JP2011238404A - Lithium secondary battery and composite negative electrode for the same - Google Patents

Lithium secondary battery and composite negative electrode for the same Download PDF

Info

Publication number
JP2011238404A
JP2011238404A JP2010107470A JP2010107470A JP2011238404A JP 2011238404 A JP2011238404 A JP 2011238404A JP 2010107470 A JP2010107470 A JP 2010107470A JP 2010107470 A JP2010107470 A JP 2010107470A JP 2011238404 A JP2011238404 A JP 2011238404A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
active material
electrode active
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010107470A
Other languages
Japanese (ja)
Other versions
JP5545728B2 (en
Inventor
Yasuo Takeda
保雄 武田
Masayuki Imanishi
誠之 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mie University NUC
Original Assignee
Mie University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mie University NUC filed Critical Mie University NUC
Priority to JP2010107470A priority Critical patent/JP5545728B2/en
Publication of JP2011238404A publication Critical patent/JP2011238404A/en
Application granted granted Critical
Publication of JP5545728B2 publication Critical patent/JP5545728B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery capable of suppressing growth of a lithium dendrite and having a long life and a high level of safety.SOLUTION: A negative electrode active material layer composed of negative electrode active material is protected by a first layer composed of material having lithium ion conductivity. A second layer is provided between the negative electrode active material layer and the first layer. The second layer is composed of solid-liquid mixture having lithium ion conductivity. The solid-liquid mixture contains a solid polymer having a polyalkylene oxide chain, an ionic liquid having a reduction resistance to the negative electrode active material, and a lithium salt. The ionic liquid is preferably a salt of piperidinium or piperidinium derivative.

Description

本発明は、リチウム二次電池及びリチウム二次電池用の複合負極に関する。   The present invention relates to a lithium secondary battery and a composite negative electrode for a lithium secondary battery.

負極活物質がリチウム金属であり正極活物質が酸素であるリチウム空気電池においては、水溶液系電解質の成分である水又はリチウム空気電池の外部から非水溶液系電解質へ浸入した水とリチウム金属からなる負極活物質層との接触を防ぐために、リチウムイオン導電性の保護層で負極活物質層を保護することが提案されている。   In a lithium air battery in which the negative electrode active material is lithium metal and the positive electrode active material is oxygen, the negative electrode made of water and lithium metal that has entered the non-aqueous electrolyte from the outside of the lithium-air battery or water that is a component of the aqueous electrolyte In order to prevent contact with the active material layer, it has been proposed to protect the negative electrode active material layer with a lithium ion conductive protective layer.

例えば、非特許文献1には、一般式Li1+x+yAlxTi2-x3-ySiy12(LATP)であらわされるガラスセラミックスからなる保護層で負極活物質層を保護することが記載されている。非特許文献1は、さらに、ポリエチレンオキシド(PEO)とLiN(SO2CF32(LiTFSI)との混合物からなる中間層を負極活物質層と保護層との間に設けることが記載されている。中間層は、耐還元性が低いLATPがリチウム金属に還元されリチウムイオン伝導性を失うことを防止する。 For example, in Non-Patent Document 1, the negative electrode active material layer is protected by a protective layer made of glass ceramics represented by the general formula Li 1 + x + y Al x Ti 2−x P 3−y Si y O 12 (LATP). It is described to do. Non-Patent Document 1 further describes that an intermediate layer made of a mixture of polyethylene oxide (PEO) and LiN (SO 2 CF 3 ) 2 (LiTFSI) is provided between the negative electrode active material layer and the protective layer. Yes. The intermediate layer prevents LATP having low reduction resistance from being reduced to lithium metal and losing lithium ion conductivity.

タオ・チャン(Tao Zhang)、他6名、「Li/ポリマー・エレクトロライト/ウオータ・ステーブル・リチウム・コンダクティング・ガラス・セラミックス・コンポジット・フォー・リチウム-エア・セカンダリ・バッテリズ・ウィズ・アン・エクイアス・エレクトロライト(Li/polymer electrolyte/water stable lithium conducting glass ceramics composite for lithium-air secondary batteries with an aqueous electrolyte)」、第49回電池討論会 講演要旨集、社団法人電気化学会電池技術委員会、平成20年11月5日、p.354Tao Zhang and 6 others, "Li / Polymer Electrolite / Water Stable Lithium Conducting Glass Ceramics Composite for Lithium-Air Secondary Batteries with Anne `` Equivalent Electrolite (Li / polymer electrolyte / water stable lithium conducting glass ceramics composite for lithium-air secondary batteries with an aqueous electrolyte) '', The 49th Battery Symposium Abstracts, Electrochemical Society Battery Technical Committee, November 5, 2008, p.354

しかし、非特許文献1の複合負極には、負極活物質層と中間層との界面にリチウムのデンドライトが成長するという問題があった。この問題は、保護層がガラスセラミックス以外の材質からなる場合にも生じる。また、この問題は、リチウム空気電池だけでなく、正極活物質が酸素以外の物質である場合にも生じるリチウム二次電池に共通の問題である。   However, the composite negative electrode of Non-Patent Document 1 has a problem that lithium dendrite grows at the interface between the negative electrode active material layer and the intermediate layer. This problem also occurs when the protective layer is made of a material other than glass ceramics. This problem is common to not only lithium-air batteries but also lithium secondary batteries that occur when the positive electrode active material is a substance other than oxygen.

本発明は、この問題を解決するためになされ、リチウムのデンドライトの成長を抑制し、長寿命で安全性が高いリチウム二次電池を提供することを目的とする。   The present invention has been made to solve this problem, and an object of the present invention is to provide a lithium secondary battery that suppresses lithium dendrite growth and has a long life and high safety.

上記課題を解決するため、負極活物質からなる負極活物質層がリチウムイオン導電性を持つ材質からなる第1の層で保護される。負極活物質層と第1の層との間には第2の層が設けられる。第2の層は、リチウムイオン伝導性の固液混合物からなる。固液混合物は、ポリアルキレンオキシド鎖を有する固体ポリマーと、負極活物質に対する耐還元性を持つイオン性液体と、リチウム塩とを含む。イオン性液体は、望ましくは、ピペリジニウム又はピペリジニウム誘導体の塩である。   In order to solve the above problem, the negative electrode active material layer made of the negative electrode active material is protected by the first layer made of a material having lithium ion conductivity. A second layer is provided between the negative electrode active material layer and the first layer. The second layer is made of a lithium ion conductive solid-liquid mixture. The solid-liquid mixture includes a solid polymer having a polyalkylene oxide chain, an ionic liquid having resistance to a negative electrode active material, and a lithium salt. The ionic liquid is desirably a salt of piperidinium or a piperidinium derivative.

本発明によれば、リチウムのデンドライトの成長が抑制され、長寿命で安全性が高いリチウム二次電池が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the growth of the lithium dendrite is suppressed, and the lithium secondary battery with long life and high safety | security is provided.

リチウム空気電池の起電体の断面を示す模式図である。It is a schematic diagram which shows the cross section of the electromotive body of a lithium air battery. PP13TFSIの量xによるデンドライトが発生するまでの時間t0の変化を説明する図である。Dendrite by the amount x of PP13TFSI is a diagram illustrating the change in time t 0 until generation.

(概略)
図1は、本発明の望ましい実施形態のリチウム空気電池の起電体1002の断面を示す模式図である。図1は、起電体1002の構造の例示にすぎず、起電体1002の全体及び起電体1002の構成物の大きさや形は、リチウム空気電池の仕様に応じて変更される。
(Outline)
FIG. 1 is a schematic view showing a cross section of an electromotive body 1002 of a lithium-air battery according to a preferred embodiment of the present invention. FIG. 1 is merely an example of the structure of the electromotive body 1002, and the size and shape of the entire electromotive body 1002 and the components of the electromotive body 1002 are changed according to the specifications of the lithium-air battery.

図1に示すように、起電体1002は、負極1004と正極(空気極)1006との間に水溶液系電解質1008を満たした構造を有する。   As shown in FIG. 1, the electromotive body 1002 has a structure in which an aqueous electrolyte 1008 is filled between a negative electrode 1004 and a positive electrode (air electrode) 1006.

(負極1004)
負極1004は、負極活物質層1010を保護層1012で覆い負極活物質層1010と保護層1012との間に中間層1014を挿入した3層構造を有する複合負極である。保護層1012は、負極1004の表面にあって水溶液系電解質1008と接触し、負極活物質層1010を水溶液系電解質1008から保護する。中間層1014は、負極活物質層1010と保護層1012との間にあって、負極活物質層1010と保護層1012とを隔て、保護層1012が還元されることを防止する。
(Negative electrode 1004)
The negative electrode 1004 is a composite negative electrode having a three-layer structure in which the negative electrode active material layer 1010 is covered with a protective layer 1012 and an intermediate layer 1014 is inserted between the negative electrode active material layer 1010 and the protective layer 1012. The protective layer 1012 is on the surface of the negative electrode 1004 and is in contact with the aqueous electrolyte 1008 to protect the negative electrode active material layer 1010 from the aqueous electrolyte 1008. The intermediate layer 1014 is between the negative electrode active material layer 1010 and the protective layer 1012, and separates the negative electrode active material layer 1010 and the protective layer 1012, and prevents the protective layer 1012 from being reduced.

負極1004は、リチウム空気電池だけでなく、正極活物質が酸素以外の物質であるリチウム二次電池の全般において好適に用いられる。   The negative electrode 1004 is suitably used not only for lithium-air batteries but also for all lithium secondary batteries in which the positive electrode active material is a substance other than oxygen.

(負極活物質層1010)
負極活物質層1010は、負極活物質からなる。負極活物質は、典型的には、リチウム金属である。ただし、リチウム金属に代えて、リチウムを主成分とするリチウム合金又はリチウム化合物が用いられてもよい。リチウムと合金を形成する金属には、マグネシウム,カルシウム,アルミニウム,ケイ素,ゲルマニウム,スズ,鉛,ヒ素,アンチモン,ビスマス,銀,金,亜鉛,カドミウム,水銀等がある。リチウム化合物には、一般式Li3-xxN(元素Mは、Co,Cu,Fe等)であらわされる化合物等がある。
(Negative electrode active material layer 1010)
The negative electrode active material layer 1010 is made of a negative electrode active material. The negative electrode active material is typically lithium metal. However, instead of lithium metal, a lithium alloy or lithium compound containing lithium as a main component may be used. Metals forming an alloy with lithium include magnesium, calcium, aluminum, silicon, germanium, tin, lead, arsenic, antimony, bismuth, silver, gold, zinc, cadmium, mercury, and the like. Lithium compounds include compounds represented by the general formula Li 3-x M x N (element M is Co, Cu, Fe, etc.).

(保護層1012)
保護層1012の材質には、例えば、耐水性及びリチウムイオン伝導性を持つガラスセラミックス等がある。保護層1012のリチウムイオン伝導率は、10-5S/cm以上であることが望ましい。
(Protective layer 1012)
Examples of the material of the protective layer 1012 include glass ceramics having water resistance and lithium ion conductivity. The lithium ion conductivity of the protective layer 1012 is desirably 10 −5 S / cm or more.

ガラスセラミックスは、NASICON(ナトリウム超イオン伝導体)型のリチウムイオン伝導体であることが望ましい。   The glass ceramic is preferably a NASICON (sodium superionic conductor) type lithium ion conductor.

ガラスセラミックスは、一般式Li1+x2-xM’x(PO43又は一般式Li1-x2-xM”x(PO43であらわされるリチウムイオン伝導体であることがさらに望ましい。元素Mは、Zr,Ti,Ge等の4価元素である。元素M’は、In,Al等の3価元素である。元素M”は、Ta等の5価元素である。3価元素M’又は5価元素M”による4価元素Mの置換は、リチウムイオン伝導性を向上するために行われる。 Glass ceramics are lithium ion conductors represented by the general formula Li 1 + x M 2−x M ′ x (PO 4 ) 3 or the general formula Li 1−x M 2−x M ″ x (PO 4 ) 3. The element M is a tetravalent element such as Zr, Ti, or Ge. The element M ′ is a trivalent element such as In or Al. The element M ″ is a pentavalent element such as Ta. is there. Substitution of the tetravalent element M by the trivalent element M ′ or the pentavalent element M ″ is performed in order to improve lithium ion conductivity.

一般式Li1+x2-xM’x(PO43又は一般式Li1-x2-xM”x(PO43であらわされるリチウムイオン伝導体のPをSiで置換することも望ましく、ガラスセラミックスが一般式Li1+x+uAlxTi2-x3-ySiy12(LATP)であらわされるリチウムイオン伝導体からなることが特に望ましい。 P in the lithium ion conductor represented by the general formula Li 1 + x M 2-x M ′ x (PO 4 ) 3 or the general formula Li 1-x M 2-x M ″ x (PO 4 ) 3 is replaced by Si. It is also desirable that the glass ceramic be made of a lithium ion conductor represented by the general formula Li 1 + x + u Al x Ti 2−x P 3−y Si y O 12 (LATP).

保護層1012は、板形状物であることが望ましく、保護層1012の板厚は、100〜300μmであることが望ましい。   The protective layer 1012 is preferably a plate-shaped product, and the thickness of the protective layer 1012 is preferably 100 to 300 μm.

(中間層1014)
中間層1014は、リチウムイオン伝導性を持つ固液混合物からなる。中間層1014のリチウムイオン伝導率は、10-5S/cm以上であることが望ましい。
(Intermediate layer 1014)
The intermediate layer 1014 is made of a solid-liquid mixture having lithium ion conductivity. The lithium ion conductivity of the intermediate layer 1014 is desirably 10 −5 S / cm or more.

固液混合物は、ポリアルキレンオキシド鎖を有する固体ポリマーと、負極活物質に対する耐還元性を持つ電位窓が広いイオン性液体と、リチウム塩と、を含む。中間層1014が固液混合物からなることにより、中間層1014の電気伝導性が向上し、負極活物質層1010と中間層1014との界面抵抗が減少する。また、負極活物質層1010と中間層1014との界面におけるリチウムのデンドライトの成長が抑制され、長寿命で安全性が高いリチウム空気電池が提供される。リチウムのデンドライトが抑制されるのは、主に、イオン性液体の混合により負極活物質層1010と中間層1014の界面抵抗が減少することと、固体電解質が負極活物質層1010に押しつけられること、等の複合的な要因によると推測される。   The solid-liquid mixture includes a solid polymer having a polyalkylene oxide chain, an ionic liquid having a wide potential window having resistance to reduction with respect to the negative electrode active material, and a lithium salt. When the intermediate layer 1014 is made of a solid-liquid mixture, the electrical conductivity of the intermediate layer 1014 is improved, and the interface resistance between the negative electrode active material layer 1010 and the intermediate layer 1014 is reduced. In addition, lithium-dendrite growth at the interface between the negative electrode active material layer 1010 and the intermediate layer 1014 is suppressed, and a long-life and high-safety lithium-air battery is provided. Lithium dendrite is mainly suppressed because the interfacial resistance between the negative electrode active material layer 1010 and the intermediate layer 1014 decreases due to mixing of the ionic liquid, and the solid electrolyte is pressed against the negative electrode active material layer 1010. This is presumed to be due to multiple factors.

中間層1014は、シート形状物であり、中間層1014の層厚は、10〜300μmであることが望ましい。   The intermediate layer 1014 is a sheet-shaped article, and the intermediate layer 1014 preferably has a thickness of 10 to 300 μm.

(固体ポリマー)
固体ポリマーは、アルキレン基とエーテル酸素とが交互に配列された分子鎖であるポリアルキレンオキシド鎖を有する。ポリアルキレンオキシド鎖が分岐を有してもよい。固体電解質は、リチウムイオンを溶媒和させる多数のエーテル酸素を有する。このため、固体電解質はリチウム塩を溶解させる。
(Solid polymer)
The solid polymer has a polyalkylene oxide chain which is a molecular chain in which alkylene groups and ether oxygens are alternately arranged. The polyalkylene oxide chain may have a branch. The solid electrolyte has a large number of ether oxygens that solvate lithium ions. For this reason, the solid electrolyte dissolves the lithium salt.

固体ポリマーは、典型的には、ポリエチレンオキシド(PEO)である。ただし、PEOに代えてポリプロピレンオキシド(PPO)等が用いられてもよい。   The solid polymer is typically polyethylene oxide (PEO). However, polypropylene oxide (PPO) or the like may be used instead of PEO.

固体ポリマーとしてPEOが用いられる場合は、PEOの重量平均分子量Mwは104〜105であることが望ましい。 When PEO is used as the solid polymer, the weight average molecular weight Mw of PEO is preferably 10 4 to 10 5 .

(イオン性液体)
イオン性液体は、例えば、窒素複素環化合物の第4級アンモニウム塩であるピペリジニウム又はピペリジニウム誘導体の塩である。「ピペリジニウム誘導体」とは、化学式(1)に示すピペリジニウムの窒素原子に結合した2個の水素原子の両方又は片方を他の原子又は原子団に置換した化合物をいう。望ましいピペリジニウム誘導体の例は、化学式(2)に示すN−メチル−N−プロピルピペリジニウムである。
(Ionic liquid)
The ionic liquid is, for example, a salt of piperidinium or a piperidinium derivative that is a quaternary ammonium salt of a nitrogen heterocyclic compound. The “piperidinium derivative” refers to a compound in which both or one of two hydrogen atoms bonded to the nitrogen atom of piperidinium represented by the chemical formula (1) is substituted with another atom or atomic group. An example of a desirable piperidinium derivative is N-methyl-N-propylpiperidinium represented by chemical formula (2).

Figure 2011238404
Figure 2011238404

Figure 2011238404
Figure 2011238404

カチオンであるピペリジニウム又はピペリジニウム誘導体と対をなすアニオンは、特に制限されないが、例えば、PF6 -,ClO4 -,BF4 -,(SO2CF32-(TFSI),(SO2252-,BOB-(ビスオキサラトホウ酸アニオン)等である。 The anion paired with the piperidinium or piperidinium derivative which is a cation is not particularly limited. For example, PF 6 , ClO 4 , BF 4 , (SO 2 CF 3 ) 2 N (TFSI), (SO 2 C) 2 F 5 ) 2 N , BOB (bisoxalatoborate anion) and the like.

イオン性液体の混合量は、特に制限されないが、固体ポリマー100モル部に対して1〜2モル部であることが望ましい。イオン性液体の混合量がこの範囲を下回ると、負極活物質層1010と中間層1014と界面抵抗が大きくなる傾向があり、リチウムのデンドライトの抑制の効果が小さくなる傾向があらわれるからである。また、イオン性液体の混合量がこの範囲を上回ると、固体電解質が負極活物質層1010に押しつけられる効果が小さくなる傾向があり、リチウムのデンドライトの抑制の効果が小さくなる傾向があらわれるからである。   The mixing amount of the ionic liquid is not particularly limited, but is desirably 1 to 2 mol parts with respect to 100 mol parts of the solid polymer. If the mixing amount of the ionic liquid is below this range, the interface resistance between the negative electrode active material layer 1010 and the intermediate layer 1014 tends to increase, and the effect of suppressing lithium dendrite tends to decrease. Further, if the mixing amount of the ionic liquid exceeds this range, the effect of pressing the solid electrolyte against the negative electrode active material layer 1010 tends to be small, and the effect of suppressing lithium dendrite tends to be small. .

(リチウム塩)
リチウム塩は、特に制限されないが、例えば、LiPF6,LiClO4,LiBF4,LiTFSI(Li(SO2CF32N),Li(SO2252N,LiBOB等である。
(Lithium salt)
The lithium salt is not particularly limited, and examples thereof include LiPF 6 , LiClO 4 , LiBF 4 , LiTFSI (Li (SO 2 CF 3 ) 2 N), Li (SO 2 C 2 F 5 ) 2 N, LiBOB, and the like.

リチウム塩の混合量は、固体ポリマーのエーテル酸素のモル量に対するリチウムイオンのモル量の比Li/Oが1/6〜1/54となるように決められることが望ましい。   The mixing amount of the lithium salt is desirably determined such that the ratio Li / O of the molar amount of lithium ions to the molar amount of ether oxygen of the solid polymer is 1/6 to 1/54.

(中間層1014のその他の成分)
中間層1014の強度及び電気化学的特性を向上するため、さらに、セラミックスフィラー、例えば、BaTiO3の粉末が固液混合物にさらに混合されてもよい。セラミックスフィラーの混合量は、残余の成分100重量部に対して1〜20重量部であることが望ましい。また、中間層1014に求められる機能を阻害しないかぎり、他の物質が固液混合物にさらに混合されてもよい。
(Other components of the intermediate layer 1014)
In order to improve the strength and electrochemical properties of the intermediate layer 1014, a ceramic filler, for example, BaTiO 3 powder, may be further mixed into the solid-liquid mixture. The mixing amount of the ceramic filler is desirably 1 to 20 parts by weight with respect to 100 parts by weight of the remaining components. In addition, other substances may be further mixed into the solid-liquid mixture as long as the functions required for the intermediate layer 1014 are not inhibited.

(中間層1014の機能)
負極活物質層1010と保護層1012とが接触すると負極活物質層1010の成分であるリチウムと保護層1012のガラスセラミックスとが反応する。例えば、保護層1012がLATPからなる場合、リチウムによってLATPのTi4+が還元される。しかし、中間層1014が挿入され負極活物質層1010と保護層1012とが接触しないようされると、そのような反応が抑制される。このことは、リチウム空気電池の寿命を長くすることに寄与する。
(Function of the intermediate layer 1014)
When the negative electrode active material layer 1010 and the protective layer 1012 come into contact, lithium which is a component of the negative electrode active material layer 1010 reacts with the glass ceramics of the protective layer 1012. For example, when the protective layer 1012 is made of LATP, LA 4 Ti 4+ is reduced by lithium. However, when the intermediate layer 1014 is inserted and the negative electrode active material layer 1010 and the protective layer 1012 are not in contact with each other, such a reaction is suppressed. This contributes to extending the life of the lithium-air battery.

(中間層1014の作製)
中間層1014は、どのように作製されてもよいが、例えば、アセトニトリル等の有機溶媒に中間層1014の成分を均一に分散させた均一溶液を鋳型に流し込み、窒素ガス、アルゴンガス等の不活性ガス下において流し込み物を乾燥させ、真空下においてさらに流し込み物を乾燥させることにより作製される。
(Preparation of intermediate layer 1014)
The intermediate layer 1014 may be formed in any way. For example, a uniform solution in which the components of the intermediate layer 1014 are uniformly dispersed in an organic solvent such as acetonitrile is poured into a mold, and inert gas such as nitrogen gas and argon gas is used. It is made by drying the casting under gas and further drying the casting under vacuum.

乾燥のときの温度や乾燥にかける時間は、有機溶媒の量及び種類によって異なるが、有機溶媒がアセトニトリルである場合は、例えば、アルゴンガス下において40℃程度で24時間程度をかけて流し込み物を乾燥させた後に、真空下において100℃程度で24時間かけて流し込み物を乾燥させる。   The temperature during drying and the time taken for drying vary depending on the amount and type of the organic solvent, but when the organic solvent is acetonitrile, for example, the flowing material is poured over about 24 hours at about 40 ° C. under argon gas. After drying, the casting is dried at about 100 ° C. for 24 hours under vacuum.

なお、負極活物質層1010又は保護層1012の表面に均一溶液を塗布し、塗布物を乾燥させることにより、中間層1014が作製されてもよい。   Note that the intermediate layer 1014 may be formed by applying a uniform solution to the surface of the negative electrode active material layer 1010 or the protective layer 1012 and drying the applied material.

(正極1006及び水溶液電解質1008)
正極1006及び水溶液電解質1008としては、リチウム空気電池用の正極及び水溶液電解質として公知のものが用いられる。
(Positive electrode 1006 and aqueous electrolyte 1008)
As the positive electrode 1006 and the aqueous electrolyte 1008, those known as positive electrodes and aqueous electrolytes for lithium-air batteries are used.

例えば、正極1006としては、白金等の触媒材料の粒子を担持させた炭素粉末又は炭素繊維の成形体が用いられる。成形及び成形体の形状の維持を容易にするために、成形体が有機バインダを含んでもよい。   For example, as the positive electrode 1006, a molded body of carbon powder or carbon fiber carrying particles of a catalyst material such as platinum is used. In order to facilitate molding and maintaining the shape of the molded body, the molded body may include an organic binder.

水溶液電解質1008としては、例えば、LiCl等のリチウム塩が溶解した水溶液が用いられる。水溶液電解質に代えて、非水溶液電解質が用いられてもよい。   As the aqueous electrolyte 1008, for example, an aqueous solution in which a lithium salt such as LiCl is dissolved is used. Instead of the aqueous electrolyte, a non-aqueous electrolyte may be used.

(リチウム空気電池の作製及び仕様)
負極1004は、どのように作製されてもよいが、例えば、負極活物質層1010、中間層1014及び保護層1012を重ね合わせ、重ねあわせ物を真空下で熱融着することにより作製される。
(Production and specification of lithium-air battery)
The negative electrode 1004 may be manufactured in any way. For example, the negative electrode active material layer 1010, the intermediate layer 1014, and the protective layer 1012 are overlapped, and the stacked product is heat-sealed under vacuum.

起電体1002は、集電体等とともに容器に収容され、リチウム空気電池として使用される。起電体1002が容器へ収容されるときには、正極活物質の酸素を含む空気を透過する酸素透過体で正極1006が覆われる。酸素透過体としては、例えば、フッ素樹脂、ポリエチレン樹脂、ポリプロピレン樹脂等の樹脂のシートの多孔質体が用いられる。   The electromotive body 1002 is housed in a container together with a current collector and the like, and used as a lithium air battery. When the electromotive body 1002 is accommodated in the container, the positive electrode 1006 is covered with an oxygen permeable body that transmits air containing oxygen as the positive electrode active material. As the oxygen permeable body, for example, a porous body of a resin sheet such as a fluororesin, a polyethylene resin, or a polypropylene resin is used.

このように作製されたリチウム空気電池においては、従来のリチウム空気電池と同じように充放電が行われる。   In the lithium air battery thus manufactured, charging and discharging are performed in the same manner as a conventional lithium air battery.

(評価用のセルの作製)
Li/PEO18LiTFSI−xPP13TFSI/Liという積層構造を有するセル(以下では「Li電極セル」という。)及びAu/PEO18LiTFSI−xPP13TFSI/Auという積層構造を有するセル(以下では「Au電極セル」という。)を作製した。
(Production of cells for evaluation)
A cell having a stacked structure of Li / PEO 18 LiTFSI-xPP13TFSI / Li (hereinafter referred to as “Li electrode cell”) and a cell having a stacked structure of Au / PEO 18 LiTFSI-xPP13TFSI / Au (hereinafter referred to as “Au electrode cell”). Was made.

PEOには、シグマ−アルドリッチ コーポレーション(米国ミズーリ州)製の重量平均分子量Mwが6×105のものを用いた。LiTFSIには、シグマ−アルドリッチ コーポレーション製のものを用いた。PEOのエーテル酸素のモル量に対するLiのモル量の比Li/Oは、1/18とした。PP13TFSI(N−メチル−N−プロピルピペリジニウムビス(トリフルオロメタンスルホニル)イミド)には、関東化学(東京都中央区)製のものを用いた。 A PEO having a weight average molecular weight Mw of 6 × 10 5 manufactured by Sigma-Aldrich Corporation (Missouri, USA) was used. LiTFSI manufactured by Sigma-Aldrich Corporation was used. The ratio Li / O of the molar amount of Li to the molar amount of ether oxygen of PEO was 1/18. PP13TFSI (N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide) manufactured by Kanto Chemical (Chuo-ku, Tokyo) was used.

Li電極セル及びAu電極セルの作製においては、アルゴンガス下においてPEO、LiTFSI及びPP13TFSIをアセトニトリルに24時間かけて均一に分散させ、均一溶液を作製した。続いて、作製した均一溶液をフッ素樹脂製のディッシュにキャスティングした。さらに続いて、アルゴンガス下において40℃で24時間かけて乾燥を行い、真空中において100℃で24時間かけてさらに乾燥を行い、PEO18LiTFSI−xPP13TFSI膜を作製した。 In the production of the Li electrode cell and the Au electrode cell, PEO, LiTFSI, and PP13TFSI were uniformly dispersed in acetonitrile over 24 hours under an argon gas to produce a uniform solution. Subsequently, the prepared uniform solution was cast on a fluororesin dish. Subsequently, drying was performed at 40 ° C. for 24 hours under argon gas, and further drying was performed at 100 ° C. for 24 hours in a vacuum to prepare a PEO 18 LiTFSI-xPP13TFSI film.

PEO18LiTFSI−xPP13TFSI膜を作製した後に、作製したPEO18LiTFSI−xPP13TFSI膜を2個のLi電極又は2個のAu電極で挟んでサンドイッチセルを作製した。 After producing the PEO 18 LiTFSI-xPP13TFSI film was manufactured a sandwich cell across the PEO 18 LiTFSI-xPP13TFSI membrane prepared in two Li electrode or two Au electrodes.

サンドイッチセルを作製した後に、作製したサンドイッチセルを樹脂フィルムで真空封止し、Li電極セル及びAu電極セルを作製した。   After producing the sandwich cell, the produced sandwich cell was vacuum-sealed with a resin film to produce a Li electrode cell and an Au electrode cell.

Li電極セル及びAu電極セルの作製とは別に、銅箔リードが取りつけられた幅約10mm、厚さ約0.4mmの2本のリチウム金属片をPEO18LiTFSI−xPP13TFSI膜の表面に約1mm離して置き、PEO18LiTFSI−xPP13TFSI膜及びリチウム金属片を樹脂フィルムで真空封止し、可視化セルを作製した。 Separately from the production of the Li electrode cell and the Au electrode cell, two lithium metal pieces having a width of about 10 mm and a thickness of about 0.4 mm to which the copper foil lead is attached are separated from the surface of the PEO 18 LiTFSI-xPP13TFSI film by about 1 mm. The PEO 18 LiTFSI-xPP13TFSI membrane and the lithium metal piece were vacuum sealed with a resin film to prepare a visualization cell.

(デンドライトが発生するまでの時間)
可視化セルを用いてデンドライトが発生するまでの時間を測定した。PP13TFSIの混合量xによるデンドライトが発生するまでの時間t0の変化を図2に示す。
(Time until dendrite occurs)
The time until dendrite was generated was measured using a visualization cell. FIG. 2 shows a change in time t 0 until dendrite is generated depending on the blend amount x of PP13TFSI.

デンドライトが発生するまでの時間の調査においては、60℃に維持した可視化セルに0.5mAcm-2の電流密度で電流を流しながら可視化セルを5〜8時間間隔で観察し、デンドライトの発生の有無を確認した。図2の三角形のプロットは、デンドライトの発生が観察されなかった最後の時間を示し、図2の四角形のプロットは、デンドライトの発生が観察された最初の時間を示す。 In the investigation of the time until dendrite occurs, the visualization cell was observed at intervals of 5 to 8 hours while passing a current at a current density of 0.5 mAcm −2 through the visualization cell maintained at 60 ° C., and whether or not dendrite was generated. It was confirmed. The triangular plot in FIG. 2 shows the last time when no dendrite development was observed, and the square plot in FIG. 2 shows the first time when dendrite occurrence was observed.

図2からは、PP13TFSIの混合によりデンドライトが発生するまでの時間が長くなり、PP13TFSIの混合はデンドライトの発生を抑制するのに有効であることがわかる。   From FIG. 2, it can be seen that the time until dendrite is generated by the mixing of PP13TFSI becomes longer, and the mixing of PP13TFSI is effective in suppressing the generation of dendrite.

(電気伝導率)
Au電極セルを用いてPEO18LiTFSI−xPP13TFSIの電気伝導率を調べた。PP13TFSIの混合量xによる25℃における電気伝導率の変化を表1に示す。
(Electrical conductivity)
The electrical conductivity of PEO 18 LiTFSI-xPP13TFSI was examined using an Au electrode cell. Table 1 shows changes in electrical conductivity at 25 ° C. depending on the amount x of PP13TFSI.

Figure 2011238404
Figure 2011238404

表1からは、PP13TFSIの混合により電気伝導率が向上することがわかる。   From Table 1, it can be seen that the electrical conductivity is improved by mixing PP13TFSI.

(界面抵抗の減少)
Li電極セルを用いてPEO18LiTFSI−xPP13TFSI膜とLi電極との界面抵抗Riを調べた。界面抵抗Riは、PEO18LiTFSI−xPP13TFSI膜とLi電極との反応によって生じるパッシベーション層の抵抗Rfと、Li++e-=Liという反応の電荷移動抵抗Rcと、の2つの部分からなる。抵抗Rf及びRcは、インピーダンススペクトルから求めた。x=1.44の場合、60℃におけるパッシベーション層の抵抗Rfは68.4Ωcm2であり、60℃における電荷移動抵抗Rcは30.1Ωcm2であった。これに対して、x=0の場合、60℃におけるパッシベーション層の抵抗Rfは199Ωcm2であり、60℃における電荷移動抵抗Rcは49Ωcm2であった。この結果から、PP13TFSIの混合により界面抵抗が低下することがわかる。
(Reduction in interface resistance)
The interface resistance R i between the PEO 18 LiTFSI-xPP13TFSI film and the Li electrode was examined using a Li electrode cell. The interface resistance R i consists of two parts: a resistance R f of the passivation layer produced by the reaction between the PEO 18 LiTFSI-xPP13TFSI film and the Li electrode, and a charge transfer resistance R c of the reaction Li + + e = Li. . The resistances R f and R c were obtained from the impedance spectrum. In the case of x = 1.44, the resistance R f of the passivation layer at 60 ° C. was 68.4 Ωcm 2 , and the charge transfer resistance R c at 60 ° C. was 30.1 Ωcm 2 . On the other hand, when x = 0, the resistance R f of the passivation layer at 60 ° C. was 199 Ωcm 2 and the charge transfer resistance R c at 60 ° C. was 49 Ωcm 2 . From this result, it can be seen that the interfacial resistance is reduced by mixing PP13TFSI.

1002 リチウム空気電池の起電体
1004 負極
1006 正極
1008 水溶液系電解質
1010 負極活物質層
1012 保護層
1014 中間層
1002 Electromotive body of lithium air battery 1004 Negative electrode 1006 Positive electrode 1008 Aqueous electrolyte 1010 Negative electrode active material layer 1012 Protective layer 1014 Intermediate layer

Claims (3)

リチウム二次電池用の複合負極であって、
リチウム金属、リチウム合金及びリチウム化合物からなる群より選択される負極活物質からなる負極活物質層と、
前記複合負極の表面にありリチウムイオン導電性を持つ材質からなる第1の層と、
前記負極活物質層と前記第1の層との間にありリチウムイオン伝導性を持つ固液混合物からなる第2の層と、
を備え、
前記固液混合物は、
ポリアルキレンオキシド鎖を有する固体ポリマーと、
前記負極活物質に対する耐還元性を持つイオン性液体と、
リチウム塩と、
を含むリチウム二次電池用の複合負極。
A composite negative electrode for a lithium secondary battery,
A negative electrode active material layer made of a negative electrode active material selected from the group consisting of lithium metal, a lithium alloy and a lithium compound;
A first layer made of a material having lithium ion conductivity on the surface of the composite negative electrode;
A second layer comprising a solid-liquid mixture between the negative electrode active material layer and the first layer and having lithium ion conductivity;
With
The solid-liquid mixture is
A solid polymer having a polyalkylene oxide chain;
An ionic liquid having reduction resistance to the negative electrode active material;
Lithium salt,
A composite negative electrode for a lithium secondary battery.
前記イオン性液体がピペリジニウム又はピペリジニウム誘導体の塩である請求項1のリチウム二次電池用の複合負極。   The composite negative electrode for a lithium secondary battery according to claim 1, wherein the ionic liquid is a salt of piperidinium or a piperidinium derivative. リチウム二次電池であって、
正極と、
複合負極と、
前記正極と前記複合負極との間に満たされる電解質と、
を備え、
前記複合負極は、
リチウム金属、リチウム合金及びリチウム化合物からなる群より選択される負極活物質からなる負極活物質層と、
前記複合負極の表面にありリチウムイオン導電性を持つ材質からなる第1の層と、
前記負極活物質層と前記第1の層との間にありリチウムイオン伝導性を持つ固液混合物からなる第2の層と、
を備え、
前記固液混合物は、
ポリアルキレンオキシド鎖を有する固体ポリマーと、
前記負極活物質に対する耐還元性を持つイオン性液体と、
リチウム塩と、
を含むリチウム二次電池。
A lithium secondary battery,
A positive electrode;
A composite negative electrode;
An electrolyte filled between the positive electrode and the composite negative electrode;
With
The composite negative electrode is
A negative electrode active material layer made of a negative electrode active material selected from the group consisting of lithium metal, a lithium alloy and a lithium compound;
A first layer made of a material having lithium ion conductivity on the surface of the composite negative electrode;
A second layer comprising a solid-liquid mixture between the negative electrode active material layer and the first layer and having lithium ion conductivity;
With
The solid-liquid mixture is
A solid polymer having a polyalkylene oxide chain;
An ionic liquid having reduction resistance to the negative electrode active material;
Lithium salt,
Including lithium secondary battery.
JP2010107470A 2010-05-07 2010-05-07 Lithium secondary battery and composite negative electrode for lithium secondary battery Expired - Fee Related JP5545728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010107470A JP5545728B2 (en) 2010-05-07 2010-05-07 Lithium secondary battery and composite negative electrode for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010107470A JP5545728B2 (en) 2010-05-07 2010-05-07 Lithium secondary battery and composite negative electrode for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2011238404A true JP2011238404A (en) 2011-11-24
JP5545728B2 JP5545728B2 (en) 2014-07-09

Family

ID=45326178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010107470A Expired - Fee Related JP5545728B2 (en) 2010-05-07 2010-05-07 Lithium secondary battery and composite negative electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5545728B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084355A1 (en) * 2011-12-09 2013-06-13 トヨタ自動車株式会社 Metal-air battery
KR20130067139A (en) * 2011-12-13 2013-06-21 삼성전자주식회사 Protected anode, lithium air battery including the same, and all-solid battery including the same
KR20130099706A (en) * 2012-02-29 2013-09-06 삼성전자주식회사 Electrolyte and lithium air battery including the same
WO2013146792A1 (en) * 2012-03-28 2013-10-03 国立大学法人信州大学 Hybrid capacitor
WO2013161516A1 (en) * 2012-04-26 2013-10-31 日本碍子株式会社 Lithium air secondary cell
KR20140006639A (en) * 2012-07-06 2014-01-16 삼성전자주식회사 Anode for lithium air battery and lithium air battery comprising the anode
KR20140091089A (en) * 2012-12-21 2014-07-21 삼성전자주식회사 Protected anode for lithium air battery and lithium air battery including the same
KR20140140686A (en) * 2013-05-29 2014-12-10 삼성전자주식회사 Positive electrode for Lithium battery and lithium metal battery using the same
WO2015055351A1 (en) * 2013-10-15 2015-04-23 Robert Bosch Gmbh Lithium electrode for a lithium-ion battery, and method for the production thereof
US9306253B2 (en) 2011-10-07 2016-04-05 Toyota Jidosha Kabushiki Kaisha Electrolyte solution for lithium-air battery
JP2016512649A (en) * 2013-02-21 2016-04-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Lithium battery with composite solid electrolyte
EP3043402A4 (en) * 2013-09-02 2017-03-01 W.L. Gore & Associates, Co., Ltd. Protective film, separator using same, and secondary battery
JP2019505970A (en) * 2016-02-19 2019-02-28 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Multilayer assembly
US10790097B2 (en) 2016-03-18 2020-09-29 Shinshu University Lithium composite negative electrode and hybrid capacitor, and manufacturing methods thereof
CN111755664A (en) * 2020-06-30 2020-10-09 蜂巢能源科技有限公司 Electrode of lithium ion battery and lithium ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515893A (en) * 1999-11-23 2003-05-07 モルテック・コーポレーション Lithium negative electrode for electrochemical cells
JP2003229021A (en) * 2002-02-04 2003-08-15 National Institute Of Advanced Industrial & Technology Polymer electrolyte and polymer secondary battery using it
JP2003331918A (en) * 2002-05-16 2003-11-21 National Institute Of Advanced Industrial & Technology Cold melting salt, and lithium secondary cell using the same
JP2005026023A (en) * 2003-06-30 2005-01-27 Toshiba Corp Nonaqueous electrolyte air battery
JP2007524204A (en) * 2004-02-06 2007-08-23 ポリプラス バッテリー カンパニー Protected active metal electrode and battery cell with non-aqueous interlayer structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515893A (en) * 1999-11-23 2003-05-07 モルテック・コーポレーション Lithium negative electrode for electrochemical cells
JP2003229021A (en) * 2002-02-04 2003-08-15 National Institute Of Advanced Industrial & Technology Polymer electrolyte and polymer secondary battery using it
JP2003331918A (en) * 2002-05-16 2003-11-21 National Institute Of Advanced Industrial & Technology Cold melting salt, and lithium secondary cell using the same
JP2005026023A (en) * 2003-06-30 2005-01-27 Toshiba Corp Nonaqueous electrolyte air battery
JP2007524204A (en) * 2004-02-06 2007-08-23 ポリプラス バッテリー カンパニー Protected active metal electrode and battery cell with non-aqueous interlayer structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7014000278; 第49回電池討論会 講演要旨集 , 20081105, p.354, 社団法人電気化学会電池技術委員会 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9306253B2 (en) 2011-10-07 2016-04-05 Toyota Jidosha Kabushiki Kaisha Electrolyte solution for lithium-air battery
WO2013084355A1 (en) * 2011-12-09 2013-06-13 トヨタ自動車株式会社 Metal-air battery
JPWO2013084355A1 (en) * 2011-12-09 2015-04-27 トヨタ自動車株式会社 Metal air battery
CN104040786A (en) * 2011-12-09 2014-09-10 丰田自动车株式会社 Metal-air battery
US9608279B2 (en) 2011-12-09 2017-03-28 Toyota Jidosha Kabushiki Kaisha Metal-air battery
KR20130067139A (en) * 2011-12-13 2013-06-21 삼성전자주식회사 Protected anode, lithium air battery including the same, and all-solid battery including the same
JP2013125750A (en) * 2011-12-13 2013-06-24 Samsung Electronics Co Ltd Protected negative electrode, lithium air battery including the same, and all-solid-state battery including the protected negative electrode
KR20130099706A (en) * 2012-02-29 2013-09-06 삼성전자주식회사 Electrolyte and lithium air battery including the same
JP2013182887A (en) * 2012-02-29 2013-09-12 Samsung Electronics Co Ltd Electrolyte and lithium air battery including the same
WO2013146792A1 (en) * 2012-03-28 2013-10-03 国立大学法人信州大学 Hybrid capacitor
WO2013161516A1 (en) * 2012-04-26 2013-10-31 日本碍子株式会社 Lithium air secondary cell
US9391349B2 (en) 2012-04-26 2016-07-12 Ngk Insulators, Ltd. Lithium air secondary battery
JPWO2013161516A1 (en) * 2012-04-26 2015-12-24 日本碍子株式会社 Lithium air secondary battery
KR20140006639A (en) * 2012-07-06 2014-01-16 삼성전자주식회사 Anode for lithium air battery and lithium air battery comprising the anode
KR102034718B1 (en) 2012-07-06 2019-10-22 삼성전자주식회사 Anode for lithium air battery and Lithium air battery comprising the anode
KR20140091089A (en) * 2012-12-21 2014-07-21 삼성전자주식회사 Protected anode for lithium air battery and lithium air battery including the same
US9312583B2 (en) 2012-12-21 2016-04-12 Samsung Electronics Co., Ltd. Protected anode for lithium air battery and lithium air battery including the same
KR102034719B1 (en) * 2012-12-21 2019-10-22 삼성전자주식회사 Protected anode for lithium air battery and lithium air battery including the same
JP2016512649A (en) * 2013-02-21 2016-04-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Lithium battery with composite solid electrolyte
KR102067764B1 (en) * 2013-05-29 2020-01-20 삼성전자주식회사 Positive electrode for Lithium battery and lithium metal battery using the same
KR20140140686A (en) * 2013-05-29 2014-12-10 삼성전자주식회사 Positive electrode for Lithium battery and lithium metal battery using the same
EP3043402A4 (en) * 2013-09-02 2017-03-01 W.L. Gore & Associates, Co., Ltd. Protective film, separator using same, and secondary battery
KR101923787B1 (en) 2013-09-02 2018-11-29 니뽄 고아 가부시끼가이샤 Protective film, separator using same, and secondary battery
CN105612633B (en) * 2013-10-15 2018-11-09 罗伯特·博世有限公司 Lithium electrode and its manufacturing method for lithium-ions battery
CN105612633A (en) * 2013-10-15 2016-05-25 罗伯特·博世有限公司 Lithium electrode for a lithium-ion battery, and method for the production thereof
WO2015055351A1 (en) * 2013-10-15 2015-04-23 Robert Bosch Gmbh Lithium electrode for a lithium-ion battery, and method for the production thereof
US10553858B2 (en) 2013-10-15 2020-02-04 Robert Bosch Gmbh Lithium electrode for a rechargeable lithium-ion battery and method for the manufacture thereof
JP2019505970A (en) * 2016-02-19 2019-02-28 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. Multilayer assembly
US10790097B2 (en) 2016-03-18 2020-09-29 Shinshu University Lithium composite negative electrode and hybrid capacitor, and manufacturing methods thereof
CN111755664A (en) * 2020-06-30 2020-10-09 蜂巢能源科技有限公司 Electrode of lithium ion battery and lithium ion battery
CN111755664B (en) * 2020-06-30 2022-09-06 蜂巢能源科技股份有限公司 Electrode of lithium ion battery and lithium ion battery

Also Published As

Publication number Publication date
JP5545728B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5545728B2 (en) Lithium secondary battery and composite negative electrode for lithium secondary battery
Piana et al. PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free,“one pot” preparation
Wang et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries
Ding et al. Interfaces: Key issue to be solved for all solid-state lithium battery technologies
Sun et al. Improving ionic conductivity with bimodal-sized Li7La3Zr2O12 fillers for composite polymer electrolytes
Simon et al. Properties of the interphase formed between argyrodite-type Li6PS5Cl and polymer-based PEO10: LiTFSI
Jung et al. Solid‐state lithium batteries: bipolar design, fabrication, and electrochemistry
Zagórski et al. Garnet–polymer composite electrolytes: new insights on local li-ion dynamics and electrodeposition stability with Li metal anodes
Lu et al. Effects of fluorine doping on structural and electrochemical properties of Li6. 25Ga0. 25La3Zr2O12 as electrolytes for solid-state lithium batteries
JP5382573B2 (en) Lithium air battery
US9178255B2 (en) Lithium-air cells incorporating solid electrolytes having enhanced ionic transport and catalytic activity
US11133527B2 (en) Solid electrolyte
Liu et al. Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide into polymer electrolyte on Li dendrite formation in Li/poly (ethylene oxide)-Li (CF3SO2) 2N/Li
KR20180099611A (en) Pseudo solid electrolyte and all-solid lithium secondary battery using thereof
US9312583B2 (en) Protected anode for lithium air battery and lithium air battery including the same
KR20180077287A (en) Ionic conducting compounds and related uses
KR20190007527A (en) Solid electrolyte composition
KR20160131267A (en) Negative electrode for lithium battery and lithium battery comprising the same
Chen et al. Hybrid solid electrolytes with excellent electrochemical properties and their applications in all-solid-state cells
KR20160024411A (en) Polymer electrolyte for lithium battery and lithium battery including the same
KR20160118958A (en) Electrolyte for lithium second battery, and lithium second battery comprising the electrolyte
Pitillas Martinez et al. The cathode composition, a key player in the success of Li-metal solid-state batteries
JP2020035587A (en) Lithium ion conductive polymer electrolyte
EP3111502A1 (en) Inorganic coordination polymers as gelling agents
Gutierrez-Pardo et al. Improved electromechanical stability of the Li metal/garnet ceramic interface by a solvent-free deposited OIPC soft layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140508

R150 Certificate of patent or registration of utility model

Ref document number: 5545728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees