JP2011247825A - Method for manufacturing neutron mirror, and neutron mirror - Google Patents

Method for manufacturing neutron mirror, and neutron mirror Download PDF

Info

Publication number
JP2011247825A
JP2011247825A JP2010123375A JP2010123375A JP2011247825A JP 2011247825 A JP2011247825 A JP 2011247825A JP 2010123375 A JP2010123375 A JP 2010123375A JP 2010123375 A JP2010123375 A JP 2010123375A JP 2011247825 A JP2011247825 A JP 2011247825A
Authority
JP
Japan
Prior art keywords
multilayer film
substrate
film
neutron
neutron mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010123375A
Other languages
Japanese (ja)
Other versions
JP5552635B2 (en
JP2011247825A5 (en
Inventor
Masahiro Hino
正裕 日野
Masaaki Kitaguchi
雅暁 北口
Yuji Kawabata
祐司 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2010123375A priority Critical patent/JP5552635B2/en
Publication of JP2011247825A publication Critical patent/JP2011247825A/en
Publication of JP2011247825A5 publication Critical patent/JP2011247825A5/ja
Application granted granted Critical
Publication of JP5552635B2 publication Critical patent/JP5552635B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a neutron mirror capable of easily acquiring a curved reflecting surface without inviting a deterioration in a reflectance ratio, and a neutron mirror.SOLUTION: The neutron mirror 1 is acquired by forming a multilayer film 2 obtained by alternately laminating double layers of two types of material having different reflective indexes on a flat plate-shaped substrate, and peeling the multilayer film 2 from the substrate by forming a peeling causing part to be a start to peel the multilayer film 2 from the substrate. The double layers constituting the multilayer film 2 are formed so as to make the cycle thereof gradually small as the double layers become distant from the substrate side. In the multilayer film 2 peeled off from the substrate, a surface brought into contact with the substrate side becomes a reflecting surface. A reinforcement member 4 is adhered to a surface opposite from the reflecting surface of the multilayer film 2 through an adhesive 3.

Description

本発明は、中性子導管等に用いられる中性子ミラーの製造方法及び中性子ミラーに関する。   The present invention relates to a method for manufacturing a neutron mirror used for a neutron conduit or the like and a neutron mirror.

近年、軽元素分析やソフトマターのナノスケールでの動的状態を非侵襲で観察するプローブとして低速中性子ビームが用いられている。特に、低速中性子ビームはX線に比べると水素や酸素等に高い感度を有していることから、X線を用いた物質分析とは異なる情報を提供できるものとして注目されている。しかし、X線等の放射光に比べると中性子ビームはその強度が桁違いに低いこと、及び、中性子を発生させるには原子炉や大強度陽子加速器等の大型施設が必要であることから、中性子を用いた分析手法は放射光を用いた分析ほど普及していない。従って、中性子を活用するにあたっては、原子炉や大強度加速器等の線源で発生した中性子を効率よく遠方の実験施設まで輸送できるようにすることや試料部で輝度を上げるために集光することが重要な課題である。   In recent years, low-speed neutron beams have been used as probes for non-invasive observation of light element analysis and the dynamic state of soft matter at the nanoscale. In particular, the slow neutron beam has a higher sensitivity to hydrogen, oxygen, and the like than X-rays, and is thus attracting attention as being able to provide information different from material analysis using X-rays. However, neutron beams are orders of magnitude lower than synchrotron radiation such as X-rays, and large facilities such as nuclear reactors and high-intensity proton accelerators are required to generate neutrons. The analysis method using is not as popular as the analysis using synchrotron radiation. Therefore, when using neutrons, the neutrons generated by a radiation source such as a nuclear reactor or a high-intensity accelerator must be efficiently transported to a distant experimental facility, or focused to increase the brightness at the sample section. Is an important issue.

線源で発生した中性子は中性子導管を用いて実験施設まで輸送される。従来の中性子導管は複数枚の平面反射鏡からなる導管ユニットを接続したもので、平面反射鏡としてはニッケル(Ni)の単層膜や中性子スーパーミラーが用いられる(特許文献1、特許文献2参照)。
中性子スーパーミラーは、基板上に例えばTi(チタン)とNi(ニッケル)を交互に成膜することで形成された多層膜で、Ti/Niの対層の膜周期を基板側から離れるに従って徐々に大きくする。これで、反射できる最大の角度(臨界角)をNi単層膜よりも何倍も大きくし、輸送可能な中性子強度を増加させていたものである。
Neutrons generated at the source are transported to the experimental facility using a neutron conduit. A conventional neutron conduit is formed by connecting conduit units composed of a plurality of plane reflecting mirrors. As the plane reflecting mirror, a single layer film of nickel (Ni) or a neutron supermirror is used (see Patent Document 1 and Patent Document 2). ).
A neutron supermirror is a multilayer film formed by alternately depositing, for example, Ti (titanium) and Ni (nickel) on a substrate. The film period of the Ti / Ni counter layer gradually increases as the distance from the substrate side increases. Enlarge. Thus, the maximum angle that can be reflected (critical angle) is many times larger than that of the Ni monolayer film, and the transportable neutron intensity is increased.

特開平8-211198号公報JP-A-8-211198 特開2004-317429号公報JP 2004-317429 A

このように、反射率が非常に優れた中性子ミラーを用いることで、線源で発生した中性子の輸送効率は向上するが、中性子ビームを集光させるためには中性子導管の内表面を曲面状にする必要がある。この場合、機械加工により基板上に曲面を作成し、この基板上の曲面に多層膜を形成して中性子スーパーミラーとすることも考えられるが、表面粗さをナノメートル未満に制御した曲面基板を形成すること、及び曲面基板上に均一な多層膜構造を形成することは技術的に大変困難である。また臨界角の大きい中性子スーパーミラーほど表面粗さに敏感で反射率が低下するという問題がある。
また、多数の微小な平板状の中性子スーパーミラーを組み合わせて曲面近似を行う方法もあるが、その効率には限界がありコスト的にも有効でない。
In this way, the use of a neutron mirror with excellent reflectivity improves the transport efficiency of neutrons generated by the radiation source, but in order to focus the neutron beam, the inner surface of the neutron conduit is curved. There is a need to. In this case, it is conceivable to create a curved surface on the substrate by machining, and form a multilayer film on the curved surface on this substrate to make a neutron supermirror. However, a curved substrate with a surface roughness controlled to less than nanometers may be used. It is technically very difficult to form and to form a uniform multilayer structure on a curved substrate. In addition, neutron supermirrors with a larger critical angle are more sensitive to surface roughness and have a lower reflectivity.
There is also a method of approximating the curved surface by combining a number of minute flat neutron supermirrors, but the efficiency is limited and not cost effective.

これに対して、フロートガラスから成る基板上に多層膜を蒸着し、その上に厚さ1mm程度の銅を電着した後、前記基板から剥がすことにより形成されるレプリカ鏡を中性子ミラーとして用いる方法も提案されている(特開2001-33593号公報の段落[0011]参照)。レプリカ鏡から成る中性子ミラーは、基板が無い分、非常に薄くなるため、自由に曲げることができる。しかし、基板から多層膜をきれいに剥がすことは難しく、剥がす際に多層膜が折れ曲がったり、破損したりするという欠点があった。   On the other hand, a method of using a replica mirror formed as a neutron mirror by depositing a multilayer film on a substrate made of float glass, electrodepositing copper having a thickness of about 1 mm on the substrate, and then peeling off from the substrate Has also been proposed (see paragraph [0011] of JP-A-2001-33593). A neutron mirror consisting of a replica mirror is very thin because there is no substrate, so it can be bent freely. However, it is difficult to cleanly remove the multilayer film from the substrate, and there has been a drawback that the multilayer film is bent or broken when it is peeled off.

本発明が解決しようとする課題は、反射率の低下を招くことなく容易に曲面状の反射面を得ることができる中性子ミラーの製造方法及び中性子ミラーを提供することである。   The problem to be solved by the present invention is to provide a neutron mirror manufacturing method and a neutron mirror capable of easily obtaining a curved reflecting surface without causing a decrease in reflectance.

上記課題を解決するために成された本願の第1発明は、屈折率が異なる2種類の物質の対層を積層した多層膜からなる中性子ミラーの製造方法であって、
平板状の基板上に、前記対層の周期(厚さ)が徐々に小さくなるように前記多層膜を形成する工程と、
前記基板から前記多層膜が剥がれるきっかけとなる剥離誘因部を形成する工程を有することを特徴とする。
The first invention of the present application made to solve the above problems is a method of manufacturing a neutron mirror comprising a multilayer film in which two layers of different materials having different refractive indexes are laminated,
Forming the multilayer film on a flat substrate so that the period (thickness) of the counter layer gradually decreases;
It has the process of forming the peeling inducement part used as the opportunity from which the said multilayer film peels from the said board | substrate.

本発明は、基板と隣接する薄膜、つまり、基板上に最初に形成される薄膜と多層膜の全厚さが所定厚さ以上であれば、基板に切り目を入れるといった多層膜が基板から剥がれるきっかけを与えるだけで基板から多層膜が剥がれるようになるとの発明者の知見に基づき成されたものである。「所定厚さ」は、基板や薄膜の素材、成膜方法、成膜条件等により異なるが、実験的に容易に求められる。例えばNiC/Tiの多層膜の場合、基板に最初に形成する薄膜(NiC膜)が60μm以上であって、多層膜の全厚さが2μm程度あれば問題なく基板から剥離できる。成膜方法としては、蒸着、スパッタリングを用いることができる。   In the present invention, if the total thickness of the thin film adjacent to the substrate, that is, the first thin film formed on the substrate and the multilayer film is equal to or larger than the predetermined thickness, the multilayer film is peeled off from the substrate, such as making a cut in the substrate. This is based on the inventor's knowledge that the multilayer film can be peeled off from the substrate simply by providing the above. The “predetermined thickness” varies depending on the material of the substrate and thin film, the film formation method, the film formation conditions, etc., but can be easily determined experimentally. For example, in the case of a NiC / Ti multilayer film, if the first thin film (NiC film) formed on the substrate is 60 μm or more and the total thickness of the multilayer film is about 2 μm, it can be peeled off from the substrate without any problem. As a film forming method, vapor deposition or sputtering can be used.

また、本発明では、平板状の基板に多層膜を形成し、該基板から多層膜を剥がした後、適宜の基材に前記多層膜を貼り付ける等することで中性子ミラーが製造されるため、前記基板は中性子ミラーを構成しない。従って、前記基板としては多層膜の形成に適したものを選択すれば良く、例えば表面精度が優れたフロートガラスやシリコン基板を用いることができる。   In the present invention, a neutron mirror is manufactured by forming a multilayer film on a flat substrate, peeling the multilayer film from the substrate, and then attaching the multilayer film to an appropriate base material. The substrate does not constitute a neutron mirror. Therefore, what is necessary is just to select the thing suitable for formation of a multilayer film as said board | substrate, For example, the float glass and silicon substrate excellent in surface precision can be used.

「剥離誘因部を形成する」とは、基板に切り込みや切り目を入れること、あるいは、基板を軽く叩いたり小さな振動を加えたりすることをいう。   “Forming a peeling inducing portion” means making a cut or a cut in the substrate, or tapping the substrate lightly or applying a small vibration.

また、上記製造方法においては、前記多層膜の最後に、該多層膜の他の薄膜よりも膜厚が大きい補助支持膜を積層すると良い。補助支持膜を積層することで、多層膜が湾曲する方向を制御することができるため、任意の曲面に多層膜を張り易くなる。この場合、前記補助支持膜は、多層膜を構成する2種類の物質とは異なる物質を多層膜の上に蒸着、スパッタリング等することにより積層すると良い。また、多層膜の最後の薄膜(NiC/Tiの多層膜の場合はTi膜)の厚さを他の薄膜の厚さよりも大きくし、これを補助支持膜としても良い。補助支持膜(Ti膜)をNiC/Ti多層膜の最後に積層した場合は、多層膜と補助支持膜を合わせた厚さが2μm程度あれば良い。   In the above manufacturing method, an auxiliary support film having a larger film thickness than other thin films of the multilayer film may be laminated at the end of the multilayer film. By laminating the auxiliary support film, the direction in which the multilayer film is curved can be controlled, so that the multilayer film can be easily stretched on an arbitrary curved surface. In this case, the auxiliary support film is preferably laminated by depositing, sputtering, or the like on the multilayer film a substance different from the two kinds of substances constituting the multilayer film. Further, the thickness of the last thin film of the multilayer film (Ti film in the case of the NiC / Ti multilayer film) may be made larger than the thickness of the other thin films, and this may be used as the auxiliary support film. When the auxiliary support film (Ti film) is laminated at the end of the NiC / Ti multilayer film, the total thickness of the multilayer film and the auxiliary support film may be about 2 μm.

さらに、上記製造方法においては、前記基板に前記多層膜を形成した後、該多層膜を補強するための補強部材を前記多層膜に接着してから、前記補強部材と共に前記多層膜を剥がすようにすると良い。この場合、多層膜の最後に前記補助支持膜を形成した後、補強部材を接着しても良い。
補強部材を接着することで多層膜の強度が増すため、基板から多層膜を剥がす際に該多層膜が破損することを防止できる。また、補強部材を接着することで基板から剥がされた多層膜が補強されるため、多層膜を用いて中性子ミラーを製造するまでの間、或いは、中性子ミラーを製造する際に、多層膜の取り扱いが容易になる。
Further, in the above manufacturing method, after the multilayer film is formed on the substrate, a reinforcing member for reinforcing the multilayer film is bonded to the multilayer film, and then the multilayer film is peeled off together with the reinforcing member. Good. In this case, the reinforcing member may be bonded after the auxiliary support film is formed at the end of the multilayer film.
Since the strength of the multilayer film is increased by adhering the reinforcing member, the multilayer film can be prevented from being damaged when the multilayer film is peeled off from the substrate. In addition, since the multilayer film peeled off from the substrate is reinforced by adhering the reinforcing member, the multilayer film must be handled before or when the neutron mirror is manufactured using the multilayer film. Becomes easier.

前記補強部材は、多層膜から取り外し可能に接着されていることが好ましい。この場合は、補強部材が取り付けられた多層膜を基板から剥がした後、多層膜から補強部材を取り外すことができる。この場合、多層膜と補強部材との間に前記補助支持膜が積層されていれば、補強部材を取り外することによる多層膜の強度低下を抑えることができる。
前記補強部材としては、ポリエチレンテレフタレート(PET)製の可撓性板材を用いると良い。
It is preferable that the reinforcing member is detachably bonded from the multilayer film. In this case, after peeling off the multilayer film to which the reinforcing member is attached from the substrate, the reinforcing member can be removed from the multilayer film. In this case, if the auxiliary support film is laminated between the multilayer film and the reinforcing member, it is possible to suppress a decrease in strength of the multilayer film due to the removal of the reinforcing member.
As the reinforcing member, a flexible plate made of polyethylene terephthalate (PET) may be used.

本願の第2発明は、上記製造方法により製造された、屈折率が異なる2種類の物質の薄膜層から成る対層を積層した多層膜からなる中性子ミラーであり、具体的には、平板状の基板上に、前記多層膜を、前記対層の周期が徐々に小さくなるように形成し、前記基板から前記多層膜が剥がれるきっかけとなる剥離誘因部を形成して、前記基板から剥がした多層膜からなる中性子ミラーである。   A second invention of the present application is a neutron mirror made of a multilayer film in which a pair of thin film layers of two kinds of substances having different refractive indexes manufactured by the above manufacturing method is laminated. The multilayer film is formed on the substrate by forming the multilayer film so that the period of the counter layer gradually decreases, and forming a peeling inducing portion that triggers the multilayer film to peel from the substrate. A neutron mirror consisting of

本発明によれば、平板状の基板に多層膜を形成するため、均一な多層膜構造を得ることができ、反射率の低下を抑えることができる。また、前記基板に多層膜を形成した後、前記基板に剥離誘因部を形成したため、基板から容易に多層膜を剥がすことができる。さらに、多層膜から基板が取り除かれるため、多層膜を湾曲させたり任意の曲面に貼り付けたりすることにより、任意の曲面の反射面を有する中性子ミラーを得ることができる。   According to the present invention, since a multilayer film is formed on a flat substrate, a uniform multilayer film structure can be obtained, and a decrease in reflectance can be suppressed. Moreover, since the peeling inducement part was formed in the said board | substrate after forming a multilayer film in the said board | substrate, a multilayer film can be easily peeled from a board | substrate. Furthermore, since the substrate is removed from the multilayer film, a neutron mirror having an arbitrary curved reflection surface can be obtained by curving the multilayer film or attaching it to an arbitrary curved surface.

本発明の一実施形態に係る中性子ミラーの概略断面図。The schematic sectional drawing of the neutron mirror which concerns on one Embodiment of this invention. 基板から剥がす前の多層膜の概略断面図。The schematic sectional drawing of the multilayer film before peeling from a board | substrate. シリコン基板から剥がした後の多層膜の写真。Photograph of the multilayer film after peeling from the silicon substrate. 多層膜から補強部材を一部剥がした状態を示す写真。The photograph which shows the state which peeled off the reinforcement member from the multilayer film partially. 矩形状に切り取った多層膜の写真。Photograph of multilayer film cut out in a rectangular shape. 実施例で得られた多層膜を中空の円錐状の基材の内周面に貼り付けることで形成された導管の写真であり、(a)は補強部材を取り除いた多層膜を丸めて円錐状にしたもの及び中空の円錐状の基材、(b)は導管を示す。It is a photograph of the conduit | pipe formed by sticking the multilayer film obtained in the Example to the internal peripheral surface of a hollow cone-shaped base material, (a) rolls the multilayer film from which the reinforcement member was removed, and is a cone shape. And a hollow conical substrate, (b) shows a conduit. 実施例で得られた多層膜の反射率の測定結果を示すグラフ。The graph which shows the measurement result of the reflectance of the multilayer film obtained in the Example.

図1は、本発明の一実施形態に係る中性子ミラーの概略断面図である。図1に示すように、中性子ミラー1は、屈折率の異なる2種類の物質(例えばNiC(ニッケルカーボン)とTi(チタン))の薄膜層から成る対層を積層した多層膜2と、この多層膜2の一方の端面に接着剤3を介して接着された補強部材4から構成されている。図1における上面が中性子ミラー1の反射面となる。各対層は、中性子に対する高屈折率物質(図1ではNiC)が反射面側、低屈折率物質(図1ではTi)が補強部材4側に位置するように積層されている。前記多層膜2は、対層の周期(d1、d2、d3・・・)が、反射面側から補強部材側に向かって徐々に小さくなるように構成されている。   FIG. 1 is a schematic cross-sectional view of a neutron mirror according to an embodiment of the present invention. As shown in FIG. 1, a neutron mirror 1 includes a multilayer film 2 in which a pair of thin films of two kinds of substances having different refractive indexes (for example, NiC (nickel carbon) and Ti (titanium)) are laminated, and the multilayer film. The reinforcing member 4 is bonded to one end surface of the film 2 via an adhesive 3. The upper surface in FIG. 1 is the reflecting surface of the neutron mirror 1. Each pair of layers is laminated such that a high refractive index substance (NiC in FIG. 1) with respect to neutrons is located on the reflecting surface side and a low refractive index substance (Ti in FIG. 1) is on the reinforcing member 4 side. The multilayer film 2 is configured such that the period of layers (d1, d2, d3...) Gradually decreases from the reflecting surface side toward the reinforcing member side.

尚、図1では、多層膜2と補強部材4から中性子ミラーが構成されていることとしたが、多層膜2だけで中性子ミラーを構成することも可能である。また、別の基材に多層膜2を貼り付けて中性子ミラーとすることも可能である。この場合、補強部材4を基材に貼り付けても良く、多層膜2から補強部材4を取り除き、多層膜2のうち前記補強部材が接着されていた面を前記基材に貼り付ける。このように補強部材4を多層膜2から取り外す場合には、容易に取り外すことができるような接着剤3を用いて接着すると良い。   In FIG. 1, the neutron mirror is composed of the multilayer film 2 and the reinforcing member 4, but the neutron mirror can be composed of the multilayer film 2 alone. It is also possible to attach the multilayer film 2 to another base material to form a neutron mirror. In this case, the reinforcing member 4 may be attached to the base material, the reinforcing member 4 is removed from the multilayer film 2, and the surface of the multilayer film 2 to which the reinforcing member is bonded is attached to the base material. Thus, when removing the reinforcement member 4 from the multilayer film 2, it is good to adhere | attach using the adhesive agent 3 which can be removed easily.

前記中性子ミラー1は、平板状の基板の上に蒸着やスパッタリングにより低屈折率物質と高屈折率物質を交互に成膜することで多層膜2を形成し、前記多層膜2の上に補強部材4を接着した後、前記多層膜2が基板から剥がれるきっかけとなる剥離誘因部を基板に形成し、前記多層膜2を補強部材4と共に基板から剥がすことにより得られる。図2に、基板10上に積層され、補強部材4が接着された多層膜2の概略断面図を示す。
次に、実施例によって本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。
The neutron mirror 1 forms a multilayer film 2 by alternately depositing a low refractive index substance and a high refractive index substance on a flat substrate by vapor deposition or sputtering, and a reinforcing member is formed on the multilayer film 2. After the 4 is bonded, a peeling inducing portion that causes the multilayer film 2 to be peeled off from the substrate is formed on the substrate, and the multilayer film 2 is peeled off from the substrate together with the reinforcing member 4. FIG. 2 shows a schematic cross-sectional view of the multilayer film 2 laminated on the substrate 10 and having the reinforcing member 4 bonded thereto.
EXAMPLES Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples.

イオンビームスパッタ装置(IBD-350;日本ビーコ株式会社)を用いて、直径200mm、厚さ0.7mmのディスク状のシリコン基板上にTiとNiCを交互に成膜し、これらTiとNiCの薄膜層からなる対層を4305層積層することで全体の厚さが18μmの多層膜を形成した。ベース真空度は4.0×10-8Torr以下、Ar+ビームを用いたスパッタ時の真空度は8×10-5Torrで行った。イオンソースのビーム電圧は800V、ビーム電流は180mA、サプレッサー格子の電圧(ビームのスイープに対応)は750Vとした。 Using an ion beam sputtering system (IBD-350; Nippon Biko Co., Ltd.), Ti and NiC are alternately formed on a disk-shaped silicon substrate with a diameter of 200 mm and a thickness of 0.7 mm. A multilayer film having a total thickness of 18 μm was formed by laminating 4305 pairs of layers. The degree of base vacuum was 4.0 × 10 −8 Torr or less, and the degree of vacuum during sputtering using an Ar + beam was 8 × 10 −5 Torr. The ion source beam voltage was 800V, the beam current was 180mA, and the suppressor grid voltage (corresponding to the beam sweep) was 750V.

前記多層膜を構成する薄膜層は、膜厚(膜周期)がシリコン基板から離れるにつれて徐々に小さくなるように成膜されている。本実施例では、基板上に最初に形成されるNiCとTiの対層の薄膜層の厚さをそれぞれ70nm、13.5nmとし、それ以降の膜厚分布は下記の式に従い設定した。ここでDnは対層の厚さで、nは基板からの対層数を示す(d1 NiC=70nm、d1 Ti=13.5nmであるため、D1=83.5nmである)。UNiC及びUTiはNiCとTiの中性子が感じるポテンシャルである(単位はmeV)。
これは不完全性σ(主に界面拡散,層数nによって変化)を考慮した成膜の式で
パラメータはα及びσの二つから成る(同様の計算式は他にもあるが、ここではNuclear Instruments and Methods in Physics Research A 524 (2004) 273. N. K. Pleshanovを取り上げた)。求めたい反射率と製膜時間との関係によるが、通常のシリコン基板の場合で反射率を高める場合、α=1,σ〜0.5(nm)程度とすると良い。
The thin film layers constituting the multilayer film are formed so that the film thickness (film cycle) gradually decreases as the distance from the silicon substrate increases. In this example, the thicknesses of the NiC and Ti paired thin film layers initially formed on the substrate were 70 nm and 13.5 nm, respectively, and the subsequent film thickness distribution was set according to the following formula. Here, D n is the thickness of the counter layer, and n indicates the number of counter layers from the substrate (d 1 NiC = 70 nm, d 1 Ti = 13.5 nm, so D 1 = 83.5 nm). U NiC and U Ti are potentials that NiC and Ti neutrons feel (unit is meV).
This is a film formation formula that takes into account imperfection σ (mainly interfacial diffusion, which varies depending on the number of layers n), and the parameters consist of two parameters α and σ (there are other similar calculation formulas, but here Nuclear Instruments and Methods in Physics Research A 524 (2004) 273. NK Pleshanov was taken up). Although it depends on the relationship between the reflectance to be obtained and the film formation time, when the reflectance is increased in the case of a normal silicon substrate, α = 1, σ˜0.5 (nm) is preferable.

基板上に多層膜を形成した後、当該多層膜の表面に、厚さが0.1mmのPET(ポリエチレンテレフタレート)製の補強部材を接着した。そして、シリコン基板の縁部にハサミで切り目を入れることでシリコン基板から多層膜が剥がれるきっかけを与えた後、シリコン基板から多層膜及び補強部材を剥がした。   After forming the multilayer film on the substrate, a PET (polyethylene terephthalate) reinforcing member having a thickness of 0.1 mm was bonded to the surface of the multilayer film. Then, the edge of the silicon substrate was cut with scissors to give an opportunity to peel off the multilayer film from the silicon substrate, and then the multilayer film and the reinforcing member were peeled off from the silicon substrate.

図3にシリコン基板から剥がした後の多層膜の写真を示す。多層膜を成膜したφ200mmのエリア全てで薄膜層が剥離すること無くきれいに剥がれていることが分かる。また、図4は多層膜から補強部材を一部剥がした状態を示す。さらに、図5は、矩形状に切り取った後の多層膜を示す。図5の写真では、多層膜に補強部材が接着されており、自立可能であることが分かる。   FIG. 3 shows a photograph of the multilayer film after peeling from the silicon substrate. It can be seen that the thin film layer is peeled off cleanly in all the φ200 mm areas where the multilayer film is formed. FIG. 4 shows a state where a part of the reinforcing member is peeled off from the multilayer film. Further, FIG. 5 shows the multilayer film after being cut into a rectangular shape. In the photograph of FIG. 5, it can be seen that the reinforcing member is bonded to the multilayer film and can stand on its own.

得られた多層膜は自由に丸めることができるため、適宜の曲面を有する基材に貼り付けて中性子導管等にすることができる。例えば図6は、中空の円錐状の基材の内周面に本実施例で得られた多層膜を貼り付けることで形成された導管を示す。図6(a)は補強部材を取り除いた多層膜を丸めて円錐状にしたもの及び中空の円錐状の基材を、(b)は前記多層膜を基材の内周面に貼り付けた様子を示す。   Since the obtained multilayer film can be freely rolled, it can be attached to a substrate having an appropriate curved surface to form a neutron conduit or the like. For example, FIG. 6 shows a conduit formed by adhering the multilayer film obtained in the present embodiment to the inner peripheral surface of a hollow conical base material. FIG. 6 (a) shows a multi-layered film with a reinforcing member removed and a conical shape and a hollow conical base material, and FIG. 6 (b) shows the multi-layer film attached to the inner peripheral surface of the base material. Indicates.

本実施例で得られた多層膜の中性子反射性能を日本原子力研究開発機構 JRR-3 C3-1-2-3(MINE2)ビームポートの中性子反射率計を用いて測定した結果を図7に示す。
図7中、縦軸は反射率、下横軸はQ値、上横軸はm値を示す。m値はニッケル全反射臨界角に対する中性子ミラーの全反射臨界角Qcに対する比を示す。一般に、中性子ミラーの性能評価は、m値及びその立ち上がりの反射率が用いられる。
図7から分かるように、本実施例の多層膜は反射率の低下が始まるm値が4.5付近であること、及びその時の反射率が約0.8であることから、中性子ミラーとして大変優れていることが分かる。
FIG. 7 shows the results of measuring the neutron reflection performance of the multilayer film obtained in this example using a neutron reflectometer of the Japan Atomic Energy Agency JRR-3 C3-1-2-3 (MINE2) beam port. .
In FIG. 7, the vertical axis represents the reflectance, the lower horizontal axis represents the Q value, and the upper horizontal axis represents the m value. The m value indicates the ratio of the total reflection critical angle Qc of the neutron mirror to the nickel total reflection critical angle. In general, performance evaluation of a neutron mirror uses the m value and the reflectivity of its rise.
As can be seen from FIG. 7, the multilayer film of this example is very excellent as a neutron mirror because the m value at which the reflectance starts to decrease is around 4.5 and the reflectance at that time is about 0.8. I understand.

尚、上記実施例では、NiC/Ti多層膜の最初の薄膜(NiC膜)の厚さを70nmとし、多層膜全体の厚さを18μmとしたが、NiC/Ti多層膜の場合は、最初の薄膜の厚さが60nm、多層膜全体の厚さが2μmあれば、基板に切り目を入れるだけで基板から容易に剥がすことができる。
また、上記実施例ではNiC/Ti多層膜中性子ミラーについて説明したが、本発明は、Ni/Ti多層膜中性子ミラー等、適宜の多層膜中性子ミラーに適用可能である。
In the above embodiment, the thickness of the first thin film (NiC film) of the NiC / Ti multilayer film is 70 nm and the thickness of the entire multilayer film is 18 μm. However, in the case of the NiC / Ti multilayer film, If the thickness of the thin film is 60 nm and the total thickness of the multilayer film is 2 μm, it can be easily peeled off from the substrate simply by making a cut in the substrate.
Moreover, although the NiC / Ti multilayer neutron mirror has been described in the above embodiment, the present invention can be applied to an appropriate multilayer neutron mirror such as a Ni / Ti multilayer neutron mirror.

さらに、本発明は、多層膜ミラーだけでなく単層膜ミラーにも適用できる。具体的には、本発明者は、基板に厚さ70nmのNiC膜を成膜し、その上に厚さ2μmの補助支持膜(Ti膜)を積層した単層膜ミラーについても、基板に切り目を入れることで基板から容易に剥がすことができ、NiC単層の全反射膜の中性子反射特性を有することを確認している。   Furthermore, the present invention can be applied not only to a multilayer mirror but also to a single layer mirror. Specifically, the present inventor also made a cut on the substrate for a single-layer film mirror in which a NiC film having a thickness of 70 nm was formed on a substrate and an auxiliary support film (Ti film) having a thickness of 2 μm was laminated thereon. It can be easily peeled off from the substrate by adding, and it has been confirmed that it has the neutron reflection characteristics of the NiC single layer total reflection film.

1…中性子ミラー
2…多層膜
3…接着剤
4…補強部材
10…基板
DESCRIPTION OF SYMBOLS 1 ... Neutron mirror 2 ... Multilayer film 3 ... Adhesive 4 ... Reinforcement member 10 ... Substrate

Claims (6)

屈折率が異なる2種類の物質の薄膜層から成る対層を積層した多層膜からなる中性子ミラーの製造方法において、
平板状の基板上に、前記多層膜を、前記対層の周期が徐々に小さくなるように形成する工程と、
前記基板から前記多層膜が剥がれるきっかけとなる剥離誘因部を形成する工程を有することを特徴とする中性子ミラーの製造方法。
In a method for manufacturing a neutron mirror composed of a multilayer film in which a pair of thin film layers of two kinds of substances having different refractive indexes are laminated,
Forming the multilayer film on a flat substrate so that the period of the counter layer gradually decreases;
A method of manufacturing a neutron mirror, comprising a step of forming a peeling inducing portion that causes the multilayer film to peel from the substrate.
前記多層膜の最後に、該多層膜の他の薄膜よりも膜厚が大きい補助支持膜を積層することを特徴とする請求項1に記載の中性子ミラーの製造方法。   The method for manufacturing a neutron mirror according to claim 1, wherein an auxiliary support film having a larger film thickness than other thin films of the multilayer film is laminated at the end of the multilayer film. 前記基板に前記多層膜を形成した後、該多層膜を補強するための補強部材を前記多層膜の上に接着してから、前記剥離誘因部を形成することを特徴とする請求項1又は2に記載の中性子ミラーを製造する方法。   3. The peeling inducing portion is formed after the multilayer film is formed on the substrate and then a reinforcing member for reinforcing the multilayer film is adhered onto the multilayer film. A method for producing the neutron mirror described in 1. 前記補強部材は、前記多層膜から取り外し可能に接着されることを特徴とする請求項3に記載の中性子ミラーの製造方法。   The method of manufacturing a neutron mirror according to claim 3, wherein the reinforcing member is detachably bonded from the multilayer film. 前記補強部材が、ポリエチレンテレフタレート(PET)製の可撓性板材であることを特徴とする請求項3又は4に記載の中性子ミラーの製造方法。   The method of manufacturing a neutron mirror according to claim 3 or 4, wherein the reinforcing member is a flexible plate made of polyethylene terephthalate (PET). 請求項1〜5のいずれかに記載の製造方法で得られた多層膜から成る中性子ミラー。   A neutron mirror comprising a multilayer film obtained by the production method according to claim 1.
JP2010123375A 2010-05-28 2010-05-28 Neutron mirror manufacturing method and neutron mirror Expired - Fee Related JP5552635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010123375A JP5552635B2 (en) 2010-05-28 2010-05-28 Neutron mirror manufacturing method and neutron mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010123375A JP5552635B2 (en) 2010-05-28 2010-05-28 Neutron mirror manufacturing method and neutron mirror

Publications (3)

Publication Number Publication Date
JP2011247825A true JP2011247825A (en) 2011-12-08
JP2011247825A5 JP2011247825A5 (en) 2013-07-11
JP5552635B2 JP5552635B2 (en) 2014-07-16

Family

ID=45413251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010123375A Expired - Fee Related JP5552635B2 (en) 2010-05-28 2010-05-28 Neutron mirror manufacturing method and neutron mirror

Country Status (1)

Country Link
JP (1) JP5552635B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114428091A (en) * 2021-12-29 2022-05-03 苏州闻道电子科技有限公司 Ni/Ti aperiodic multilayer film, preparation method and application thereof, and Ni/Ti aperiodic multilayer film neutron super-reflector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172939A (en) * 1987-01-13 1988-07-16 Daicel Chem Ind Ltd Analysis of composition of thin film
JPH05142396A (en) * 1991-11-25 1993-06-08 Nitto Denko Corp X-ray reflecting mirror, x-ray image forming device and x-ray condensing device
JPH08211198A (en) * 1995-02-06 1996-08-20 Nikon Corp Neutron reflector
JP2001033593A (en) * 1999-07-22 2001-02-09 Mitsubishi Pencil Co Ltd Neutron carbon mirror and its manufacture
JP2005252236A (en) * 2004-01-23 2005-09-15 Semiconductor Energy Lab Co Ltd Film-like commodity and manufacturing method therefor
JP2009156863A (en) * 2007-12-05 2009-07-16 Canon Inc Optical element for x-ray

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172939A (en) * 1987-01-13 1988-07-16 Daicel Chem Ind Ltd Analysis of composition of thin film
JPH05142396A (en) * 1991-11-25 1993-06-08 Nitto Denko Corp X-ray reflecting mirror, x-ray image forming device and x-ray condensing device
JPH08211198A (en) * 1995-02-06 1996-08-20 Nikon Corp Neutron reflector
JP2001033593A (en) * 1999-07-22 2001-02-09 Mitsubishi Pencil Co Ltd Neutron carbon mirror and its manufacture
JP2005252236A (en) * 2004-01-23 2005-09-15 Semiconductor Energy Lab Co Ltd Film-like commodity and manufacturing method therefor
JP2009156863A (en) * 2007-12-05 2009-07-16 Canon Inc Optical element for x-ray

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114428091A (en) * 2021-12-29 2022-05-03 苏州闻道电子科技有限公司 Ni/Ti aperiodic multilayer film, preparation method and application thereof, and Ni/Ti aperiodic multilayer film neutron super-reflector

Also Published As

Publication number Publication date
JP5552635B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
Toma et al. Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films
JP5434867B2 (en) Touch panel, information input device, and display device
JP5205186B2 (en) Laminate storage method
JP5067071B2 (en) Grid polarizer and manufacturing method thereof
TW201629990A (en) Transparent electroconductive film and touch sensor in which same is used
JP2016030374A (en) Transparent conductive laminate and production method of the same, method for producing transparent conductive film, and method for producing transparent conductive film winding body
JP5552635B2 (en) Neutron mirror manufacturing method and neutron mirror
JP2009115867A (en) Manufacturing method of reflection film and reflection film
US11091830B2 (en) Moth-eye transfer mold, method of manufacturing moth-eye transfer mold, and method of transferring moth-eye structure
JPH05129642A (en) Amorphous silicon solar cell and manufacture thereof
JP2004077632A (en) Prism sheet
JP5019243B1 (en) Antireflection film
Yang et al. Comparative study of single-layer, bilayer, and trilayer mirrors with enhanced x-ray reflectance in 0.5-to 8-keV energy region
JP5477351B2 (en) Gas barrier laminate and method for producing the same
JP6913628B2 (en) Laminate
CN114447146B (en) Repair method of SIPM detector
JPH04296061A (en) Manufacture of photovoltaic device
Owens et al. Multilayer coated thin foil mirrors for InFOCuS
Li et al. Damage study on B4C films using a table-top nanosecond EUV damage instrument
JP2016164618A (en) Transfer film, roll body of transfer film, optical film, roll body of optical film, image display device, production method of transfer film, and production method of optical film
Bu et al. A Simple and Effective Method to Adjust the Structure and Performance of DLC Films on Polymethyl Methacrylate (PMMA) Substrate
WO2019071499A1 (en) Method for preparing mica film
Oliver Nesa Raj et al. Depletion of Reflectance of Silicon Surface Textured Using Nano Second Fiber Laser
JP5838578B2 (en) Gas barrier laminate
JP2019053199A (en) Sheet type display device and method for fixing sheet type display device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5552635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees