JP2011238779A - Conductive joint structure, semiconductor device using same, and method of manufacturing semiconductor device - Google Patents

Conductive joint structure, semiconductor device using same, and method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2011238779A
JP2011238779A JP2010109158A JP2010109158A JP2011238779A JP 2011238779 A JP2011238779 A JP 2011238779A JP 2010109158 A JP2010109158 A JP 2010109158A JP 2010109158 A JP2010109158 A JP 2010109158A JP 2011238779 A JP2011238779 A JP 2011238779A
Authority
JP
Japan
Prior art keywords
mesh
resin
semiconductor device
metal
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010109158A
Other languages
Japanese (ja)
Inventor
Akiyoshi Sawai
章能 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010109158A priority Critical patent/JP2011238779A/en
Publication of JP2011238779A publication Critical patent/JP2011238779A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/29076Plural core members being mutually engaged together, e.g. through inserts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • H01L2224/29083Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

PROBLEM TO BE SOLVED: To provide a conductive joint material, along with a semiconductor device of high reliability, in which a stress can be reduced that is applied on a joint part between a semiconductor element and a circuit pattern, during a thermal cycle at the time of manufacturing or operation.SOLUTION: A conductive joint structure 5 is interposed between facing surfaces 6f and 7f of two members 6 and 7 that face each other across a predetermined interval t, for jointing the two members 6 and 7 for electrical conduction. It includes a net-like resin body (resin mesh) 4 which is formed in sheet using resin fiber 4f and is installed between the facing surfaces 6f and 7f so that the sheet surface faces the facing surfaces 6f and 7f, and a baked structure 1s which is formed by packing metal fine particles 1 having a particle size smaller than a diameter φof the resin fiber 4f and an aperture Dof the mesh of the net-like resin body 4 between the facing surfaces 6f and 7f, including the interior of mesh, which is baked at a temperature lower than the melting point of the metal.

Description

本発明は、導電性を有する接合構造体の構成に関するもので、とくに高温で動作する半導体装置に適した導電性接合構造体に関する。   The present invention relates to a structure of a conductive bonding structure, and particularly relates to a conductive bonding structure suitable for a semiconductor device that operates at a high temperature.

インバーターなどの電力用半導体装置に使用されるスイッチング素子(IGBT、MOSFET等)や整流素子では、電力損失を低減する必要があり、近年、例えば、炭化ケイ素(SiC)、窒化ガリウムのようなワイドバンドギャップ半導体の電力用半導体装置が開発されている。ワイドギャップ半導体の場合、素子自身の耐熱性が高く、大電流による高温動作が可能であるが、その特性を発揮するためには、動作発熱を効率的に放熱するため、電気伝導性に加え熱伝導性に優れた接合材料が必要とされる。   In switching elements (IGBT, MOSFET, etc.) and rectifier elements used in power semiconductor devices such as inverters, it is necessary to reduce power loss. In recent years, for example, wide bands such as silicon carbide (SiC) and gallium nitride. Gap semiconductor power semiconductor devices have been developed. In the case of a wide gap semiconductor, the element itself has high heat resistance and can operate at a high temperature with a large current. However, in order to exhibit its characteristics, in order to efficiently dissipate the operating heat, heat is added to the electrical conductivity. A bonding material with excellent conductivity is required.

一方、接合材料としてこれまで半導体装置や半導体モジュールで使用されてきた鉛入り高融点はんだに替わり、Au−Sn系またはSn−Ag−Cu系の熱伝導率の高い鉛フリーはんだ材料が使用されるようになってきた。しかし、これらの鉛フリーはんだでは、熱履歴による金属間化合物の成長や異種材料を接合することで接合部に応力集中が発生し、接合部の信頼性を損なわれることがあった。そこで、銅、銀、金、白金の粒径が1nm〜20nmといったナノサイズの金属微粒子を含むペーストを接合材として用い、金属微粒子同士を焼結させ、絶縁基板の銅箔とパワー半導体チップの電極を接合する半導体装置の製造方法(例えば特許文献1参照。)や、焼結性の金属微粒子中に金属繊維を含むようにした接合材料(例えば特許文献2参照。)が提案されている。   On the other hand, a lead-free solder material having high thermal conductivity such as Au-Sn or Sn-Ag-Cu is used instead of lead-containing high-melting-point solder that has been used in semiconductor devices and semiconductor modules. It has become like this. However, in these lead-free solders, the growth of intermetallic compounds due to thermal history or the joining of dissimilar materials causes stress concentration at the joint, which may impair the reliability of the joint. Therefore, a paste containing nano-sized metal fine particles such as copper, silver, gold and platinum having a particle size of 1 nm to 20 nm is used as a bonding material, the metal fine particles are sintered together, and the copper foil of the insulating substrate and the electrode of the power semiconductor chip A semiconductor device manufacturing method (for example, see Patent Document 1) and a joining material (for example, see Patent Document 2) in which metal fibers are included in sinterable metal fine particles have been proposed.

特開2006−352080号公報(段落0036、0044〜0046、図1)JP 2006-352080 A (paragraphs 0036, 0044 to 0046, FIG. 1) 特開2008−4651号公報(段落0021、図1、図5)JP 2008-4651 A (paragraph 0021, FIGS. 1 and 5)

上記のようにナノサイズの金属微粒子を用いると、粒子表面の活性により、例えば、融点が961℃の銀でも、150〜300℃という低い温度で焼結し接合を行うことができる。しかしながら、焼結系金属微粒子ペーストは、焼結反応によって引き起こされる焼結収縮により、接合部に収縮応力が発生する。収縮は半導体素子と金属板を接合面内に圧縮する方向に働き、接合層に応力(接合層の弾性率と歪みの積)として残留する。また、焼結体の金属組織は硬い(弾性率が大きい)ため、半導体装置の駆動や停止の繰返しに伴う温度サイクル等において、熱応力が大きくなる。これら収縮応力と熱応力は、しばしば半導体素子自身のクラック、接合層のクラック、接合界面の剥離など半導体装置の機能を損傷する問題を引き起こす。この現象は、焼結性の金属微粒子中に金属繊維を加えた場合や、特許文献1の段落0080に記されているように粒子径の異なる金属微粒子を加えた場合でも同様に生じる。   When nano-sized metal fine particles are used as described above, for example, even silver having a melting point of 961 ° C. can be sintered and bonded at a low temperature of 150 to 300 ° C. due to the activity of the particle surface. However, in the sintered metal fine particle paste, shrinkage stress is generated in the joint due to sintering shrinkage caused by the sintering reaction. Shrinkage acts in the direction in which the semiconductor element and the metal plate are compressed into the bonding surface, and remains in the bonding layer as stress (product of the elastic modulus and strain of the bonding layer). Further, since the metal structure of the sintered body is hard (having a large elastic modulus), thermal stress increases in a temperature cycle or the like accompanying repeated driving and stopping of the semiconductor device. These shrinkage stress and thermal stress often cause problems that damage the function of the semiconductor device, such as cracks in the semiconductor element itself, cracks in the bonding layer, and peeling at the bonding interface. This phenomenon similarly occurs when metal fibers are added to the sinterable metal fine particles, or when metal fine particles having different particle diameters are added as described in paragraph 0080 of Patent Document 1.

この発明は、上記のような問題点を解決するためになされたものであり、製造時や動作時の熱サイクルにおいて接合部にかかる応力を低減できる導電性接合構造体、および信頼性の高い半導体装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and is a conductive joint structure that can reduce stress applied to a joint portion in a thermal cycle during manufacturing or operation, and a highly reliable semiconductor. The object is to obtain a device.

本発明にかかる導電性接合構造体は、所定の間隔をあけて対向する2つの部材の対向面間に介在して、前記2つの部材を導電接合する導電性接合構造体であって、樹脂繊維を用いてシート状に形成され、シート面が前記対向面に向くように前記対向面間に敷設された網状樹脂体と、前記樹脂繊維の径および前記網状樹脂体の網目の開口よりも小さな粒子径を有する金属微粒子を、前記網目内を含む前記対向面間に充填し、当該金属の融点よりも低い温度で焼結することにより形成される焼結構造体と、を備えたものである。   A conductive joint structure according to the present invention is a conductive joint structure that is interposed between opposing surfaces of two members that face each other with a predetermined gap therebetween, and that conductively joins the two members. A reticulated resin body formed between the opposing surfaces so that the sheet surface faces the opposing surface, and particles smaller than the diameter of the resin fibers and the mesh openings of the reticulated resin body A sintered structure formed by filling metal fine particles having a diameter between the opposing surfaces including the inside of the mesh and sintering at a temperature lower than the melting point of the metal.

この発明によれば、金属微粒子焼結体による剛直な金属マトリクス内に樹脂繊維による低弾性部位が存在することにより、破断のびや電気導電性、熱伝導性を維持しながら接合部材の弾性率を低く抑えることができるので、焼結時やヒートサイクル時に接合部にかかる応力を低減し、接合部の信頼性を向上させることができる。また、その導電性接合構造体を用いて半導体素子を接合した半導体装置は信頼性が高くなる。   According to the present invention, the elastic modulus of the joining member is maintained while maintaining breakage, electrical conductivity, and thermal conductivity by the presence of the low elasticity portion due to the resin fiber in the rigid metal matrix due to the metal fine particle sintered body. Since it can hold down low, the stress concerning a junction part at the time of sintering or a heat cycle can be reduced, and the reliability of a junction part can be improved. In addition, a semiconductor device in which a semiconductor element is bonded using the conductive bonding structure has high reliability.

本発明の実施の形態1にかかる導電性接合構造体および接合体の構成を説明するための図である。It is a figure for demonstrating the structure of the electroconductive junction structure concerning Embodiment 1 of this invention, and a conjugate | zygote. 本発明の実施の形態1にかかる導電性接合構造体に用いる樹脂メッシュの構成を説明するための図である。It is a figure for demonstrating the structure of the resin mesh used for the electroconductive joining structure concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる導電性接合構造体による接合体の製造方法を説明するための工程ごとの状態を示す断面図である。It is sectional drawing which shows the state for every process for demonstrating the manufacturing method of the conjugate | zygote by the electroconductive joining structure concerning Embodiment 1 of this invention. 本発明の実施の形態2にかかる半導体装置の構成を説明するための部分を示す図である。It is a figure which shows the part for demonstrating the structure of the semiconductor device concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる半導体装置の製造方法を説明するための工程ごとの状態を示す断面図である。It is sectional drawing which shows the state for every process for demonstrating the manufacturing method of the semiconductor device concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる半導体装置の製造方法を説明するためのフローチャートである。7 is a flowchart for explaining a method for manufacturing a semiconductor device according to a second embodiment of the present invention; 本発明の実施の形態2の変形例にかかる半導体装置の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the semiconductor device concerning the modification of Embodiment 2 of this invention. 本発明の実施の形態3にかかる半導体装置の製造方法を説明するための工程ごとの状態を示す断面図である。It is sectional drawing which shows the state for every process for demonstrating the manufacturing method of the semiconductor device concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる半導体装置の製造方法を説明するためのフローチャートである。12 is a flowchart for explaining a manufacturing method of a semiconductor device according to a third embodiment of the present invention;

実施の形態1.
図1〜図3は、本発明の実施の形態1にかかる導電性接合構造体、および導電性接合構造体の形成方法を説明するための図である。図1は導電性接合構造体の構成を説明するための図であり、図1(a)は2つの被接合部材を接合した接合体を示す平面図で、導電性接合構造体において樹脂メッシュ(網状樹脂体)が挿入された範囲を示すために一部を透過させた状態の図、図1(b)は図1(a)のA−A線を切断面とする断面図である。図2は導電性接合構造体に用いる樹脂メッシュの構成を説明するための図であり、図2(a)は樹脂メッシュの平面図、図2(b)は図2(a)におけるa−a線を切断線とする断面図である。図3は、導電性接合構造体を構成するために、図2(a)におけるメッシュのa−a線またはb−b線断面に対応する接合工程中の断面の状態を説明するためのものであり、図3(a)〜図3(d)は接合材料部分のみを、図3(e)は接合体内での導電性接合構造体部分を示す。
Embodiment 1 FIG.
1-3 is a figure for demonstrating the formation method of the electroconductive joining structure concerning Embodiment 1 of this invention, and an electroconductive joining structure. FIG. 1 is a diagram for explaining a configuration of a conductive joint structure, and FIG. 1A is a plan view showing a joint body obtained by joining two members to be joined. In the conductive joint structure, a resin mesh ( FIG. 1B is a cross-sectional view taken along the line AA in FIG. 1A, showing a state in which a part of the net-like resin body is inserted to show a range in which the mesh-like resin body is inserted. 2A and 2B are diagrams for explaining the configuration of the resin mesh used in the conductive bonding structure, in which FIG. 2A is a plan view of the resin mesh, and FIG. 2B is aa in FIG. 2A. It is sectional drawing which makes a line a cutting line. FIG. 3 is a view for explaining a state of a cross section during a joining process corresponding to a cross section taken along line aa or bb of the mesh in FIG. 2A in order to constitute a conductive joint structure. FIG. 3A to FIG. 3D show only the joining material portion, and FIG. 3E shows the conductive joining structure portion in the joined body.

図1に示すように、接合体10は、導電性材料である銅板6と半導体材料である半導体素子7とを本発明の実施の形態1にかかる導電性接合構造体5により接合したものであり、導電性接合構造体5は、焼結系の金属微粒子の焼結体1s中に網状樹脂体である樹脂メッシュ4を挿入したものである。樹脂メッシュ4は、図2(a)に示すように、縦方向の複数の繊維4fVと横方向の複数の繊維4fhとを編み込んでメッシュ状に形成した樹脂メッシュであり、接合対象物間の間隙(6f−7f間)に形成された導電性接合構造体5内で接合面となる対向面(図1の7f、6f)のほぼ全面をカバーするように接合面の延在方向に平行に配置されている。そして、樹脂メッシュ4の縦方向の繊維4fVと横方向の繊維4fhの径φ4fは、後述する焼結系の金属微粒子の径より大きな5〜100μmの範囲、網目の開口D4fも金属微粒子の径より大きな20〜500μmのものを用いた。なお、樹脂メッシュ4としての厚みtは、樹脂繊維4fの質や編み方、メッシュシートとしての平坦化処理等によって変化するが、おおよそ樹脂繊維の径φ4fの2倍の10〜200μmとなる。図2(b)に示すように、樹脂メッシュ4の繊維4fV、4fh(まとめて4)の繊維芯となる樹脂材料部分4maには、ポリエチレンテレフタレート(PET)、ナイロン、ポリフェニレンサルファイド(PPS)、液晶ポリマー、アラミド繊維などの有機材料を用い、表面は、金属被覆層4mbにより被覆されている。 As shown in FIG. 1, a joined body 10 is obtained by joining a copper plate 6 that is a conductive material and a semiconductor element 7 that is a semiconductor material by the conductive joint structure 5 according to the first exemplary embodiment of the present invention. The conductive joint structure 5 is obtained by inserting a resin mesh 4 which is a net-like resin body into a sintered body 1s of sintered metal fine particles. As shown in FIG. 2A, the resin mesh 4 is a resin mesh formed in a mesh shape by weaving a plurality of fibers 4 fV in the vertical direction and a plurality of fibers 4 fh in the horizontal direction. In the conductive bonding structure 5 formed in the gap (between 6f and 7f), it is parallel to the extending direction of the bonding surface so as to cover almost the entire facing surface (7f and 6f in FIG. 1) serving as the bonding surface. Is arranged. The diameter φ 4f of the longitudinal fibers 4 fV and the lateral fibers 4 fh of the resin mesh 4 is in the range of 5 to 100 μm larger than the diameter of the sintered metal fine particles described later, and the mesh opening D 4f is also a metal. The thing of 20-500 micrometers larger than the diameter of microparticles | fine-particles was used. The thickness t 4 of the resin mesh 4, quality and knitting resin fibers 4f, will vary with the flattening process such as a mesh sheet is 2 times the 10~200μm approximate resin fiber diameter phi 4f . As shown in FIG. 2 (b), the resin material portion 4 ma as the fiber core of the fiber 4 of the resin mesh 4 fV, 4 fh (collectively 4 f), polyethylene terephthalate (PET), nylon, polyphenylene sulfide ( An organic material such as PPS), liquid crystal polymer, or aramid fiber is used, and the surface is covered with a metal coating layer 4 mb .

金属被覆層4mbの最表面の被覆金属としては、金が優れているが、銀、パラジウム(Pd)、白金(Pt)も安定性に優れて適している。また、貴金属以外でもすず(Sn)、銅が使用可能で、はんだ(SnAg、SnPb、AuSn)も適用可能である。金属被覆層4mbの厚さは0.03μm〜2μmの範囲が好適である。これらの金属を被覆する際、最表面の金属層と樹脂繊維芯4maとの間の密着性を改善するために、上記のような金に対してニッケル層を設けるように、はんだに対して銅層等の中間層を設けることも可能である。また、被覆方法としては、無電解メッキを用いたが、その他プラズマ蒸着等の一般的な被覆技術を用いることができる。また、金属被覆層4mbは樹脂繊維芯4maを編んだ後(メッシュ化後)に行うのが通常であるが、逆に素線段階(メッシュに編み込む前)で金属被覆層4mbを形成した繊維4を編んで(メッシュ化して)も良い。 As the coating metal on the outermost surface of the metal coating layer 4 mb , gold is excellent, but silver, palladium (Pd), and platinum (Pt) are also suitable because of their excellent stability. Moreover, tin (Sn) and copper can be used other than precious metals, and solder (SnAg, SnPb, AuSn) can also be applied. The thickness of the metal coating layer 4 mb is preferably in the range of 0.03 μm to 2 μm. When coating these metals, in order to improve the adhesion between the outermost metal layer and the resin fiber core 4 ma , a nickel layer is provided on the gold, as described above, against the solder. It is also possible to provide an intermediate layer such as a copper layer. Moreover, although electroless plating was used as a coating method, other general coating techniques such as plasma deposition can be used. The metal coating layer 4 mb is usually formed after the resin fiber core 4 ma is knitted (after meshing), but conversely, the metal coating layer 4 mb is formed at the strand stage (before knitting into the mesh). The woven fiber 4f may be knitted (made into a mesh).

図3は本発明の実施の形態に係る導電性接合構造体を形成する際の工程を説明するための、焼結過程毎のイメージを示す概略断面図である。図3(a)は、導電性接合構造体の主構成材料である焼結体1sのもとになる銀フィラー1を含有する焼結銀ペースト材料3と樹脂メッシュ4の断面(a−a断面相当)を示すものである。焼結銀ペースト3は表面分散剤(図示せず)で被覆された銀フィラー1を分散媒2に分散させた焼結系ペースト材料であり、分散媒2には、アルコール系、エーテル系、グリコールエーテル系、酢酸エステル系などを用い、焼結系ペースト材料3中の体積分率は約50%である。銀フィラー1の粒径は1nm〜10μmであり、形状は球状であってもフレーク状であっても良い。銀フィラー1の表面分散剤は例えば有機のアルコキシド系であり、銀フィラー1の表面を保護している。また、金属微粒子としては銀(Ag)が熱伝導性、電気伝導性、安定性の観点から好適材料であるが、その他、金(Au)や銅(Cu)などの微粒子も、その金属の融点よりも低い温度で焼結することができるので、焼結系ペースト材料の骨材として用いることができる。   FIG. 3 is a schematic cross-sectional view showing an image for each sintering process, for explaining a process in forming the conductive joint structure according to the embodiment of the present invention. FIG. 3A shows a cross section (a-a cross section) of a sintered silver paste material 3 containing a silver filler 1 and a resin mesh 4 which is a basis of a sintered body 1 s which is a main constituent material of a conductive joint structure. Equivalent). The sintered silver paste 3 is a sintered paste material in which a silver filler 1 coated with a surface dispersant (not shown) is dispersed in a dispersion medium 2, and the dispersion medium 2 includes alcohol-based, ether-based, glycol The volume fraction in the sintered paste material 3 is about 50% using ether type, acetate type, or the like. The particle diameter of the silver filler 1 is 1 nm to 10 μm, and the shape may be spherical or flaky. The surface dispersant of the silver filler 1 is, for example, an organic alkoxide system, and protects the surface of the silver filler 1. Silver (Ag) is a suitable material from the viewpoint of thermal conductivity, electrical conductivity, and stability as the metal fine particles, but other fine particles such as gold (Au) and copper (Cu) also have a melting point of the metal. Since it can sinter at a temperature lower than that, it can be used as an aggregate of a sintered paste material.

はじめに、図3(a)に示すように、焼結系ペースト材料3を接合対象である例えば図1における銅板6上(図示せず)に所定厚みで印刷する。そして、印刷した焼結系ペースト材料3の塗膜の上に、接合面の範囲をカバーするように樹脂メッシュ4を乗せる。   First, as shown in FIG. 3A, the sintered paste material 3 is printed with a predetermined thickness on, for example, a copper plate 6 (not shown) in FIG. Then, the resin mesh 4 is placed on the printed coating film of the sintered paste material 3 so as to cover the range of the joint surface.

つぎに、図3(b)に示すように、樹脂メッシュ4の上から、合計で樹脂メッシュ4の厚さtよりも厚くなるように、焼結系ペースト材料3をさらに塗布し、樹脂メッシュ4を焼結系ペースト材料3中に埋没させた接合構造前駆体5p1が形成される。 Next, as shown in FIG. 3 (b), the sintered paste material 3 is further applied from above the resin mesh 4 so as to be thicker than the total thickness t 4 of the resin mesh 4. A junction structure precursor 5 p1 in which 4 is embedded in the sintered paste material 3 is formed.

上記接合構造前駆体5p1を加熱して乾燥させる。これにより、図3(c)に示すようにペースト材料3に含まれる分散媒2が乾燥すると同時に、銀フィラー1間、樹脂メッシュ4の金属被覆層4mbと銀フィラー1間それぞれの焼結が開始した一次焼結体5p2が形成される。このときの加熱条件は、樹脂メッシュ4の主構成材料である樹脂繊維芯4maが溶融や分解を起こさない温度で行う必要があり、200℃以下の温度で30分程度保持している。この温度および保持時間は、骨材である金属微粒子1の表面を覆う表面分散剤の種類や分散媒の種類、および接合面(対向面)の大きさによって異なる。 The junction structure precursor 5 p1 is heated and dried. As a result, as shown in FIG. 3C, the dispersion medium 2 contained in the paste material 3 is dried, and at the same time, sintering between the silver filler 1 and between the metal coating layer 4 mb of the resin mesh 4 and the silver filler 1 is performed. The started primary sintered body 5 p2 is formed. The heating condition at this time needs to be performed at a temperature at which the resin fiber core 4ma, which is the main constituent material of the resin mesh 4, does not melt or decompose, and is maintained at a temperature of 200 ° C. or lower for about 30 minutes. This temperature and holding time vary depending on the type of surface dispersant covering the surface of the metal fine particles 1 that are aggregates, the type of dispersion medium, and the size of the bonding surface (opposing surface).

図3(d)は、図3(c)の一次焼結体5p2を更に加熱したもので、銀フィラー1間、樹脂メッシュ4の金属被覆層4mbと銀フィラー1間それぞれの焼結が完了した二次焼結体、つまり導電性接合構造体5を表している。加熱条件は、樹脂繊維芯4maが溶融や分解を起こず、銀フィラー1の焼結が進行する温度で行う必要があり、加熱温度250℃以下、加熱時間60分程度である。この温度および時間は、銀フィラー1および銀フィラー1表面の表面分散剤の種類によって異なる。 FIG. 3D shows a case where the primary sintered body 5 p2 of FIG. 3C is further heated. The sintering between the silver filler 1 and between the metal coating layer 4 mb of the resin mesh 4 and the silver filler 1 is performed. The completed secondary sintered body, that is, the conductive joint structure 5 is shown. The heating condition needs to be performed at a temperature at which the resin fiber core 4 ma does not melt or decompose and the sintering of the silver filler 1 proceeds, and the heating temperature is 250 ° C. or less and the heating time is about 60 minutes. The temperature and time vary depending on the type of the silver filler 1 and the surface dispersant on the surface of the silver filler 1.

このようにして、図3(e)に示すように、銅板6と半導体素子7とが導電性接合構造体5により電気的に接合された接合体10が形成される。このとき、接合層の厚さ、つまり導電性接合構造体5の厚さtに対して樹脂メッシュ4の厚さtが20〜100%になるように、焼結性ペースト材料3の塗布量を調節する。これにより、焼結性の骨材である銀フィラー1と樹脂メッシュ4が三次元網目構造で金属結合し、銀焼結体1sと樹脂メッシュ4の複合マトリクスが形成できる。すなわち、焼結銀1sの剛直な金属マトリクス内に低弾性部位を導入できる。金属マトリクス内に低弾性部位を導入した複合マトリクスは電気伝導と熱伝導のパスとして機能する。また、樹脂メッシュ4の繊維径φ4fが銀粒子1の寸法よりも大きいため、見かけ体積内(樹脂メッシュ4を含む一定体積内)の焼結点が減少し(銀粒子1の焼結密度が低下し)、焼結過程で発生する収縮応力を緩和する効果もある。 In this way, as shown in FIG. 3E, a joined body 10 is formed in which the copper plate 6 and the semiconductor element 7 are electrically joined by the conductive joined structure 5. At this time, the sinterable paste material 3 is applied so that the thickness t 4 of the resin mesh 4 is 20 to 100% with respect to the thickness of the bonding layer, that is, the thickness t 5 of the conductive bonding structure 5. Adjust the amount. Thereby, the silver filler 1 which is a sinterable aggregate, and the resin mesh 4 are metal-bonded by a three-dimensional network structure, and the composite matrix of the silver sintered body 1s and the resin mesh 4 can be formed. That is, a low elastic part can be introduced into the rigid metal matrix of sintered silver 1s. A composite matrix in which a low elastic portion is introduced into a metal matrix functions as a path for electric conduction and heat conduction. Further, since the fiber diameter φ 4f of the resin mesh 4 is larger than the dimension of the silver particles 1, the sintering point within the apparent volume (within the constant volume including the resin mesh 4) is reduced (the sintered density of the silver particles 1 is reduced). It also has the effect of relaxing the shrinkage stress generated during the sintering process.

上述した接合層厚さtに対する樹脂メッシュ4の厚さtの割合(20〜100%)、樹脂メッシュ4の繊維径φ4fの範囲(金属微粒子の径より大きく、5〜100μm)、樹脂メッシュの網目の開口D4fの範囲(金属微粒子の径より大きく、20〜500μm)は、上記のような複合マトリクスの機能を発現させるために必要なものである。樹脂メッシュ4の厚さtの割合、繊維径φ4f(厳密には樹脂繊維芯の径)が上記範囲より小さくなる、あるいは網目の開口D4fが上記範囲より大きくなると、低弾性部位が機能しなくなり、応力緩和効果が低下する。一方、樹脂メッシュ4の厚さtの割合、繊維径φ4fが上記範囲より大きくなる、あるいは網目の開口D4fが上記範囲より小さくなると、金属マトリクスが分断されて3次元網目構造が形成できなくなり、電気伝導と熱伝導パスの機能が低下する。 The ratio of the thickness t 4 of the resin mesh 4 to the bonding layer thickness t 5 described above (20 to 100%), the range of the fiber diameter φ 4f of the resin mesh 4 (larger than the diameter of the metal fine particles, 5 to 100 μm), resin The range of the mesh opening D 4f (larger than the diameter of the metal fine particles, 20 to 500 μm) is necessary to develop the function of the composite matrix as described above. When the ratio of the thickness t 4 of the resin mesh 4 and the fiber diameter φ 4f (strictly speaking, the diameter of the resin fiber core) is smaller than the above range, or the mesh opening D 4f is larger than the above range, the low elasticity portion functions. And the stress relaxation effect is reduced. On the other hand, when the ratio of the thickness t 4 of the resin mesh 4 and the fiber diameter φ 4f are larger than the above range, or the mesh opening D 4f is smaller than the above range, the metal matrix is divided to form a three-dimensional network structure. The function of electric conduction and heat conduction path is reduced.

また、樹脂メッシュ4の金属被覆層4mbにより、繊維4の機械的強度を向上させることができ、金属被覆層4mbの最表面が金、銀、パラジウム、白金、銅のいずれかである場合、焼結系銀粒子1と焼結反応するため、金属焼結体1sと樹脂メッシュ4の複合マトリクスが形成できる。すなわち、焼結銀1sと金属被覆層4mbとの剛直な金属マトリクス内に低弾性部位である樹脂メッシュの樹脂繊維芯4maを導入できる。複合マトリクスは電気伝導と熱伝導のパスとして機能する。 Moreover, the mechanical strength of the fiber 4 f can be improved by the metal coating layer 4 mb of the resin mesh 4, and the outermost surface of the metal coating layer 4 mb is any one of gold, silver, palladium, platinum, and copper. In this case, since a sintering reaction occurs with the sintered silver particles 1, a composite matrix of the metal sintered body 1s and the resin mesh 4 can be formed. That is, the resin fiber core 4 ma of the resin mesh which is a low elastic portion can be introduced into the rigid metal matrix of the sintered silver 1 s and the metal coating layer 4 mb . The composite matrix functions as a path for electrical and thermal conduction.

なお、上記利点を有するため、本実施の形態では金属被覆層4mbを有する樹脂メッシュ4で説明したが、金属被覆層4mbは必ずしも必要ではない。金属被覆層4mbがなくても、樹脂メッシュ4の繊維4は断面が波型形状であるため、アンカー効果により硬い金属焼結体1sの中で強く保持される。金属被覆層4mbがある場合と比較して電気伝導性と熱伝導性に劣るが、低弾性化効果と焼結収縮の低減効果は発現する。 In addition, in order to have the said advantage, although this Embodiment demonstrated with the resin mesh 4 which has the metal coating layer 4 mb , the metal coating layer 4 mb is not necessarily required. Even without the metal coating layer 4 mb, the fiber 4 f of the resin mesh 4 has a corrugated cross section, and thus is strongly held in the hard metal sintered body 1 s by the anchor effect. Although it is inferior in electrical conductivity and thermal conductivity as compared with the case where the metal coating layer 4 mb is present, the effect of reducing elasticity and the effect of reducing sintering shrinkage are exhibited.

なお、図3(e)では、半導体素子7の接合面となる対向面7fには金属層7cが設けられており、例えばNi(7μm厚)/Au(0.02μm厚)を施している。また、半導体素子7との接合対象である導電体6の本体は銅からなり、その接合面となる対向面6fにも1μm厚程度の金、銀、パラジウム、白金などの貴金属めっき層6cを形成している。   In FIG. 3 (e), a metal layer 7c is provided on the facing surface 7f, which is a bonding surface of the semiconductor element 7, and Ni (7 μm thickness) / Au (0.02 μm thickness) is applied, for example. The main body of the conductor 6 to be bonded to the semiconductor element 7 is made of copper, and a noble metal plating layer 6c such as gold, silver, palladium, platinum or the like having a thickness of about 1 μm is formed on the facing surface 6f that is the bonding surface. is doing.

つぎに、本発明の実施の形態1にかかる導電性接合構造体の性能を試験するために、ガラス板上に導電性接続構造体5を作成し、フィルム状の導電性接続構造体5部分を取り出して、特性試験を実施した。   Next, in order to test the performance of the conductive joint structure according to the first embodiment of the present invention, the conductive connection structure 5 is created on the glass plate, and the film-like conductive connection structure 5 portion is formed. The product was taken out and subjected to a characteristic test.

本発明の実施の形態にかかる実施例1として、樹脂メッシュ4には、セーレン(株)製Sui-40-20047を使用した。使用した樹脂メッシュ4は、線径φ4f=47μmのポリエチレンテレフタレート(PET)繊維芯をメッシュ数200(1インチ当たり等間隔で200本)で編んだもので、樹脂繊維芯4maの表面に、中間被覆層として0.9μmのCu層を介し、最表面に厚さ0.1μmのNi層を配置した金属被覆層4mbを形成し、メッシュとしての厚みtを88μmとした。そして、焼結性の金属微粒子1としては、表面分散剤で被覆された平均粒径1〜2μmの銀フィラーを採用し、アルコール系分散媒2に分散および混練して、焼結系ペースト材料3を作成した。アルコール系分散媒として、2−エチル−1,3−ヘキサンジオールを用いた。焼結系銀フィラー1と分散媒2の比は、重量比で91:9(体積比で48:52相当)とした。 As Example 1 according to the embodiment of the present invention, Sui-40-20047 manufactured by Seiren Co., Ltd. was used for the resin mesh 4. The resin mesh 4 used is a knitted polyethylene terephthalate (PET) fiber core having a wire diameter of φ 4f = 47 μm with a mesh number of 200 (200 at equal intervals per inch). On the surface of the resin fiber core 4 ma , A metal coating layer 4 mb in which an Ni layer having a thickness of 0.1 μm was arranged on the outermost surface was formed as an intermediate coating layer through a Cu layer of 0.9 μm, and the thickness t 4 as a mesh was 88 μm. As the sinterable fine metal particles 1, a silver filler having an average particle diameter of 1 to 2 μm coated with a surface dispersant is adopted, dispersed and kneaded in the alcohol-based dispersion medium 2, and the sintered paste material 3 It was created. 2-ethyl-1,3-hexanediol was used as the alcohol-based dispersion medium. The ratio between the sintered silver filler 1 and the dispersion medium 2 was 91: 9 by weight (equivalent to 48:52 by volume).

上記焼結系ペースト材料3をガラス板上に100μmの厚さで印刷し、次に樹脂メッシュ4に張力を与えながら焼結系ペースト材料3の塗膜に押しつけた。更にその上から合計150μmの厚さになるように、焼結系ペースト材料3を印刷し、循環式オーブンで80℃・30分の条件で加熱し、分散媒2を乾燥させた後、同じく循環式オーブンで200℃・60分の条件で加熱し、厚さt=約100μmの樹脂メッシュ内蔵導電性焼結フィルム、つまり、実施例1にかかる導電性接合構造体5からなる焼結フィルム5を得た。 The sintered paste material 3 was printed on a glass plate with a thickness of 100 μm, and then pressed against the coating film of the sintered paste material 3 while applying tension to the resin mesh 4. Further, the sintered paste material 3 is printed so as to have a total thickness of 150 μm from above, heated in a circulation oven at 80 ° C. for 30 minutes, and the dispersion medium 2 is dried. Heating in a type oven at 200 ° C. for 60 minutes and a conductive sintered film with a built-in resin mesh having a thickness t 5 = about 100 μm, that is, a sintered film 5 comprising the conductive bonded structure 5 according to Example 1 F was obtained.

比較例1として、樹脂メッシュを内蔵せずに焼結系ペースト材料のみで形成した導電性接合構造体からなる焼結フィルム5CFを作成した。焼結系ペースト材料3をガラス板上に200μmの厚さで印刷し、循環式オーブンで80℃・30分の条件で加熱し、分散媒2を乾燥させた後、同じく循環式オーブンで200℃・60分の条件で加熱し、約90μm厚の焼結フィルム5CFを得た。 As Comparative Example 1 to prepare a sintered film 5 CF consisting only the formed conductive junction structure sintering based paste material without built-resin mesh. The sintered paste material 3 is printed on a glass plate with a thickness of 200 μm, heated in a circulation oven at 80 ° C. for 30 minutes, and the dispersion medium 2 is dried. and heated at for 60 minutes, thereby sintering film 5 CF of approximately 90μm thick.

得られた焼結フィルム5と5CFをそれぞれ、0.5×10×0.1mmの試験片に加工し、引っ張り強度試験機(TMA/SS6300:エスアイアイナノテクノロジー社製)を用い、引張速度を75μm/minに調整して引張強度試験を行った。評価結果を表1に示す。 The obtained sintered films 5 F and 5 CF were each processed into 0.5 × 10 × 0.1 mm test pieces, and then tensioned using a tensile strength tester (TMA / SS6300: manufactured by SII Nano Technology). The tensile strength test was conducted by adjusting the speed to 75 μm / min. The evaluation results are shown in Table 1.

Figure 2011238779
Figure 2011238779

表1に示すように、実施例1にかかる焼結フィルム5の弾性率は、比較例1にかかる焼結フィルム5CFに比べて、弾性率が2/3に減少している一方、破断延びが9.5倍に増加している。つまり、樹脂メッシュ4を内蔵した実施例1にかかる導電性接合構造体の焼結フィルム5は、樹脂メッシュを含まない比較例1の焼結フィルム5CFに比べて、破断延びを向上させるとともに、弾性率を低くできたことが分かる。半導体素子や回路パターンといった被接合体の接合面にかかる応力は接合層(本例では導電性接合構造体5)の弾性率に比例する(応力は弾性率と歪みの積)が、本発明の実施の形態にかかる導電性接合構造体は、接合強度(破断強度、破断のび)を保ったまま、弾性率を低く抑えているので、応力緩和特性に優れていることがわかる。 As shown in Table 1, the elastic modulus of the sintered film 5 F according to Example 1, as compared with the sintered film 5 CF of Comparative Example 1, whereas the elastic modulus is reduced to 2/3, fracture Elongation has increased 9.5 times. That is, the sintered film 5 F of a built-in resin mesh 4 Example 1 in such a conductive connection structure, as compared to the sintered film 5 CF of Comparative Example 1 containing no resin mesh, improves the fracture extends It can be seen that the elastic modulus could be lowered. The stress applied to the bonded surface of the object to be bonded, such as a semiconductor element or a circuit pattern, is proportional to the elastic modulus of the bonding layer (the conductive bonding structure 5 in this example) (stress is the product of the elastic modulus and strain). It can be seen that the conductive bonded structure according to the embodiment is excellent in stress relaxation characteristics because the elastic modulus is kept low while maintaining the bonding strength (breaking strength, elongation at break).

なお、焼結系ペースト材料3として、市販の材料(日本データマテリアル(株)製MAX102)を用いて実施例と比較例のサンプルを製作し、性能評価試験を行ったが、同様の結果を得ることができた。   In addition, although the sample of an Example and a comparative example was manufactured using the commercially available material (Nippon Data Material Co., Ltd. MAX102) as the sintering system paste material 3, and the performance evaluation test was done, the same result is obtained. I was able to.

以上のように、本発明の実施の形態1にかかる導電性接合構造体によれば、所定の間隔tをあけて対向する2つの部材6、7の対向面6f、7f間に介在して、2つの部材6、7を導電接合する導電性接合構造体5であって、樹脂繊維4fを用いてシート状に形成され、シート面が対向面6f、7fに向くように対向面6f、7f間に敷設された網状樹脂体(樹脂メッシュ)4と、樹脂繊維4fの径φ4fおよび網状樹脂体4の網目の開口D4fよりも小さな粒子径を有する金属微粒子1を、網目内を含む対向面6f、7f間に充填し、当該金属の融点よりも低い温度で焼結することにより形成される焼結構造体である金属微粒子焼結体1sと、を備えるように構成したので、金属微粒子焼結体1による剛直な金属マトリクス内に樹脂繊維4f(厳密には樹脂繊維芯4ma)による低弾性部位が存在することになり、破断のびや電気導電性、熱伝導性を維持しながら導電性接合構造体5の弾性率を低く抑えることができるので、焼結時やヒートサイクル時に接合部にかかる応力を低減し、接合部の信頼性を向上させることができる。 As described above, according to the conductive connection structure according to a first embodiment of the present invention, the opposing surfaces 6f of the two members 6 and 7 opposing with a predetermined gap t 5, interposed between 7f A conductive joint structure 5 that conductively joins two members 6 and 7 and is formed into a sheet shape using resin fibers 4f, and facing surfaces 6f and 7f so that the sheet surface faces the facing surfaces 6f and 7f. A net-like resin body (resin mesh) 4 laid between the metal fine particles 1 having a particle diameter smaller than the diameter φ 4f of the resin fibers 4f and the mesh openings D 4f of the net-like resin body 4 are opposed to each other including the inside of the mesh. Since the metal fine particle sintered body 1s, which is a sintered structure formed by filling between the surfaces 6f and 7f and sintering at a temperature lower than the melting point of the metal, is provided. resin into the rigid metal matrix in accordance with the sintered body 1 S (Strictly resin fibers wick 4 ma) Wei 4f will exist a low elasticity site by, beauty and electrically conductive fracture, to reduce the elastic modulus of the conductive connection structure 5 while maintaining the thermal conductivity Therefore, the stress applied to the joint during sintering or heat cycle can be reduced, and the reliability of the joint can be improved.

とくに、金属微粒子1を構成する金属が、銀、金、銅のうちのいずれかであるようにしたので、樹脂繊維芯4maが溶融や分解を起こさない温度で焼結させることができ、接合部の信頼性を向上させることができる。 In particular, since the metal constituting the metal fine particle 1 is any one of silver, gold, and copper, the resin fiber core 4 ma can be sintered at a temperature that does not cause melting or decomposition, The reliability of the part can be improved.

さらに、樹脂繊維4fの表面が、金属層4mbにより被覆されているようにしたので、繊維4の機械的強度を向上させることができ、電気伝導や熱伝導も良好となる。 Further, the surface of the resin fiber 4f, since as is covered by the metal layer 4 mb, can improve the mechanical strength of the fiber 4 f, also a good electrical conductivity and thermal conductivity.

そして、金属層4mbの最表面を構成する金属が、金、銀、パラジウム、白金、銅のいずれかである場合、焼結系銀粒子1と焼結反応するため、金属焼結体1sと樹脂メッシュ4の複合マトリクスを形成し、接合信頼性がさらに向上する。 And when the metal which comprises the outermost surface of metal layer 4 mb is either gold, silver, palladium, platinum, copper, in order to carry out a sintering reaction with the sintering type | system | group silver particle 1, metal sintered body 1s and A composite matrix of the resin mesh 4 is formed, and the bonding reliability is further improved.

また、樹脂メッシュ4の厚みtが、導電性接合構造体厚みtに対して20〜100%であるようにすると、金属微粒子焼結体1による剛直な金属マトリクス内で樹脂繊維芯4maによる低弾性部位が有効に機能し、破断のびや電気導電性、熱伝導性を維持しながら導電性接合構造体5の弾性率を効果的に低く抑えることができる。 The thickness t 4 of the resin mesh 4, when so from 20 to 100% with respect to the conductive connection structure thickness t 5, the resin fiber core 4 in the rigid metal matrix with metal particles sintered body 1 S The low elasticity part by ma functions effectively, and the elasticity modulus of the electroconductive joining structure 5 can be restrained effectively low, maintaining a fracture, electric conductivity, and thermal conductivity.

また、金属微粒子1の粒径が、1nm〜10μmの範囲であり、樹脂繊維の径φ4fが、5μm〜100μmの範囲であり、樹脂メッシュ4の網目の開口D4fが、20μm〜500μmの範囲であるように構成したので、焼結後に剛直な金属マトリクス内で金属被覆樹脂粒2による低弾性部位が有効に機能し、破断のびや電気導電性、熱伝導性を維持しながら導電性接合構造体5の弾性率を効果的に低く抑えることができる。 The particle diameter of the metal fine particle 1 is in the range of 1 nm to 10 μm, the diameter φ 4f of the resin fiber is in the range of 5 μm to 100 μm, and the mesh opening D 4f of the resin mesh 4 is in the range of 20 μm to 500 μm. Therefore, the low-elasticity part by the metal-coated resin particles 2 functions effectively in the rigid metal matrix after sintering, and the conductive joint structure is maintained while maintaining breakage, electrical conductivity, and thermal conductivity. The elastic modulus of the body 5 can be effectively reduced.

実施の形態2.
本発明の実施の形態2では、上述した導電性接合構造体を用いて製造した半導体装置および半導体装置の製造方法について説明する。図4〜図6は、実施の形態1で示した導電性接合構造体を用いて半導体素子を装着した半導体装置および半導体装置の製造方法を説明するためのもので、図4(a)は半導体装置の一部を示す平面図で、導電性接合構造体において樹脂メッシュが挿入された範囲を示すために一部を透過させた状態の図、図4(b)は、図1(a)のB−B線を切断面とする断面図である。図5は半導体素子と回路パターン間の接合部分の断面を拡大した拡大図で、図5(a)は接合直前の状態(図2のa−a断面に対応)、図5(b)は接合後の状態(図2のb−b断面に対応)を示す。また、図6は導電性接合構造体を用いて半導体装置を製造する方法を説明するためのフローチャートである。
Embodiment 2. FIG.
In Embodiment 2 of the present invention, a semiconductor device manufactured using the above-described conductive bonding structure and a method for manufacturing the semiconductor device will be described. 4 to 6 are for explaining a semiconductor device in which a semiconductor element is mounted using the conductive bonding structure shown in the first embodiment and a method for manufacturing the semiconductor device. FIG. FIG. 4B is a plan view showing a part of the apparatus, and shows a state in which a part of the conductive joining structure is permeated to show a range in which the resin mesh is inserted. FIG. 4B is a view of FIG. It is sectional drawing which makes a BB line a cut surface. FIG. 5 is an enlarged view of a cross section of a joint portion between a semiconductor element and a circuit pattern. FIG. 5A is a state immediately before joining (corresponding to the cross section aa in FIG. 2), and FIG. The later state (corresponding to the bb cross section in FIG. 2) is shown. FIG. 6 is a flowchart for explaining a method of manufacturing a semiconductor device using a conductive bonding structure.

図4は、本発明の導電性接合構造体を用いて製造した炭化ケイ素を用いたワイドギャップ半導体材料からなる半導体素子を実装した電力用半導体装置の部分を示す模式図であり、図において、電力用半導体装置100は、絶縁性の回路基板11上に複数の銅の回路パターン6、12が形成され、そのうちのひとつの回路パターン6にドレイン電極側を接合したSiCからなる半導体素子7が配置されている。   FIG. 4 is a schematic diagram showing a portion of a power semiconductor device on which a semiconductor element made of a wide gap semiconductor material using silicon carbide manufactured using the conductive bonding structure of the present invention is mounted. In the semiconductor device 100 for semiconductor use, a plurality of copper circuit patterns 6 and 12 are formed on an insulating circuit board 11, and a semiconductor element 7 made of SiC having a drain electrode side bonded to one of the circuit patterns 6 is disposed. ing.

この回路パターン6と半導体素子7との導電接合に実施の形態1で説明した樹脂メッシュ4を内蔵する導電性接合構造体を用いた。樹脂メッシュ4は、接合対象物である回路パターン6と半導体素子7の対向面6f/7f間の所定の面積範囲内に形成された導電性接合構造体5内で面積範囲のほぼ全面をカバーするように対向面の延在方向に平行に配置されている。   The conductive bonding structure including the resin mesh 4 described in the first embodiment is used for conductive bonding between the circuit pattern 6 and the semiconductor element 7. The resin mesh 4 covers almost the entire surface area within the conductive bonding structure 5 formed within a predetermined area range between the circuit pattern 6 which is a bonding target and the facing surfaces 6f / 7f of the semiconductor element 7. Thus, it arrange | positions in parallel with the extension direction of an opposing surface.

なお、半導体素子7のドレイン電極側の接合面には、図5に示すように金属層7cが設けられており、例えばNi(7μm厚)/Au(0.02μm厚)を施している。半導体素子7は、上述した炭化ケイ素以外にも、シリコンやいわゆるワイドバンドギャップ半導体である、ガリウム−ヒ素、窒化ガリウム、ダイヤモンドなどが用いられる。また、半導体素子7と対向する金属板である回路パターン6は銅からなり、その接合面にも1μm厚程度の金、銀、パラジウム、白金などの貴金属めっき層6cを形成している。   In addition, the metal layer 7c is provided in the junction surface by the side of the drain electrode of the semiconductor element 7 as shown in FIG. 5, for example, Ni (7 micrometers thickness) / Au (0.02 micrometers thickness) is given. In addition to the silicon carbide described above, the semiconductor element 7 is made of silicon or a so-called wide band gap semiconductor such as gallium-arsenide, gallium nitride, diamond, or the like. Further, the circuit pattern 6 which is a metal plate facing the semiconductor element 7 is made of copper, and a noble metal plating layer 6c made of gold, silver, palladium, platinum or the like having a thickness of about 1 μm is formed on the bonding surface.

つぎに、図5の拡大断面図および図6のフローチャートを用いて製造方法について説明する。
半導体素子7を実装するための回路パターン6が形成された回路基板11を所定位置にセッティングして接合を開始する(ステップS10)。図5(a)に示すように、銅の回路パターン6上(厳密には貴金属メッキ層6c上)の所定の範囲に焼結系ペースト3を印刷またはディスペンスにより樹脂メッシュ4の厚みtよりも厚く塗布(ステップS20)し、塗布膜の上に樹脂メッシュ4を載せる(ステップS30)。その上から半導体素子7を搭載し、半導体素子7の上から荷重をかけ、網目内に焼結系ペースト巻き込みながら樹脂メッシュ4を導電性ペースト3中に埋没させる(ステップS40)。次に、ホットプレートまたはオーブンのような乾燥装置により、80℃の温度で加熱する(ステップS50)。温度を維持して30分程度加熱すると、導電性ペースト3中の分散媒2の乾燥(揮発)が完了する(ステップS60で「Y」)ので、第2の加熱として、設定温度を200℃に上昇させて加熱する(ステップS70)。温度を維持して60分程度加熱すると、図5(b)に示すように、銀フィラー1どうしおよび銀フィラー1と樹脂メッシュ4の金属被覆層(金)4mbの焼結が完了(ステップS80で「Y」)し、導電性接合構造体5による半導体素子7と回路パターン6との接合が完了する(ステップS90)。
Next, the manufacturing method will be described with reference to the enlarged sectional view of FIG. 5 and the flowchart of FIG.
The circuit board 11 on which the circuit pattern 6 for mounting the semiconductor element 7 is formed is set at a predetermined position and bonding is started (step S10). As shown in FIG. 5 (a), than the thickness t 4 of the resin mesh 4 by printing or dispensing a sintering-based paste 3 in a predetermined range of the copper circuit pattern on 6 (strictly on precious metal plating layer 6c) A thick coating is applied (step S20), and the resin mesh 4 is placed on the coating film (step S30). The semiconductor element 7 is mounted thereon, a load is applied from above the semiconductor element 7, and the resin mesh 4 is buried in the conductive paste 3 while the sintered paste is wound into the mesh (step S40). Next, it heats at the temperature of 80 degreeC with drying apparatuses like a hotplate or oven (step S50). When the temperature is maintained and heated for about 30 minutes, drying (volatilization) of the dispersion medium 2 in the conductive paste 3 is completed (“Y” in step S60), so the set temperature is set to 200 ° C. as the second heating. It is raised and heated (step S70). When the temperature is maintained and heating is performed for about 60 minutes, as shown in FIG. 5B, sintering of the silver fillers 1 and the metal coating layer (gold) 4 mb of the silver filler 1 and the resin mesh 4 is completed (step S80). Then, the bonding of the semiconductor element 7 and the circuit pattern 6 by the conductive bonding structure 5 is completed (step S90).

キュア(ステップS50〜S80)の際、治具または組立装置により荷重を印加した状態で行っても良い。図示しないが、このようにして上記導電性接合構造体5を接合体の構成部分とした半導体装置100または半導体モジュールが製造できる。これらの半導体装置100は、特に導電性接合構造体5において優れた電気伝導性、熱伝導性、応力緩和性を有するため、高温動作環境に対応でき、熱ストレスに優れる。特に、パワー半導体装置は高温で使用されるので、更に効果が顕著となる。なお、図では金属被覆層4mbを有する樹脂メッシュ4で説明したが、実施の形態1で説明したように金属被覆層4mbがなくても、樹脂メッシュ4は、アンカー効果により硬い金属焼結体1sの中で強く保持される。金属被覆層4mbがある場合と比較して電気伝導性と熱伝導性に劣るが、低弾性化効果と焼結収縮の低減効果は発現する。 During the curing (steps S50 to S80), the load may be applied with a jig or an assembly apparatus. Although not shown, the semiconductor device 100 or the semiconductor module in which the conductive joint structure 5 is a constituent part of the joint body can be manufactured in this way. Since these semiconductor devices 100 have excellent electrical conductivity, thermal conductivity, and stress relaxation properties, particularly in the conductive bonding structure 5, they can cope with a high-temperature operating environment and are excellent in thermal stress. Particularly, since the power semiconductor device is used at a high temperature, the effect becomes more remarkable. In the figure, the resin mesh 4 having the metal coating layer 4 mb has been described. However, as described in the first embodiment, the resin mesh 4 can be sintered with a hard metal due to the anchor effect even without the metal coating layer 4 mb. Strongly held in the body 1s. Although it is inferior in electrical conductivity and thermal conductivity as compared with the case where the metal coating layer 4 mb is present, the effect of reducing elasticity and the effect of reducing sintering shrinkage are exhibited.

上記のような手順で導電性接合構造体5を構成することにより、焼結系ペースト材料3の塗膜内に空気を巻き込みこと無く、被接合体である半導体素子7や金属板6等を濡らす塗膜を形成することが可能である。また、均一な厚さの樹脂メッシュ4を介在させて接合するため、接合層厚さtに対する樹脂メッシュ4の厚さtの割合の範囲を50%〜100%に高めると、流動性のある焼結系ペースト3のみを塗布したときと較べて、半導体素子7の姿勢を制御することが可能である。つまり、導電性接合構造体5中に埋設した樹脂メッシュ4が、接合層の厚さtのばらつきを抑えて、半導体素子7の傾きを抑制する効果が生じる。これは、樹脂メッシュ4の縦横の繊維4fV,4fhが焼結系ペースト3の接合面に平行な方向への流動を抑える効果に加え、例えば、半導体素子7に加わる力のほとんどが樹脂メッシュ4を介して回路パターン6に伝わるような条件、例えば、焼結系ペースト3の塗布厚みに対して樹脂メッシュ4の初期厚み(接合工程前の解放時の生地厚み)を90〜120%程度に調整したような場合には、顕著となる。この場合、最終的な接合層厚さtに対する樹脂メッシュ4の厚さtの割合の範囲は80%〜100%とさらに高めに制限される。さらに、樹脂メッシュ4に金属被覆層4mbがある場合は、樹脂メッシュ4のうねりやカーリングが無く、前記の効果がより顕著となる。 By constructing the conductive bonding structure 5 in the above-described procedure, the semiconductor element 7 or the metal plate 6 that is the bonded body is wetted without involving air in the coating film of the sintered paste material 3. It is possible to form a coating film. In addition, since the resin mesh 4 having a uniform thickness is interposed and bonded, when the range of the ratio of the thickness t 4 of the resin mesh 4 to the bonding layer thickness t 5 is increased to 50% to 100%, the fluidity The posture of the semiconductor element 7 can be controlled as compared with the case where only a certain sintered paste 3 is applied. That is, the resin mesh 4 embedded in the conductive bonding structure 5 has an effect of suppressing the variation in the thickness t 5 of the bonding layer and suppressing the inclination of the semiconductor element 7. This is because the vertical and horizontal fibers 4 fV and 4 fh of the resin mesh 4 suppress the flow in the direction parallel to the bonding surface of the sintered paste 3 and, for example, most of the force applied to the semiconductor element 7 is the resin mesh. The initial thickness of the resin mesh 4 (the thickness of the fabric when released before the joining process) is set to about 90 to 120% with respect to the condition transmitted to the circuit pattern 6 through 4, for example, the coating thickness of the sintered paste 3. This becomes noticeable when adjusted. In this case, the range of the ratio of the thickness t 4 of the resin mesh 4 to the final bonding layer thickness t 5 is limited to 80% to 100%. Further, when the resin mesh 4 has the metal coating layer 4 mb , the resin mesh 4 does not swell or curl, and the above-described effect becomes more remarkable.

なお、上記製造方法では、樹脂メッシュ4を樹脂メッシュ4の厚みtよりも厚い焼結系ペースト3の塗膜にのせ、加圧することにより、焼結系ペースト3中に埋没させていた(ステップS20〜ステップS40)が、これに限られることはない。例えば、図7に示すように、ステップS20〜ステップS40の代わりに、焼結系ペースト3を樹脂メッシュ4の厚みの半分程度の厚みで下塗り(ステップS22)し、薄い塗布膜の上に樹脂メッシュ4を載せ(ステップS30)、その上からさらに焼結系ペースト3を合計で樹脂メッシュ4の厚み以上になるように上塗り(ステップS36)し、最後に半導体素子7を搭載する(ステップS42)ようにしてもよい。このとき、半導体素子7の上から荷重をかけ、樹脂メッシュ4を確実に導電性ペースト3中に埋没させるようにしてもよい。 In the above manufacturing method, the resin mesh 4 is placed on the coating film of the sintered paste 3 thicker than the thickness t 4 of the resin mesh 4 and is buried in the sintered paste 3 by applying pressure (step). S20 to step S40) are not limited to this. For example, as shown in FIG. 7, instead of steps S20 to S40, the sintered paste 3 is undercoated with a thickness about half the thickness of the resin mesh 4 (step S22), and the resin mesh is formed on the thin coating film. 4 is applied (step S30), and then the overcoat (step S36) is further applied to the sintered paste 3 so that the total thickness is equal to or greater than the thickness of the resin mesh 4, and finally the semiconductor element 7 is mounted (step S42). It may be. At this time, a load may be applied from above the semiconductor element 7 to ensure that the resin mesh 4 is buried in the conductive paste 3.

上記のような導電性接合構造体5を用いて半導体素子7を実装した半導体素子100を動作させると、動作温度が200℃以上に上昇し、一時的には数百度まで上昇することがある。しかし、本実施の形態にかかる導電性接合構造体5部分は、基本的に焼結系ペースト材料3中の金属微粒子1の金属の融点以下では融けることがなく、半導体素子7の動作温度以内であれば、強固に接合強度を維持することができる。一方、導電性接合構造体5内には、接合面の延在方向において接合領域を網羅するように樹脂メッシュ4が内蔵されているので、上述したように金属マトリクス中に導入した低弾性部材により、弾性率が抑制されているので、温度変化が激しくなっても接合部(被接合体である半導体素子7や回路パターン6の端部や導電性接合構造体5の部材自身)にかかる応力を低減できるので、接合強度を長期間保つことができる。さらに、半導体装置においては、被接合体である半導体素子7の上側にはボンディングワイヤやボンディングリボン等が接合され、ボンディング材13と回路基板11との線膨張率差により、半導体素子7と回路パターン6間に応力がかかる場合もあるが、その場合でも金属マトリクスによる強固な接合に加え低弾性部材による弾性率抑制の効果により、接合部分にかかる応力を低減し、接合部の信頼性を向上させることができる。   When the semiconductor element 100 mounted with the semiconductor element 7 using the conductive bonding structure 5 as described above is operated, the operating temperature rises to 200 ° C. or higher, and may temporarily rise to several hundred degrees. However, the conductive bonding structure 5 portion according to the present embodiment basically does not melt below the melting point of the metal particles 1 in the sintered paste material 3 and is within the operating temperature of the semiconductor element 7. If present, the bonding strength can be firmly maintained. On the other hand, since the resin mesh 4 is built in the conductive bonding structure 5 so as to cover the bonding region in the extending direction of the bonding surface, the low elastic member introduced into the metal matrix as described above is used. Since the elastic modulus is suppressed, the stress applied to the bonded portion (the end of the semiconductor element 7 or the circuit pattern 6 that is the bonded body or the member of the conductive bonded structure 5 itself) even if the temperature change becomes severe. Therefore, the bonding strength can be maintained for a long time. Further, in the semiconductor device, a bonding wire, a bonding ribbon, or the like is bonded to the upper side of the semiconductor element 7 that is a bonded body, and the semiconductor element 7 and the circuit pattern are caused by a difference in linear expansion coefficient between the bonding material 13 and the circuit board 11. 6 may be stressed, but even in this case, the stress applied to the bonded portion is reduced by the effect of suppressing the elastic modulus by the low elastic member in addition to the strong bonding by the metal matrix, and the reliability of the bonded portion is improved. be able to.

ここで、たとえば、スイッチング素子や整流素子として機能する半導体素子に、炭化ケイ素や、窒化ガリウム系材料又はダイヤモンド等のいわゆるワイドバンドギャップ半導体材料を用いた場合、従来から用いられてきたケイ素で形成された素子よりも電力損失が低いため、電力用半導体装置の高効率化が可能となる。また、耐電圧性が高く、許容電流密度も高いため、電力用半導体装置の小型化が可能となる。さらにワイドバンドギャップ半導体素子は、耐熱性が高いので、高温動作が可能であり、ヒートシンクの放熱フィンの小型化や、水冷部の空冷化も可能となるので、電力用半導体装置の一層の小型化が可能になる。   Here, for example, when a so-called wide band gap semiconductor material such as silicon carbide, gallium nitride-based material, or diamond is used for a semiconductor element functioning as a switching element or a rectifying element, it is formed of silicon that has been conventionally used. Since the power loss is lower than that of the element, the efficiency of the power semiconductor device can be increased. Further, since the withstand voltage is high and the allowable current density is also high, the power semiconductor device can be downsized. In addition, wide band gap semiconductor elements have high heat resistance, so they can operate at high temperatures, and the heat sink fins can be downsized and the water cooling section can be air cooled. Is possible.

一方、ワイドバンドギャップ半導体素子の性能を発揮するには、半導体素子に電流が流れるときの電気抵抗を下げるとともに、半導体素子で発生した熱を効率よく放熱する必要がある。そのため、本発明の実施の形態に記載した導電性接合構造体を用いて半導体素子を実装すれば、放熱特性、電気伝導性にも優れるとともに、製造時や駆動時の熱サイクル下でも強固な接合を維持できるので、信頼性の高い半導体装置や半導体モジュールを得ることができる。   On the other hand, in order to exhibit the performance of the wide band gap semiconductor element, it is necessary to reduce the electrical resistance when current flows through the semiconductor element and to efficiently dissipate the heat generated in the semiconductor element. Therefore, if a semiconductor element is mounted using the conductive bonding structure described in the embodiment of the present invention, the heat dissipation characteristics and the electric conductivity are excellent, and the bonding is strong even under a thermal cycle during manufacturing or driving. Therefore, a highly reliable semiconductor device or semiconductor module can be obtained.

以上のように、本実施の形態2にかかる半導体装置100によれば、回路パターン6が形成された回路基板11と、回路パターン6上に実装された半導体素子7とを備え、半導体素子7と回路パターン6への接合に、上述した導電性接合構造体5を用いるようにしたので、製造時や駆動時の熱サイクル下でも強固な接合を維持し、信頼性の高い半導体装置を得ることができる。   As described above, the semiconductor device 100 according to the second embodiment includes the circuit board 11 on which the circuit pattern 6 is formed and the semiconductor element 7 mounted on the circuit pattern 6. Since the conductive bonding structure 5 described above is used for bonding to the circuit pattern 6, it is possible to maintain a strong bonding even under a thermal cycle during manufacturing or driving, and to obtain a highly reliable semiconductor device. it can.

また、本実施の形態2にかかる半導体装置100の製造方法によれば、半導体装置100を構成する回路基板11の回路パターン6上の所定範囲に、金属微粒子1を骨材とする焼結系のペースト材料3の塗布層を形成する工程(ステップS20)と、ペースト材料3の塗布面に金属微粒子1の粒子径よりも大きな径φ4fを有する樹脂繊維4fを用いたシート状の網状樹脂体である樹脂メッシュ4を載せる工程(ステップS30)と、樹脂メッシュ4の上に半導体素子7を設置して加圧し、網目内に樹脂ペースト3が充填されるように樹脂メッシュ4を塗布層中に埋設させる工程(ステップS40)と、金属微粒子1どうしが焼結するように加熱して、半導体素子7を回路パターン6の所定位置に接合する工程(ステップS50〜S80)と、を含むようにしたので、製造時や駆動時の熱サイクル下でも強固な接合を維持し、信頼性の高い半導体装置を得ることができる。 In addition, according to the method for manufacturing the semiconductor device 100 according to the second embodiment, a sintered system using the metal fine particles 1 as an aggregate in a predetermined range on the circuit pattern 6 of the circuit board 11 constituting the semiconductor device 100. A step of forming a coating layer of the paste material 3 (step S20), and a sheet-like network resin body using resin fibers 4f having a diameter φ 4f larger than the particle size of the metal fine particles 1 on the coating surface of the paste material 3 A process of placing a certain resin mesh 4 (step S30), a semiconductor element 7 is placed on the resin mesh 4 and pressurized, and the resin mesh 4 is embedded in the coating layer so that the resin paste 3 is filled in the mesh. A process (step S40), a process of heating so that the metal fine particles 1 are sintered, and joining the semiconductor element 7 to a predetermined position of the circuit pattern 6 (steps S50 to S80). Since to include, to maintain a strong bond even under thermal cycling during manufacture or driving, it is possible to obtain a highly reliable semiconductor device.

実施の形態3.
本実施の形態3では、実施の形態1の比較試験で用いたような樹脂メッシュを内蔵した焼結フィルムを用いて半導体素子を回路パターンに接合する導電性接合構造体を形成した。その他の部材については実施の形態2の半導体装置と同様であるので、説明を省略する。
Embodiment 3 FIG.
In the third embodiment, a conductive bonding structure for bonding a semiconductor element to a circuit pattern is formed using a sintered film containing a resin mesh as used in the comparative test of the first embodiment. Since other members are the same as those of the semiconductor device of the second embodiment, description thereof is omitted.

図8と図9は、本実施の形態3にかかる半導体装置および半導体装置の製造方法を説明するためのもので、図8は図5と同様に半導体素子と回路パターン間の接合部分の断面を拡大した拡大図で、図8(a)は接合直前の状態(図2のa−a断面に対応)、図8(b)は接合途中の状態(図2のb−b断面に対応)、図8(c)は接合後の状態(図2のb−b断面に対応)を示す。また、図9は導電性接合構造体を用いて半導体装置を製造する方法を説明するためのフローチャートである。なお、半導体装置としての構成は実施の形態2で説明した図4と同様であるので記載を省略する。   8 and 9 are diagrams for explaining the semiconductor device and the method for manufacturing the semiconductor device according to the third embodiment. FIG. 8 is a cross-sectional view of the junction between the semiconductor element and the circuit pattern, similar to FIG. 8 (a) is a state immediately before joining (corresponding to the section aa in FIG. 2), FIG. 8 (b) is a state in the middle of joining (corresponding to the section bb in FIG. 2), FIG. 8C shows a state after bonding (corresponding to the bb cross section of FIG. 2). FIG. 9 is a flowchart for explaining a method of manufacturing a semiconductor device using a conductive bonding structure. Note that the structure of the semiconductor device is the same as that in FIG.

図8の拡大断面図および図9のフローチャートを用いて製造方法について説明する。ただし、図9において、ステップS50以降は実施の形態2で示した工程と同様であるので説明を省略する。
半導体素子7を実装するための回路パターン6が形成された回路基板11を所定位置にセッティングして接合を開始する(ステップS10)。図8(a)に示すように、銅の回路パターン6上(厳密には貴金属メッキ層6c上)の所定の範囲に焼結系ペースト材料3を印刷またはディスペンスにより塗布(ステップS22)し、塗布膜の上に樹脂メッシュを内蔵した焼結フィルム5を載せる(ステップS32)。さらに、図8(b)に示すように、焼結フィルム5上に焼結系ペースト材料3をディスペンスにより塗布(ステップS36)し、半導体素子7を搭載する(ステップS42)。以降、図6で示したステップ50以降の工程を実施すると、図8(c)に示すように半導体素子7と回路パターン6との接合が完了する(ステップS90)。
The manufacturing method will be described with reference to the enlarged sectional view of FIG. 8 and the flowchart of FIG. However, in FIG. 9, since step S50 and subsequent steps are the same as those shown in the second embodiment, the description thereof is omitted.
The circuit board 11 on which the circuit pattern 6 for mounting the semiconductor element 7 is formed is set at a predetermined position and bonding is started (step S10). As shown in FIG. 8A, the sintered paste material 3 is applied by printing or dispensing to a predetermined range on the copper circuit pattern 6 (strictly, on the noble metal plating layer 6c) (step S22), and then applied. Post sintering film 5 F with a built-in resin mesh on the film (step S32). Furthermore, as shown in FIG. 8 (b), by dispensing a sintering-based paste material 3 on a sintered film 5 F is applied (step S36), for mounting a semiconductor device 7 (step S42). Thereafter, when the process after step 50 shown in FIG. 6 is performed, the bonding of the semiconductor element 7 and the circuit pattern 6 is completed as shown in FIG. 8C (step S90).

なお、半導体素子7を搭載する際に加圧して、焼結系ペースト材料3を平坦化したり、塗布膜との界面のガス抜きをしたりするようにしてもよい。キュア(ステップS50〜S80)の際、実施の形態2と同様に、治具または組立装置により荷重を印加した状態で行っても良い。図示しないが、このようにして上記導電性接合構造体5を接合体の構成部分とした半導体装置100または半導体モジュールが製造できる。これらの半導体装置100は、特に導電性接合構造体5において優れた電気伝導性、熱伝導性、応力緩和性を有するため、高温動作環境に対応でき、熱ストレスに優れる。特に、パワー半導体装置は高温で使用されるので、更に効果が顕著となる。なお、図では金属被覆層4mbを有する樹脂メッシュ4で説明したが、実施の形態1で説明したように金属被覆層4mbがなくても、樹脂メッシュ4は、アンカー効果により硬い金属焼結体1sの中で強く保持される。金属被覆層4mbがある場合と比較して電気伝導性と熱伝導性に劣るが、低弾性化効果と焼結収縮の低減効果は発現する。 Note that pressure may be applied when mounting the semiconductor element 7 to flatten the sintered paste material 3 or to degas the interface with the coating film. At the time of curing (steps S50 to S80), similarly to the second embodiment, the load may be applied by a jig or an assembly apparatus. Although not shown, the semiconductor device 100 or the semiconductor module in which the conductive joint structure 5 is a constituent part of the joint body can be manufactured in this way. Since these semiconductor devices 100 have excellent electrical conductivity, thermal conductivity, and stress relaxation properties, particularly in the conductive bonding structure 5, they can cope with a high-temperature operating environment and are excellent in thermal stress. Particularly, since the power semiconductor device is used at a high temperature, the effect becomes more remarkable. In the figure, the resin mesh 4 having the metal coating layer 4 mb has been described. However, as described in the first embodiment, the resin mesh 4 can be sintered with a hard metal due to the anchor effect even without the metal coating layer 4 mb. Strongly held in the body 1s. Although it is inferior in electrical conductivity and thermal conductivity as compared with the case where the metal coating layer 4 mb is present, the effect of reducing elasticity and the effect of reducing sintering shrinkage are exhibited.

予め作成された樹脂メッシュ内蔵焼結フィルム5を半導体素子7と回路パターン6のような導電体との間に挟み込んだ状態で、新たに塗布した焼結系ペースト材料3を焼結させることで、容易に接合層の厚さtを増大させることが可能である。接合層の厚さtを増大することで、横歪みに対する応力緩和性能が増大し、より信頼性の高い半導体装置および半導体モジュールを得ることができる。また、予め作成された焼結フィルム5は機械的に把持(減圧吸着保持など)できる剛性を持つので、半導体装置および半導体モジュールの製造工程において、容易に取り扱うことができる。 By sintering the newly applied sintered paste material 3 in a state where the prefabricated sintered film 5 F with resin mesh is sandwiched between the semiconductor element 7 and a conductor such as the circuit pattern 6. It is possible to easily increase the thickness t 5 of the bonding layer. By increasing the thickness t 5 of the bonding layer, it is possible to stress relaxation performance against lateral distortion is increased, to obtain a more highly reliable semiconductor device and a semiconductor module. Further, the sintered film 5 F created in advance because it has rigidity capable of mechanically gripping (such as vacuum suction holding), in a manufacturing process of a semiconductor device and a semiconductor module, it can be easily handled.

また、均一な厚さの焼結フィルム5を挟んで焼結系ペースト材料3を塗布するので、接合層厚さtに対する樹脂メッシュ4の厚さtの割合の範囲を20%〜80%の範囲に低く設定しても、流動性のある焼結系ペースト3のみを塗布したときと較べて、半導体素子7の姿勢を制御することが可能である。 Further, across the sintered film 5 F having a uniform thickness because the applied sintering based paste material 3, 20% thickness range of the ratio of t 4 of the resin mesh 4 to the bonding layer thickness t 5 to 80 Even if it is set low in the range of%, it is possible to control the attitude of the semiconductor element 7 as compared with the case where only the fluid sintered paste 3 is applied.

なお、焼結フィルム5には、図3(c)で示したような焼結が完了していない一次焼結体5p2の状態のものを使用してもよく、その場合、焼結フィルムの上下に塗布した焼結性ペースト3の金属微粒子1に対する接合力も高くなる。 Incidentally, the sintered film 5 F, may be used as in the state of FIG. 3 sintered as shown in (c) is not completed primary sintered body 5 p2, in which case the sintered film The bonding strength of the sinterable paste 3 applied to the top and bottom of the metal fine particles 1 is also increased.

以上のように、本実施の形態3にかかる半導体装置の製造方法によれば、半導体装置100を構成する回路基板11の回路パターン6上の所定範囲に、金属微粒子1を骨材とする焼結系のペースト材料3により、第1の塗布層を形成する工程(ステップS22)と、樹脂繊維4maを用いてシート状に形成された網状樹脂体である樹脂メッシュ4を内蔵し、樹脂繊維4maの径φ4fおよび樹脂メッシュ4の網目の開口D4fよりも小さな粒子径を有する金属微粒子1を焼結して形成されたフィルム5を、第1の塗布層の塗布面に載せる工程(ステップS32)と、フィルム5上にペースト材料3により、第2の塗布層を形成する工程(ステップS36)と、第2の塗布層の塗布面に半導体素子7を設置する工程(ステップS42)と、金属微粒子1どうしが焼結するように加熱して、半導体素子7を回路パターン6の所定位置に接合する工程(ステップS50〜80)と、を含む製造時や駆動時の熱サイクル下でも強固な接合を維持し、信頼性の高い半導体装置を得ることができる。また、フィルム5は樹脂メッシュ4単独の場合よりも容易に把持できるので工程が簡略される。 As described above, according to the manufacturing method of the semiconductor device according to the third embodiment, the sintering using the metal fine particles 1 as an aggregate in a predetermined range on the circuit pattern 6 of the circuit board 11 constituting the semiconductor device 100. A step of forming a first coating layer with a paste material 3 (step S22), and a resin mesh 4 which is a net-like resin body formed into a sheet shape using the resin fibers 4ma are incorporated into the resin fibers 4 a step of placing a film 5 F formed by sintering metal fine particles 1 having a particle diameter smaller than the diameter φ 4f of ma and the mesh opening D 4f of the resin mesh 4 on the application surface of the first application layer ( step S32 and), the paste material 3 on the film 5 F, a step (step S36) of forming a second coating layer, the step of placing the semiconductor device 7 to the coating surface of the second coating layer (step S42) And heating the metal fine particles 1 so as to sinter and joining the semiconductor element 7 to a predetermined position of the circuit pattern 6 (steps S50 to 80). A highly reliable semiconductor device can be obtained. The step is simplified since the film 5 F can be easily grasped than the resin mesh 4 alone.

なお、上記各実施の形態においては、樹脂メッシュには縦繊維と横繊維が直交する場合を示したがそれに限られることはない。また、縦繊維と横繊維が1対1で編み込んでいなくてもよく、交差回数を一つおきに飛ばしたり、あるいは一方向の繊維をからめてメッシュ状に形成したりと、適宜変更してもよい。また、上記各実施の形態においては、導電性接合構造体中に樹脂メッシュを1層介在させた例のみを記したが、これに限定されることはなく、複数層設けてもよい。   In each of the above embodiments, the case where the longitudinal fibers and the transverse fibers are orthogonal to the resin mesh is shown, but the present invention is not limited to this. Also, the longitudinal fibers and the transverse fibers do not have to be knitted one-on-one, and every other number of crossings is skipped, or the fibers are unidirectionally formed to form a mesh. Also good. Moreover, in each said embodiment, although the example which made the resin mesh one layer interpose in the electroconductive joining structure was described, it is not limited to this, You may provide multiple layers.

もちろん、本発明の実施の形態にかかる導電性接合構造体やこれを用いた接合方法は、半導体以外の部材に用いても信頼性の高い接合体を形成することができることは言うまでもない。   Of course, it goes without saying that a highly reliable bonded body can be formed even when the conductive bonded structure according to the embodiment of the present invention and the bonding method using the same are used for members other than semiconductors.

1 銀フィラー(金属微粒子)、 1s 焼結構造体(金属微粒子焼結体)、 2 分散媒、 3 焼結性ペースト、 4 網状樹脂体(樹脂メッシュ)、 4ma 樹脂繊維(芯)、 4mb 金属被覆層、 4f 繊維(4f:縦繊維、4f:横繊維)、 5 導電性接合構造体、 5 樹脂メッシュ内蔵導電性焼結フィルム、 5p1 導電性接合構造前駆体、 5p2 導電性接合構造一次焼結体。
6 回路パターン(導体)、 6f (回路パターンの)対向面、 7 半導体素子、 7f (半導体素子の)対向面、 10 接合体、 11 回路基板、 100 半導体装置。
4f 網目の開口(目開き)、 t 樹脂メッシュの厚み、 t 導電性接合構造体の厚み、 φ4f 樹脂繊維の径。
1 Silver filler (metal fine particles), 1s sintered structure (metal fine particle sintered body), 2 dispersion medium, 3 sinterable paste, 4 reticulated resin body (resin mesh), 4 ma resin fiber (core), 4 mb metallization layer, 4f fibers (4f v: vertical fibers, 4f h: transverse fibers), 5 conductive connection structure, 5 F resin mesh internal conductive sintered film, 5 p1 conductive joint structure precursor, 5 p2 conductive Primary sintered body with adhesive bonding structure.
6 Circuit pattern (conductor), 6f (circuit pattern) facing surface, 7 semiconductor element, 7f (semiconductor element) facing surface, 10 joined body, 11 circuit board, 100 semiconductor device.
D 4f mesh opening (opening), t 4 resin mesh thickness, the thickness of t 5 conductive connection structure, the diameter of phi 4f resin fibers.

Claims (11)

所定の間隔をあけて対向する2つの部材の対向面間に介在して、前記2つの部材を導電接合する導電性接合構造体であって、
樹脂繊維を用いてシート状に形成され、シート面が前記対向面に向くように前記対向面間に敷設された網状樹脂体と、
前記樹脂繊維の径および前記網状樹脂体の網目の開口よりも小さな粒子径を有する金属微粒子を、前記網目内を含む前記対向面間に充填し、当該金属の融点よりも低い温度で焼結することにより形成される焼結構造体と、
を備えたことを特徴とする導電性接合構造体。
A conductive joint structure that is interposed between opposing surfaces of two members facing each other with a predetermined interval, and conductively joins the two members,
A net-like resin body that is formed into a sheet shape using resin fibers, and is laid between the facing surfaces such that the sheet surface faces the facing surface;
Metal fine particles having a particle diameter smaller than the diameter of the resin fiber and the mesh opening of the network resin body are filled between the opposing surfaces including the inside of the mesh, and sintered at a temperature lower than the melting point of the metal. A sintered structure formed by
A conductive joint structure comprising:
前記金属微粒子を構成する金属が、銀、金、銅のうちのいずれかであることを特徴とする請求項1に記載の導電性接合構造体。   2. The conductive joint structure according to claim 1, wherein a metal constituting the metal fine particles is any one of silver, gold, and copper. 前記樹脂繊維の表面が、金属層により被覆されていることを特徴とする請求項1または2に記載の導電性接合構造体。   The conductive joint structure according to claim 1 or 2, wherein a surface of the resin fiber is covered with a metal layer. 前記金属層の最表面を構成する金属が、金、銀、パラジウム、白金、すず、銅、SnAgはんだ、SnPbはんだ、AuSnはんだのうちのいずれかであることを特徴とする請求項3に記載の導電性接合構造体。   The metal constituting the outermost surface of the metal layer is any one of gold, silver, palladium, platinum, tin, copper, SnAg solder, SnPb solder, and AuSn solder. Conductive joint structure. 前記網状樹脂体の厚みが、当該導電性接合構造体の厚みに対して20〜100%であることを特徴とする請求項1ないし4のいずれか1項に記載の導電性接合構造体。   5. The conductive joint structure according to claim 1, wherein a thickness of the net-like resin body is 20 to 100% with respect to a thickness of the conductive joint structure. 前記金属微粒子の粒径が、1nm〜10μmであり、
前記樹脂繊維の径が、5μm〜100μmであり、
前記網状樹脂体の網目の開口が、20μm〜500μmである、
ことを特徴とする請求項1ないし5のいずれか1項に記載の導電性接合構造体。
The metal fine particles have a particle size of 1 nm to 10 μm,
The resin fiber has a diameter of 5 μm to 100 μm,
The mesh opening of the network resin body is 20 μm to 500 μm.
The conductive joint structure according to any one of claims 1 to 5, wherein
回路パターンが形成された回路基板と、
前記回路パターン上に実装された半導体素子と、を備え
前記半導体素子の前記回路パターンへの接合に、
請求項1ないし6のいずれか1項に記載の導電性接合構造体を用いたことを特徴とする半導体装置。
A circuit board on which a circuit pattern is formed;
A semiconductor element mounted on the circuit pattern, and for joining the semiconductor element to the circuit pattern,
A semiconductor device using the conductive bonding structure according to claim 1.
前記半導体素子がワイドバンドギャップ半導体材料により形成されていることを特徴とする請求項7に記載の半導体装置。   The semiconductor device according to claim 7, wherein the semiconductor element is formed of a wide band gap semiconductor material. 前記ワイドバンドギャップ半導体材料は、炭化ケイ素、窒化ガリウム、ダイヤモンド、またはガリウムヒ素のうちのいずれかであることを特徴とする請求項8に記載の半導体装置。   9. The semiconductor device according to claim 8, wherein the wide band gap semiconductor material is any one of silicon carbide, gallium nitride, diamond, and gallium arsenide. 半導体装置を構成する回路基板の回路パターン上の所定範囲に、金属微粒子を骨材とする焼結系のペースト材料の塗布層を形成する工程と、
前記塗布層の塗布面に前記金属微粒子の粒子径よりも大きな径を有する樹脂繊維を用いたシート状の網状樹脂体を載せる工程と、
前記網状樹脂体の上に半導体素子を設置して加圧し、前記網状樹脂体の網目内に前記ペースト材料が充填されるように前記網状樹脂体を前記塗布層中に埋設させる工程と、
前記金属微粒子どうしが焼結するように加熱して、前記半導体素子を前記回路パターンの所定位置に接合する工程と、を含む、
ことを特徴とする半導体装置の製造方法。
Forming a coating layer of a sintered paste material using metal fine particles as an aggregate in a predetermined range on a circuit pattern of a circuit board constituting a semiconductor device;
Placing a sheet-like net-like resin body using resin fibers having a diameter larger than the particle diameter of the metal fine particles on the coating surface of the coating layer;
Placing a semiconductor element on the mesh resin body and pressurizing it, and embedding the mesh resin body in the coating layer so that the paste material is filled in the mesh of the mesh resin body;
Heating the metal fine particles to sinter, and bonding the semiconductor element to a predetermined position of the circuit pattern.
A method for manufacturing a semiconductor device.
半導体装置を構成する回路基板の回路パターン上の所定範囲に、金属微粒子を骨材とする焼結系のペースト材料により、第1の塗布層を形成する工程と、
樹脂繊維を用いてシート状に形成された網状樹脂体を内蔵し、前記樹脂繊維の径および前記網状樹脂体の網目の開口よりも小さな粒子径を有する金属微粒子を焼結して形成されたフィルムを、前記第1の塗布層の塗布面に載せる工程と、
前記フィルム上に前記ペースト材料により、第2の塗布層を形成する工程と、
前記第2の塗布層の塗布面に半導体素子を設置する工程と、
前記金属微粒子どうしが焼結するように加熱して、前記半導体素子を前記回路パターンの所定位置に接合する工程と、を含む、
ことを特徴とする半導体装置の製造方法。
Forming a first coating layer in a predetermined range on a circuit pattern of a circuit board constituting a semiconductor device by using a sintered paste material containing metal fine particles as an aggregate;
A film formed by sintering a metal fine particle having a particle diameter smaller than the diameter of the resin fiber and the mesh opening of the mesh resin body, incorporating a mesh-like resin body formed into a sheet shape using resin fibers On the application surface of the first application layer,
Forming a second coating layer on the film with the paste material;
Installing a semiconductor element on the coating surface of the second coating layer;
Heating the metal fine particles to sinter, and bonding the semiconductor element to a predetermined position of the circuit pattern.
A method for manufacturing a semiconductor device.
JP2010109158A 2010-05-11 2010-05-11 Conductive joint structure, semiconductor device using same, and method of manufacturing semiconductor device Pending JP2011238779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010109158A JP2011238779A (en) 2010-05-11 2010-05-11 Conductive joint structure, semiconductor device using same, and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010109158A JP2011238779A (en) 2010-05-11 2010-05-11 Conductive joint structure, semiconductor device using same, and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2011238779A true JP2011238779A (en) 2011-11-24

Family

ID=45326430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010109158A Pending JP2011238779A (en) 2010-05-11 2010-05-11 Conductive joint structure, semiconductor device using same, and method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2011238779A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536467A (en) * 2013-09-05 2016-11-24 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Sintered metal film composition
WO2017187998A1 (en) * 2016-04-26 2017-11-02 三菱電機株式会社 Semiconductor device
JP2018046186A (en) * 2016-09-15 2018-03-22 株式会社デンソー Semiconductor device and manufacturing method of the same
JP2018190999A (en) * 2012-02-24 2018-11-29 日本テキサス・インスツルメンツ株式会社 System in package and method for manufacturing the same
JP2018195724A (en) * 2017-05-18 2018-12-06 三菱電機株式会社 Power module and manufacturing method for the same, and power converter
US10369667B2 (en) 2012-03-05 2019-08-06 Namics Corporation Sintered body made from silver fine particles
CN111463140A (en) * 2019-01-18 2020-07-28 三菱电机株式会社 Method for manufacturing power semiconductor device, and power conversion device
WO2020255773A1 (en) * 2019-06-20 2020-12-24 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device
CN112652591A (en) * 2019-10-11 2021-04-13 安波福技术有限公司 Interfacial layer with network and sintering paste
EP3890008A1 (en) * 2020-03-31 2021-10-06 Mitsubishi Electric R&D Centre Europe B.V. Semiconductor module assembly comprising a joint layer with an elastic grid between a semiconductor die and a substrate and manufacturing process of such assembly
US11745294B2 (en) 2015-05-08 2023-09-05 Henkel Ag & Co., Kgaa Sinterable films and pastes and methods for use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281054A (en) * 2006-04-04 2007-10-25 Nec Corp Electronic component mounting structure, and its manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281054A (en) * 2006-04-04 2007-10-25 Nec Corp Electronic component mounting structure, and its manufacturing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018190999A (en) * 2012-02-24 2018-11-29 日本テキサス・インスツルメンツ株式会社 System in package and method for manufacturing the same
US10369667B2 (en) 2012-03-05 2019-08-06 Namics Corporation Sintered body made from silver fine particles
JP2016536467A (en) * 2013-09-05 2016-11-24 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Sintered metal film composition
US11745294B2 (en) 2015-05-08 2023-09-05 Henkel Ag & Co., Kgaa Sinterable films and pastes and methods for use thereof
WO2017187998A1 (en) * 2016-04-26 2017-11-02 三菱電機株式会社 Semiconductor device
JPWO2017187998A1 (en) * 2016-04-26 2019-02-28 三菱電機株式会社 Semiconductor device
JP2018046186A (en) * 2016-09-15 2018-03-22 株式会社デンソー Semiconductor device and manufacturing method of the same
JP2018195724A (en) * 2017-05-18 2018-12-06 三菱電機株式会社 Power module and manufacturing method for the same, and power converter
US20210320083A1 (en) * 2019-01-18 2021-10-14 Mitsubishi Electric Corporation Manufacturing method of power semiconductor device, power semiconductor device, and power converter
CN111463140A (en) * 2019-01-18 2020-07-28 三菱电机株式会社 Method for manufacturing power semiconductor device, and power conversion device
JP2020115520A (en) * 2019-01-18 2020-07-30 三菱電機株式会社 Manufacturing method of power semiconductor device, power semiconductor device and power conversion apparatus
US11894337B2 (en) 2019-01-18 2024-02-06 Mitsubishi Electric Corporation Manufacturing method of power semiconductor device, power semiconductor device, and power converter
CN111463140B (en) * 2019-01-18 2023-09-12 三菱电机株式会社 Power semiconductor device, method for manufacturing the same, and power conversion device
JP7034105B2 (en) 2019-01-18 2022-03-11 三菱電機株式会社 Manufacturing method of power semiconductor device, power semiconductor device and power conversion device
JPWO2020255773A1 (en) * 2019-06-20 2021-10-21 富士電機株式会社 Semiconductor devices and methods for manufacturing semiconductor devices
JP7238985B2 (en) 2019-06-20 2023-03-14 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device
WO2020255773A1 (en) * 2019-06-20 2020-12-24 富士電機株式会社 Semiconductor device and method for manufacturing semiconductor device
EP3806147A1 (en) * 2019-10-11 2021-04-14 Aptiv Technologies Limited Interface layer with wire mesh and sinter paste and its use for joining electronic components
CN112652591A (en) * 2019-10-11 2021-04-13 安波福技术有限公司 Interfacial layer with network and sintering paste
WO2021199553A1 (en) * 2020-03-31 2021-10-07 Mitsubishi Electric Corporation Power module assembly, process for manufacturing power module assembly, and power module
EP3890008A1 (en) * 2020-03-31 2021-10-06 Mitsubishi Electric R&D Centre Europe B.V. Semiconductor module assembly comprising a joint layer with an elastic grid between a semiconductor die and a substrate and manufacturing process of such assembly

Similar Documents

Publication Publication Date Title
JP2011238779A (en) Conductive joint structure, semiconductor device using same, and method of manufacturing semiconductor device
JP6632686B2 (en) Semiconductor device and method of manufacturing semiconductor device
US7372132B2 (en) Resin encapsulated semiconductor device and the production method
US20140264383A1 (en) Semiconductor device and manufacturing method of the same
JP5579928B2 (en) Semiconductor device and manufacturing method thereof
TW201325330A (en) Wiring substrate and method for manufacturing same and semiconductor device
JPWO2018194153A1 (en) Power semiconductor module and method for manufacturing power semiconductor module
JP6448388B2 (en) Power semiconductor device
JP2015177182A (en) power module
US9589864B2 (en) Substrate with embedded sintered heat spreader and process for making the same
JP2008141027A (en) Bonding structure of thermoelectric conversion element and thermoelectric conversion module
JP2011198674A (en) Conductive bonding material, semiconductor device using this, and manufacturing method of semiconductor device
JP2013168545A (en) Method for joining conductive members
US20210280534A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP2013098266A (en) Semiconductor device and manufacturing method thereof
JP2018110149A (en) Manufacturing method of semiconductor device
WO2013105351A1 (en) Power module
US6538309B1 (en) Semiconductor device and circuit board for mounting semiconductor element
US20090166893A1 (en) Semiconductor device
JP2012236739A (en) Sheet structure, method for manufacturing the structure, electronic equipment, and method for manufacturing the equipment
JP5919625B2 (en) Semiconductor device, manufacturing method thereof, and power supply device
JP6354235B2 (en) Electronic device and assembly method thereof, and sheet-like structure and manufacturing method thereof
JP6170045B2 (en) Bonding substrate and manufacturing method thereof, semiconductor module using bonding substrate, and manufacturing method thereof
JP6168586B2 (en) Bonding method and semiconductor module manufacturing method
CN107871716B (en) Semiconductor device with a plurality of semiconductor chips

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401