JP2011236165A - Method for producing alkene by deoxidation of epoxy compound - Google Patents

Method for producing alkene by deoxidation of epoxy compound Download PDF

Info

Publication number
JP2011236165A
JP2011236165A JP2010109773A JP2010109773A JP2011236165A JP 2011236165 A JP2011236165 A JP 2011236165A JP 2010109773 A JP2010109773 A JP 2010109773A JP 2010109773 A JP2010109773 A JP 2010109773A JP 2011236165 A JP2011236165 A JP 2011236165A
Authority
JP
Japan
Prior art keywords
alkene
gold
hydrotalcite
epoxy compound
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010109773A
Other languages
Japanese (ja)
Inventor
Kiyoomi Kaneda
清臣 金田
Hirokazu Matsuda
洋和 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2010109773A priority Critical patent/JP2011236165A/en
Publication of JP2011236165A publication Critical patent/JP2011236165A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing alkene for allowing production of a target compound under a mild condition in excellent yield when producing the corresponding alkene by deoxidation of an epoxy compound.SOLUTION: In the method for producing alkene, the corresponding alkene is prepared when the epoxy compound is deoxidized under a carbon monoxide atmosphere in the presence of a catalyst with gold-immobilized surface, which is obtained by immobilizing gold nanoparticles to the surface of a carrier, and water. Hydrotalcite is preferably used for the carrier.

Description

本発明は、温和な条件下でエポキシ化合物を脱酸素して、対応するアルケンを高収率で得ることができるアルケンの製造方法に関する。   The present invention relates to a method for producing an alkene capable of deoxygenating an epoxy compound under mild conditions to obtain a corresponding alkene in a high yield.

エポキシ化合物のアルケンへの脱酸素反応は、有機合成の分野や生化学の分野で非常に重要な反応である。エポキシ化合物のアルケンへの脱酸素反応について、様々な試薬を使用した量論反応の開発は進んでいるが(非特許文献1、2等)、触媒反応については、有害な還元剤を使用する必要がある点、反応が空気や湿度により影響を受けやすい点、触媒活性が低い点などの問題が残されていた(非特許文献3、4等)。   Deoxygenation of epoxy compounds to alkenes is a very important reaction in the field of organic synthesis and biochemistry. Development of stoichiometric reactions using various reagents for deoxygenation of epoxy compounds to alkenes is progressing (Non-Patent Documents 1 and 2 etc.), but it is necessary to use harmful reducing agents for catalytic reactions. However, there remain problems such as the point that the reaction is easily influenced by air and humidity, and the low catalytic activity (Non-Patent Documents 3 and 4).

すなわち、エポキシ化合物の脱酸素反応によりアルケンを製造する方法であって、温和な条件下で、効率よく製造することができ、操作性及び作業性に優れるアルケンの製造方法が未だ見出されていないのが現状である。   That is, a method for producing an alkene by deoxygenation of an epoxy compound, which can be produced efficiently under mild conditions, and an alkene production method having excellent operability and workability has not yet been found. is the current situation.

Atagi, L. M.; Over, D. E.; McAlister, D. R.; Mayer, J. M. J. Am. Chem. Soc. 1991, 113, 870Atagi, L. M .; Over, D. E .; McAlister, D. R .; Mayer, J. M. J. Am. Chem. Soc. 1991, 113, 870 RajanBabu, T. V.; Nugent, W. A. J. Am. Chem. Soc. 1994, 116, 986RajanBabu, T. V .; Nugent, W. A. J. Am. Chem. Soc. 1994, 116, 986 Gable, K. P.; Brown, E. C.; J. Am. Chem. Soc. 2003, 125, 11018Gable, K. P .; Brown, E. C .; J. Am. Chem. Soc. 2003, 125, 11018 Gable, K. P.; Brown, E. C. Synlett 2003, 14, 2243Gable, K. P .; Brown, E. C. Synlett 2003, 14, 2243

従って、本発明の目的は、エポキシ化合物を脱酸素して対応するアルケンを製造することを特徴とするアルケンの製造方法であって、温和な条件下で、優れた収率で目的化合物を製造することができるアルケンの製造方法を提供することにある。   Accordingly, an object of the present invention is a method for producing an alkene characterized by deoxygenating an epoxy compound to produce a corresponding alkene, and the objective compound is produced in an excellent yield under mild conditions. An object of the present invention is to provide a method for producing an alkene.

本発明者等は、上記課題を解決するため鋭意検討した結果、金ナノ粒子を担体に担持させて得られた表面金固定化触媒の存在下、一酸化炭素と水を還元剤として使用することにより、温和な条件下でエポキシ化合物を脱酸素して、優れた収率で対応するアルケンを得ることができることを見いだした。本発明はこれらの知見に基づいて完成させたものである。   As a result of intensive studies to solve the above problems, the present inventors have used carbon monoxide and water as a reducing agent in the presence of a surface gold-immobilized catalyst obtained by supporting gold nanoparticles on a support. Thus, it was found that the corresponding alkene can be obtained in an excellent yield by deoxygenating the epoxy compound under mild conditions. The present invention has been completed based on these findings.

すなわち、本発明は、担体表面に金ナノ粒子を固定化して得られる表面金固定化触媒及び水の存在下、一酸化炭素雰囲気下で、エポキシ化合物を脱酸素して対応するアルケンを製造することを特徴とするアルケンの製造方法を提供する。   That is, the present invention is to produce a corresponding alkene by deoxygenating an epoxy compound in a carbon monoxide atmosphere in the presence of a surface gold-immobilized catalyst obtained by immobilizing gold nanoparticles on a support surface and water. A method for producing an alkene is provided.

前記担体としては、ハイドロタルサイトが好ましい。   As the carrier, hydrotalcite is preferable.

本発明に係るアルケンの製造方法は、エポキシ化合物の脱酸素反応において、触媒として金ナノ粒子を特定の担体に担持させて得られた表面金固定化触媒を使用し、還元剤として水と一酸化炭素を組み合わせて使用する。前記触媒は優れた反応促進作用を発揮し、温和な条件下でも、極めて高い収率で目的とするアルケンを選択的に製造することができる。また、本発明においては有機溶媒の代わりに水を使用するため、コストを削減することができ、爆発性、引火性、毒性等、有機溶媒を取り扱う際の問題点を解消することができる。更に、水は熱容量が大きいため、反応温度の調節が容易であり、水に不溶性の生成物の回収が容易である。更に、本発明に係るアルケンの製造方法においては、二酸化炭素が副生するが、二酸化炭素は容易に取り除くことができるため、目的とするアルケンの精製が容易である。本発明に係るアルケンの製造方法によれば、有害な試薬を使用する必要がなく、また、有害物質を副生することなく、目的化合物を効率よく得ることができるため、環境に優しい方法により、有用なアルケンを効率よく製造することができる。   The alkene production method according to the present invention uses a surface gold-immobilized catalyst obtained by supporting gold nanoparticles on a specific carrier as a catalyst in a deoxygenation reaction of an epoxy compound, and water and monoxide as a reducing agent. Use in combination with carbon. The catalyst exhibits an excellent reaction promoting action, and can selectively produce the target alkene with a very high yield even under mild conditions. In the present invention, since water is used instead of the organic solvent, the cost can be reduced, and problems associated with handling the organic solvent such as explosiveness, flammability and toxicity can be solved. Furthermore, since water has a large heat capacity, the reaction temperature can be easily adjusted, and the product insoluble in water can be easily recovered. Furthermore, in the method for producing alkene according to the present invention, carbon dioxide is by-produced, but since carbon dioxide can be easily removed, purification of the target alkene is easy. According to the alkene production method of the present invention, it is not necessary to use harmful reagents, and the target compound can be efficiently obtained without by-producting harmful substances. Useful alkenes can be produced efficiently.

[表面金固定化触媒]
本発明で用いる表面金固定化触媒は、担体表面に金ナノ粒子を固定化して得られる。前記担体としては、例えば、ハイドロタルサイト、アルミナ(Al23)、マグネシア(MgO)、チタニア(TiO2)等を挙げることができる。本発明においては、なかでも、ハイドロタルサイト、アルミナ(Al23)、マグネシア(MgO)等の塩基性化合物からなる担体が好ましい。また、チタニア(TiO2)、シリカ(SiO2)、活性炭(C)等の非塩基性化合物からなる担体は、塩基(例えば、炭酸ナトリウム(Na2CO3)、炭酸カリウム(K2CO3)等)を反応系に添加することにより、本発明における担体として使用することができる。
[Surface gold immobilization catalyst]
The surface gold-immobilized catalyst used in the present invention is obtained by immobilizing gold nanoparticles on the surface of a carrier. Examples of the carrier include hydrotalcite, alumina (Al 2 O 3 ), magnesia (MgO), titania (TiO 2 ), and the like. In the present invention, among these, a carrier made of a basic compound such as hydrotalcite, alumina (Al 2 O 3 ), magnesia (MgO) is preferable. In addition, carriers made of non-basic compounds such as titania (TiO 2 ), silica (SiO 2 ), activated carbon (C) are bases (for example, sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 )). Etc.) can be used as a carrier in the present invention.

本発明においては、なかでも、目的化合物を極めて高い収率で得られる点で、ハイドロタルサイトが好ましい。従って、本発明における表面金固定化触媒としては、ハイドロタルサイト表面に金ナノ粒子が固定されたハイドロタルサイト固定化金ナノ粒子触媒(以下、「Au/HT」と称する場合がある)が好ましい。   In the present invention, among these, hydrotalcite is preferable because the target compound can be obtained in an extremely high yield. Therefore, as the surface gold-immobilized catalyst in the present invention, a hydrotalcite-immobilized gold nanoparticle catalyst (hereinafter sometimes referred to as “Au / HT”) in which gold nanoparticles are immobilized on the hydrotalcite surface is preferable. .

上記ハイドロタルサイトとしては、特に制限されることはなく、天然に産出されたハイドロタルサイトを使用してもよく、また、合成ハイドロタルサイト又は合成ハイドロタルサイト様化合物を使用してもよい。   The hydrotalcite is not particularly limited, and naturally produced hydrotalcite may be used, or a synthetic hydrotalcite or a synthetic hydrotalcite-like compound may be used.

上記ハイドロタルサイトは、例えば、下記式(1)
II 8-XIII X(OH)16A・nH2O (1)
(式中、MIIは、Mg2+、Fe2+、Zn2+、Ca2+、Li2+、Ni2+、Co2+、Cu2+、Mn2+から選択された少なくとも1種の二価の金属であり、MIIIはAl3+、Fe3+、Mn3+、Ru3+から選択された少なくとも1種の三価の金属である。xは1〜7の整数を示す。Aは二価のアニオンを示し、nは0〜30の整数を示す)
又は、下記式(2)
[Mg2+ 1-yAl3+ y(OH)2]y+[(Ds-y/s・mH2O]y- (2)
(式中、yは0.20≦y≦0.33を満たす数を示し、Ds-はs価のアニオンを示す。mは0〜30の整数を示す)
で表される。本発明におけるハイドロタルサイトとしては、なかでも、目的化合物を極めて高い収率で得られる点で、上記式(1)においてMIIがMg2+、MIIIがAl3+、AがCO3 2-であるものが好ましく、特に、Mg6Al2(OH)16CO3・4H2Oで表されるハイドロタルサイトを好適に使用することができる。
The hydrotalcite is, for example, the following formula (1)
M II 8-X M III X (OH) 16 A · nH 2 O (1)
( Wherein M II is at least one selected from Mg 2+ , Fe 2+ , Zn 2+ , Ca 2+ , Li 2+ , Ni 2+ , Co 2+ , Cu 2+ , and Mn 2+. M III is at least one trivalent metal selected from Al 3+ , Fe 3+ , Mn 3+ , Ru 3+ , x is an integer of 1 to 7 A represents a divalent anion, and n represents an integer of 0 to 30)
Or the following formula (2)
[Mg 2+ 1-y Al 3+ y (OH) 2 ] y + [(D s− ) y / s · mH 2 O] y− (2)
(Wherein y represents a number satisfying 0.20 ≦ y ≦ 0.33, D s− represents an s-valent anion, and m represents an integer of 0 to 30)
It is represented by As the hydrotalcite in the present invention, in particular, M II is Mg 2+ , M III is Al 3+ , and A is CO 3 2 in the above formula (1) in that the target compound can be obtained in an extremely high yield. In particular, hydrotalcite represented by Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O can be suitably used.

本発明におけるハイドロタルサイトとしては、商品名「Tomita AD-500」(富田製薬(株)製)等の市販品を使用してもよい。   As hydrotalcite in this invention, you may use commercial items, such as a brand name "Tomita AD-500" (made by Tomita Pharmaceutical Co., Ltd.).

担体の表面に金ナノ粒子を固定化する方法としては、特に制限されることがなく、例えば、塩化金(AuCl3)、塩化金酸(HAuCl4)等の金化合物とハイドロタルサイト等の担体とを溶媒中で混合し、撹拌することによりハイドロタルサイト等の担体表面に金イオンを固定化した後、該金イオンを適宜な方法により還元することにより行う方法等を挙げることができる。 The method for immobilizing the gold nanoparticles on the surface of the carrier is not particularly limited. For example, a gold compound such as gold chloride (AuCl 3 ) or chloroauric acid (HAuCl 4 ) and a carrier such as hydrotalcite. And the like in a solvent and agitated to immobilize gold ions on the surface of a carrier such as hydrotalcite and then reduce the gold ions by an appropriate method.

前記溶媒としては、使用する金化合物を溶解することができればよく、例えば、水、アセトン、アルコール類等を挙げることができる。金ナノ粒子の固定化処理を行う際の金化合物の溶液中の濃度としては、特に制限されることがなく、例えば、0.1〜100mMの範囲から適宜選択することができる。撹拌時の温度は、例えば、20〜80℃の範囲から選択することができるが、通常室温(25℃)で行われる。撹拌時間は撹拌時の温度によっても異なるが、例えば、6〜24時間、好ましくは、8〜12時間程度である。撹拌終了後は、必要に応じて水や有機溶媒等で洗浄し、真空乾燥などにより乾燥してもよい。   The solvent only needs to dissolve the gold compound to be used, and examples thereof include water, acetone, and alcohols. The concentration of the gold compound in the solution when the gold nanoparticles are immobilized is not particularly limited, and can be appropriately selected from a range of 0.1 to 100 mM, for example. Although the temperature at the time of stirring can be selected from the range of 20-80 degreeC, for example, it is normally performed at room temperature (25 degreeC). Although stirring time changes also with the temperature at the time of stirring, it is 6 to 24 hours, for example, Preferably, it is about 8 to 12 hours. After completion of the stirring, it may be washed with water or an organic solvent as necessary, and dried by vacuum drying or the like.

前記還元剤としては、例えば、水素化ホウ素ナトリウム(NaBH4)、水素化ホウ素リチウム(LiBH4)、水素化ホウ素カリウム(KBH4)等の水素化ホウ素錯化合物、ヒドラジン、水素(H2)、ジメチルフェニルシラン等のシラン化合物、ヒドロキシ化合物等を挙げることができる。ヒドロキシ化合物としては第1級アルコール、第2級アルコール等のアルコール化合物が含まれる。また、ヒドロキシ化合物は、複数のヒドロキシル基を有していてもよく、1価アルコール、2価アルコール、多価アルコール等の何れであってもよい。 Examples of the reducing agent include borohydride complex compounds such as sodium borohydride (NaBH 4 ), lithium borohydride (LiBH 4 ), potassium borohydride (KBH 4 ), hydrazine, hydrogen (H 2 ), Examples include silane compounds such as dimethylphenylsilane, hydroxy compounds, and the like. Examples of the hydroxy compound include alcohol compounds such as primary alcohol and secondary alcohol. The hydroxy compound may have a plurality of hydroxyl groups, and may be any of monohydric alcohol, dihydric alcohol, polyhydric alcohol and the like.

本発明におけるハイドロタルサイト表面に金属固定化処理を施す際に使用する還元剤としては、なかでも、水素化ホウ素ナトリウム(NaBH4)、水素化ホウ素リチウム(LiBH4)、水素化ホウ素カリウム(KBH4)等の水素化ホウ素錯化合物が好ましく、特に、水素化ホウ素カリウム(KBH4)が好ましい。水素化ホウ素カリウム(KBH4)で還元することにより得られた表面金固定化触媒は、固定化した金属粒子の平均粒径がより小さくなる傾向があり、それにより、比表面積を増大することができ、触媒活性を著しく向上させることができる。 As a reducing agent used when performing the metal immobilization treatment on the hydrotalcite surface in the present invention, sodium borohydride (NaBH 4 ), lithium borohydride (LiBH 4 ), potassium borohydride (KBH), among others. 4 ) and the like are preferable, and potassium borohydride (KBH 4 ) is particularly preferable. The surface gold-immobilized catalyst obtained by reduction with potassium borohydride (KBH 4 ) tends to have a smaller average particle size of the immobilized metal particles, thereby increasing the specific surface area. And the catalytic activity can be significantly improved.

表面金固定化触媒中の金ナノ粒子含有率としては、例えば、ハイドロタルサイト等の担体1gに対して0.01〜3mmol、好ましくは0.01〜0.1mmol、特に好ましくは0.045〜0.1mmolである。表面金固定化触媒中の金ナノ粒子含有率が上記範囲を上回ると、触媒作用が低下する傾向がある。   The gold nanoparticle content in the surface gold-immobilized catalyst is, for example, 0.01 to 3 mmol, preferably 0.01 to 0.1 mmol, particularly preferably 0.045 to 1 g of a carrier such as hydrotalcite. 0.1 mmol. When the gold nanoparticle content in the surface gold-immobilized catalyst exceeds the above range, the catalytic action tends to decrease.

[エポキシ化合物]
本発明に係るアルケンの製造方法において、基質となるエポキシ化合物は、下記式(3)

Figure 2011236165
(式中、R1、R1'、R2、R2'は同一又は異なって、水素原子又は炭化水素基を示す。R1、R1'、R2、R2'から選択された2つが互いに結合して、エポキシ環を形成する炭素原子と共に環を形成していてもよい。尚、R1、R1'、R2、R2'のうち、少なくとも1つは炭化水素基である)
で表される。 [Epoxy compound]
In the method for producing alkene according to the present invention, the epoxy compound serving as a substrate is represented by the following formula (3):
Figure 2011236165
Wherein R 1 , R 1 ′ , R 2 and R 2 ′ are the same or different and each represents a hydrogen atom or a hydrocarbon group. 2 selected from R 1 , R 1 ′ , R 2 and R 2 ′ May be bonded to each other to form a ring together with carbon atoms forming an epoxy ring, wherein at least one of R 1 , R 1 ′ , R 2 and R 2 ′ is a hydrocarbon group. )
It is represented by

1、R1'、R2、R2'における炭化水素基としては、例えば、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、及びこれらの結合した基が含まれる。前記炭化水素基には、置換基を有する炭化水素基も含まれる。 Examples of the hydrocarbon group in R 1 , R 1 ′ , R 2 , and R 2 ′ include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which these are bonded. . The hydrocarbon group includes a hydrocarbon group having a substituent.

脂肪族炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル基などの炭素数1〜4(好ましくは1〜3)程度のアルキル基等を挙げることができる。   Examples of the aliphatic hydrocarbon group include alkyl groups having about 1 to 4 (preferably 1 to 3) carbon atoms such as methyl, ethyl, propyl, isopropyl, and butyl groups.

脂環式炭化水素基としては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル基などの3〜12員程度(好ましくは3〜8員、特に好ましくは5〜8員)のシクロアルキル基;シクロペンテニル基などの3〜8員(好ましくは5〜8員)程度のシクロアルケニル基等を挙げることができる。   Examples of the alicyclic hydrocarbon group include about 3 to 12 members (preferably 3 to 8 members, particularly preferably 5 to 8 members) such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl groups. A cycloalkyl group; a cycloalkenyl group of about 3 to 8 members (preferably 5 to 8 members) such as a cyclopentenyl group.

芳香族炭化水素基としては、例えば、フェニル基などの炭素数6〜14(好ましくは6〜10)程度の芳香族炭化水素基等を挙げることができる。   Examples of the aromatic hydrocarbon group include an aromatic hydrocarbon group having about 6 to 14 (preferably 6 to 10) carbon atoms such as a phenyl group.

脂肪族炭化水素基と脂環式炭化水素基とが結合した炭化水素基としては、例えば、シクロペンチルメチル、シクロヘキシルメチル、2−シクロヘキシルエチル基などのシクロアルキル−アルキル基(例えば、C3-12シクロアルキル−C1-4アルキル基など)などが含まれる。 Examples of the hydrocarbon group in which an aliphatic hydrocarbon group and an alicyclic hydrocarbon group are bonded include cycloalkyl-alkyl groups such as cyclopentylmethyl, cyclohexylmethyl, and 2-cyclohexylethyl groups (for example, C 3-12 cyclohexane). Alkyl-C 1-4 alkyl group, etc.).

また、脂肪族炭化水素基と芳香族炭化水素基とが結合した炭化水素基には、アラルキル基(例えば、C7-18アラルキル基など)、アルキル置換アリール基(例えば、1〜4個程度のC1-4アルキル基が置換したフェニル基など)等を挙げることができる。 The hydrocarbon group in which an aliphatic hydrocarbon group and an aromatic hydrocarbon group are bonded to each other includes an aralkyl group (for example, a C 7-18 aralkyl group) and an alkyl-substituted aryl group (for example, about 1 to about 4). And a phenyl group substituted with a C 1-4 alkyl group).

前記炭化水素基は、種々の置換基、例えば、ハロゲン原子、オキソ基、ヒドロキシル基、置換オキシ基(例えば、アルコキシ基、アリールオキシ基、アラルキルオキシ基など)等を有していてもよい。また、前記ヒドロキシル基は有機合成の分野で慣用の保護基で保護されていてもよい。   The hydrocarbon group may have various substituents such as a halogen atom, an oxo group, a hydroxyl group, a substituted oxy group (for example, an alkoxy group, an aryloxy group, an aralkyloxy group, etc.). Further, the hydroxyl group may be protected with a protecting group commonly used in the field of organic synthesis.

好適に使用されるエポキシ化合物の具体例としては、下記化合物(3a)〜(3i)等を挙げることができる。

Figure 2011236165
Specific examples of the epoxy compound that is suitably used include the following compounds (3a) to (3i).
Figure 2011236165

本発明においては、なかでも、高い収率で目的とするアルケンを得ることができる点で、芳香族エポキシ化合物(例えば、上記式(3a)〜(3h)で表される化合物等)が好ましく、特にスチレンオキサイド誘導体(例えば、上記式(3a)〜(3f)で表される化合物等)が、速やかに基質が転化する点で好ましい。   In the present invention, among them, aromatic epoxy compounds (for example, compounds represented by the above formulas (3a) to (3h)) are preferable in that the desired alkene can be obtained with high yield. In particular, styrene oxide derivatives (for example, compounds represented by the above formulas (3a) to (3f)) are preferable in that the substrate is rapidly converted.

[アルケンの製造方法]
本発明に係るアルケンの製造方法は、担体表面に金ナノ粒子を固定化して得られる表面金固定化触媒及び水の存在下、一酸化炭素雰囲気下で、エポキシ化合物を脱酸素して対応するアルケンを製造することを特徴とする。エポキシ化合物として下記式(3)で表される化合物を使用した場合、下記式(4)で表される対応するアルケンが得られる。

Figure 2011236165
(式中、R1、R1'、R2、R2'は上記に同じ) [Alkene production method]
The method for producing an alkene according to the present invention comprises deoxidizing an epoxy compound in a carbon monoxide atmosphere in the presence of a surface gold immobilization catalyst obtained by immobilizing gold nanoparticles on a support surface and water, and the corresponding alkene. It is characterized by manufacturing. When a compound represented by the following formula (3) is used as the epoxy compound, a corresponding alkene represented by the following formula (4) is obtained.
Figure 2011236165
(Wherein R 1 , R 1 ′ , R 2 , R 2 ′ are the same as above)

本発明に係るアルケンの製造方法は、下記に示される反応機構に従って進行すると考えられる。尚、触媒としてAu/HTを使用した場合について説明するが、他の担体に金ナノ粒子を固定化して得られる表面金固定化触媒を使用した場合も同様である。式中、BSはハイドロタルサイトの塩基サイトを示す。R1、R1'、R2、R2'は上記に同じ。

Figure 2011236165
The alkene production method according to the present invention is considered to proceed according to the reaction mechanism shown below. In addition, although the case where Au / HT is used as a catalyst will be described, the same applies to the case where a surface gold-immobilized catalyst obtained by immobilizing gold nanoparticles on another carrier is used. In the formula, BS represents a base site of hydrotalcite. R 1 , R 1 ′ , R 2 and R 2 ′ are the same as above.
Figure 2011236165

表面金固定化触媒の使用量としては、例えば、エポキシ化合物に対して0.0001〜50モル%程度であり、なかでも0.01〜20モル%程度、特に0.1〜5モル%程度が好ましい。   The amount of the surface gold immobilization catalyst used is, for example, about 0.0001 to 50 mol%, particularly about 0.01 to 20 mol%, particularly about 0.1 to 5 mol% with respect to the epoxy compound. preferable.

上記反応は、水の存在下で行われる。水の使用量としては、例えば、基質の濃度が0.5〜2.0重量%程度となる範囲内で使用することが好ましい。   The above reaction is performed in the presence of water. For example, the amount of water used is preferably within a range where the concentration of the substrate is about 0.5 to 2.0% by weight.

また、上記反応は、一酸化炭素雰囲気下で行われる。一酸化炭素雰囲気下とは、一酸化炭素中または一酸化炭素ガスを供給(バブリング)した状態をいう。一酸化炭素中で反応を行う場合、反応時の圧力は、特に制限されず、常圧でも加圧でもよいが、好ましくは0.1〜1.0MPa(なかでも、0.1〜0.5MPaが好ましい)である。さらに、上記反応は、回分式、半回分式、連続式などの慣用の方法により行うことができる。   The above reaction is performed in a carbon monoxide atmosphere. The carbon monoxide atmosphere refers to a state in which carbon monoxide gas or carbon monoxide gas is supplied (bubbled). When the reaction is performed in carbon monoxide, the pressure during the reaction is not particularly limited and may be normal pressure or increased pressure, but is preferably 0.1 to 1.0 MPa (in particular, 0.1 to 0.5 MPa). Is preferred). Furthermore, the above reaction can be carried out by a conventional method such as a batch system, a semi-batch system, or a continuous system.

本発明に係るアルケンの製造方法は温和な条件でも、円滑に反応を進行させることができる。反応温度としては、基質の種類や目的生成物の種類などに応じて適宜調整することができ、例えば、10〜100℃、好ましくは10〜50℃程度、特に好ましくは10〜40℃程度である。反応時間は、反応温度及び圧力に応じて適宜調整することができ、例えば10分〜48時間程度、好ましくは1時間〜48時間程度、特に好ましくは4時間〜30時間程度である。   The method for producing alkene according to the present invention allows the reaction to proceed smoothly even under mild conditions. The reaction temperature can be appropriately adjusted according to the type of substrate and the type of target product, and is, for example, about 10 to 100 ° C, preferably about 10 to 50 ° C, and particularly preferably about 10 to 40 ° C. . The reaction time can be appropriately adjusted according to the reaction temperature and pressure, and is, for example, about 10 minutes to 48 hours, preferably about 1 hour to 48 hours, and particularly preferably about 4 hours to 30 hours.

反応終了後、反応生成物は、例えば、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィーなどの分離手段や、これらを組み合わせた分離手段により分離精製できる。   After completion of the reaction, the reaction product can be separated and purified by separation means such as filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, etc., or a separation means combining these.

本発明のアルケンの製造方法によれば、エポキシ化合物の脱酸素反応を温和な条件下で行うことができ、高い収率で対応するアルケンを製造することができる。   According to the method for producing alkene of the present invention, the deoxygenation reaction of the epoxy compound can be performed under mild conditions, and the corresponding alkene can be produced with high yield.

また、反応に使用した表面金固定化触媒は担体に担持されているため、有機合成反応においても担持された金属が反応溶液中に溶出しにくく、例えば、反応液から濾過、遠心分離などの物理的な分離手法により容易に回収することができる。回収された表面金固定化触媒はそのままで、又は洗浄、乾燥処理を施した後、再利用される。洗浄処理は、適宜な溶媒(例えば、水)により数回(例えば2〜3回)洗浄する方法により行うことができる。   In addition, since the surface gold-immobilized catalyst used in the reaction is supported on a carrier, the metal supported in the organic synthesis reaction is not easily eluted into the reaction solution. For example, physical reaction such as filtration or centrifugation from the reaction solution is performed. Can be easily recovered by a conventional separation method. The recovered surface gold-immobilized catalyst is reused as it is or after being washed and dried. The washing treatment can be performed by a method of washing several times (for example, 2 to 3 times) with an appropriate solvent (for example, water).

回収された表面金固定化触媒は、未使用の表面金固定化触媒と比べ、ほぼ同等の触媒能を示すことができ、使用−再生を複数回繰り返しても、例えば5回程度使用−再生を繰り返しても、その触媒能の低下を著しく抑制することができる。そのため、本発明に係るアルケンの製造方法によれば、製造コストの多くの割合を占める表面金固定化触媒を回収し、繰り返し利用することができるため、製造コストを大幅に削減することができる。   The recovered surface gold-immobilized catalyst can exhibit almost the same catalytic ability as an unused surface gold-immobilized catalyst. Even if the use-regeneration is repeated a plurality of times, for example, the use-regeneration is performed about 5 times. Even if it repeats, the fall of the catalyst ability can be suppressed remarkably. Therefore, according to the alkene production method of the present invention, the surface gold-immobilized catalyst that occupies a large proportion of the production cost can be recovered and repeatedly used, so that the production cost can be greatly reduced.

以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited by these Examples.

製造例1
50mLのナス型フラスコ中に塩化金酸(HAuCl4)0.1mmolとイオン交換水 50mLを加え、その溶液にハイドロタルサイト(商品名:AD−500、富田製薬株式会社製)1.0gを加え、室温で2分間撹拌した後、アンモニア(5mmol)を加え、更に12時間撹拌した。その後、吸引濾過し、脱イオン水(1L)で洗浄し、真空乾燥させて黄色い粉末のAu/HT(Au:3価)(Au:0.045mmol/g)を得た。
50mLのナス型フラスコ中でKBH4(0.9mmol)に水(50mL)を加えて溶解し、そこに得られたAu/HT(Au:3価)0.9gを加え、アルゴン雰囲気下、室温で1時間撹拌した。撹拌後、吸引濾過し、脱イオン水 1Lで洗浄し、24時間真空乾燥させて紫色の粉末のAu/HT(Au:0価)(担体1gに対するAuの担持量:0.045mmol/g)を得た。
Production Example 1
In a 50 mL eggplant-shaped flask, 0.1 mmol of chloroauric acid (HAuCl 4 ) and 50 mL of ion-exchanged water are added, and 1.0 g of hydrotalcite (trade name: AD-500, manufactured by Tomita Pharmaceutical Co., Ltd.) is added to the solution. After stirring at room temperature for 2 minutes, ammonia (5 mmol) was added, and the mixture was further stirred for 12 hours. Thereafter, the mixture was filtered with suction, washed with deionized water (1 L), and vacuum-dried to obtain Au / HT (Au: trivalent) (Au: 0.045 mmol / g) as a yellow powder.
In a 50 mL eggplant-shaped flask, KBH 4 (0.9 mmol) was dissolved by adding water (50 mL), and 0.9 g of the obtained Au / HT (Au: trivalent) was added thereto, and the mixture was added at room temperature under an argon atmosphere. For 1 hour. After stirring, it is filtered by suction, washed with 1 L of deionized water, and vacuum-dried for 24 hours to obtain a purple powder of Au / HT (Au: 0 valent) (Amount of Au supported on 1 g of carrier: 0.045 mmol / g). Obtained.

製造例2
ハイドロタルサイトに代えてアルミナ(Al23)を使用した以外は調製例1と同様にしてアルミナ表面に金ナノ粒子が固定化された触媒(Au/Al23)を得た。
Production Example 2
A catalyst (Au / Al 2 O 3 ) having gold nanoparticles immobilized on the alumina surface was obtained in the same manner as in Preparation Example 1 except that alumina (Al 2 O 3 ) was used instead of hydrotalcite.

製造例3
ハイドロタルサイトに代えてマグネシア(MgO)を使用した以外は調製例1と同様にしてマグネシア表面に金ナノ粒子が固定化された触媒(Au/MgO)を得た。
Production Example 3
A catalyst (Au / MgO) in which gold nanoparticles were immobilized on the magnesia surface was obtained in the same manner as in Preparation Example 1 except that magnesia (MgO) was used instead of hydrotalcite.

製造例4
ハイドロタルサイトに代えてチタニア(TiO2)を使用した以外は調製例1と同様にしてチタニア表面に金ナノ粒子が固定化された触媒(Au/TiO2)を得た。
Production Example 4
A catalyst (Au / TiO 2 ) having gold nanoparticles immobilized on the titania surface was obtained in the same manner as in Preparation Example 1, except that titania (TiO 2 ) was used instead of hydrotalcite.

製造例5
200mLのナス型フラスコに硝酸銀(AgNO3)1mmolとイオン交換水 150mLを加え、そこにハイドロタルサイト 2.0gを加えて室温で6時間撹拌した。撹拌後、吸引濾過し、脱イオン水 1Lで洗浄し、24時間真空乾燥させて、Ag/HT(Ag:1価)を得た。
さらに、200mLのナス型フラスコ中でKBH4(9mmol)に水(150mL)を加えて溶解し、そこに得られたAg/HT(Ag:1価)1.8gを加え、アルゴン雰囲気下、室温で1時間撹拌した。撹拌後、吸引濾過し、脱イオン水 1Lで洗浄し、24時間真空乾燥させて、緑色の粉末のAg/HT(Ag:0価)(担体1gに対するAgの担持量:0.3mmol/g)を得た。
Production Example 5
To a 200 mL eggplant-shaped flask, 1 mmol of silver nitrate (AgNO 3 ) and 150 mL of ion-exchanged water were added, 2.0 g of hydrotalcite was added thereto, and the mixture was stirred at room temperature for 6 hours. After stirring, the mixture was filtered with suction, washed with 1 L of deionized water, and vacuum-dried for 24 hours to obtain Ag / HT (Ag: monovalent).
Furthermore, water (150 mL) was added to and dissolved in KBH 4 (9 mmol) in a 200 mL eggplant-shaped flask, and 1.8 g of the obtained Ag / HT (Ag: 1 valence) was added thereto. For 1 hour. After stirring, it is filtered by suction, washed with 1 L of deionized water, and vacuum-dried for 24 hours to give a green powder of Ag / HT (Ag: 0 valence) (Ag load on 1 g of carrier: 0.3 mmol / g) Got.

製造例6
塩化金酸(HAuCl4)に代えてNa2PdCl4を使用した以外は製造例1と同様にして、Pd/HT(Pd:0価)(担体1gに対するPdの担持量:0.1mmol/g)を得た。
Production Example 6
Pd / HT (Pd: 0 valence) (Pd supported on 1 g of carrier: 0.1 mmol / g) in the same manner as in Production Example 1 except that Na 2 PdCl 4 was used instead of chloroauric acid (HAuCl 4 ). )

製造例7
塩化金酸(HAuCl4)に代えてNa2PtCl4を使用した以外は製造例1と同様にして、Pt/HT(Pt:0価)(担体1gに対するPtの担持量:0.1mmol/g)を得た。
Production Example 7
Pt / HT (Pt: 0 valence) (Pt supported on 1 g of carrier: 0.1 mmol / g) in the same manner as in Production Example 1 except that Na 2 PtCl 4 was used instead of chloroauric acid (HAuCl 4 ). )

製造例8
塩化金酸(HAuCl4)に代えてRhCl3を使用した以外は製造例1と同様にして、Rh/HT(Rh:0価)(担体1gに対するRhの担持量:0.1mmol/g)を得た。
Production Example 8
Rh / HT (Rh: 0 valence) (Rh loading relative to 1 g of carrier: 0.1 mmol / g) was carried out in the same manner as in Production Example 1 except that RhCl 3 was used instead of chloroauric acid (HAuCl 4 ). Obtained.

製造例9
塩化金酸(HAuCl4)に代えてRuCl3・xH2Oを使用した以外は製造例1と同様にして、Ru/HT(Ru:0価)(担体1gに対するRuの担持量:0.1mmol/g)を得た。
Production Example 9
Ru / HT (Ru: 0 valence) (Ru supported on 1 g of carrier: 0.1 mmol) in the same manner as in Production Example 1 except that RuCl 3 .xH 2 O was used instead of chloroauric acid (HAuCl 4 ). / G).

実施例1
ガラス製耐圧反応管に、製造例1で得られたAu/HT(Au:スチレンオキサイドに対して0.9mol%)、水 5mL、スチレンオキサイド 0.5mmolを加え、CO雰囲気下(1atm)、27℃で6時間撹拌し、スチレンを得た(収率99%以上、選択率99%以上)。尚、収率、選択率の測定には液体クロマトグラフィーによる標準的な測定方法を使用した。
Example 1
Au / HT obtained in Production Example 1 (Au: 0.9 mol% with respect to styrene oxide), water (5 mL), and styrene oxide (0.5 mmol) were added to a glass pressure-resistant reaction tube, and under a CO atmosphere (1 atm), 27 Stirring was carried out at 6 ° C. for 6 hours to obtain styrene (yield 99% or more, selectivity 99% or more). In addition, the standard measuring method by a liquid chromatography was used for the measurement of a yield and a selectivity.

実施例2
製造例1で得られたAu/HTに代えて、実施例1の反応終了後、反応液を濾過して触媒を分離し、分取された触媒を水で2回洗浄した後、室温(25℃)で減圧乾燥して得られた[Au/HT]’を使用した以外は実施例1と同様にして、スチレンを得た(収率99%、選択率99%以上)。
Example 2
Instead of Au / HT obtained in Production Example 1, after completion of the reaction of Example 1, the reaction solution was filtered to separate the catalyst, and the separated catalyst was washed twice with water, and then room temperature (25 Styrene) was obtained in the same manner as in Example 1 except that [Au / HT] ′ obtained by drying under reduced pressure at 0 ° C. was used (yield 99%, selectivity 99% or more).

実施例3
製造例1で得られたAu/HTに代えて、実施例3の反応終了後、反応液を濾過して触媒を分離し、分取された触媒を水で2回洗浄した後、室温(25℃)で減圧乾燥して得られた[Au/HT]”を使用した以外は実施例1と同様にして、スチレンを得た(収率97%、選択率99%以上)。
Example 3
Instead of Au / HT obtained in Production Example 1, after completion of the reaction of Example 3, the reaction solution was filtered to separate the catalyst, and the separated catalyst was washed twice with water, and then room temperature (25 Styrene) was obtained in the same manner as in Example 1 except that [Au / HT] '' obtained by drying under reduced pressure at 0 ° C. was used (yield 97%, selectivity 99% or more).

実施例4〜7、比較例1〜8
製造例1で得られたAu/HTに代えて、下記表1に記載の触媒を使用した以外は実施例1と同様にして、スチレンを得た。尚、実施例4は製造例2、実施例5は製造例3、実施例6は製造例4、比較例4は製造例5、比較例5は製造例6、比較例6は製造例7、比較例7は製造例8、比較例8は製造例9で得られた触媒を使用した。また、実施例7は製造例4で得られた触媒を使用し、且つ、Na2CO3を1.5mmol添加した。

Figure 2011236165
Examples 4-7, Comparative Examples 1-8
Instead of Au / HT obtained in Production Example 1, styrene was obtained in the same manner as in Example 1 except that the catalysts described in Table 1 below were used. In addition, Example 4 is Production Example 2, Example 5 is Production Example 3, Example 6 is Production Example 4, Comparative Example 4 is Production Example 5, Comparative Example 5 is Production Example 6, Comparative Example 6 is Production Example 7, Comparative Example 7 used the catalyst obtained in Production Example 8 and Comparative Example 8 used in Production Example 9. In Example 7, the catalyst obtained in Production Example 4 was used, and 1.5 mmol of Na 2 CO 3 was added.
Figure 2011236165

実施例8
Au/HTの使用量をスチレンオキサイドに対して0.9mol%から1.40mol%へ変更した以外は実施例1と同様にして、スチレンを得た(収率99%以上、選択率99%以上)。
Example 8
Styrene was obtained in the same manner as in Example 1 except that the amount of Au / HT used was changed from 0.9 mol% to 1.40 mol% with respect to styrene oxide (yield 99% or more, selectivity 99% or more). ).

実施例9〜14
基質及び反応時間を、下記表2に記載の基質及び反応時間に変更した以外は実施例8と同様にして、対応するアルケンを得た。

Figure 2011236165
Examples 9-14
The corresponding alkene was obtained in the same manner as in Example 8 except that the substrate and reaction time were changed to those shown in Table 2 below.
Figure 2011236165

比較例9
溶媒として水の代わりにトルエンを使用した以外は実施例12と同様にしたところ、シンナミルアルコール(収率82%、選択率82%)が得られた。
Comparative Example 9
Cinnamyl alcohol (yield 82%, selectivity 82%) was obtained in the same manner as in Example 12 except that toluene was used instead of water as a solvent.

比較例10
溶媒として水の代わりにテトラヒドロフランを使用し、反応時間を16時間から24時間に変更した以外は実施例12と同様にしたところ、シンナミルアルコール(収率36%、選択率36%)が得られた。
Comparative Example 10
Cinnamyl alcohol (yield 36%, selectivity 36%) was obtained in the same manner as in Example 12 except that tetrahydrofuran was used instead of water and the reaction time was changed from 16 hours to 24 hours. It was.

Claims (2)

担体表面に金ナノ粒子を固定化して得られる表面金固定化触媒及び水の存在下、一酸化炭素雰囲気下で、エポキシ化合物を脱酸素して対応するアルケンを製造することを特徴とするアルケンの製造方法。   An alkene having a surface gold immobilization catalyst obtained by immobilizing gold nanoparticles on a support surface and a corresponding alkene by deoxygenating an epoxy compound in a carbon monoxide atmosphere in the presence of water. Production method. 担体としてハイドロタルサイトを使用する請求項1に記載のアルケンの製造方法。   The method for producing an alkene according to claim 1, wherein hydrotalcite is used as a carrier.
JP2010109773A 2010-05-12 2010-05-12 Method for producing alkene by deoxidation of epoxy compound Pending JP2011236165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010109773A JP2011236165A (en) 2010-05-12 2010-05-12 Method for producing alkene by deoxidation of epoxy compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010109773A JP2011236165A (en) 2010-05-12 2010-05-12 Method for producing alkene by deoxidation of epoxy compound

Publications (1)

Publication Number Publication Date
JP2011236165A true JP2011236165A (en) 2011-11-24

Family

ID=45324557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010109773A Pending JP2011236165A (en) 2010-05-12 2010-05-12 Method for producing alkene by deoxidation of epoxy compound

Country Status (1)

Country Link
JP (1) JP2011236165A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012116790A (en) * 2010-12-01 2012-06-21 Daicel Corp Method for producing alkene by deoxygenation of epoxy compound
US9707544B2 (en) 2015-04-24 2017-07-18 Osaka University Silver-cerium oxide composite catalyst supported on an alkaline carrier and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012116790A (en) * 2010-12-01 2012-06-21 Daicel Corp Method for producing alkene by deoxygenation of epoxy compound
US9707544B2 (en) 2015-04-24 2017-07-18 Osaka University Silver-cerium oxide composite catalyst supported on an alkaline carrier and method for producing the same

Similar Documents

Publication Publication Date Title
EP3371105B1 (en) Polyoxometalates comprising noble metals and corresponding metal clusters
JP5577226B2 (en) Process for producing alkenes by deoxygenation of epoxy compounds
US7973184B2 (en) Method for producing propylene oxide
WO1998000415A1 (en) Process for the direct oxidation of olefins to olefin oxides
CN108380232A (en) Cobalt-base catalyst, its preparation method and its application in synthesizing 3- hydroxycarboxylic acid esters
EP3592461B1 (en) Polyoxometalates comprising noble metals and post-transition metals and metal clusters thereof
JP6536587B2 (en) Polyether diol and method for producing the same
JP6143057B2 (en) Method for producing 1,2-pentanediol
JP2011236165A (en) Method for producing alkene by deoxidation of epoxy compound
JP6184283B2 (en) Method for producing oxamide compound
JP2012121843A (en) Method for producing amine by deoxidation of amide
EP2952252A1 (en) Selective hydrogenation catalyst, production method for selective hydrogenation catalyst, and selective hydrogenation method
CN112892529A (en) Silver catalyst for preparing ethylene oxide and preparation method and application thereof
US9707544B2 (en) Silver-cerium oxide composite catalyst supported on an alkaline carrier and method for producing the same
JP2010208968A (en) Method for producing lactone by using catalyst with gold-immobilized surface
JP3944875B2 (en) Catalyst for synthesizing carboxylic acid ester and method for producing carboxylic acid ester
JP2011173829A (en) Method for producing alkene by deoxygenation of epoxy compound
CN110918091B (en) Application of RuSn alloy cluster composite material
JP4069242B2 (en) Metal particle carrier and method for producing carboxylic acid ester
JP2012121845A (en) Method for producing sulfide by deoxygenation of sulfoxide
JP7096576B2 (en) Polysilane-palladium / (calcium phosphate-activated carbon) catalyst
EP2817095B1 (en) Use of a metal powderdous catalyst comprising a cocrmo-alloy
CN106946670B (en) Method for producing 4-methyl-3-decen-5-one
JP6570030B2 (en) Core-shell catalyst and method for producing alkene using the same
CN113385208B (en) Molybdenum-based catalyst and preparation method and application thereof