JP2011232633A - Planar lightwave circuit - Google Patents

Planar lightwave circuit Download PDF

Info

Publication number
JP2011232633A
JP2011232633A JP2010104073A JP2010104073A JP2011232633A JP 2011232633 A JP2011232633 A JP 2011232633A JP 2010104073 A JP2010104073 A JP 2010104073A JP 2010104073 A JP2010104073 A JP 2010104073A JP 2011232633 A JP2011232633 A JP 2011232633A
Authority
JP
Japan
Prior art keywords
wave plate
degrees
polarization
light
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010104073A
Other languages
Japanese (ja)
Other versions
JP5302260B2 (en
Inventor
Yusuke Nasu
悠介 那須
Yohei Sakamaki
陽平 坂巻
Toshikazu Hashimoto
俊和 橋本
Kuninori Hattori
邦典 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010104073A priority Critical patent/JP5302260B2/en
Publication of JP2011232633A publication Critical patent/JP2011232633A/en
Application granted granted Critical
Publication of JP5302260B2 publication Critical patent/JP5302260B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure a large return loss while maintaining a high polarization extinction ratio.SOLUTION: A planar lightwave circuit is configured in such a manner that a groove is formed to cut off at least one or more waveguide cores embedded in a cladding layer on a substrate, and a wavelength plate having birefringent is inserted in the groove. In this planar lightwave circuit, an input light is obliquely incident on an incident plane of the wavelength plate from the waveguide core, an optical axis of the wavelength plate is parallel to the incident plane of the wavelength plate, and an angle formed by an intersection line between the substrate plane and a plane including the incident plane of the wavelength plate, and the optical axis of the wavelength plate is 45+α(α≠0) degrees.

Description

本発明は、平面型光波回路に関し、より詳細には、偏波依存性の無い平面型光波回路に関する。   The present invention relates to a planar lightwave circuit, and more particularly to a planar lightwave circuit having no polarization dependency.

光通信技術の進展に伴い、光信号を電気信号に変換することなく、光信号を直接処理する光部品の開発が益々重要となっている。中でも、平面基板上に集積された平面型光波回路は、量産性に優れ、低コスト、高い信頼性などの優れた特徴をもっている。代表的な光部品として、例えば、アレイ導波路回折格子、マッハツェンダ干渉計、ラティス回路、偏波合成器回路等がある。   With the progress of optical communication technology, it has become increasingly important to develop optical components that directly process optical signals without converting optical signals into electrical signals. In particular, a planar lightwave circuit integrated on a planar substrate has excellent characteristics such as excellent mass production, low cost, and high reliability. Typical optical components include, for example, an arrayed waveguide diffraction grating, a Mach-Zehnder interferometer, a lattice circuit, and a polarization beam combiner circuit.

平面型光波回路の基本的な作製方法としては、標準的なフォトグラフィー法、エッチング法、FHD(Flame Hydrolysis Deposition)法等のガラス堆積技術が用いられる。製作手順は、最初に、基板上にアンダークラッド層を堆積し、クラッド層より屈折率の高いコア層をさらに堆積する。コア層に所望の導波路パターンを形成し、その後、コア層をオーバークラッド層で埋め込む。平面型光波回路における信号光は、埋め込まれた導波路コアで形成された導波路内に閉じ込められて伝搬する。   As a basic manufacturing method of the planar lightwave circuit, a glass deposition technique such as a standard photography method, an etching method, or an FHD (Flame Hydrolysis Deposition) method is used. In the fabrication procedure, first, an under cladding layer is deposited on a substrate, and a core layer having a higher refractive index than the cladding layer is further deposited. A desired waveguide pattern is formed in the core layer, and then the core layer is embedded with an over clad layer. The signal light in the planar lightwave circuit is confined in the waveguide formed by the embedded waveguide core and propagates.

このような平面型光波回路には、伝播光の偏波を制御するために波長板が多く使われる。波長板とは、複屈折材料を用いて作られ、光の偏波間に遅延(リタデーション)を与える素子である。複屈折材料を伝搬する光は、光の電界振幅の方向により、伝播速度が異なる。光の伝播方向に垂直な面において、伝播速度の速い速軸と伝播速度の遅い遅軸とが存在し、互いに90度の角をなす。遅軸に平行な電界を有する光は、速軸に平行な電界を有する光に比べて遅延する。特に、この遅延を、伝播光の波長の半分に設定された複屈折材料を半波長板と呼び、1波長の1/4の場合に1/4波長板と呼ぶ。平面型光波回路内に設置する波長板の遅延量と軸方向を制御することにより、伝播光の偏波状態を変化させることができる。   In such a planar lightwave circuit, a wave plate is often used to control the polarization of propagating light. A wave plate is an element that is made of a birefringent material and gives a retardation between the polarizations of light. The light propagating through the birefringent material has different propagation speeds depending on the direction of the electric field amplitude of the light. In a plane perpendicular to the light propagation direction, there are a fast axis with a fast propagation speed and a slow axis with a slow propagation speed, which form an angle of 90 degrees with each other. Light having an electric field parallel to the slow axis is delayed as compared to light having an electric field parallel to the fast axis. In particular, a birefringent material in which this delay is set to half of the wavelength of propagating light is called a half-wave plate, and in the case of 1/4 of one wavelength, it is called a quarter-wave plate. By controlling the delay amount and the axial direction of the wave plate installed in the planar lightwave circuit, the polarization state of the propagating light can be changed.

平面型光波回路における波長板の代表的な使用方法は、干渉回路内に半波長板を設置して、干渉特性の偏波依存性を解消するために用いる(例えば、特許文献1参照)。図1を参照して、従来のマッハツェンダ干渉計を説明する。マッハツェンダ干渉計は、光方向性結合器からなる2つの光カプラを用いる。光カプラ7には、入力導波路1,2とアーム導波路5,6とを接続し、光カプラ8には、アーム導波路5,6と出力導波路3,4とを接続する(図1(a))。   A typical method of using a wave plate in a planar lightwave circuit is to install a half-wave plate in the interference circuit and eliminate the polarization dependence of the interference characteristics (see, for example, Patent Document 1). A conventional Mach-Zehnder interferometer will be described with reference to FIG. The Mach-Zehnder interferometer uses two optical couplers composed of optical directional couplers. The input waveguides 1 and 2 and the arm waveguides 5 and 6 are connected to the optical coupler 7, and the arm waveguides 5 and 6 and the output waveguides 3 and 4 are connected to the optical coupler 8 (FIG. 1). (A)).

一例として、入力導波路1から出力導波路4への透過特性を図1(b)に示す。一般的な平面型光波回路の導波路には複屈折が存在するので、入射する光の偏波により、透過特性が異なる。特に、水平偏波(平面型光波回路の基板平面に平行な偏波)の光と垂直偏波(平面型光波回路の基板平面に垂直な偏波)の光を入射した場合に、透過特性の差が最大となる。これは、導波路が複屈折を持つため、水平偏波の光が感じる屈折率と、垂直偏波の光が感じる屈折率が、異なっているからである。この透過特性の偏波依存性は、通信用のデバイスとして使用する場合、デバイス特性の劣化の原因となる。   As an example, the transmission characteristic from the input waveguide 1 to the output waveguide 4 is shown in FIG. Since birefringence exists in a waveguide of a general planar lightwave circuit, transmission characteristics differ depending on the polarization of incident light. In particular, when light with horizontal polarization (polarization parallel to the substrate plane of the planar lightwave circuit) and light with vertical polarization (polarization perpendicular to the substrate plane of the planar lightwave circuit) are incident, the transmission characteristics The difference is maximized. This is because, since the waveguide has birefringence, the refractive index felt by horizontally polarized light and the refractive index felt by vertically polarized light are different. The polarization dependence of the transmission characteristics causes deterioration of device characteristics when used as a communication device.

そこで、図2(a)に示すように、アーム導波路5,6の中間に45度半波長板9を挿入し、干渉回路の中央で水平偏波と垂直偏波を入れ替える。半波長板の速軸または遅軸を、平面型光波回路の基板平面方向に対し45度に傾けて設置することにより、アーム導波路5,6を伝播する水平偏波を垂直偏波に、垂直偏波を水平偏波に入れ替えることができる。なお、基板平面(水平)方向に対し、速軸または遅軸が45度となるように設置され、遅延量が入射光の波長の半分に相当する波長板を45度半波長板と呼ぶ。干渉計回路の中央で偏波が変換され、水平偏波と垂直偏波間が入れ替わるので、干渉回路の偏波依存性を解消することができる。その結果、マッハツェンダ干渉計の透過特性に偏波依存性は発生せず、図2(b)に示すように、透過スペクトルは、水平偏波と垂直偏波の双方で一致する。   Therefore, as shown in FIG. 2A, a 45-degree half-wave plate 9 is inserted between the arm waveguides 5 and 6, and the horizontal polarization and the vertical polarization are switched at the center of the interference circuit. By placing the fast axis or slow axis of the half-wave plate at 45 degrees with respect to the substrate plane direction of the planar lightwave circuit, the horizontal polarization propagating through the arm waveguides 5 and 6 becomes vertical polarization. Polarization can be replaced with horizontal polarization. A wave plate that is installed so that the fast axis or the slow axis is 45 degrees with respect to the substrate plane (horizontal) direction and whose delay amount corresponds to half of the wavelength of incident light is called a 45 degree half-wave plate. Since the polarization is converted at the center of the interferometer circuit and the horizontal polarization and the vertical polarization are switched, the polarization dependency of the interference circuit can be eliminated. As a result, there is no polarization dependence in the transmission characteristics of the Mach-Zehnder interferometer, and the transmission spectrum is the same for both the horizontal polarization and the vertical polarization as shown in FIG.

図3に、従来のラティス回路を示す。図2(a)に示したマッハツェンダ干渉計を、多段に接続した構成である。各々のマッハツェンダ干渉計に、45度半波長板9a〜9cが挿入され、偏波依存性を解消している。   FIG. 3 shows a conventional lattice circuit. The Mach-Zehnder interferometer shown in FIG. 2A is connected in multiple stages. 45 degree half-wave plates 9a to 9c are inserted into each Mach-Zehnder interferometer to eliminate the polarization dependence.

図4に、従来の波長合分波器を示す。入力導波路11に接続されたスラブ導波路12と、複数の出力導波路15に接続されたスラブ導波路14との間に、複数のアレー導波路13が接続されている。アレー導波路13の中央および出力側のスラブ導波路14に45度半波長板19a,19bが挿入され、偏波依存性を解消している。このように、平面型光波回路内に45度半波長板を設置することにより、偏波依存性の解消、伝播光の偏波変換が可能となる。   FIG. 4 shows a conventional wavelength multiplexer / demultiplexer. A plurality of array waveguides 13 are connected between a slab waveguide 12 connected to the input waveguide 11 and a slab waveguide 14 connected to the plurality of output waveguides 15. 45 degree half-wave plates 19a and 19b are inserted into the center of the arrayed waveguide 13 and the slab waveguide 14 on the output side to eliminate the polarization dependence. Thus, by installing a 45 degree half-wave plate in the planar lightwave circuit, it becomes possible to eliminate the polarization dependence and to convert the polarization of the propagation light.

また、45度1/4波長板は、基板平面(水平)方向に対し、速軸または遅軸が45度となるように設置され、遅延量が入射光の波長の1/4に相当する波長板である。45度1/4波長板は、光信号の偏波を円偏波から直線偏波に、または、直線偏波から円偏波に入れ替えるために用いられる。以降、基板平面(水平)方向に対し、速軸または遅軸が45度となるように設置された波長板のことを、特に45度波長板と呼び、遅延量は限定しない。   The 45 degree quarter-wave plate is installed so that the fast axis or slow axis is 45 degrees with respect to the substrate plane (horizontal) direction, and the delay amount is a wavelength corresponding to 1/4 of the wavelength of the incident light. It is a board. The 45-degree quarter-wave plate is used to switch the polarization of an optical signal from circular polarization to linear polarization, or from linear polarization to circular polarization. Hereinafter, the wave plate installed so that the fast axis or the slow axis is 45 degrees with respect to the substrate plane (horizontal) direction is particularly referred to as a 45 degree wave plate, and the amount of delay is not limited.

しかしながら、波長板は、一般的に導波路と異なる材料により構成されるため、反射戻り光が発生するという問題があった。波長板の材料は、水晶、BBO(β-BaB24)結晶、延伸ポリイミドフィルム等の高複屈折材料である。波長板の屈折率と導波路の屈折率とが異なるため反射が発生し、入射光の方向に反射光が伝搬して戻るため、平面型光波回路の伝播特性を劣化させてしまう。光通信用のデバイスは、反射戻り光を極力小さくする必要がある。反射を生ずる箇所が複数あると、通信システムの伝送特性が著しく劣化するからである。デバイスに要求される反射戻り光強度は、通信システムの設計により異なるが、一般的なシステムでは全体として、反射減衰量を40〜50dB以上にする必要がある。 However, since the wave plate is generally made of a material different from that of the waveguide, there is a problem that reflected return light is generated. The material of the wave plate is a high birefringence material such as quartz, BBO (β-BaB 2 0 4 ) crystal, or stretched polyimide film. Since the refractive index of the wave plate and the refractive index of the waveguide are different, reflection occurs, and the reflected light propagates back in the direction of the incident light, which degrades the propagation characteristics of the planar lightwave circuit. A device for optical communication needs to make reflected return light as small as possible. This is because if there are a plurality of locations where reflection occurs, the transmission characteristics of the communication system deteriorate significantly. The reflected return light intensity required for the device varies depending on the design of the communication system. However, in a general system, it is necessary that the return loss is 40 to 50 dB or more as a whole.

図5に、従来の波長板の設置方法の第1例を示す。図5(a)は上面図であり、図5(b)は断面図である。基板21上のクラッド層22に、パターン化された導波路コア23が形成されている。平面型光波回路の上面から導波路コア23を切断するように、基板21に向かって垂直に挿入溝24が形成されている。挿入溝24には、波長板25が挿入されている。この方法では、導波路コア23と空気の界面、空気と波長板25の界面で反射が発生し、反射光が入射側の導波路に戻ってしまう。例えば、石英系ガラス導波路にポリイミド系材料の波長板を挿入する場合、空気による導波路と波長板のギャップを極力少なくなるようにしても、全体として−10〜−20dB程度の反射が発生する。   FIG. 5 shows a first example of a conventional wave plate installation method. FIG. 5A is a top view and FIG. 5B is a cross-sectional view. A patterned waveguide core 23 is formed on the clad layer 22 on the substrate 21. An insertion groove 24 is formed vertically toward the substrate 21 so as to cut the waveguide core 23 from the upper surface of the planar lightwave circuit. A wave plate 25 is inserted into the insertion groove 24. In this method, reflection occurs at the interface between the waveguide core 23 and the air and between the air and the wave plate 25, and the reflected light returns to the incident-side waveguide. For example, when a wave plate made of a polyimide material is inserted into a quartz glass waveguide, even if the gap between the air waveguide and the wave plate is reduced as much as possible, reflection of about −10 to −20 dB occurs as a whole. .

図6に、従来の波長板の設置方法の第2例を示す。図6(a)は上面図であり、図6(b)は断面図である。導波路コア23を波長板25の入射平面に対してθx度傾けることにより、導波路コア23からの伝播光を斜めに波長板25に入射し、反射光が導波路コア23に結合することを防ぐ。屈折率の異なる界面での反射現象自体を防ぐことはできないが、反射光が導波路コア23に結合し、反射戻り光として伝播することを防ぐことができる。導波路コア23と波長板25の角度θxを適切に調整することにより、一般的な通信システムに要求される40〜50dB以上の反射減推量を確保することができる(例えば、特許文献2参照)。   FIG. 6 shows a second example of a conventional wave plate installation method. 6A is a top view and FIG. 6B is a cross-sectional view. By tilting the waveguide core 23 by θx degrees with respect to the incident plane of the wave plate 25, the propagation light from the waveguide core 23 is incident on the wave plate 25 obliquely and the reflected light is coupled to the waveguide core 23. prevent. Although the reflection phenomenon itself at the interface having different refractive indexes cannot be prevented, it is possible to prevent the reflected light from being coupled to the waveguide core 23 and propagating as reflected return light. By appropriately adjusting the angle θx between the waveguide core 23 and the wave plate 25, a reflection reduction amount of 40 to 50 dB or more required for a general communication system can be secured (for example, see Patent Document 2). .

図7に、従来の波長板の設置方法の第3例を示す。図7(a)は上面図であり、図7(b)は断面図である。挿入溝24を基板平面に対してθx度傾けることにより、導波路コア23からの伝播光を斜めに波長板25に入射し、反射光が導波路コア23に結合することを防ぐ。図6の構成と同様の原理であり、40〜50dB以上の反射減推量を確保することができる。   FIG. 7 shows a third example of a conventional wave plate installation method. FIG. 7A is a top view, and FIG. 7B is a cross-sectional view. By tilting the insertion groove 24 by θx degrees with respect to the substrate plane, the propagation light from the waveguide core 23 is incident on the wave plate 25 at an angle, and the reflected light is prevented from being coupled to the waveguide core 23. The principle is the same as that of the configuration of FIG. 6, and a reflection reduction amount of 40 to 50 dB or more can be ensured.

以上に説明したように、平面型光波回路に波長板を配置する場合、波長板の入射平面に対し斜めに光が入射できる構造を採用することにより、反射戻り光を抑制でき、反射減衰量が大きな平面型光波回路を実現することが可能となった。   As described above, when a wave plate is arranged in a planar lightwave circuit, the reflected return light can be suppressed and the return loss can be reduced by adopting a structure in which light can be incident obliquely with respect to the incident plane of the wave plate. It became possible to realize a large planar lightwave circuit.

特許第2614365号公報Japanese Patent No. 2614365 特許第3429277号公報Japanese Patent No. 3429277

しかしながら、図6、図7に示した従来の方法では、45度波長板の偏波消光比が劣化し、平面型光波回路の偏波特性が劣化するという問題があった。偏波消光比とは、波長板の性能を示す指標であり、波長板により偏波変換された光の強度と、偏波変換されずに残留した光の強度との比である。以降、波長板により所望の偏波状態に変換され伝搬する光を「偏波変換光」と呼び、所望の偏波状態に変換されず残留して伝搬する光を「残留偏波光」と呼ぶ。式で表現すると、
偏波消光比=−10log(残留偏波光の強度/偏波変換光の強度)[dB]
となる。偏波消光比が高いと、残留偏波光の強度が小さいことを意味し、効率的な偏波変換が実現されていることを示す。すなわち、波長板の動作がより理想的であり、性能が高いことを示している。
However, the conventional methods shown in FIGS. 6 and 7 have a problem that the polarization extinction ratio of the 45-degree wave plate deteriorates and the polarization characteristics of the planar lightwave circuit deteriorate. The polarization extinction ratio is an index indicating the performance of the wave plate, and is a ratio between the intensity of light polarized by the wave plate and the intensity of light remaining without being polarized. Hereinafter, the light that is converted into the desired polarization state by the wave plate and propagates is called “polarized light”, and the light that is propagated without being converted into the desired polarization state is called “residual polarization light”. Expressed as an expression
Polarization extinction ratio = −10 log (intensity of residual polarization light / intensity of polarization conversion light) [dB]
It becomes. A high polarization extinction ratio means that the intensity of the residual polarization light is small, indicating that efficient polarization conversion is realized. That is, it shows that the operation of the wave plate is more ideal and the performance is high.

図8に、45度半波長板32に光を入射した場合の、偏波変換光と残留偏波光を模式的に示す。入射光として、水平偏波の光を、導波路コア31を介して45度半波長板に入射した場合、垂直偏波に変換される。このとき、偏波変換光とは、導波路コア31からの出射光のうち垂直偏波の光のことである。45度半波長板32により垂直偏波に変換されず、水平偏波のまま導波路コア31から出射される光が残留偏波光である。一般的に、45度半波長板の膜厚誤差、複屈折の誤差、屈折率主軸が45度からずれた場合等の製造誤差が発生した場合、残留偏波光が増加し、偏波消光比が劣化、すなわち低くなる。   FIG. 8 schematically shows the polarization-converted light and the residual polarization light when the light is incident on the 45-degree half-wave plate 32. When horizontally polarized light is incident on the 45-degree half-wave plate via the waveguide core 31 as incident light, it is converted into vertically polarized light. At this time, the polarization-converted light is vertically polarized light out of the light emitted from the waveguide core 31. The light emitted from the waveguide core 31 without being converted into the vertical polarization by the 45 degree half-wave plate 32 while being horizontally polarized is the residual polarization. Generally, when a manufacturing error such as a film thickness error of 45 degree half-wave plate, an error of birefringence, or when the main axis of refractive index deviates from 45 degrees, the residual polarization light increases and the polarization extinction ratio becomes Deterioration, i.e. lower.

平面型光波回路を偏波無依存化するためには、この残留偏波光の存在が問題となる。わずかな残留偏波光でも、波長板の性能は大きく劣化し、偏波多重用通信システム用デバイスに平面型光波回路を応用する場合、信号の品質劣化を招く。また、平面型光波回路を偏波無依存化するために45度波長板を用いた場合、偏波依存性が完全に解消されない。以下にこの問題について説明する。   In order to make the planar lightwave circuit independent of polarization, the presence of this residual polarized light becomes a problem. Even a small amount of residual polarization light greatly deteriorates the performance of the wave plate, and when a planar lightwave circuit is applied to a polarization multiplexing communication system device, the signal quality is degraded. In addition, when a 45-degree wavelength plate is used to make a planar lightwave circuit polarization independent, the polarization dependence is not completely eliminated. This problem will be described below.

図9に、45度波長板の反射減衰量、偏波変換光および残留偏波光の強度、偏波消光比の入射角依存性を示す。ここで、入射角θinとは、45度波長板の法線と、光の進行方向とがなす角である。図9(a)に示すように、45度波長板に対し、入射角θinを増加させると反射減衰量が増加し、反射光を抑制することができる。一方、入射角θinが増加すると、偏波変換光の強度が減少し、不要な残留偏波光の強度が増加する(図9(b))。結果的には、45度波長板の偏波消光比が劣化する(図9(c))。 FIG. 9 shows the incident angle dependence of the return loss amount of the 45-degree wave plate, the intensity of the polarization-converted light and the residual polarization light, and the polarization extinction ratio. Here, the incident angle θ in is an angle formed by the normal line of the 45-degree wave plate and the traveling direction of light. As shown in FIG. 9 (a), to 45 ° waveplate can return loss and increase the incident angle theta in increases, suppressing the reflected light. On the other hand, the incident angle theta in increases, the intensity of the light induced by polarization coupling is reduced, the strength of the unwanted residual polarization light increases (FIG. 9 (b)). As a result, the polarization extinction ratio of the 45 degree wave plate is deteriorated (FIG. 9C).

図10に、従来の波長板の設置方法の第4例を示す。図10(a)は上面図であり、図10(b)は断面図である。挿入溝24を基板平面に対してθx度傾けることにより、導波路コア23からの伝播光を斜めに45度半波長板25に入射させる。45度半波長板25は、挿入溝24に挿入され、固定材料26で固定されている。通常、導波路コア23、45度半波長板25、および固定材料26は、異なる材料により構成される。例えば、平面型光波回路は、石英系ガラス、窒化シリコン、Si、半導体等である。45度半波長板25は、有機系材料、水晶等の結晶である。また、固定材料26は、取り扱いのよさから樹脂等が用いられる。ここでは、平面型光波回路は石英系ガラス、波長板はポリイミド材料、固定材料は接着性樹脂として説明する。   FIG. 10 shows a fourth example of a conventional wave plate installation method. FIG. 10A is a top view, and FIG. 10B is a cross-sectional view. By tilting the insertion groove 24 by θx degrees with respect to the substrate plane, the propagation light from the waveguide core 23 is incident on the half-wave plate 25 at an angle of 45 degrees. The 45-degree half-wave plate 25 is inserted into the insertion groove 24 and fixed with a fixing material 26. In general, the waveguide core 23, the 45-degree half-wave plate 25, and the fixing material 26 are made of different materials. For example, the planar lightwave circuit is made of quartz glass, silicon nitride, Si, semiconductor, or the like. The 45-degree half-wave plate 25 is a crystal such as an organic material or crystal. The fixing material 26 is made of resin or the like for ease of handling. Here, the planar lightwave circuit will be described as quartz glass, the wavelength plate as a polyimide material, and the fixing material as an adhesive resin.

まず、反射光について考える。導波路コア23を伝搬してきた光は、石英系ガラス→樹脂→ポリイミド材料→樹脂→石英系ガラスと5種類の異なる材料を透過する。このとき、異なる材料の間の屈折率差により反射が発生する。45度半波長板25への光の入射角を、0度より大きく設定した場合、異なる材料の間の界面における反射は、入射光の進行方向とは異なる方向に反射する。このため、異なる材料の間の界面で発生する反射光は、入射側の導波路に結合せず、反射減衰量が大きくなる。入射角を大きくすれば、反射減衰量は大きくなる。   First, consider the reflected light. The light propagating through the waveguide core 23 passes through five different materials: quartz glass → resin → polyimide material → resin → quartz glass. At this time, reflection occurs due to a difference in refractive index between different materials. When the incident angle of light on the 45-degree half-wave plate 25 is set to be larger than 0 degrees, reflection at the interface between different materials is reflected in a direction different from the traveling direction of the incident light. For this reason, the reflected light generated at the interface between different materials is not coupled to the waveguide on the incident side, and the reflection attenuation amount increases. Increasing the incident angle increases the return loss.

一方、透過光に着目すると、透過光は異なる材料の間の界面で屈折し、伝搬方向が変化する。45度半波長板25の中を透過する光の伝搬方向は、挿入溝24の設置角度θxと屈折により決定される。45度半波長板25は、入射角が0度のとき、理想的な動作をする。しかしながら、図10に示したように、入射角を0度より大きく設定した場合、45度半波長板25の中を伝播する光が感じる光学軸の角度は、45度からずれる。この場合、45度半波長板25による所望の偏波変換動作が行われず、偏波変換効率が下がる。残留偏波光が増加することによって、偏波消光比が劣化する。従って、入射角を大きくすると、偏波消光比が劣化する。   On the other hand, paying attention to the transmitted light, the transmitted light is refracted at the interface between different materials, and the propagation direction changes. The propagation direction of light transmitted through the 45-degree half-wave plate 25 is determined by the installation angle θx of the insertion groove 24 and refraction. The 45 degree half-wave plate 25 operates ideally when the incident angle is 0 degree. However, as shown in FIG. 10, when the incident angle is set to be larger than 0 degrees, the angle of the optical axis that the light propagating through the 45-degree half-wave plate 25 feels deviates from 45 degrees. In this case, the desired polarization conversion operation by the 45 degree half-wave plate 25 is not performed, and the polarization conversion efficiency is lowered. As the residual polarization light increases, the polarization extinction ratio deteriorates. Therefore, when the incident angle is increased, the polarization extinction ratio is deteriorated.

なお、その他にも、45度半波長板への入射角を0度より大きくした場合、伝搬光の感じる45度半波長板の複屈折率変動、斜め伝搬による伝搬距離の増加、45度半波長板の膜厚方向の屈折率の影響等により偏波消光比の劣化を招く。   In addition, when the incident angle to the 45 ° half-wave plate is greater than 0 °, the birefringence fluctuation of the 45 ° half-wave plate felt by the propagating light, the propagation distance increase due to the oblique propagation, the 45 ° half wavelength The polarization extinction ratio is degraded due to the influence of the refractive index in the film thickness direction of the plate.

以上のように、45度半波長板に斜めに光が入射した場合、45度半波長板自体の変化はなくとも、光の感じる様々な45度半波長板の特性が変化する。ここでは、45度半波長板に斜めに光が入射した時の偏波消光比劣化を説明したが、22.5度半波長板、45度1/4波長板など、他の波長板においても同様な現象が発生し、偏波消光比劣化を招く。   As described above, when light is incident obliquely on the 45-degree half-wave plate, the characteristics of various 45-degree half-wave plates felt by the light change even if the 45-degree half-wave plate itself does not change. Here, the polarization extinction ratio deterioration when light is incident on the 45-degree half-wave plate obliquely has been described. However, other wavelength plates such as a 22.5-degree half-wave plate and a 45-degree quarter-wave plate can also be used. A similar phenomenon occurs, leading to deterioration of the polarization extinction ratio.

従来技術では、入射光の入射角を0度より大きくすることにより反射減衰量を確保していた。しかしながら、導波路と波長板平面のなす角を0度より大きくすればするほど、上述したように偏波消光比は劣化する。逆に、導波路と波長板平面のなす角を小さくすると、波長板の偏波消光比は高くなるが、反射減衰量が劣化する。つまり、「反射減衰量」と「偏波消光比」とはトレードオフの関係にあり、両者をともに大きな値にすることは困難であった。   In the prior art, the return loss is ensured by making the incident angle of incident light larger than 0 degree. However, the polarization extinction ratio deteriorates as the angle between the waveguide and the wave plate plane becomes larger than 0 degree as described above. Conversely, if the angle formed by the waveguide and the wave plate plane is reduced, the polarization extinction ratio of the wave plate is increased, but the return loss is deteriorated. In other words, the “reflection attenuation amount” and the “polarization extinction ratio” are in a trade-off relationship, and it is difficult to make both large values.

本発明は、このような問題に鑑みてなされたものであり、その目的とするところは、平面型光波回路に配置する波長板において、簡便な方法により、高い偏波消光比を維持したまま、大きな反射減衰量を確保することにある。   The present invention has been made in view of such problems, and the object of the present invention is to maintain a high polarization extinction ratio by a simple method in a wave plate disposed in a planar lightwave circuit, The purpose is to ensure a large return loss.

本発明は、このような目的を達成するために、基板上のクラッド層に埋め込まれた少なくとも1本以上の導波路コアを切断するように形成された溝に、複屈折を有する波長板が挿入された平面型光波回路において、前記導波路コアから前記波長板の入射面に対して斜めに入力光を入射し、前記波長板の光学軸は、前記波長板の入射面に平行であり、前記基板平面と前記波長板の入射面を含む平面との交線と、前記波長板の光学軸とのなす角が、45+α(α≠0)度であることを特徴とする。   In order to achieve such an object, the present invention inserts a wave plate having birefringence into a groove formed so as to cut at least one waveguide core embedded in a cladding layer on a substrate. In the planar lightwave circuit, the input light is obliquely incident on the incident surface of the wave plate from the waveguide core, the optical axis of the wave plate is parallel to the incident surface of the wave plate, The angle formed by the line of intersection between the substrate plane and the plane including the incident surface of the wave plate and the optical axis of the wave plate is 45 + α (α ≠ 0) degrees.

前記基板平面と前記溝の底面とが平行であり、前記半波長板の底辺と前記半波長板の光学軸とのなす角を45+α度とすることもできる。   The substrate plane and the bottom surface of the groove are parallel to each other, and the angle formed by the bottom of the half-wave plate and the optical axis of the half-wave plate can be 45 + α degrees.

前記基板平面と前記溝の底面とのなす角がα度であり、前記半波長板の底辺と前記半波長板の光学軸とのなす角を45+α度とすることもできる。   The angle formed between the substrate plane and the bottom surface of the groove may be α degrees, and the angle formed between the bottom of the half-wave plate and the optical axis of the half-wave plate may be 45 + α degrees.

前記基板平面と前記半波長板の入射面を含む平面との交線と、前記溝の底面と前記半波長板の入射面を含む平面との交線とのなす角がα度であり、前記半波長板の底辺と前記半波長板の光学軸とのなす角を45度とすることもできる。   The angle formed by the line of intersection of the substrate plane and the plane including the incident surface of the half-wave plate and the line of intersection of the bottom surface of the groove and the plane including the incident surface of the half-wave plate is α degrees, The angle formed by the bottom of the half-wave plate and the optical axis of the half-wave plate can be 45 degrees.

以上説明したように、本発明によれば、平面型光波回路に配置する波長板において、使用する波長板の光学軸をα度をずらしておくにことより、高い偏波消光比を維持したまま、大きな反射減衰量を確保することが可能となる。   As described above, according to the present invention, in the wave plate disposed in the planar lightwave circuit, the optical axis of the wave plate to be used is shifted by α degrees, thereby maintaining a high polarization extinction ratio. It is possible to ensure a large return loss.

従来のマッハツェンダ干渉計の動作原理を説明するための図である。It is a figure for demonstrating the principle of operation of the conventional Mach-Zehnder interferometer. 従来の波長板付きマッハツェンダ干渉計の動作原理を説明するための図である。It is a figure for demonstrating the operation principle of the conventional Mach-Zehnder interferometer with a wavelength plate. 従来のラティス回路の構成を示す図である。It is a figure which shows the structure of the conventional lattice circuit. 従来の波長合分波器の構成を示す図である。It is a figure which shows the structure of the conventional wavelength multiplexer / demultiplexer. 従来の波長板の設置方法の第1例を示す図である。It is a figure which shows the 1st example of the installation method of the conventional wavelength plate. 従来の波長板の設置方法の第2例を示す図である。It is a figure which shows the 2nd example of the installation method of the conventional wavelength plate. 従来の波長板の設置方法の第3例を示す図である。It is a figure which shows the 3rd example of the installation method of the conventional wavelength plate. 偏波変換光と残留偏波光とを説明するための図である。It is a figure for demonstrating polarization conversion light and remanent polarization light. 反射減衰量、偏波変換光および残留偏波光の強度、偏波消光比の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of return loss amount, the intensity | strength of polarization | polarized-light conversion light and remanent polarization light, and a polarization extinction ratio. 従来の波長板の設置方法の第4例を示す図である。It is a figure which shows the 4th example of the installation method of the conventional wavelength plate. 本発明の一実施形態にかかる波長板の入射角依存性を示す図である。It is a figure which shows the incident angle dependence of the wavelength plate concerning one Embodiment of this invention. 従来の45度半波長板と本発明の一実施形態にかかる(45+α)度半波長板との比較を示す図である。It is a figure which shows the comparison with the conventional 45 degree half wavelength plate and the (45+ (alpha)) degree half wavelength plate concerning one Embodiment of this invention. 本発明の一実施形態にかかる(45+α)度半波長板の作製方法を示す図である。It is a figure which shows the preparation methods of the (45+ (alpha)) degree half wave plate concerning one Embodiment of this invention. 具体的なαの値を示す図である。It is a figure which shows the specific value of (alpha). 波長板の光学軸を設定する方法を説明するための図である。It is a figure for demonstrating the method to set the optical axis of a wavelength plate. 従来例と本発明の実施例1とを偏波消光比により比較した図である。It is the figure which compared the prior art example and Example 1 of this invention by the polarization extinction ratio. (45+α)度半波長板のαの値と偏波消光比との関係を示す図である。It is a figure which shows the relationship between the value of (45+ (alpha)) half-wave plate (alpha), and a polarization extinction ratio. 波長板への入射角が変化したときの偏波消光波長の変化を示す図である。It is a figure which shows the change of the polarization-extinction wavelength when the incident angle to a wavelength plate changes. 本発明の一実施形態にかかる波長板の設置方法を示す図である。It is a figure which shows the installation method of the wavelength plate concerning one Embodiment of this invention.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。
上述したように、反射減衰量を十分に確保できる入射角となるように45度波長板を平面型光波回路に配置した場合、偏波消光比が劣化する。このとき、複数回の屈折、屈折率主軸の角度ずれ、膜厚方向の屈折率の影響等の様々な現象により偏波消光比の劣化を招く。そこで、これらの複合的な変化を「波長板軸の仮想角度ずれ」として考える。「波長板軸の仮想角度ずれ」とは、波長板に光を斜めに入射した時の実際の角度ずれではなく、複合的な特性変化を、波長板の面(平面)内における波長板の速軸(遅軸)の回転的な角度ずれとして、仮想的に置き換えたものである。波長板に光を斜めに入射した時の角度ずれは、3次元的な角度ずれであり、波長板の面(平面)内と、その面に垂直な軸とにより作られる空間において生ずる。従って、仮想的な角度ずれと実際の角度ずれとは、必ずしも一致しない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As described above, when the 45-degree wavelength plate is arranged in the planar lightwave circuit so that the incident angle can sufficiently secure the return loss, the polarization extinction ratio deteriorates. At this time, the polarization extinction ratio is deteriorated due to various phenomena such as refraction several times, the angle deviation of the refractive index main axis, and the influence of the refractive index in the film thickness direction. Therefore, these combined changes are considered as “virtual angle deviation of the wavelength plate axis”. The “imaginary angular deviation of the wave plate axis” is not the actual angular deviation when light is incident obliquely on the wave plate, but the complex characteristic change is the speed of the wave plate in the plane (plane) of the wave plate. This is a virtual replacement as a rotational angular shift of the axis (slow axis). The angle shift when light is incident on the wave plate obliquely is a three-dimensional angle shift and occurs in a space formed by the plane (plane) of the wave plate and an axis perpendicular to the plane. Therefore, the virtual angular deviation and the actual angular deviation do not necessarily match.

ここで、「波長板軸の仮想角度ずれ」について詳しく説明する。波長板の入射面に光を垂直に入射した時、入射方向に垂直な面と、波長板の屈折率楕円体との交差部は、楕円となり、長軸および短軸を有する。波長板に光を斜めに入射した時、入射方向に垂直な面と屈折率楕円とにより形成される楕円は、垂直に入射した時に較べて傾き、それぞれの長軸方向およびそれぞれの短軸方向は、ある角度をなす。この角度が「波長板軸の仮想角度ずれ」であり、屈折率楕円体を用いて求めることができる。入射角が0度でない場合、波長板の特性劣化量を「波長板軸の仮想角度ずれ」として置き換えられることがわかった。   Here, the “virtual angle deviation of the wavelength plate axis” will be described in detail. When light is incident vertically on the incident surface of the wave plate, the intersection between the surface perpendicular to the incident direction and the refractive index ellipsoid of the wave plate is an ellipse and has a major axis and a minor axis. When light is incident obliquely on the wave plate, the ellipse formed by the surface perpendicular to the incident direction and the refractive index ellipse is inclined as compared to when incident vertically, and the major axis direction and the minor axis direction are Make an angle. This angle is a “virtual angle shift of the wavelength plate axis” and can be obtained using a refractive index ellipsoid. It was found that when the incident angle is not 0 degree, the characteristic deterioration amount of the wave plate can be replaced with “virtual angle deviation of the wave plate axis”.

そこで、使用する波長板の光学軸を、入射角度に応じて発生する「波長板軸の仮想角度ずれ」を補償するように、あらかじめ角度をずらしておく。これにより、平面型光波回路に波長板を配置した場合に、理想的な波長板の動作を実現することができる。例えば、図10に示したように、基板平面に対してθx度傾けた挿入溝24に、45度半波長板25を挿入した場合、「波長板軸の仮想角度ずれ」をαとすると、(45+α)度半波長板を用いればよい。45度半波長板と同一の波長板を用いて、速軸または遅軸と基板平面(水平)方向とがなす角を、(45+α)度になるように、波長板を回転させればよい。これにより、偏波消光比の劣化を招くことなく、反射減衰量を大きく確保でき、かつ、波長板は45度半波長板として機能する。   Therefore, the angle of the optical axis of the wave plate to be used is shifted in advance so as to compensate for the “virtual angle shift of the wave plate axis” generated according to the incident angle. Thereby, when the wave plate is arranged in the planar lightwave circuit, an ideal wave plate operation can be realized. For example, as shown in FIG. 10, when the 45-degree half-wave plate 25 is inserted into the insertion groove 24 inclined by θx degrees with respect to the substrate plane, the “virtual angle deviation of the wavelength plate axis” is α, A 45 + α) half-wave plate may be used. The same wavelength plate as the 45-degree half-wave plate may be used to rotate the wavelength plate so that the angle formed by the fast axis or slow axis and the substrate plane (horizontal) direction is (45 + α) degrees. As a result, a large amount of return loss can be secured without deteriorating the polarization extinction ratio, and the wave plate functions as a 45 degree half wave plate.

図11に、本発明の一実施形態にかかる波長板の入射角依存性を示す。図11(a)に示すように、(45+α)度半波長板に対し、入射角を増加させると反射減衰量が増加する。これは、図9(a)に示した従来の波長板と同様である。一方、入射角が増加すると、偏波変換光の強度は最大値、残留偏波光の強度は最低値となるピークが存在する(図11(b))。その結果、偏波消光比も最大値となるピークが存在する(図11(c))。すなわち、設定した入射角θxになった場合に、偏波消光比は最大となる。この場合の偏波消光比は、45度半波長板に光を垂直に入射したとき(入射角=0度)の理想的な偏波消光比よりも多少劣化するが、十分に大きな偏波消光比が得られる。   FIG. 11 shows the incident angle dependence of the wave plate according to one embodiment of the present invention. As shown in FIG. 11A, when the incident angle is increased with respect to the (45 + α) degree half-wave plate, the return loss increases. This is the same as the conventional wave plate shown in FIG. On the other hand, when the incident angle increases, there is a peak where the intensity of the polarization-converted light has the maximum value and the intensity of the residual polarization light has the minimum value (FIG. 11B). As a result, there is a peak at which the polarization extinction ratio is also the maximum value (FIG. 11C). That is, when the set incident angle θx, the polarization extinction ratio is maximized. The polarization extinction ratio in this case is slightly deteriorated compared to the ideal polarization extinction ratio when light is incident on the 45-degree half-wave plate vertically (incident angle = 0 degree), but sufficiently large polarization extinction ratio. A ratio is obtained.

図12に、従来の45度半波長板と(45+α)度半波長板との比較を示す。平面型光波回路に入斜角θxで配置した場合の、それぞれの反射減衰量と偏波消光比を示す。本発明の一実施形態にかかる構成では、従来の高い反射減衰量を維持したまま(図12(a))、高い偏波消光比を実現することができる(図12(b))。   FIG. 12 shows a comparison between a conventional 45 degree half-wave plate and a (45 + α) degree half-wave plate. The respective return loss amounts and polarization extinction ratios when arranged at an oblique angle θx in a planar lightwave circuit are shown. In the configuration according to the embodiment of the present invention, a high polarization extinction ratio can be realized (FIG. 12B) while maintaining the conventional high return loss (FIG. 12A).

本発明の一実施形態は、非常に簡便に実現できるところも利点である。なぜなら、通常の45度半波長板の作製時に使用する基板材料(フィルム材料)を、光学軸を45度から少しずらした角度で切断すればよいからである。通常の45度半波長板は、面内に光学軸(通常は遅軸)を有している基板またはフィルム(図13(a))を、基板平面(水平)方向に対する光学軸の角度θWPが45度になるように切断する(図13(b))。従って、(45+α)度半波長板の作製は、同じ材料を用いて、光学軸がθWP=(45+α)度になるようにカットすればよい(以下、実施例1,2参照)。また、通常の45度半波長板をそのまま使用し、平面型光波回路に設けた波長板設置溝の角度を基板に水平な方向からα度余分に傾けることにより、見た目上(45+α)度にすることもできる(以下、実施例3参照)。 One embodiment of the present invention is also advantageous in that it can be realized very simply. This is because the substrate material (film material) used in the production of a normal 45 degree half-wave plate may be cut at an angle slightly shifted from the 45 degree optical axis. A normal 45-degree half-wave plate is obtained by applying a substrate or film (FIG. 13A) having an optical axis (usually a slow axis) in the plane to an angle θ WP of the optical axis with respect to the substrate plane (horizontal) direction Is cut to 45 degrees (FIG. 13B). Therefore, the (45 + α) degree half-wave plate may be manufactured using the same material and cut so that the optical axis becomes θ WP = (45 + α) degree (see Examples 1 and 2 below). Further, an ordinary 45-degree half-wave plate is used as it is, and the angle of the wave-plate installation groove provided in the planar lightwave circuit is inclined by an additional α degrees from a horizontal direction to the substrate, so that it looks (45 + α) degrees. (See Example 3 below).

図14に、具体的なαの値を示す。αの値としては、平面型光波回路を構成する導波路の屈折率、波長板の屈折率および複屈折、入射角等で決定される。図の実線は、入射角θxに対する最適なαの値を示す。波長板の3次元屈折率楕円体を考慮し、導波路からの出射光が半波長板に入射する角度を求め、その角度において半波長板内を伝搬する光の感じる遅延量(リタデーション)と実効的な光学軸を計算することにより、半波長板の消光比を計算することができる。図14には、半波長板の消光比が最大となるαの計算値が、実線によりプロットされている。一方、実線の上にプロットされている黒丸は、図17を参照して後述するように、入射角θxが決まった場合に、偏波消光比が最大となるαの実験値である。計算値と実験値とが、よく一致しているのが分かる。   FIG. 14 shows a specific value of α. The value of α is determined by the refractive index of the waveguide constituting the planar lightwave circuit, the refractive index and birefringence of the wave plate, the incident angle, and the like. The solid line in the figure indicates the optimum value of α with respect to the incident angle θx. Considering the three-dimensional refractive index ellipsoid of the wave plate, the angle at which the light emitted from the waveguide is incident on the half-wave plate is obtained, and the amount of retardation (retardation) perceived by the light propagating in the half-wave plate at that angle is determined. By calculating the typical optical axis, the extinction ratio of the half-wave plate can be calculated. In FIG. 14, the calculated value of α at which the extinction ratio of the half-wave plate is maximized is plotted by a solid line. On the other hand, the black circle plotted on the solid line is an experimental value of α that maximizes the polarization extinction ratio when the incident angle θx is determined, as will be described later with reference to FIG. It can be seen that the calculated values and the experimental values are in good agreement.

図14の点線は、上述の方法により半波長板の消光比を計算し、従来と同じ反射減衰量を確保でき、従来より偏波消光比が向上するαの理論的上限値を示している。点線の上にプロットされている白丸は、図17を参照して後述するように、従来と同じ反射減衰量を確保でき、従来より偏波消光比が向上するαを実験的に求めた上限値を示している。   The dotted line in FIG. 14 shows the theoretical upper limit value of α that can calculate the extinction ratio of the half-wave plate by the above-described method, can secure the same return loss as before, and can improve the polarization extinction ratio as compared with the prior art. The white circles plotted on the dotted line, as will be described later with reference to FIG. 17, can ensure the same return loss as in the prior art, and the upper limit value obtained experimentally for α in which the polarization extinction ratio is improved compared to the prior art. Is shown.

一般的に、石英系のガラス導波路を用いた場合、反射減衰量を40dB以上確保するために必要な入射角θxは5度以上であり、作製の容易さを考慮すると16度以下程度が望ましい。このとき、偏波消光比を従来よりも向上させるためには、αの値は、0より大きく9度より小さい範囲となる。さらに、最適なαの値としては、入射角によって変化するが、0.5度より大きく5度より小さい範囲が最適である。   In general, when a silica-based glass waveguide is used, the incident angle θx necessary for securing a return loss of 40 dB or more is 5 degrees or more, and is preferably about 16 degrees or less in consideration of ease of manufacture. . At this time, in order to improve the polarization extinction ratio as compared with the prior art, the value of α is in a range larger than 0 and smaller than 9 degrees. Further, the optimum value of α varies depending on the incident angle, but a range larger than 0.5 degrees and smaller than 5 degrees is optimal.

実際の波長板の作製方法を説明する。例えば、フッ素化ポリイミド樹脂で作製する場合、フッ素化ポリイミドフィルムを高温下で1方向に延伸する。延伸方向に有機鎖が配向することで屈折率が高くなり、複屈折を発現することができる。この配向方向は遅軸方向であり、光学軸となる。また、水晶やBBO結晶等の結晶を用いる場合、結晶方位で決定される光学軸が基板面内に含まれるように、基板化する。材料によらず、光学軸が面内に含まれるような基板もしくはフィルムを用意し、光学軸の方向に合わせて切断する(図13(b)参照)。   A method for manufacturing an actual wave plate will be described. For example, when producing with a fluorinated polyimide resin, a fluorinated polyimide film is extended | stretched to one direction under high temperature. When the organic chain is oriented in the stretching direction, the refractive index is increased and birefringence can be exhibited. This orientation direction is the slow axis direction and becomes the optical axis. When a crystal such as crystal or BBO crystal is used, the substrate is formed so that the optical axis determined by the crystal orientation is included in the substrate plane. Regardless of the material, a substrate or film in which the optical axis is included in the plane is prepared and cut in accordance with the direction of the optical axis (see FIG. 13B).

平面型光波回路に波長板を使用する際、その光学軸の方向の調整は物理的に困難である。従って、波長板を挿入するための挿入溝に挿入した際に、一意に所望の角度に決定させる必要がある。波長板を切断する際の切断形状は自由であるが、少なくとも一辺が直線となるようにし、その一辺に対し光学軸が所望の角度になるように切断する。そして、その一辺が平面型光波回路の挿入溝の底面に接するように配置することにより、平面型光波回路に対し光学軸を所望の角度に設定することができる。最も簡易な方法は、図13(b)に示したように、長方形もしくは台形に切断し、その一辺に対し光学軸が設計した角度θwpを有するように切断する。この辺を平面型光波回路に設けた溝の底面に接するように配置することにより「θwp度波長板」を実現することができる。波長板の遅延量(リタデーション)は、用意した複屈折材料の膜厚と複屈折とにより制御することができる。 When using a wave plate in a planar lightwave circuit, it is physically difficult to adjust the direction of the optical axis. Therefore, it is necessary to uniquely determine the desired angle when the wave plate is inserted into the insertion groove for inserting the wave plate. The wave plate can be cut into any shape, but at least one side is a straight line, and the optical axis is cut at a desired angle with respect to the one side. Then, the optical axis can be set to a desired angle with respect to the planar lightwave circuit by disposing the one side so as to contact the bottom surface of the insertion groove of the planar lightwave circuit. As shown in FIG. 13B, the simplest method is to cut into a rectangle or a trapezoid, and cut so that the optical axis has an designed angle θ wp with respect to one side thereof. By arranging this side in contact with the bottom surface of the groove provided in the planar lightwave circuit, the “θ wp degree wave plate” can be realized. The retardation amount of the wave plate can be controlled by the thickness and birefringence of the prepared birefringent material.

一方、本実施形態以外の方法で、波長板に斜めに光を入射した時に偏波消光比を高くする方法は、上述したように、波長板を斜めに配置する時に発生する全てのずれ量をあらかじめ計算し、それを反映した波長板を設計・作製することである。しかしながら、これは非常に複雑な波長板の作製技術が必要であり、場合によっては極めて困難である。なぜなら、斜め入射時には波長板の軸が3次元的にずれ、それに合わせて複屈折材料の光学軸を合わせなければならない。   On the other hand, the method of increasing the polarization extinction ratio when light is incident obliquely on the wave plate by a method other than the present embodiment, as described above, eliminates all deviations that occur when the wave plate is disposed obliquely. It is to calculate and design a wave plate that reflects the calculation in advance. However, this requires a very complicated wave plate manufacturing technique, which is extremely difficult in some cases. This is because the axis of the wave plate is three-dimensionally shifted at the time of oblique incidence, and the optical axis of the birefringent material must be adjusted accordingly.

図15(a)に示すように、波長板に斜めに光を入射した時、基板平面(水平)方向に対して光学軸が45度になるように、波長板内で3次元的に光学軸調整が必要となる。水晶、BBO結晶等などの結晶性の材料を用いた波長板の場合、3次元的に光学軸を調整するためには、結晶方位と異なる面での加工が必要となる。このことは、波長板の加工性や制御性が非常に悪い。1方向に有機フィルムを延伸した一軸延伸フィルムを用いた波長板の場合、光学軸はフィルムの面内だけに発生するため、図15(c)に示すように、3次元的にフィルム内で光軸が存在するように作製することは、ほとんど不可能である。本実施形態で用いる波長板は、図15(b)に示すように、主軸の角度が波長板面内で、角度αの分だけ異なるのみなので、一般的な複屈折材料を用いることができる。そして、波長板を切り出す際の切断角を調整することにより、容易に実現することができる。   As shown in FIG. 15A, when light is obliquely incident on the wave plate, the optical axis is three-dimensionally within the wave plate so that the optical axis is 45 degrees with respect to the substrate plane (horizontal) direction. Adjustment is required. In the case of a wave plate using a crystalline material such as quartz or BBO crystal, processing in a plane different from the crystal orientation is required to adjust the optical axis three-dimensionally. This means that the workability and controllability of the wave plate are very poor. In the case of a wave plate using a uniaxially stretched film in which an organic film is stretched in one direction, the optical axis is generated only in the plane of the film. Therefore, as shown in FIG. It is almost impossible to make such a shaft. As shown in FIG. 15B, the wave plate used in the present embodiment can be made of a general birefringent material because the angle of the main axis differs only by the angle α within the wave plate surface. And it can implement | achieve easily by adjusting the cutting angle at the time of cutting out a wavelength plate.

このような方法は、平面型光波回路で用いる場合、特に有効となる。複屈折材料に光を斜めに入射すると、複屈折材料の屈折率主軸が、伝播光の進行方向に垂直な平面内に存在しない状態となる。この場合、入射光の偏波成分毎に屈折角が異なり、入射光が分離して伝播する。空間光学系のデバイスの場合、空間を伝播する距離が長くなるため、分離した光を再び1本の光に戻すことは困難である。一方、平面型光波回路の導波路に溝を設け、そこに波長板を挿入する場合、空間を伝播する距離は短くなるため、分離が小さい状態で光は導波路に結合し、1つの伝播光として振舞う。従って、本発明は平面型光波回路において特に有効となる。   Such a method is particularly effective when used in a planar lightwave circuit. When light is incident on the birefringent material obliquely, the refractive index principal axis of the birefringent material is not in a plane perpendicular to the traveling direction of the propagating light. In this case, the refraction angle is different for each polarization component of the incident light, and the incident light is separated and propagates. In the case of a device having a spatial optical system, since the distance propagating through the space becomes long, it is difficult to return the separated light to one light again. On the other hand, when a groove is provided in a waveguide of a planar lightwave circuit and a wave plate is inserted therein, the distance that propagates through the space is shortened, so that light is coupled to the waveguide with a small separation, and one propagation light Behave as. Therefore, the present invention is particularly effective in the planar lightwave circuit.

以上のように、本発明は、平面型光波回路に波長板を設置することにより、非常に簡便に反射減衰量と偏波消光比を共に大きく確保することができる。   As described above, according to the present invention, both the return loss and the polarization extinction ratio can be secured very easily by installing the wave plate in the planar lightwave circuit.

平面型光波回路としては、Si基板上に堆積した石英系ガラス導波路を用いる。火炎堆積法により、Si基板上に下部クラッド層およびコア層を堆積し、フォトリソグラフィーおよびエッチングにより、コア層に導波路パターンを形成する。再び火炎堆積法により上部クラッド層を作製する。コア層には、クラッド層と異なり、ゲルマニウムをドープすることにより屈折率を高める。平面型光波回路の上面から、Si基板上のクラッド層に埋め込まれた1または複数の導波路コアを切断するように、Si基板に向かって挿入溝を形成する。図10に示した構成と同様に、挿入溝に波長板を挿入し、樹脂により固定する。波長板は、Si基板の基板平面(水平)方向に平行な面と波長板の入射面を含む平面との交線と、波長板の光学軸とのなす角が45+α(α≠0)度となるように設置される。   As the planar lightwave circuit, a quartz glass waveguide deposited on a Si substrate is used. A lower cladding layer and a core layer are deposited on the Si substrate by a flame deposition method, and a waveguide pattern is formed in the core layer by photolithography and etching. An upper cladding layer is again produced by flame deposition. Unlike the cladding layer, the core layer is doped with germanium to increase the refractive index. An insertion groove is formed toward the Si substrate so as to cut one or more waveguide cores embedded in the cladding layer on the Si substrate from the upper surface of the planar lightwave circuit. Similar to the configuration shown in FIG. 10, a wave plate is inserted into the insertion groove and fixed with resin. The wave plate has an angle of 45 + α (α ≠ 0) degrees between the intersection of the plane parallel to the substrate plane (horizontal) direction of the Si substrate and the plane including the incident surface of the wave plate and the optical axis of the wave plate. It is installed to become.

波長板は、フッ素化ポリイミド樹脂で作製したフィルムを高温下で延伸する。延伸方向に有機鎖が配向することで屈折率が高くなり、複屈折が発現する。この延伸フィルムの延伸方向、すなわち光学軸に対して、切断角を調整して波長板を作成する。実施例1では、波長板の遅延量(リタデーション)を、波長1550nmの光に対し、半波長分に相当する値に設定する。   The wave plate is formed by stretching a film made of a fluorinated polyimide resin at a high temperature. When the organic chain is oriented in the stretching direction, the refractive index becomes high and birefringence appears. A wave plate is prepared by adjusting the cutting angle with respect to the stretching direction of the stretched film, that is, the optical axis. In the first embodiment, the retardation amount of the wave plate is set to a value corresponding to a half wavelength for light having a wavelength of 1550 nm.

平面型光波回路へ挿入した波長板の特性を評価するために、波長板を固定した平面型光波回路の前後に偏光子を配置し、透過スペクトルを測定した。偏光子の方向を垂直にした場合と平行にした場合の透過率の差から、偏波消光比が測定できる。   In order to evaluate the characteristics of the wave plate inserted into the planar lightwave circuit, a polarizer was placed before and after the planar lightwave circuit with the waveplate fixed, and the transmission spectrum was measured. The polarization extinction ratio can be measured from the difference in transmittance when the direction of the polarizer is vertical and parallel.

図16に、従来例と本発明の実施例1とを偏波消光比により比較した図を示す。図16(a)は、図5に示した従来の波長板の設置方法の第1例と同じ構成であり、45度半波長板の角度(入射角)θxを0度に設定した。図16(b)は、図7に示した従来の波長板の設置方法の第3例と同じ構成であり、入射角θxを0より大きい値である8度に設定した。第1例および第3例ともに、使用した波長板は、従来の45度半波長板である。図16(c)は、実施例1の結果であり、図10に示した構成により、入射角θxは8度に設定した。使用した波長板は、46.2度半波長板である。   In FIG. 16, the figure which compared the prior art example and Example 1 of this invention by the polarization extinction ratio is shown. FIG. 16A shows the same configuration as that of the first example of the conventional wave plate installation method shown in FIG. 5, and the angle (incident angle) θx of the 45-degree half-wave plate is set to 0 degree. FIG. 16B has the same configuration as that of the third example of the conventional wave plate installation method shown in FIG. 7, and the incident angle θx is set to 8 degrees, which is a value larger than 0. In both the first and third examples, the wave plate used is a conventional 45 degree half wave plate. FIG. 16C shows the result of Example 1. With the configuration shown in FIG. 10, the incident angle θx was set to 8 degrees. The used wave plate is a 46.2 degree half wave plate.

図16(a)を参照すると、入射角0度で45度半波長板を使用しているため、本来の45度半波長板の性能を実現できており、設計波長である1550nm付近の波長において−40dB以上の偏波消光比を実現できている。しかしながら、0度入射による反射の影響が大きく、反射減衰量は20dBと小さく、通信システムに要求される値を満足しない。   Referring to FIG. 16A, since the 45 degree half-wave plate is used at an incident angle of 0 degree, the performance of the original 45 degree half-wave plate can be realized, and the wavelength near the design wavelength of 1550 nm is achieved. A polarization extinction ratio of −40 dB or more can be realized. However, the influence of reflection due to 0-degree incidence is large, the return loss is as small as 20 dB, and does not satisfy the value required for the communication system.

図16(b)を参照すると、入射角を8度にしているため、反射減衰量が50dBとなり、十分に反射を抑えることができた。しかしながら、入射角を8度にしているため、偏波消光比が劣化している。最も偏波消光比が高い波長においても、20dB程度まで劣化した。   Referring to FIG. 16B, since the incident angle is set to 8 degrees, the reflection attenuation amount is 50 dB, and the reflection can be sufficiently suppressed. However, since the incident angle is set to 8 degrees, the polarization extinction ratio is deteriorated. Even at the wavelength with the highest polarization extinction ratio, it deteriorated to about 20 dB.

実施例1の結果である図16(c)を参照すると、入射角を8度にしているため、反射減衰量は50dBを確保することができ、46.2度半波長板を使用しているため、偏波消光比も図16(a)と同様に十分な値が得られている。このように、非常に単純な方法により、高い反射減衰量と、高い偏波消光比が実現できている。   Referring to FIG. 16C, which is the result of Example 1, since the incident angle is set to 8 degrees, the return loss can be ensured to be 50 dB, and a 46.2 degree half-wave plate is used. Therefore, a sufficient value is obtained for the polarization extinction ratio as in FIG. In this way, a high return loss and a high polarization extinction ratio can be realized by a very simple method.

実施例1では、(45+α)度半波長板のαの値を1.2度に設定した。このαの最適値を調べるための実験を行った。図10に示した構成において、入射角θxを0度、4度、11度に設定し、3種類の平面型光波回路を用意した。ここに、αを変化させた(45+α)度半波長板を挿入し、偏波消光比を測定した。   In Example 1, the value of α of the (45 + α) degree half-wave plate was set to 1.2 degrees. An experiment was conducted to investigate the optimum value of α. In the configuration shown in FIG. 10, the incident angle θx was set to 0 degree, 4 degrees, and 11 degrees, and three types of planar lightwave circuits were prepared. Here, a (45 + α) degree half-wave plate with varying α was inserted, and the polarization extinction ratio was measured.

図17に、αの値と偏波消光比との関係を示す。横軸はαの値であり、縦軸は設計波長における偏波消光比である。ただし、測定系の精度の限界のため、偏波消光比が43dB以上は測定ができず、値が飽和している。入射角θx=0度の場合、αは0の場合が最も偏波消光比が大きい。これは、45度半波長板に入射光を0度入射して、理想的な使用方法となっているからである。逆に、45度からずらすと、偏波消光比が劣化する。   FIG. 17 shows the relationship between the value of α and the polarization extinction ratio. The horizontal axis is the value of α, and the vertical axis is the polarization extinction ratio at the design wavelength. However, due to the limit of the accuracy of the measurement system, measurement cannot be performed when the polarization extinction ratio is 43 dB or more, and the value is saturated. When the incident angle θx = 0 °, α has the highest polarization extinction ratio when α is zero. This is because the incident light is incident on the 45-degree half-wave plate at 0 degrees, which is an ideal usage method. On the other hand, if the angle is shifted from 45 degrees, the polarization extinction ratio deteriorates.

入射角θx=4度のとき、αが0の場合は偏波消光比が劣化し、−19dBとなる。αを大きくしていくと偏波消光比が大きくなり、偏波消光比が改善されていく。αが0.5〜0.7度付近で偏波消光比が最大となり、さらにαを大きくしていくと偏波消光比は劣化する。偏波消光比が向上するのは、αが0より大きく1度以下の場合であり、αの最適値は0.5度以上0.7度以下である。   When the incident angle θx = 4 degrees and α is 0, the polarization extinction ratio deteriorates and becomes −19 dB. Increasing α increases the polarization extinction ratio and improves the polarization extinction ratio. The polarization extinction ratio becomes maximum when α is in the vicinity of 0.5 to 0.7 degrees, and the polarization extinction ratio deteriorates as α is further increased. The polarization extinction ratio is improved when α is greater than 0 and 1 degree or less, and the optimum value of α is 0.5 degree or more and 0.7 degree or less.

入射角θx=11度のとき、αが0の場合は偏波消光比が5dB程度まで劣化する。αを大きくしていくと偏波消光比が大きくなり、αの最適値は、入射角θx=4度の場合と較べて大きくなる。αの最適値は、おおよそ2度程度である。このようにαの最適値は、入射角で大きく変わるが、入射角が0度より大きい場合、αも0度より大きくすることにより偏波消光比を改善することができる。   When the incident angle θx = 11 degrees and α is 0, the polarization extinction ratio deteriorates to about 5 dB. As α increases, the polarization extinction ratio increases, and the optimum value of α increases compared to the incident angle θx = 4 degrees. The optimum value of α is about 2 degrees. Thus, the optimum value of α varies greatly depending on the incident angle. However, when the incident angle is greater than 0 degrees, the polarization extinction ratio can be improved by increasing α as well.

実施例1では45度半波長板を用いて説明したが、−45度半波長板を作製した場合も同様な効果が得ることができる。この場合も、入射角に応じ最適なαを用い、−(45+α)度半波長板にすることにより本発明の効果を得ることができる。   Although the first embodiment has been described using a 45-degree half-wave plate, the same effect can be obtained when a -45-degree half-wave plate is produced. In this case as well, the effect of the present invention can be obtained by using an optimal α in accordance with the incident angle and making a-(45 + α) degree half-wave plate.

また、αの最適値は異なるが、基板平面(水平)方向に対する光学軸の角度を任意のθwp度(但し0度および90度を除く)の波長板に対しても同様な効果を得ることができる。入射角0度用いた場合に所望の偏波変換動作を実現できるθwp度波長板を平面型光波回路に使用する場合、(θwp+α)度波長板にすれば、0度入射の際と同様な偏波変換動作を入射角が0度より大きい場合でも実現できる。αの最適値は図17と同様な実験により簡単に確かめられる。   Further, although the optimum value of α is different, the same effect can be obtained even for a wave plate whose optical axis angle with respect to the substrate plane (horizontal) direction is arbitrary θwp degrees (excluding 0 degrees and 90 degrees). it can. When a θwp degree wave plate capable of realizing a desired polarization conversion operation when using an incident angle of 0 degree is used in a planar lightwave circuit, if a (θwp + α) degree wave plate is used, the same polarization as that at 0 degree incidence is used. The wave conversion operation can be realized even when the incident angle is larger than 0 degree. The optimum value of α can be easily confirmed by an experiment similar to FIG.

さらに、図6に示したように、挿入溝を垂直に設けて、基板と平行な平面内で導波路と半波長板とを斜めに交差させる場合でも、(45+α)度半波長板を使用することができる。図6に示した入射角θxに対し、高い偏波消光比が実現できるように、αを設定すればよい。   Further, as shown in FIG. 6, even when the insertion groove is provided vertically and the waveguide and the half-wave plate are obliquely crossed in a plane parallel to the substrate, the (45 + α) degree half-wave plate is used. be able to. Α may be set so that a high polarization extinction ratio can be realized with respect to the incident angle θx shown in FIG.

実施例1では、入射角θxを0度以上にし、αを最適化した(45+α)度半波長板の構成を説明した。ここでは、偏波消光波長が最も大きくなる波長(以下、偏波消光波長という)を微調整する方法を説明する。波長板の材料によっては、入射角θx=0度の時の偏波消光波長と、0度より大きい入射角用にαを最適化した(45+α)度半波長板の偏波消光波長とが、大きく異なる場合がある。   In the first embodiment, the configuration of the (45 + α) degree half-wave plate in which the incident angle θx is set to 0 degree or more and α is optimized has been described. Here, a method of finely adjusting a wavelength at which the polarization extinction wavelength is the largest (hereinafter referred to as polarization extinction wavelength) will be described. Depending on the material of the wave plate, the polarization extinction wavelength when the incident angle θx = 0 degree and the polarization extinction wavelength of the (45 + α) degree half-wave plate with α optimized for an incident angle greater than 0 degree, May vary greatly.

図18に、波長板への入射角が変化したときの偏波消光波長の変化を示す。水晶を用いて、(45+α)度半波長板と−(45+α)度半波長板とを作成し、実験を行った。入射角に応じて、偏波消光波長が変化することがわかる。さらに、光学軸(水晶結晶のC軸)の角度が45度と−45度の場合とで、偏波消光波長の変化する方向も変わる。このような偏波消光波長の変化は、所望の波長で半波長板を使用したい場合に問題となる。よって、この偏波消光波長の変化を補償するように、水晶基板(半波長板)の膜厚をあらかじめ制御すればよい。これにより、入射角が変わっても偏波消光波長の変化がなく、所望の波長で高い偏波消光比を実現することができる。   FIG. 18 shows changes in the polarization extinction wavelength when the angle of incidence on the wave plate changes. Using quartz, a (45 + α) -degree half-wave plate and a − (45 + α) -degree half-wave plate were prepared and tested. It can be seen that the polarization extinction wavelength changes according to the incident angle. Furthermore, the direction in which the polarization extinction wavelength changes varies depending on whether the angle of the optical axis (C-axis of the crystal crystal) is 45 degrees or -45 degrees. Such a change in the polarization extinction wavelength becomes a problem when it is desired to use a half-wave plate at a desired wavelength. Therefore, the thickness of the quartz substrate (half-wave plate) may be controlled in advance so as to compensate for the change in the polarization extinction wavelength. Thereby, even if the incident angle changes, the polarization extinction wavelength does not change, and a high polarization extinction ratio can be realized at a desired wavelength.

実施例1では波長板の光学軸を調整し、(45+α)度半波長板の説明をした。実施例3では、従来の45度半波長板をそのまま用いて、偏波消光比を劣化させることなく、高い反射減衰量を実現できる構成を説明する。   In Example 1, the optical axis of the wave plate was adjusted to explain the (45 + α) degree half wave plate. In Example 3, a configuration in which a conventional 45 degree half-wave plate is used as it is and a high return loss can be realized without deteriorating the polarization extinction ratio will be described.

図19に、本発明の一実施形態にかかる波長板の設置方法を示す。図19(a)は上面図であり、図19(b)は断面図であり、図19(c)は側面図である。基板21上のクラッド層22に、パターン化された導波路コア23が形成されている。挿入溝24を基板平面に対してθx度傾けることにより、導波路コア23からの伝播光を斜めに波長板25に入射させる。さらに、光の進行方向から見た挿入溝24の角度を基板平面に対してθy度傾けることにより、波長板の光学軸の方向を調整する。ここでは、θyをαにすると、(45+α)度半波長板を実現することができる。従来と同じ45度半波長板を用い、溝の角度の調整のみで、実施例1と同様の効果を実現することができる。αの設定値は、実施例1と同様となる。   FIG. 19 shows a wave plate installation method according to an embodiment of the present invention. 19A is a top view, FIG. 19B is a cross-sectional view, and FIG. 19C is a side view. A patterned waveguide core 23 is formed on the clad layer 22 on the substrate 21. By tilting the insertion groove 24 by θx degrees with respect to the substrate plane, propagating light from the waveguide core 23 is incident on the wave plate 25 obliquely. Furthermore, the direction of the optical axis of the wave plate is adjusted by inclining the angle of the insertion groove 24 viewed from the light traveling direction by θy degrees with respect to the substrate plane. Here, when θy is α, a (45 + α) degree half-wave plate can be realized. The same effect as that of the first embodiment can be realized only by adjusting the angle of the groove using the same 45-degree half-wave plate as in the prior art. The set value of α is the same as in the first embodiment.

本発明の光干渉回路は、光通信ネットワークなどに使用される光モジュールに使用することができる。   The optical interference circuit of the present invention can be used for an optical module used in an optical communication network or the like.

21 基板
22 クラッド層
23 導波路コア
24 挿入溝
25 波長板
26 固定材料
21 Substrate 22 Clad layer 23 Waveguide core 24 Insertion groove 25 Wavelength plate 26 Fixing material

Claims (6)

基板上のクラッド層に埋め込まれた少なくとも1本以上の導波路コアを切断するように形成された溝に、複屈折を有する波長板が挿入された平面型光波回路において、
前記導波路コアから前記波長板の入射面に対して斜めに入力光を入射し、
前記波長板の光学軸は、前記波長板の入射面に平行であり、
前記基板平面と前記波長板の入射面を含む平面との交線と、前記波長板の光学軸とのなす角が、45+α(α≠0)度であることを特徴とする平面型光波回路。
In a planar lightwave circuit in which a wave plate having birefringence is inserted into a groove formed so as to cut at least one waveguide core embedded in a cladding layer on a substrate,
Input light is incident on the incident surface of the wave plate obliquely from the waveguide core,
The optical axis of the wave plate is parallel to the incident surface of the wave plate,
An planar lightwave circuit characterized in that an angle formed by an intersection line between the substrate plane and a plane including an incident surface of the wave plate and an optical axis of the wave plate is 45 + α (α ≠ 0) degrees.
前記基板平面と前記溝の底面とが平行であり、前記半波長板の底辺と前記半波長板の光学軸とのなす角が45+α度であることを特徴とする請求項1に記載の平面型光波回路。   2. The planar type according to claim 1, wherein the substrate plane and the bottom surface of the groove are parallel to each other, and an angle formed by a bottom side of the half-wave plate and an optical axis of the half-wave plate is 45 + α degrees. Lightwave circuit. 前記基板平面と前記溝の底面とのなす角がα度であり、前記半波長板の底辺と前記半波長板の光学軸とのなす角が45+α度であることを特徴とする請求項1に記載の平面型光波回路。   The angle formed by the substrate plane and the bottom surface of the groove is α degrees, and the angle formed by the bottom of the half-wave plate and the optical axis of the half-wave plate is 45 + α degrees. The planar lightwave circuit as described. 前記基板平面と前記半波長板の入射面を含む平面との交線と、前記溝の底面と前記半波長板の入射面を含む平面との交線とのなす角がα度であり、前記半波長板の底辺と前記半波長板の光学軸とのなす角が45度であることを特徴とする請求項1に記載の平面型光波回路。   The angle formed by the line of intersection of the substrate plane and the plane including the incident surface of the half-wave plate and the line of intersection of the bottom surface of the groove and the plane including the incident surface of the half-wave plate is α degrees, 2. The planar lightwave circuit according to claim 1, wherein an angle formed by a bottom of the half-wave plate and an optical axis of the half-wave plate is 45 degrees. 前記入力光の前記半波長板の入射面への入射角が、5度以上16度以下であり、前記αの値が、0度より大きく9度より小さいことを特徴とする請求項1ないし4のいずれかに記載の平面型光波回路。   The incident angle of the input light to the incident surface of the half-wave plate is 5 degrees or more and 16 degrees or less, and the value of α is greater than 0 degrees and smaller than 9 degrees. A planar lightwave circuit according to any one of the above. 前記入力光の波長において偏波消光比が最大となるように、前記半波長板の厚さが調整されていることを特徴とする請求項1ないし5のいずれかに記載の平面型光波回路。   6. The planar lightwave circuit according to claim 1, wherein a thickness of the half-wave plate is adjusted so that a polarization extinction ratio becomes maximum at a wavelength of the input light.
JP2010104073A 2010-04-28 2010-04-28 Planar lightwave circuit Active JP5302260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010104073A JP5302260B2 (en) 2010-04-28 2010-04-28 Planar lightwave circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010104073A JP5302260B2 (en) 2010-04-28 2010-04-28 Planar lightwave circuit

Publications (2)

Publication Number Publication Date
JP2011232633A true JP2011232633A (en) 2011-11-17
JP5302260B2 JP5302260B2 (en) 2013-10-02

Family

ID=45321978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010104073A Active JP5302260B2 (en) 2010-04-28 2010-04-28 Planar lightwave circuit

Country Status (1)

Country Link
JP (1) JP5302260B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481148B1 (en) 2013-05-23 2015-01-14 부산대학교 산학협력단 Arrayed Waveguide Collimators
JP2015219276A (en) * 2014-05-14 2015-12-07 日本電信電話株式会社 Polarization beam splitter circuit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223823A (en) * 1986-03-25 1987-10-01 Toshiba Corp Optical information processor
JPH0792326A (en) * 1993-05-07 1995-04-07 Nippon Telegr & Teleph Corp <Ntt> Optical wave plate, its production and waveguide type optical device using the same
JPH10340471A (en) * 1997-06-10 1998-12-22 Olympus Optical Co Ltd Optical pickup
JP2001272561A (en) * 2000-01-21 2001-10-05 Nippon Telegr & Teleph Corp <Ntt> Polarization independent waveguide type optical circuit
JP2003050324A (en) * 2002-07-29 2003-02-21 Nippon Telegr & Teleph Corp <Ntt> Array waveguide type optical multiplexer/demultiplexer
JP2006040359A (en) * 2004-07-23 2006-02-09 Epson Toyocom Corp Laminated quarter wave plate, and optical pickup using it
JP2006201508A (en) * 2005-01-20 2006-08-03 Nippon Telegr & Teleph Corp <Ntt> Optical circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223823A (en) * 1986-03-25 1987-10-01 Toshiba Corp Optical information processor
JPH0792326A (en) * 1993-05-07 1995-04-07 Nippon Telegr & Teleph Corp <Ntt> Optical wave plate, its production and waveguide type optical device using the same
JPH10340471A (en) * 1997-06-10 1998-12-22 Olympus Optical Co Ltd Optical pickup
JP2001272561A (en) * 2000-01-21 2001-10-05 Nippon Telegr & Teleph Corp <Ntt> Polarization independent waveguide type optical circuit
JP2003050324A (en) * 2002-07-29 2003-02-21 Nippon Telegr & Teleph Corp <Ntt> Array waveguide type optical multiplexer/demultiplexer
JP2006040359A (en) * 2004-07-23 2006-02-09 Epson Toyocom Corp Laminated quarter wave plate, and optical pickup using it
JP2006201508A (en) * 2005-01-20 2006-08-03 Nippon Telegr & Teleph Corp <Ntt> Optical circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481148B1 (en) 2013-05-23 2015-01-14 부산대학교 산학협력단 Arrayed Waveguide Collimators
JP2015219276A (en) * 2014-05-14 2015-12-07 日本電信電話株式会社 Polarization beam splitter circuit

Also Published As

Publication number Publication date
JP5302260B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
US8150219B2 (en) Waveguide-type optical interferometer
EP1420275B1 (en) Isolator and optical attenuator
WO2004008196A1 (en) Polarization analyzer
EP3465303B1 (en) Optical coupling device and method
JP2012533089A (en) Polarization diversity diffraction grating coupler with two-dimensional diffraction grating
JP5673283B2 (en) Polarization synthesizer
KR20060132937A (en) Planar lightwave circuit type variable optical attenuator
WO2012102041A1 (en) Waveguide-type polarization beam splitter
JP2012058696A (en) Waveguide type optical device and dp-qpsk type ln optical modulator
JP6270936B1 (en) Optical waveguide device
CN102253448A (en) Method for realizing uniform polarization compensation of array waveguide grating
JP5302260B2 (en) Planar lightwave circuit
JP2017151370A (en) Polarization independent wavelength filter
JP4405976B2 (en) Optical signal processor
JP2011076049A (en) Optical signal receiver
JPS63147114A (en) Waveguide type optical phase plate
CN102645708A (en) Optical waveguide resonant cavity with high polarization extinction ratio based on inclined waveguide grating structure
JP2015215578A (en) Optical waveguide element, and polarization separator using the same
JP2004226599A (en) Polarized light separating and composing device
US8036499B2 (en) Acousto-optic filter
WO2024042588A1 (en) Optical waveguide
CN113167967B (en) Apparatus and method for polarization splitting
Kawashima et al. 3-D PBS & 90 Optical hybrid circuit using novel planar polarization optics
JP5128558B2 (en) Planar optical interference circuit
JPWO2009107355A1 (en) Self-cloning photonic crystal for ultraviolet light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130620

R150 Certificate of patent or registration of utility model

Ref document number: 5302260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350