルムを得た。
尚、ポリエチレンテレフタレートフイルム上に形成した各層は、全てポリエチレンテレフタレートフイルム上に全面に形成した。
[Example]
On one side of a 100 μm-thick polyethylene terephthalate film, a silicon oxide thin film layer (C) of 55 nm thick SiOx (x = 1.7) thin film layer (C-1), and a 10 nm thick SiO 2 thin film layer ( C-2) is formed by a sputtering vapor deposition method, then a 45 nm thick ITO thin film layer is formed by a sputtering vapor deposition method as a transparent conductive layer (A-1), and then a low refractive index thin film layer (B) SiO 2 thin film layer having a thickness of 50nm (B) was formed by a sputtering deposition method, was formed by further transparent conductive layer (a-2) sputtering deposition method ITO thin layer having a thickness of 14nm as a, of the present invention A transparent conductive film was obtained.
Each layer formed on the polyethylene terephthalate film was entirely formed on the polyethylene terephthalate film.

[比較例]
実施例のケイ素酸化物薄膜層(C)である、SiOx(x=1.7)薄膜層(C−1)、及びSiO薄膜層(C−2)を形成しなかったこと以外は実施例と同様にして、透明導電フイルムを得た。
[Comparative example]
Example except that SiOx (x = 1.7) thin film layer (C-1) and SiO 2 thin film layer (C-2) which are silicon oxide thin film layers (C) of the examples were not formed. In the same manner, a transparent conductive film was obtained.

実施例の本発明の透明導電フイルム、及び比較例の透明導電フイルムについて以下に示す評価試験を行って性能を比較した。 For the transparent conductive film of the present invention of the example and the transparent conductive film of the comparative example, the evaluation tests shown below were performed to compare the performance.

<耐熱性促進試験>
(評価試料)実施例の本発明の透明導電フイルム、及び比較例の透明導電フイルムをそれぞれ、縦50mm、横50mmに切り取ったものを1枚ずつ準備して試料とした。
(評価方法)上記各試料の表面抵抗率を、低抵抗率計(ロレスターGP:三菱化学社製)を使用して、耐熱性促進試験(温度80℃の環境下で500時間放置)の前後で測定した。また、上記耐熱性促進試験の前の表面抵抗率と該試験後の表面抵抗率の変化率(%)[((試験後の表面抵抗率−試験前の表面抵抗率)/試験前の表面抵抗率)×100]についても計算した。
(評価結果)表1
<Heat resistance promotion test>
(Evaluation sample) Each of the transparent conductive film of the present invention of the example and the transparent conductive film of the comparative example cut into a length of 50 mm and a width of 50 mm was prepared and used as a sample.
(Evaluation method) The surface resistivity of each of the above samples was measured before and after the heat resistance acceleration test (left at 500 ° C. in an environment at a temperature of 80 ° C.) using a low resistivity meter (Lorestar GP: manufactured by Mitsubishi Chemical Corporation). It was measured. Further, the surface resistivity before the heat resistance acceleration test and the change rate (%) of the surface resistivity after the test [((surface resistivity after the test−surface resistivity before the test) / surface resistance before the test) Rate) × 100] was also calculated.
(Evaluation results) Table 1

<耐湿熱性促進試験>
(評価試料)実施例の本発明の透明導電フイルム、及び比較例の透明導電フイルムをそれぞれ、縦50mm、横50mmに切り取ったものを1枚ずつ準備して試料とした。
(評価方法)上記各試料の表面抵抗率を、低抵抗率計(ロレスターGP:三菱化学社製)を使用して、耐湿熱性促進試験(温度85℃、湿度85%の環境下で500時間放置)の前後で測定した。また、上記耐湿熱性促進試験の前の表面抵抗率と該試験後の表面抵抗率の変化率(%)[((試験後の表面抵抗率−試験前の表面抵抗率)/試験前の表面抵抗率)×100]についても計算した。
(評価結果)表1
<Moisture and heat resistance acceleration test>
(Evaluation sample) Each of the transparent conductive film of the present invention of the example and the transparent conductive film of the comparative example cut into a length of 50 mm and a width of 50 mm was prepared and used as a sample.
(Evaluation method) The surface resistivity of each of the above samples was left for 500 hours in a moist heat resistance accelerated test (temperature 85 ° C., humidity 85%) using a low resistivity meter (Lorestar GP: manufactured by Mitsubishi Chemical Corporation). ) Before and after. Further, the surface resistivity before the moisture and heat resistance acceleration test and the change rate (%) of the surface resistivity after the test [((surface resistivity after the test−surface resistivity before the test) / surface resistance before the test) Rate) × 100] was also calculated.
(Evaluation results) Table 1

Figure 2011249263
Figure 2011249263

1 プラスチックフイルム
2 ケイ素酸化物薄膜層(C)
2−a SiOx(x=1.0 〜1.8)薄膜層(C−1)
2−b SiO薄膜層(C−2)
3 透明導電層(A−1)
4 低屈折率薄膜層(B)
5 透明導電層(A−2)
6 ハードコート層
1 Plastic film 2 Silicon oxide thin film layer (C)
2-a SiOx (x = 1.0 to 1.8) thin film layer (C-1)
2-b SiO 2 thin film layer (C-2)
3 Transparent conductive layer (A-1)
4 Low refractive index thin film layer (B)
5 Transparent conductive layer (A-2)
6 Hard coat layer

Claims (7)

プラスチックフイルムの片面に、少なくとも、透明導電層(A−1)、屈折率1.2〜1.5である低屈折率薄膜層(B)、及び透明導電層(A−2)が順次形成されている透明導電フイルムにおいて、プラスチックフイルムと透明導電層(A−1)との間にケイ素酸化物薄膜層(C)が形成されていることを特徴とする透明導電フイルム。   At least a transparent conductive layer (A-1), a low refractive index thin film layer (B) having a refractive index of 1.2 to 1.5, and a transparent conductive layer (A-2) are sequentially formed on one side of the plastic film. A transparent conductive film, wherein the silicon oxide thin film layer (C) is formed between the plastic film and the transparent conductive layer (A-1). ケイ素酸化物薄膜層(C)が、SiOx(x=1.0〜2.0)薄膜層である請求項1記載の透明導電フイルム。   2. The transparent conductive film according to claim 1, wherein the silicon oxide thin film layer (C) is a SiOx (x = 1.0 to 2.0) thin film layer. ケイ素酸化物薄膜層(C)が、プラスチックフイルム側から、SiOx(x=1.0 〜1.8)薄膜層(C−1)、及びSiO薄膜層(C−2)が順次形成されたものである請求項1、又は2記載の透明導電フイルム。 The silicon oxide thin film layer (C) was sequentially formed from the plastic film side, SiOx (x = 1.0 to 1.8) thin film layer (C-1), and SiO 2 thin film layer (C-2). The transparent conductive film according to claim 1, which is a transparent conductive film. 低屈折率薄膜層(B)が、SiO薄膜層(B)である請求項1〜3記載の透明導電フイルム。 The transparent conductive film according to claim 1, wherein the low refractive index thin film layer (B) is a SiO 2 thin film layer (B). 透明導電層(A−2)の厚さが、透明導電層(A−1)の厚さ以下である請求項1〜4記載の透明導電フイルム。   The transparent conductive film according to claim 1, wherein the thickness of the transparent conductive layer (A-2) is not more than the thickness of the transparent conductive layer (A-1). プラスチックフイルムとケイ素酸化物薄膜層(C)との間に樹脂からなるハードコート層が形成されている請求項1〜5記載の透明導電フイルム。   6. The transparent conductive film according to claim 1, wherein a hard coat layer made of a resin is formed between the plastic film and the silicon oxide thin film layer (C). 少なくとも、透明導電層(A−1)、低屈折率薄膜層(B)、及び透明導電層(A−2)が回路状に形成されている請求項1〜6記載の透明導電フイルム。   The transparent conductive film according to claim 1, wherein at least the transparent conductive layer (A-1), the low refractive index thin film layer (B), and the transparent conductive layer (A-2) are formed in a circuit shape.
JP2010123874A 2010-05-31 2010-05-31 Transparent conductive film with excellent durability Active JP5505840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010123874A JP5505840B2 (en) 2010-05-31 2010-05-31 Transparent conductive film with excellent durability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010123874A JP5505840B2 (en) 2010-05-31 2010-05-31 Transparent conductive film with excellent durability

Publications (2)

Publication Number Publication Date
JP2011249263A true JP2011249263A (en) 2011-12-08
JP5505840B2 JP5505840B2 (en) 2014-05-28

Family

ID=45414260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010123874A Active JP5505840B2 (en) 2010-05-31 2010-05-31 Transparent conductive film with excellent durability

Country Status (1)

Country Link
JP (1) JP5505840B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015022503A (en) * 2013-07-18 2015-02-02 株式会社翔栄 Method of manufacturing touch panel
WO2015072321A1 (en) * 2013-11-14 2015-05-21 旭硝子株式会社 Transparent conductive laminate and touch panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250756A (en) * 1998-02-27 1999-09-17 Gunze Ltd Electrode member for resistance film type transparent touch panel and its manufacture
JP2004094798A (en) * 2002-09-03 2004-03-25 Gunze Ltd Touch panel
JP2005028821A (en) * 2003-07-10 2005-02-03 Sony Corp Transparent conductive base and touch panel
JP2010061942A (en) * 2008-09-03 2010-03-18 Toppan Printing Co Ltd Transparent conductive and touch panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250756A (en) * 1998-02-27 1999-09-17 Gunze Ltd Electrode member for resistance film type transparent touch panel and its manufacture
JP2004094798A (en) * 2002-09-03 2004-03-25 Gunze Ltd Touch panel
JP2005028821A (en) * 2003-07-10 2005-02-03 Sony Corp Transparent conductive base and touch panel
JP2010061942A (en) * 2008-09-03 2010-03-18 Toppan Printing Co Ltd Transparent conductive and touch panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015022503A (en) * 2013-07-18 2015-02-02 株式会社翔栄 Method of manufacturing touch panel
WO2015072321A1 (en) * 2013-11-14 2015-05-21 旭硝子株式会社 Transparent conductive laminate and touch panel
CN105723473A (en) * 2013-11-14 2016-06-29 旭硝子株式会社 Transparent conductive laminate and touch panel

Also Published As

Publication number Publication date
JP5505840B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
KR101303982B1 (en) Transparent conductive film with excellent visibility and method of manufacturing the transparent conductive film
TWI468820B (en) Touch sensor
CN104040643B (en) Transparent and electrically conductive film that electrical characteristics are outstanding and utilize the contact panel of this transparent and electrically conductive film
KR20130026921A (en) Transparent conductive film, method for making the same and touch panel with it
KR20120084206A (en) Touch panel and method for manufacturing the same
KR101401052B1 (en) Touch sensing electrode and touch screen panel
JP5505840B2 (en) Transparent conductive film with excellent durability
TW201446981A (en) Touch panel, preparing method thereof, and Ag-Pd-Nd alloy for touch panel
JP4406237B2 (en) A method for producing a transparent substrate with a multilayer film having conductivity.
JP6645133B2 (en) Glass with film and method for producing glass with film
KR102032011B1 (en) Conductive laminate and transparent electrode comprising thereof
CN110648783A (en) ITO thin film and transparent conductive thin film
WO2015159805A1 (en) Laminate, conductive laminate, and electronic device
JP2013206675A (en) Conductive laminate and touch panel
CN112992408A (en) Flexible composite transparent conductive film and preparation method and device thereof
KR20090045647A (en) Extreme low resistivity light attenuation anti-reflection coating structure and method for manufacturing the same
KR20160111230A (en) Conductive structure body and electronic device comprising the same
KR101816972B1 (en) Transparent electrode with TiO2/Ag/TiO2 multilayered structure and method for preparing the same
CN107405875B (en) Conducting structures and electronic device including the conducting structures
TWI382429B (en) A transparent conductive film with copper wire
WO2015159804A1 (en) Laminate, conductive laminate and electronic device
KR20170021619A (en) Transparent electrode with AZO/Ag/AZO mulilayered structure and method for preparing the same
CN104882192A (en) Novel ITO conductive film
TWM478896U (en) Transparent conductive film structure
KR101550091B1 (en) Transparent conductive film with low surface resistance and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140307

R150 Certificate of patent or registration of utility model

Ref document number: 5505840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250