JP2011249113A - Tape-shaped multicore superconductive wire - Google Patents

Tape-shaped multicore superconductive wire Download PDF

Info

Publication number
JP2011249113A
JP2011249113A JP2010120533A JP2010120533A JP2011249113A JP 2011249113 A JP2011249113 A JP 2011249113A JP 2010120533 A JP2010120533 A JP 2010120533A JP 2010120533 A JP2010120533 A JP 2010120533A JP 2011249113 A JP2011249113 A JP 2011249113A
Authority
JP
Japan
Prior art keywords
tape
superconducting
wire
loss
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010120533A
Other languages
Japanese (ja)
Inventor
Naoki Ayai
直樹 綾井
Kazuo Funaki
和夫 船木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Sumitomo Electric Industries Ltd
Original Assignee
Kyushu University NUC
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Sumitomo Electric Industries Ltd filed Critical Kyushu University NUC
Priority to JP2010120533A priority Critical patent/JP2011249113A/en
Publication of JP2011249113A publication Critical patent/JP2011249113A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tape-shaped multicore superconductive wire which sufficiently suppresses the occurrence of an AC loss.SOLUTION: In the tape-shaped multicore superconductive wire configured by arranging a plurality of superconductive filaments in a metal sheath, a combined current suppression layer made of a high-resistance material or insulation material is arranged at a central part in the metal sheath, and a plurality of superconductive filaments each protected by metal are arranged around the combined current suppression layer. The combined current suppression layer has a flat shape in a width direction, and the superconductive filaments are twisted.

Description

本発明は、テープ形状多芯超電導線に関し、特に、交流損失の発生を低減するテープ形状多芯超電導線に関する。   The present invention relates to a tape-shaped multicore superconducting wire, and more particularly to a tape-shaped multicore superconducting wire that reduces the occurrence of AC loss.

近年、Bi−2223銀シーステープ線材等のテープ形状多芯超電導線は、液体窒素温度での使用が可能であり、比較的高い臨界電流密度が得られること、また、長尺化が比較的容易であること等から、超電導コイルやケーブル等への開発が盛んに行われている。   In recent years, tape-shaped multi-core superconducting wires such as Bi-2223 silver sheathed tape wire can be used at liquid nitrogen temperature, can obtain a relatively high critical current density, and can be made relatively long. For this reason, the development of superconducting coils and cables has been actively conducted.

上記のテープ形状多芯超電導線では、直流電流を通電する場合には損失が問題にならないが、テープ面に垂直に交流磁場が印加されると、誘導によってフィラメント間に結合電流が流れて、大きな交流損失、具体的には、超電導体内部に侵入する磁界に起因するヒステリシス損失、金属マトリクスを介して発生する結合電流(誘導電流)に起因する結合損失(いわゆるジュール損)、渦電流損失等が発生するという問題がある。   In the tape-shaped multicore superconducting wire, loss does not become a problem when a direct current is applied. However, when an alternating magnetic field is applied perpendicular to the tape surface, a coupling current flows between the filaments by induction, resulting in a large current. AC loss, specifically hysteresis loss due to the magnetic field penetrating into the superconductor, coupling loss (so-called Joule loss) due to coupling current (inductive current) generated through the metal matrix, eddy current loss, etc. There is a problem that occurs.

この交流損失を低減させる方法として、フィラメントにツイストを施すことが提案されている(特許文献1)。この場合、テープ面に平行な交流磁場、あるいは周波数の低い交流磁界においては、錯交磁束が小さくなることにより誘導起電力が抑制されるため、結合電流の発生が抑制され、交流損失が低減される。しかし、例えば、商用周波数の垂直磁界下では、ツイストを施してもなお誘導起電力が大きいため、交流損失が殆ど低減されないという問題があった。   As a method of reducing this AC loss, it has been proposed to twist the filament (Patent Document 1). In this case, in an alternating magnetic field parallel to the tape surface or an alternating magnetic field having a low frequency, the induced electromotive force is suppressed by reducing the complex magnetic flux, so that the generation of coupling current is suppressed and the AC loss is reduced. The However, for example, under a vertical magnetic field of a commercial frequency, there is a problem that AC loss is hardly reduced because the induced electromotive force is still large even if twisting is performed.

また、フィラメント毎に、フィラメントの周りに高抵抗あるいは絶縁性のバリア層を配置して、単芯線毎に絶縁する構造も提案されている(特許文献2)。しかし、この構造には、以下に示すような欠点があるため、実用化には至っていない。   Also, a structure has been proposed in which a high resistance or insulating barrier layer is disposed around each filament to insulate each single core wire (Patent Document 2). However, since this structure has the following drawbacks, it has not been put into practical use.

即ち、超電導体の反応生成プロセスにおいて、線材内部と外部雰囲気とを行き来する酸素の通過がバリア層により妨げられるため、均質で高純度の超電導体を形成することが困難となり、臨界電流密度が著しく低下する。   That is, in the reaction generation process of the superconductor, the barrier layer prevents oxygen from passing between the inside and outside of the wire, making it difficult to form a homogeneous and high-purity superconductor, and the critical current density is remarkably high. descend.

また、バリア層として絶縁性セラミックス等を用いた場合、これらは加工性が悪いため、金属シースを破損して部分的に金属シースの短絡を発生させる。この結果、フィラメントとセラミックスとが近接して反応することにより、超電導体の組成にバラツキが生じ、充分に高抵抗化の効果を発揮させることが困難であった。   In addition, when insulating ceramics or the like is used as the barrier layer, these have poor workability, so that the metal sheath is broken and the metal sheath is partially short-circuited. As a result, the filaments and ceramics react in close proximity to each other, resulting in variations in the composition of the superconductor, making it difficult to sufficiently exhibit the effect of increasing the resistance.

さらに、単芯線毎にバリア層を設ける加工は面倒であり、生産性の低下を招く恐れがあった。   Furthermore, the process of providing a barrier layer for each single core wire is cumbersome and may cause a reduction in productivity.

特開2001−229750号公報JP 2001-229750 A 特開2008−186775号公報JP 2008-186775 A

本発明は、上記した従来の技術における問題に鑑み、交流損失の発生が充分に抑制されたテープ形状多芯超電導線を提供することを課題とする。   An object of the present invention is to provide a tape-shaped multicore superconducting wire in which the occurrence of AC loss is sufficiently suppressed in view of the above-described problems in the prior art.

本発明者は、鋭意検討の結果、以下に記載の各発明により、上記課題が解決できることを見出し、本発明を完成するに至った。以下、各請求毎に説明する。   As a result of intensive studies, the present inventors have found that the above-described problems can be solved by the inventions described below, and have completed the present invention. Hereinafter, each bill will be described.

請求項1に記載の発明は、
金属シース内に複数本の超電導フィラメントを配置して構成されているテープ形状多芯超電導線であって、
前記金属シース内の中央部に高抵抗材料または絶縁材料よりなる結合電流抑制層が配置されており、
前記結合電流抑制層の周囲に、各々が金属で保護された前記複数本の超電導フィラメントが配置されていることを特徴とするテープ形状多芯超電導線である。
The invention described in claim 1
A tape-shaped multicore superconducting wire configured by arranging a plurality of superconducting filaments in a metal sheath,
A coupling current suppressing layer made of a high-resistance material or an insulating material is disposed in the central portion in the metal sheath,
The tape-shaped multi-core superconducting wire, wherein the plurality of superconducting filaments, each protected by metal, are disposed around the coupling current suppressing layer.

本発明者は、テープ形状多芯超電導線における結合電流の流れにつき、通常の断面形状が円形の多芯超電導線と同様に、結合電流の大半が、内部の層を貫いて幅方向に垂直に流れること、また、この幅方向に垂直に流れる結合電流の発生を抑制した場合、結合損失の低減に大きな効果があることを確認した。   As for the flow of the coupling current in the tape-shaped multicore superconducting wire, the present inventor, as in the multicore superconducting wire having a normal circular cross-sectional shape, most of the coupling current passes through the inner layer and is perpendicular to the width direction. It has been confirmed that when the generation of the coupling current flowing perpendicularly to the width direction is suppressed, the coupling loss is greatly reduced.

そして、本請求項の発明においては、結合損失の低減に大きな効果がある線材の中央部に、高抵抗材料や絶縁材料よりなる結合電流抑制層を配置している。このため、線材中央部での結合電流の発生を抑制することができ、結合損失を充分に低減させることができる。   In the invention of this claim, a coupling current suppression layer made of a high resistance material or an insulating material is disposed in the central portion of the wire that has a great effect on reducing the coupling loss. For this reason, generation | occurrence | production of the coupling current in a wire center part can be suppressed, and coupling loss can fully be reduced.

そして、本請求項の発明においては、各超電導フィラメントの周りには、金属シース以外にバリア層が配置されていないため、超電導体の反応生成プロセスにおいて線材内部と外部雰囲気とを行き来する酸素の通過が妨げられることがなく、高い臨界電流密度を得ることができる。また、各超電導フィラメントの周りにバリア層を設ける必要がないため、生産性の低下を招く恐れもない。   In the invention of this claim, since no barrier layer other than the metal sheath is disposed around each superconducting filament, oxygen passes between the inside of the wire and the outside atmosphere in the reaction generation process of the superconductor. Is not hindered, and a high critical current density can be obtained. In addition, since it is not necessary to provide a barrier layer around each superconducting filament, there is no risk of a decrease in productivity.

また、本請求項の発明において、結合電流抑制層は、例えば、銀等の金属パイプに高抵抗材料や絶縁材料が充填された形で供給できるため、前記した各超電導フィラメントの周りにバリア層を設ける加工に比べ、加工が容易で欠陥も生じない。このため、設計通りに結合電流の発生を抑制することができる。   In the invention of this claim, since the coupling current suppressing layer can be supplied in a form in which, for example, a metal pipe such as silver is filled with a high resistance material or an insulating material, a barrier layer is provided around each superconducting filament. Compared to the processing to be provided, the processing is easy and no defects occur. For this reason, generation | occurrence | production of a coupling current can be suppressed as designed.

なお、隣接する超電導フィラメント間においても若干の結合電流は発生するが、結合電流抑制層の周囲が長いため、抵抗が大きくなり、結合損失の発生に関しては実質的に無視することができる。   Although a slight coupling current is generated between adjacent superconducting filaments, since the periphery of the coupling current suppression layer is long, the resistance increases, and the generation of coupling loss can be substantially ignored.

結合電流抑制層を構成する高抵抗材料としては、銀の抵抗に比べて2桁以上抵抗が大きな材料が好ましく、ステンレス鋼、キプロニッケル(銅ニッケル合金)、ハステロイ等を挙げることができる。   The high resistance material constituting the coupling current suppressing layer is preferably a material having a resistance two or more digits larger than that of silver, and examples include stainless steel, cypronickel (copper nickel alloy), and hastelloy.

また、絶縁材料としては、所謂絶縁セラミックスが好ましく、具体的には、炭酸ストロンチウム、炭酸カルシウム、ジルコニウム酸バリウム(バリウムに換えて、ストロンチウム、銅も可)、酸化マグネシウム等、耐熱性に優れたセラミックスを挙げることができる。   Further, as the insulating material, so-called insulating ceramics are preferable. Specifically, ceramics having excellent heat resistance such as strontium carbonate, calcium carbonate, barium zirconate (strontium or copper can be used instead of barium), magnesium oxide, etc. Can be mentioned.

なお、テープ形状多芯超電導線の製造に際して、結合電流抑制層は複数に分割されていてもよい。また、結合電流抑制層の周囲に配置される超電導フィラメントは、2層以上に配置されてもよい。   In the production of the tape-shaped multicore superconducting wire, the coupling current suppressing layer may be divided into a plurality. Further, the superconducting filaments arranged around the coupling current suppressing layer may be arranged in two or more layers.

請求項2に記載の発明は、
前記結合電流抑制層が、幅方向に偏平な形状であることを特徴とする請求項1に記載のテープ形状多芯超電導線である。
The invention described in claim 2
The tape-shaped multicore superconducting wire according to claim 1, wherein the coupling current suppressing layer has a flat shape in a width direction.

本発明に係る超電導線はテープ形状であるため、幅方向に偏平な形状の結合電流抑制層を金属シース内の中央部に配置することにより、超電導フィラメント間を垂直に流れる結合電流を、より一層確実に抑制することができ、結合損失を充分に低減することができる。なお、結合電流抑制層の幅や厚さは、超電導線のサイズや超電導フィラメントのサイズや本数等を勘案して適宜決定することができる。   Since the superconducting wire according to the present invention has a tape shape, a coupling current suppressing layer having a flat shape in the width direction is arranged at the center of the metal sheath, so that the coupling current flowing vertically between the superconducting filaments can be further increased. It can be surely suppressed and the coupling loss can be sufficiently reduced. Note that the width and thickness of the coupling current suppressing layer can be appropriately determined in consideration of the size of the superconducting wire, the size and number of superconducting filaments, and the like.

請求項3に記載の発明は、
前記超電導フィラメントにツイストが施されていることを特徴とする請求項1または請求項2に記載のテープ形状多芯超電導線である。
The invention according to claim 3
The tape-shaped multicore superconducting wire according to claim 1 or 2, wherein the superconducting filament is twisted.

前記した通り、フィラメントにツイストを施すことにより、錯交磁束が小さくなるため、誘導起電力を抑制することができる。   As described above, by twisting the filament, the interlaced magnetic flux is reduced, so that the induced electromotive force can be suppressed.

本発明によれば、交流損失の発生が充分に抑制されたテープ形状多芯超電導線を提供することができる。   According to the present invention, it is possible to provide a tape-shaped multicore superconducting wire in which the occurrence of AC loss is sufficiently suppressed.

本発明の一実施の形態のテープ形状多芯超電導線の断面図である。It is sectional drawing of the tape-shaped multi-core superconducting wire of one embodiment of this invention.

以下、本発明を実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on embodiments.

図1は、本発明の一実施の形態のテープ形状多芯超電導線を模式的に示す断面図である。   FIG. 1 is a cross-sectional view schematically showing a tape-shaped multicore superconducting wire according to an embodiment of the present invention.

図1に示すように、テープ形状多芯超電導線1は、金属シース4内に、幅方向に偏平な形状の結合電流抑制層2を配置し、結合電流抑制層2の周囲に複数本の超電導フィラメント3を配置し、これにより、厚み方向において隣接する超電導フィラメント3の間に結合電流抑制層2が介在するように構成されている。   As shown in FIG. 1, the tape-shaped multicore superconducting wire 1 has a coupling current suppression layer 2 having a flat shape in the width direction in a metal sheath 4, and a plurality of superconductivity around the coupling current suppression layer 2. The filament 3 is arranged so that the coupling current suppressing layer 2 is interposed between the superconducting filaments 3 adjacent in the thickness direction.

結合電流抑制層2の周囲および各超電導フィラメントの周囲は、金属シース4で保護されている。超電導フィラメント3は、線材の長手方向に沿って螺旋状に撚られている(ツイスト)。   A metal sheath 4 protects the periphery of the coupling current suppression layer 2 and the periphery of each superconducting filament. The superconducting filament 3 is twisted spirally along the longitudinal direction of the wire (twist).

結合電流抑制層2の材料は、上記の通り、高抵抗材料や、絶縁材料が用いられ、金属シース内に充填されている。   As described above, a high resistance material or an insulating material is used as the material of the coupling current suppression layer 2 and is filled in the metal sheath.

超電導フィラメント3の超電導材料としては、例えば、Bi系酸化物超電導体(Bi,Sr,Cu,Ba,Oを構成元素とする、いわゆるBi2223相、Bi2212相、Bi2201相等)が用いられる。   As the superconducting material of the superconducting filament 3, for example, a Bi-based oxide superconductor (a so-called Bi2223 phase, Bi2212 phase, Bi2201 phase, etc. containing Bi, Sr, Cu, Ba, O as constituent elements) is used.

金属シース4の材質としては、Ag、Ag合金などが用いられる。Ag合金としては、Ag−Au合金、Ag−Mg合金、Ag−Sb合金、Ag−Mn合金が用いられる。   As a material of the metal sheath 4, Ag, an Ag alloy, or the like is used. As the Ag alloy, an Ag—Au alloy, an Ag—Mg alloy, an Ag—Sb alloy, or an Ag—Mn alloy is used.

(1)実施例の作製
イ.単芯線の作製
Bi23、PbO、SrCO3、CaCO3およびCuOを用いて、Bi:Pb:Sr:Ca:Cu=1.7:0.3:1.9:2.0:3.0の組成比になるように配合し、得られた原料粉末を、780℃で8時間の熱処理を施した後、外径46mm、内径43mmの銀製シース中に充填し、2.27mm×1.45mmまで伸線加工し、単芯線を作製した。
(1) Production of Examples a. Production of a single core wire Bi: Pb: Sr: Ca: Cu = 1.7: 0.3: 1.9: 2.0: 3. Using Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 and CuO. The raw material powder was blended so as to have a composition ratio of 0 and subjected to a heat treatment at 780 ° C. for 8 hours, and then filled into a silver sheath having an outer diameter of 46 mm and an inner diameter of 43 mm, 2.27 mm × 1. The wire was drawn to 45 mm to produce a single core wire.

ロ.結合電流抑制層用の芯線の作製
炭酸ストロンチウムの粉末を、外径12mm、内径10mmの銀製シース中に充填し、直径6.5mmまで伸線加工し、結合電流抑制層用の芯線を作製した。
B. Production of Core Wire for Bonding Current Suppression Layer A strontium carbonate powder was filled in a silver sheath having an outer diameter of 12 mm and an inner diameter of 10 mm, and was drawn to a diameter of 6.5 mm to produce a core wire for the binding current suppression layer.

ハ.多芯線の作製
12本の単芯線および1本の結合電流抑制層用の芯線を、結合電流抑制層用の芯線を中心にして、その周りに単芯線を配置した状態で、外径12mm、内径10mmの銀製シースに挿入し、直径1.0mmになるまで伸線加工して多芯線を作製した。その後、多芯線をツイスト加工した。
C. Production of multi-core wire 12 core wires and a core wire for one coupling current suppression layer, with a core wire for the coupling current suppression layer as a center, with a single core wire arranged around it, an outer diameter of 12 mm, an inner diameter It was inserted into a 10 mm silver sheath and drawn to a diameter of 1.0 mm to produce a multi-core wire. Then, the multifilamentary wire was twisted.

ニ.テープ形状多芯超電導線の作製
次に、多芯線に1回目の圧延加工を施した後、835℃で10時間の熱処理を施し、さらに、2回目の圧延加工した後、835℃で50時間の熱処理を施した。これにより、幅方向に扁平な結合電流抑制層の周囲に沿って12本の超電導フィラメントが配置された、表1に示すテープ形状多芯超電導線を作製した。
D. Preparation of tape-shaped multi-core superconducting wire Next, the multi-core wire is subjected to a first rolling process, then subjected to a heat treatment at 835 ° C. for 10 hours, and further subjected to a second rolling process, and then at 835 ° C. for 50 hours. Heat treatment was applied. This produced the tape-shaped multi-core superconducting wire shown in Table 1 in which 12 superconducting filaments were arranged along the periphery of the coupling current suppressing layer flat in the width direction.

(2)比較例の作製
イ.多芯線の作製
実施例と同様にして単芯線を作製した。次に、19本の単芯線を、外径12mm、内径10mmの銀シース内に挿入し3層構造にした。すなわち、1層目となる1本の単芯線を銀シースの中心に配置、この単芯線の周りに2層目となる6本の単芯線を配置し、さらにその周りに3層目となる12本の単芯線を配置し、これを直径1.0mmになるまで伸線加工して多芯線を作製した。その後、多芯線をツイスト加工した。
(2) Production of Comparative Example a. Production of multi-core wire A single-core wire was produced in the same manner as in the Examples. Next, 19 single core wires were inserted into a silver sheath having an outer diameter of 12 mm and an inner diameter of 10 mm to form a three-layer structure. That is, one single-core wire as the first layer is arranged at the center of the silver sheath, six single-core wires as the second layer are arranged around the single-core wire, and further, the third layer is formed around 12 A single core wire was placed, and this was drawn to a diameter of 1.0 mm to produce a multi-core wire. Then, the multifilamentary wire was twisted.

ロ.テープ状酸化物超電導線材の作製
次に、多芯線に1回目の圧延加工を施した後、835℃で10時間の熱処理を施し、さらに、2回目の圧延加工を施した後、835℃で50時間の熱処理を施した。これにより、幅方向に扁平な結合電流抑制層の周囲に沿って19本の超電導フィラメントが配置された、表1に示すテープ形状多芯超電導線を作製した。
B. Production of Tape-shaped Oxide Superconducting Wire Next, the multifilamentary wire was subjected to a first rolling process, then subjected to a heat treatment at 835 ° C. for 10 hours, and further subjected to a second rolling process, followed by 50 at 835 ° C. Time heat treatment was applied. This produced the tape-shaped multi-core superconducting wire shown in Table 1 in which 19 superconducting filaments were arranged along the periphery of the coupling current suppressing layer flat in the width direction.

(3)テープ形状多芯超電導線の試験
77Kにおける臨界電流Icおよび臨界電流密度Jcと、±0.1T、周波数10Hzの交流通電時における結合損失密度、ヒステリシス損失密度および全損失密度を測定した。
(3) Test of Tape-Shaped Multicore Superconducting Wire The critical current Ic and critical current density Jc at 77K, and the coupling loss density, hysteresis loss density, and total loss density at the time of alternating current with ± 0.1 T and frequency 10 Hz were measured.

測定結果を表1に示した。また、結合損失密度と規格化全損失について、比較例を1とした場合の値を表1中の同欄に括弧書で示した。なお、臨界電流密度Jcは、銀製シースおよび結合電流抑制層を含んだ値であり、全損失密度は、損失ロスの絶対値であり、また、規格化全損失は、単位長さあたりの全損失をIc(at s.f. 77k)で規格化したものである。   The measurement results are shown in Table 1. In addition, with respect to the coupling loss density and the normalized total loss, values when the comparative example is 1 are shown in parentheses in the same column of Table 1. The critical current density Jc is a value including the silver sheath and the coupling current suppression layer, the total loss density is an absolute value of the loss loss, and the normalized total loss is the total loss per unit length. Is normalized by Ic (at s.f. 77k).

Figure 2011249113
Figure 2011249113

(4)試験結果の評価
結合損失密度は、比較例を1とした場合に、実施例は0.09となり、10分の1以下に低減した。また、規格化全損失は、比較例を1とした場合に、実施例は0.33となり3分の1以下に低減した。これにより、結合電流抑制層は、結合損失の低減に大きな効果があることが分かった。
(4) Evaluation of test results The coupling loss density was 0.09 in the example when the comparative example was 1, and was reduced to 1/10 or less. In addition, when the comparative example is 1, the normalized total loss is 0.33 in the example, which is reduced to 1/3 or less. Thereby, it was found that the coupling current suppression layer has a great effect on reducing the coupling loss.

以上、本発明の実施の形態について説明したが、本発明は、上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment. Various modifications can be made to the above-described embodiment within the same and equivalent scope as the present invention.

1 テープ形状多芯超電導線
2 結合電流抑制層
3 超電導フィラメント
4 金属シース
1 Tape-shaped multicore superconducting wire 2 Coupling current suppression layer 3 Superconducting filament 4 Metal sheath

Claims (3)

金属シース内に複数本の超電導フィラメントを配置して構成されているテープ形状多芯超電導線であって、
前記金属シース内の中央部に高抵抗材料または絶縁材料よりなる結合電流抑制層が配置されており、
前記結合電流抑制層の周囲に、各々が金属で保護された前記複数本の超電導フィラメントが配置されていることを特徴とするテープ形状多芯超電導線。
A tape-shaped multicore superconducting wire configured by arranging a plurality of superconducting filaments in a metal sheath,
A coupling current suppressing layer made of a high-resistance material or an insulating material is disposed in the central portion in the metal sheath,
A tape-shaped multi-core superconducting wire, wherein the plurality of superconducting filaments, each protected by metal, are disposed around the coupling current suppressing layer.
前記結合電流抑制層が、幅方向に偏平な形状であることを特徴とする請求項1に記載のテープ形状多芯超電導線。   The tape-shaped multicore superconducting wire according to claim 1, wherein the coupling current suppressing layer has a flat shape in a width direction. 前記超電導フィラメントにツイストが施されていることを特徴とする請求項1または請求項2に記載のテープ形状多芯超電導線。   The tape-shaped multicore superconducting wire according to claim 1 or 2, wherein the superconducting filament is twisted.
JP2010120533A 2010-05-26 2010-05-26 Tape-shaped multicore superconductive wire Pending JP2011249113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010120533A JP2011249113A (en) 2010-05-26 2010-05-26 Tape-shaped multicore superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010120533A JP2011249113A (en) 2010-05-26 2010-05-26 Tape-shaped multicore superconductive wire

Publications (1)

Publication Number Publication Date
JP2011249113A true JP2011249113A (en) 2011-12-08

Family

ID=45414138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010120533A Pending JP2011249113A (en) 2010-05-26 2010-05-26 Tape-shaped multicore superconductive wire

Country Status (1)

Country Link
JP (1) JP2011249113A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075081A (en) * 2000-08-31 2002-03-15 Japan Fine Ceramics Center Oxide superconducting wire material, method for manufacturing the same, and composite powder for use in barrier layer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075081A (en) * 2000-08-31 2002-03-15 Japan Fine Ceramics Center Oxide superconducting wire material, method for manufacturing the same, and composite powder for use in barrier layer

Similar Documents

Publication Publication Date Title
JP3658844B2 (en) Oxide superconducting wire, manufacturing method thereof, and oxide superconducting stranded wire and conductor using the same
JP4174824B2 (en) Superconducting cable
JPH07105753A (en) Oxide superconducting wire and its manufacture, and oxide superconducting coil
JP3386942B2 (en) Oxide superconducting coil and manufacturing method thereof
JPWO2010016302A1 (en) Precursor wire of oxide superconducting wire, manufacturing method thereof, and oxide superconducting wire using the precursor wire
CN101361144B (en) Oxide superconducting wire rod, superconducting structure, method for manufacturing oxide superconducting wire rod, superconducting cable, superconducting magnet, and product comprising superconductin
JP2011249113A (en) Tape-shaped multicore superconductive wire
JP2013251180A (en) Precursor wiring material of triniobium-tin superconducting multi-core wiring material, and triniobium-tin superconducting multi-core wiring material arranged using the same
JP3778971B2 (en) Oxide superconducting wire and method for producing the same
JP4039049B2 (en) Multi-core oxide superconducting wire manufacturing method
JP4737094B2 (en) Oxide superconducting wire, superconducting structure, manufacturing method of oxide superconducting wire, superconducting cable, superconducting magnet, and product including superconducting magnet
JPH1092630A (en) Oxide superconducting coil
JP3657367B2 (en) Bismuth-based oxide multicore superconducting wire and method for producing the same
JP4542240B2 (en) Oxide superconducting stranded conductor
JP2012009174A (en) Oxide superconducting cable
JPH07169342A (en) Multi-filament oxide superconducting wire
JP3568767B2 (en) Superconducting cable and manufacturing method thereof
JP4039260B2 (en) Manufacturing method of oxide superconducting wire and raw material powder of oxide superconducting wire
JP3757617B2 (en) Oxide superconducting billet, oxide superconducting wire, and manufacturing method thereof
JPH11203960A (en) Oxide superconductive cable
JPH1139963A (en) Oxide superconductive wire material, stranded wire, method for producing material and stranded wire thereof, and oxide superconductor
JP2015032363A (en) Superconductive cable
JP3667028B2 (en) Oxide superconducting wire for alternating current and method for producing the same
JP4844856B2 (en) Superconducting cable
JP4883379B2 (en) Superconducting cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141014