JP2011231326A - Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method - Google Patents

Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method Download PDF

Info

Publication number
JP2011231326A
JP2011231326A JP2011123727A JP2011123727A JP2011231326A JP 2011231326 A JP2011231326 A JP 2011231326A JP 2011123727 A JP2011123727 A JP 2011123727A JP 2011123727 A JP2011123727 A JP 2011123727A JP 2011231326 A JP2011231326 A JP 2011231326A
Authority
JP
Japan
Prior art keywords
circuit
particles
connection
adhesive composition
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011123727A
Other languages
Japanese (ja)
Inventor
Tomomi Yokosumi
友美 横住
Masanori Fujii
正規 藤井
Kenzo Takemura
賢三 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011123727A priority Critical patent/JP2011231326A/en
Publication of JP2011231326A publication Critical patent/JP2011231326A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/273Manufacturing methods by local deposition of the material of the layer connector
    • H01L2224/2733Manufacturing methods by local deposition of the material of the layer connector in solid form
    • H01L2224/27334Manufacturing methods by local deposition of the material of the layer connector in solid form using preformed layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/52Fixed connections for rigid printed circuits or like structures connecting to other rigid printed circuits or like structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0218Composite particles, i.e. first metal coated with second metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0266Size distribution

Abstract

PROBLEM TO BE SOLVED: To provide an adhesive composition, wherein the initial resistance value of a connection structure is sufficiently reduced even if an electrode to be connected consists of a metallic material which is more likely to form an oxide film on the surface of the electrode; and to provide a circuit connecting material.SOLUTION: The adhesive composition comprises an adhesive component and conductive particles 10 dispersed in the adhesive component. The conductive particle 10 comprises a base material particle 1 constituting the center portion, a metal plating layer 3 covering at least a part of the surface of the base material particle 1, and a plurality of metal fine particles 2 arranged inside the metal plating layer 3 and on the surface of the base material particle 1.

Description

本発明は、接着剤組成物、回路接続材料及び接続構造、並びに、回路部材の接続方法に関する。   The present invention relates to an adhesive composition, a circuit connection material and a connection structure, and a method for connecting circuit members.

電子機器の小型化、薄型化に伴い、回路部材に形成される回路電極の高密度化及び高精細化が進展している。また、回路電極の更なる微細化、すなわち、多電極化や狭ピッチ化等のファインピッチ化への要求が高まっている。微細回路が形成された回路部材同士の接続は、従来のハンダやゴムコネクタでは対応が困難であることから、異方導電性を有する接着剤組成物が使用されている。   As electronic devices become smaller and thinner, circuit electrodes formed on circuit members are increasing in density and definition. In addition, there is an increasing demand for further miniaturization of circuit electrodes, that is, fine pitches such as multiple electrodes and narrow pitches. Since connection between circuit members on which fine circuits are formed is difficult with conventional solders and rubber connectors, an adhesive composition having anisotropic conductivity is used.

上記の接着剤組成物は、一般に、接着剤成分とこれに分散している導電粒子とからなる。対向配置された一対の回路部材の間に当該接着剤組成物を配置し、接着剤組成物を挟む方向に全体を加圧することで相対向する回路電極同士が電気的に接続される。これと同時に隣接する電極同士は、電気絶縁性が確保された状態で一対の回路部材が接着固定される。   The above adhesive composition generally comprises an adhesive component and conductive particles dispersed therein. The adhesive composition is arranged between a pair of circuit members arranged to face each other, and the circuit electrodes facing each other are electrically connected to each other by pressurizing the whole in the direction of sandwiching the adhesive composition. At the same time, a pair of circuit members are bonded and fixed between the adjacent electrodes while ensuring electrical insulation.

従来、接着剤組成物が有する導電粒子として、導電性を有する種々の微粒子が用いられている。例えば、金属微粉末、あるいは金属薄膜で表面が被覆されたプラスチック微粒子などが挙げられる。   Conventionally, various conductive fine particles have been used as the conductive particles of the adhesive composition. For example, metal fine powder or plastic fine particles whose surface is coated with a metal thin film can be used.

ところで、液晶ディスプレイなどの製造工程においては、高度なファインピッチ化及び高い接続信頼性が要求されている一方で、表面に酸化膜が形成されやすい金属材料からなる回路電極が使用される場合がある。上記の金属微粉末及び金属薄膜で表面が被覆されたプラスチック微粒子は、それぞれ一長一短がある。そのため、従来の接着剤組成物を用いたのでは、必ずしもファインピッチ化及び接続信頼性の両方を同時に高水準に達成することができなかった。   By the way, in a manufacturing process of a liquid crystal display or the like, while a high fine pitch and high connection reliability are required, a circuit electrode made of a metal material on which an oxide film is easily formed may be used. . The fine plastic particles whose surfaces are coated with the metal fine powder and the metal thin film have advantages and disadvantages, respectively. Therefore, when the conventional adhesive composition is used, it is not always possible to achieve both a fine pitch and a connection reliability at a high level at the same time.

具体的には、導電粒子として金属微粉末を用いた場合、金属微粉末は十分に高い硬度を有しているため、回路電極の表面に酸化膜が形成されていたとしてもこれを突き破って回路電極同士を接続することができる。しかしながら、金属微粉末は一般に粒度分布が広く、この場合、ファインピッチ化に適していないといえる。また、回路電極同士を接続後、時間の経過に伴って接続部分の抵抗値が上昇するという現象が生じる場合がある。これは、温度の変動や接続構造の接続状態の緩和などに伴う回路電極間の間隔の拡大に、金属微粉末が十分に追従することができないことに起因すると考えられる。また、一般に、金属微粉末の線熱膨張係数は接着剤成分の硬化物のそれよりも小さいため、昇温降温を繰り返す熱サイクル試験後にこのような現象が生じることがある。   Specifically, when metal fine powder is used as the conductive particles, the metal fine powder has a sufficiently high hardness, so even if an oxide film is formed on the surface of the circuit electrode, the circuit breaks through the oxide film. The electrodes can be connected. However, the metal fine powder generally has a wide particle size distribution, and in this case, it can be said that it is not suitable for fine pitch formation. Moreover, after connecting circuit electrodes, the phenomenon that the resistance value of a connection part rises with progress of time may arise. This is considered to be caused by the fact that the metal fine powder cannot sufficiently follow the expansion of the interval between the circuit electrodes due to temperature fluctuations or relaxation of the connection state of the connection structure. Moreover, generally, since the linear thermal expansion coefficient of the metal fine powder is smaller than that of the cured product of the adhesive component, such a phenomenon may occur after the thermal cycle test in which the temperature rise and fall are repeated.

これに対し、導電粒子として金属薄膜で表面が被覆されたプラスチック微粒子を用いた場合、狭い粒度分布の導電粒子を得ることが比較的容易である。この点においては、プラスチック微粒子を用いた導電粒子はファインピッチ化に適しているといえる。また、プラスチック微粒子の線熱膨張率は接着剤成分の硬化物のそれと近い値である。このため、温度の変動などに伴う回路電極間の間隔の拡大にプラスチック微粒子は十分に追従することができ、接続当初の抵抗値を維持できるといった利点がある。しかしながら、プラスチック微粒子は一般に金属微粉末と比較すると硬度が低い。そのため、回路電極の表面に酸化膜が形成されている場合にはこれを十分に突き破ることができず、接続部分の初期抵抗値が比較的高くなるという問題が生じる。   On the other hand, when plastic fine particles whose surfaces are coated with a metal thin film are used as the conductive particles, it is relatively easy to obtain conductive particles having a narrow particle size distribution. In this respect, it can be said that conductive particles using plastic fine particles are suitable for fine pitch. The linear thermal expansion coefficient of the plastic fine particles is close to that of the cured product of the adhesive component. For this reason, the plastic fine particles can sufficiently follow the increase in the interval between the circuit electrodes due to temperature fluctuations, and there is an advantage that the resistance value at the beginning of connection can be maintained. However, the plastic fine particles generally have a lower hardness than the metal fine powder. Therefore, when an oxide film is formed on the surface of the circuit electrode, it cannot be sufficiently penetrated, and there arises a problem that the initial resistance value of the connection portion becomes relatively high.

そこで、金属微粉末及び金属薄膜で表面が被覆されたプラスチック微粒子のそれぞれの特長を具備させるための検討がなされた。具体的には、金属薄膜で被覆されたプラスチック粒子の表面に突起などを備える導電粒子が検討されてきた。例えば、特許文献1及び2には導電性薄膜の表面に突起が設けられた導電粒子が記載されている。また、特許文献3には金属薄膜の表面に金属粒子を更に付着させた導電粒子が記載されている。更に、特許文献4及び5には凹凸のあるプラスチック粒子に金属めっきを施して得られる導電粒子が記載されている。
特開2000−195339号公報 特開2000−243132号公報 特開昭63−301408号公報 特開平4−36902号公報 特開平11−73818号公報
Accordingly, studies have been made to provide the respective features of the fine metal particles whose surfaces are coated with fine metal powder and thin metal film. Specifically, conductive particles having protrusions on the surface of plastic particles coated with a metal thin film have been studied. For example, Patent Documents 1 and 2 describe conductive particles in which protrusions are provided on the surface of a conductive thin film. Patent Document 3 describes conductive particles in which metal particles are further adhered to the surface of a metal thin film. Furthermore, Patent Documents 4 and 5 describe conductive particles obtained by metal plating on uneven plastic particles.
JP 2000-195339 A JP 2000-243132 A JP 63-301408 A JP-A-4-36902 Japanese Patent Laid-Open No. 11-73818

特許文献1及び2の導電粒子は、金属薄膜を形成する無電解めっき工程において突起を析出させることにより製造される。この場合、突起サイズや突起数の制御を十分に行うことが困難である。このため、突起の不均一性に起因して十分に高い接続信頼性を達成することが困難であるといえる。また、特許文献3の導電粒子は、金属薄膜とその表面に付着した金属粒子との密着性が不十分であり、当該金属粒子が脱落する可能性がある。金属粒子が脱落すると、接続構造の初期抵抗値が高くなったり隣接する回路電極との絶縁性が不十分となったりして、十分に高い接続信頼性を達成することが困難となる。   The conductive particles of Patent Documents 1 and 2 are manufactured by depositing protrusions in an electroless plating process for forming a metal thin film. In this case, it is difficult to sufficiently control the protrusion size and the number of protrusions. For this reason, it can be said that it is difficult to achieve sufficiently high connection reliability due to the unevenness of the protrusions. Moreover, the electroconductive particle of patent document 3 has inadequate adhesiveness with a metal thin film and the metal particle adhering to the surface, and the said metal particle may drop | omit. When the metal particles fall off, the initial resistance value of the connection structure becomes high or the insulation with the adjacent circuit electrode becomes insufficient, making it difficult to achieve sufficiently high connection reliability.

また、特許文献4及び5の導電粒子は、凹凸がプラスチック粒子そのもので形成されている。このため、回路電極の表面に酸化膜が形成されている場合にはこれを十分に突き破ることができず、接続構造の初期抵抗値が高くなるおそれがある。   Further, the conductive particles of Patent Documents 4 and 5 are formed with plastic particles themselves. For this reason, when an oxide film is formed on the surface of the circuit electrode, it cannot be sufficiently penetrated, and the initial resistance value of the connection structure may be increased.

本発明は、このような実情に鑑みてなされたものであり、接続すべき電極が、表面に酸化膜が形成されやすい金属材料からなるものであっても、接続構造の初期抵抗値を十分に低くすることが可能な接着剤組成物及びこれを用いた回路接続材料を提供することを目的とする。   The present invention has been made in view of such a situation, and even if the electrode to be connected is made of a metal material on which an oxide film is easily formed on the surface, the initial resistance value of the connection structure is sufficiently high. It is an object of the present invention to provide an adhesive composition that can be lowered and a circuit connection material using the same.

また、本発明は、低い接続抵抗で回路部材が接続された接続構造及びこれを得るための回路部材の接続方法を提供することを目的とする。   Another object of the present invention is to provide a connection structure in which circuit members are connected with a low connection resistance, and a circuit member connection method for obtaining the connection structure.

本発明の接着剤組成物は、接着剤成分と、接着剤成分中に分散している導電粒子とを備えるものであって、導電粒子は、当該導電粒子の中心部分を構成する基材粒子と、基材粒子の表面の少なくとも一部を覆う金属めっき層と、金属めっき層の内側であり基材粒子の表面上に配置された複数の金属微粒子とを有している。   The adhesive composition of the present invention includes an adhesive component and conductive particles dispersed in the adhesive component, and the conductive particles include base material particles constituting a central portion of the conductive particles, and And a metal plating layer covering at least a part of the surface of the substrate particle, and a plurality of metal fine particles disposed on the surface of the substrate particle inside the metal plating layer.

なお、複数の金属微粒子と基材粒子の位置関係につき、「基材粒子の表面上に配置」とは、金属微粒子が基材粒子の表面に接した状態で配置されているものに加え、接していない状態で配置されているものをも含む意味である。複数の金属微粒子が上記位置に配置されている導電粒子は、基材粒子に金属微粒子を付着させた後、めっき処理によって金属めっき層を形成することにより製造可能である。   As for the positional relationship between the plurality of metal fine particles and the substrate particles, “arranged on the surface of the substrate particles” means that the metal fine particles are in contact with the surface of the substrate particles in addition to those arranged in contact with the surface of the substrate particles. It is meant to include those that are not arranged. Conductive particles in which a plurality of metal fine particles are arranged at the above-described positions can be manufactured by forming metal plating layers by plating after attaching metal fine particles to base particles.

基材粒子に対して付着させる金属微粒子の個数及びその粒子径を制御することで導電粒子の表面に所望の数及び大きさの突起を設けることができる。したがって、めっき工程の条件などを調整して突起が設けられた導電粒子と比較すると、本発明においては、金属微粒子の付着数及び粒子径の均一性が十分に高くなっている。均一性の高い金属微粒子を備える導電粒子によって、回路電極が酸化膜で覆われている金属電極であっても、電極同士をより確実に電気的に接続することができる。その結果、接続構造の初期抵抗値を十分に低くすることができる。   A desired number and size of protrusions can be provided on the surface of the conductive particles by controlling the number of metal fine particles attached to the base particles and the particle diameter thereof. Therefore, in comparison with the conductive particles provided with protrusions by adjusting the conditions of the plating process and the like, in the present invention, the number of adhered metal fine particles and the uniformity of the particle diameter are sufficiently high. Even when the circuit electrode is a metal electrode covered with an oxide film, the electrodes can be more reliably electrically connected to each other by the conductive particles including highly uniform metal fine particles. As a result, the initial resistance value of the connection structure can be made sufficiently low.

また、本発明の接着剤組成物が有する導電粒子は、基材粒子及び金属微粒子を一体的に被覆する金属めっき層を備えている。このため、金属微粒子と基材粒子との密着性が高く、金属微粒子が導電粒子から脱落することが十分に抑制される。その結果、回路電極同士をより確実に電気的に接続することができるとともに隣接する回路電極との絶縁性を十分に確保することができる。   Moreover, the electrically conductive particle which the adhesive composition of this invention has is equipped with the metal plating layer which coat | covers a base particle and a metal microparticle integrally. For this reason, the adhesion between the metal fine particles and the substrate particles is high, and the metal fine particles are sufficiently suppressed from falling off the conductive particles. As a result, the circuit electrodes can be more reliably electrically connected to each other and sufficiently insulated from the adjacent circuit electrodes.

金属微粒子の平均粒径は、200〜1000nmであることが好ましい。また、基材粒子の平均粒径は、1〜10μmであることが好ましい。これら粒子の平均粒径が、それぞれ上記の範囲内であると、低い初期接続抵抗値をより確実に達成可能である。これに加え、接続抵抗値の上昇の抑制及び隣接する回路電極との絶縁性の両方を高水準に達成可能である。本発明でいう「平均粒径」は以下のようにして測定される値を意味するものである。すなわち、任意に選択した金属微粒子を走査型電子顕微鏡(SEM)で観察し、その最大径及び最小径を測定する。この最大径及び最小径の積の平方根をその粒子の粒径とする。任意に選択した粒子50個について上記のようにして粒径を測定し、その平均値を平均粒径とする。   The average particle size of the metal fine particles is preferably 200 to 1000 nm. Moreover, it is preferable that the average particle diameter of a base particle is 1-10 micrometers. When the average particle size of these particles is within the above range, a low initial connection resistance value can be achieved more reliably. In addition to this, it is possible to achieve both a suppression of an increase in connection resistance value and a high level of insulation from adjacent circuit electrodes. The “average particle diameter” in the present invention means a value measured as follows. That is, arbitrarily selected metal fine particles are observed with a scanning electron microscope (SEM), and the maximum diameter and the minimum diameter are measured. The square root of the product of the maximum diameter and the minimum diameter is defined as the particle diameter of the particle. The particle size is measured as described above for 50 arbitrarily selected particles, and the average value is taken as the average particle size.

本発明の効果を効率的且つ確実に得る観点から、金属微粒子の数は、基材粒子1個あたり10〜40個であることが好ましい。また、金属微粒子の数が10〜40個であると、接続抵抗値の上昇の抑制及び隣接する回路電極との絶縁性の両方が高水準に達成されるという利点がある。基材粒子1個あたりの金属微粒子の数は、以下のようにして測定される値を意味するものである。すなわち、任意に選択した導電粒子をSEMで撮像し、観察し得る導電粒子表面の突起の数を金属微粒子の数としてカウントする。これにより得られたカウント数を2倍にすることで1個の導電粒子の金属微粒子の数を算出する。任意に選択した導電粒子50個について上記のようにして金属微粒子の数を測定し、その平均値を基材粒子1個あたりの金属微粒子の数とする。   From the viewpoint of efficiently and reliably obtaining the effect of the present invention, the number of metal fine particles is preferably 10 to 40 per base particle. Further, when the number of metal fine particles is 10 to 40, there is an advantage that both suppression of an increase in connection resistance value and insulation between adjacent circuit electrodes are achieved at a high level. The number of metal fine particles per base particle means a value measured as follows. That is, an arbitrarily selected conductive particle is imaged with an SEM, and the number of projections on the surface of the conductive particle that can be observed is counted as the number of metal fine particles. The number of metal fine particles of one conductive particle is calculated by doubling the count number thus obtained. The number of metal fine particles is measured as described above for 50 arbitrarily selected conductive particles, and the average value is taken as the number of metal fine particles per substrate particle.

また、基材粒子は、粒子直径の20%圧縮変形時の圧縮弾性率が100〜1000kgf/mmである材質からなるものであることが好ましい。基材粒子が上記のような硬度を有していると、回路電極の表面に酸化膜が形成されていても、金属めっき層の内側に配置されている金属微粒子がこの酸化膜をより確実に突き破ることができる。これに加え、温度の変動などに伴い回路電極間の間隔が広くなったとしても基材粒子が回路電極間隔の拡大に十分追従することができる。そのため、接続抵抗値の上昇を十分に抑制することができる。 Moreover, it is preferable that a base particle consists of a material whose compression elastic modulus at the time of 20% of a particle diameter compression deformation is 100-1000 kgf / mm < 2 >. When the base particles have the hardness as described above, even if an oxide film is formed on the surface of the circuit electrode, the metal fine particles disposed inside the metal plating layer more reliably secure the oxide film. You can break through. In addition to this, even if the distance between the circuit electrodes becomes wider due to a change in temperature or the like, the substrate particles can sufficiently follow the expansion of the distance between the circuit electrodes. Therefore, an increase in connection resistance value can be sufficiently suppressed.

また、基材粒子は、最大荷重5mNで圧縮させた後の圧縮回復率が40%以上であることが好ましい。基材粒子が上記のような圧縮回復率を有していると、温度の変動などに伴い回路電極間の間隔が広くなったとしても、基材粒子が回路電極間隔の拡大に十分追従することができる。そのため、接続抵抗値の上昇を十分に抑制することができる。   Further, the base particles preferably have a compression recovery rate of 40% or more after being compressed at a maximum load of 5 mN. If the substrate particles have a compression recovery rate as described above, the substrate particles should sufficiently follow the expansion of the circuit electrode interval even if the interval between the circuit electrodes becomes wider due to temperature fluctuations, etc. Can do. Therefore, an increase in connection resistance value can be sufficiently suppressed.

本発明の回路接続材料は、上記本発明の接着剤組成物からなり、回路部材同士を接着するとともにそれぞれの回路部材が有する回路電極同士を電気的に接続するものである。   The circuit connection material of the present invention is composed of the adhesive composition of the present invention, and bonds circuit members together and electrically connects circuit electrodes of the respective circuit members.

本発明の接続構造は、対向配置された一対の回路部材と、上記本発明の回路接続材料の硬化物からなり、上記一対の回路部材の間に介在しそれぞれの回路部材が有する回路電極同士が電気的に接続されるように当該回路部材同士を接着する接続部とを備える。   The connection structure of the present invention is composed of a pair of circuit members arranged opposite to each other and a cured product of the circuit connection material of the present invention, and the circuit electrodes that are interposed between the pair of circuit members and that each circuit member has are connected to each other. And a connection portion for bonding the circuit members to each other so as to be electrically connected.

本発明はまた、対向配置された一対の回路部材の間に本発明の回路接続材料を介在させ、全体を加熱及び加圧して、上記回路接続材料の硬化物からなり、上記一対の回路部材の間に介在しそれぞれの回路部材が有する回路電極同士が電気的に接続されるように回路部材同士を接着する接続部を形成することにより、上記一対の回路部材及び接続部を備える接続構造を得る、回路部材の接続方法である。   The present invention also includes the circuit connection material of the present invention interposed between a pair of circuit members disposed opposite to each other, and the whole of the circuit connection material is heated and pressurized to be a cured product of the circuit connection material. A connection structure including the pair of circuit members and the connection portion is obtained by forming a connection portion that bonds the circuit members so that the circuit electrodes of the circuit members that are interposed therebetween are electrically connected to each other. A method for connecting circuit members.

本発明によれば、接続すべき電極が、表面に酸化膜が形成されやすい金属材料からなるものであっても、接続構造の初期抵抗値を十分に低くすることが可能な接着剤組成物及びこれを用いた回路接続材料を提供することができる。また、本発明によれば、低い接続抵抗で回路部材が接続された接続構造、並びにこれを得るための回路部材の接続方法を提供することができる。   According to the present invention, even if the electrode to be connected is made of a metal material on which an oxide film is easily formed, an adhesive composition capable of sufficiently reducing the initial resistance value of the connection structure and A circuit connection material using this can be provided. In addition, according to the present invention, it is possible to provide a connection structure in which circuit members are connected with a low connection resistance, and a circuit member connection method for obtaining the connection structure.

本発明に係る回路接続材料が回路電極間で使用され、回路電極同士が接続された状態を示す断面図である。It is sectional drawing which shows the state by which the circuit connection material which concerns on this invention was used between circuit electrodes, and circuit electrodes were connected. 本発明に係る回路接続材料の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the circuit connection material which concerns on this invention. 本発明に係る回路接続材料に含まれる導電粒子の一形態を示す断面図である。It is sectional drawing which shows one form of the electrically-conductive particle contained in the circuit connection material which concerns on this invention. 本発明に係る回路接続材料が支持体上に設けられている状態を示す断面図である。It is sectional drawing which shows the state in which the circuit connection material which concerns on this invention is provided on the support body. 本発明に係る回路接続材料が支持体に支持されている状態を示す断面図である。It is sectional drawing which shows the state by which the circuit connection material which concerns on this invention is supported by the support body. 本発明に係る回路部材の接続方法の一実施形態を概略断面図により示す工程図である。It is process drawing which shows one Embodiment of the connection method of the circuit member which concerns on this invention with a schematic sectional drawing.

以下、添付図面を参照しながら本発明の好適な実施形態を詳細に説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明は省略する。また、図面の便宜上、図面の寸法比率は説明のものと必ずしも一致しない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant descriptions are omitted. For the convenience of the drawings, the dimensional ratios in the drawings do not necessarily match those described.

なお、本明細書における「(メタ)アクリレート」とは「アクリレート」及びそれに対応する「メタクリレート」を意味する。   In the present specification, “(meth) acrylate” means “acrylate” and “methacrylate” corresponding thereto.

図1は、本発明に係る接着剤組成物が回路接続材料として使用され、回路電極同士が接続された接続構造を示す概略断面図である。図1に示す接続構造100は、相互に対向する第1の回路部材30及び第2の回路部材40を備えており、第1の回路部材30と第2の回路部材40との間には、これらを接続する接続部50aが設けられている。   FIG. 1 is a schematic cross-sectional view showing a connection structure in which the adhesive composition according to the present invention is used as a circuit connection material and circuit electrodes are connected to each other. The connection structure 100 shown in FIG. 1 includes a first circuit member 30 and a second circuit member 40 that face each other, and between the first circuit member 30 and the second circuit member 40, A connecting portion 50a for connecting them is provided.

第1の回路部材30は、回路基板(第1の回路基板)31と、回路基板31の主面31a上に形成される回路電極(第1の回路電極)32とを備えている。第2の回路部材40は、回路基板(第2の回路基板)41と、回路基板41の主面41a上に形成される回路電極(第2の回路電極)42とを備えている。回路基板31、41において、回路電極32、42の表面は平坦になっている。なお、ここでいう「回路電極の表面が平坦」とは、回路電極の表面の凹凸が十分に小さいことをいい、表面の凹凸は20nm以下であることが好ましい。   The first circuit member 30 includes a circuit board (first circuit board) 31 and a circuit electrode (first circuit electrode) 32 formed on the main surface 31 a of the circuit board 31. The second circuit member 40 includes a circuit board (second circuit board) 41 and a circuit electrode (second circuit electrode) 42 formed on the main surface 41 a of the circuit board 41. In the circuit boards 31 and 41, the surfaces of the circuit electrodes 32 and 42 are flat. Here, “the surface of the circuit electrode is flat” means that the unevenness of the surface of the circuit electrode is sufficiently small, and the unevenness of the surface is preferably 20 nm or less.

接続部50aは回路接続材料に含まれる接着剤成分の硬化物20aと、これに分散している導電粒子10とを備えている。そして、接続構造100においては、対向する回路電極32と回路電極42とが、導電粒子10を介して電気的に接続されている。すなわち、導電粒子10が、回路電極32,42の双方に直接接触している。   The connection part 50a includes a cured product 20a of an adhesive component contained in the circuit connection material and the conductive particles 10 dispersed therein. In the connection structure 100, the circuit electrode 32 and the circuit electrode 42 facing each other are electrically connected via the conductive particles 10. That is, the conductive particles 10 are in direct contact with both the circuit electrodes 32 and 42.

このため、回路電極32,42間の接続抵抗が十分に低減され、回路電極32,42間の良好な電気的接続が可能となる。他方、硬化物20aは電気絶縁性を有するものであり、隣接する回路電極同士は絶縁性が確保される。従って、回路電極32,42間の電流の流れを円滑にすることができ、回路の持つ機能を十分に発揮することができる。   For this reason, the connection resistance between the circuit electrodes 32 and 42 is sufficiently reduced, and a good electrical connection between the circuit electrodes 32 and 42 becomes possible. On the other hand, the cured product 20a has electrical insulation, and insulation between adjacent circuit electrodes is ensured. Therefore, the flow of current between the circuit electrodes 32 and 42 can be made smooth, and the functions of the circuit can be fully exhibited.

次に、接着剤成分が硬化する以前の状態の接着剤組成物について詳細に説明する。図2は、本発明に係る接着剤組成物を回路接続材料として使用する際の好適な実施形態を示す概略断面図である。図2に示す回路接続材料50の形状はフィルム状である。回路接続材料50は、接着剤成分20と、接着剤成分20中に分散している導電粒子10とを備える。   Next, the adhesive composition in a state before the adhesive component is cured will be described in detail. FIG. 2 is a schematic cross-sectional view showing a preferred embodiment when the adhesive composition according to the present invention is used as a circuit connecting material. The shape of the circuit connecting material 50 shown in FIG. 2 is a film shape. The circuit connection material 50 includes an adhesive component 20 and conductive particles 10 dispersed in the adhesive component 20.

回路接続材料50は、フィルム状の支持体上に塗工装置を用いて接着剤成分及び導電粒子を含有する接着剤組成物を塗布し、所定時間熱風乾燥することにより作製される。   The circuit connection material 50 is produced by applying an adhesive composition containing an adhesive component and conductive particles on a film-like support using a coating apparatus and drying with hot air for a predetermined time.

導電粒子10の構成について図3を参照しながら説明する。図3は、本発明に係る回路接続材料に含まれる導電粒子の形態を示す断面図である。図3に示す導電粒子10は、中心部分を構成する基材粒子1と、この基材粒子1上に設けられた複数の金属微粒子2と、基材粒子1及び金属微粒子2の表面を覆うように形成された金属めっき層3とから構成されている。金属微粒子2は金属めっき層3の内側に位置している。   The configuration of the conductive particles 10 will be described with reference to FIG. FIG. 3 is a cross-sectional view showing the form of conductive particles contained in the circuit connection material according to the present invention. The conductive particles 10 shown in FIG. 3 cover the base particles 1 constituting the central portion, the plurality of metal fine particles 2 provided on the base particles 1, and the surfaces of the base particles 1 and the metal fine particles 2. And a metal plating layer 3 formed on the substrate. The metal fine particles 2 are located inside the metal plating layer 3.

基材粒子1の材質としては、金属及び有機高分子化合物が挙げられる。基材粒子1を構成する金属として、例えば、ニッケル、銅、金、銀、コバルト及びこれらの合金が挙げられる。基材粒子1を構成する有機高分子化合物として、例えば、アクリル樹脂、スチレン樹脂、ベンゾグアナミン樹脂、シリコーン樹脂、ポリブタジエン樹脂又はこれらの共重合体が挙げられ、これらを架橋したものであってもよい。   Examples of the material of the base particle 1 include metals and organic polymer compounds. As a metal which comprises the base particle 1, nickel, copper, gold | metal | money, silver, cobalt, and these alloys are mentioned, for example. Examples of the organic polymer compound constituting the base particle 1 include an acrylic resin, a styrene resin, a benzoguanamine resin, a silicone resin, a polybutadiene resin, or a copolymer thereof, and these may be cross-linked.

基材粒子1の材質としては、高い接続信頼性を達成する観点から、回路電極同士の接続後における回路電極間隔の拡大に十分追従できる材質を用いることが好ましい。温度の変動などに伴う回路電極間隔の拡大に、基材粒子1が十分に追従できないと、接続部分の抵抗値が上昇する場合がある。このような抵抗値の上昇を効率的に防止する観点から、基材粒子1としては、有機高分子化合物からなる粒子を用いることが好ましい。   As a material of the base particle 1, it is preferable to use a material that can sufficiently follow the expansion of the circuit electrode interval after the connection between the circuit electrodes from the viewpoint of achieving high connection reliability. If the substrate particles 1 cannot sufficiently follow the expansion of the circuit electrode interval due to temperature fluctuations, the resistance value of the connection portion may increase. From the viewpoint of efficiently preventing such an increase in resistance value, it is preferable to use particles made of an organic polymer compound as the base particle 1.

有機高分子化合物からなる粒子は、回路電極同士を接続する際に回路電極間で扁平形状に押しつぶされたとしても、扁平形状から元の球状に回復する傾向がある。このため、温度の変動などに伴う回路電極間隔の拡大に導電粒子10が十分追従することができる。かかる観点から、基材粒子1の最大荷重5mNで圧縮させた後の圧縮回復率は40%以上であることが好ましい。上記のような圧縮回復率を有する有機化合物からなる粒子としては、例えば、アクリル樹脂、スチレン樹脂、ベンゾグアナミン樹脂、シリコーン樹脂、ポリブタジエン樹脂又はこれらの共重合体からなる粒子が挙げられる。当該圧縮回復率が40%未満であると、回路電極間の間隔の拡大に対する追従が不十分となる傾向がある。当該圧縮回復率は、株式会社フィッシャーインストルメンツ製H−100微小硬度計により測定することができる。   Even when the particles made of the organic polymer compound are crushed into flat shapes between the circuit electrodes when connecting the circuit electrodes, the particles tend to recover from the flat shape to the original spherical shape. For this reason, the conductive particles 10 can sufficiently follow the expansion of the circuit electrode interval due to temperature fluctuations. From this viewpoint, it is preferable that the compression recovery rate after compressing the base particle 1 with a maximum load of 5 mN is 40% or more. Examples of the particles made of an organic compound having a compression recovery rate as described above include particles made of an acrylic resin, a styrene resin, a benzoguanamine resin, a silicone resin, a polybutadiene resin, or a copolymer thereof. When the compression recovery rate is less than 40%, there is a tendency that the follow-up to the expansion of the interval between the circuit electrodes becomes insufficient. The compression recovery rate can be measured with an H-100 micro hardness tester manufactured by Fischer Instruments Co., Ltd.

また、基材粒子1の材質としては、粒子直径の20%圧縮変形時に、好ましくは100〜1000kgf/mm、より好ましくは100〜800kgf/mmの圧縮弾性率を有するものが使用される。上記のような硬度を有する有機化合物からなる粒子としては、例えば、アクリル樹脂、スチレン樹脂、ベンゾグアナミン樹脂、シリコーン樹脂、ポリブタジエン樹脂又はこれらの共重合体からなる粒子が挙げられる。 The material of the base particles 1, at 20% compression deformation of particle diameter, preferably 100~1000kgf / mm 2, more preferably used are those having a compressive modulus of 100~800kgf / mm 2. Examples of the particles made of an organic compound having the above hardness include particles made of an acrylic resin, a styrene resin, a benzoguanamine resin, a silicone resin, a polybutadiene resin, or a copolymer thereof.

上記20%圧縮変形時の圧縮弾性率が100kgf/mm未満であると、表面に酸化膜が形成されている金属の回路電極を接続する場合、表面の酸化膜を十分に突き破ることができず、接続部分の抵抗値が高くなる傾向がある。他方、圧縮弾性率が1000kgf/mmを超えると、相対向する回路電極を加圧するに際し、基材粒子1が扁平形状に十分に変形されなくなる傾向がある。基材粒子1の変形が不十分であると、回路電極との接触面積が不十分となり、接続部分の抵抗値が高くなる。また、基材粒子1を扁平形状に十分に変形させるために高い圧力で加圧した際には、粒子が粉砕し、接続が不十分となるおそれがある。当該圧縮弾性率は、株式会社フィッシャーインストルメンツ製H−100微小硬度計により測定することができる。 When the compression elastic modulus at the time of 20% compression deformation is less than 100 kgf / mm 2 , when connecting a metal circuit electrode having an oxide film formed on the surface, the oxide film on the surface cannot be sufficiently penetrated. The resistance value of the connection portion tends to increase. On the other hand, if the compression modulus exceeds 1000 kgf / mm 2 , the substrate particles 1 tend not to be sufficiently deformed into a flat shape when the opposing circuit electrodes are pressurized. If the deformation of the base particle 1 is insufficient, the contact area with the circuit electrode becomes insufficient, and the resistance value of the connection portion increases. Moreover, when it pressurizes with a high pressure in order to fully deform | transform the base particle 1 into a flat shape, there exists a possibility that particle | grains may grind | pulverize and connection may become inadequate. The compression elastic modulus can be measured with an H-100 micro hardness tester manufactured by Fischer Instruments Co., Ltd.

なお、基材粒子1は粒子間で同一又は異なる種類の材質であってもよく、同一粒子に1種の材質を単独で、又は2種以上の材質を混合して用いてもよい。   The base particle 1 may be made of the same or different material between the particles, and one kind of material may be used alone or a mixture of two or more kinds of materials may be used.

基材粒子1の平均粒径は、用途などに応じて適宜設計可能であるが、1〜10μmであることが好ましく、2〜8μmであることがより好ましく、3〜5μmであることが更に好ましい。平均粒径が1μm未満であると粒子の二次凝集が生じ、隣接する回路との絶縁性が不十分となる傾向がある。他方、平均粒径が10μmを越えると、その大きさに起因して隣接する回路との絶縁性が不十分となる傾向がある。   The average particle diameter of the substrate particles 1 can be appropriately designed according to the use, etc., but is preferably 1 to 10 μm, more preferably 2 to 8 μm, and further preferably 3 to 5 μm. . When the average particle size is less than 1 μm, secondary aggregation of the particles occurs, and the insulation with an adjacent circuit tends to be insufficient. On the other hand, if the average particle diameter exceeds 10 μm, the insulation with an adjacent circuit tends to be insufficient due to the size.

金属微粒子2を構成する金属として、例えば、Ni、Ag、Au、Cu、Co、Zn、Al、Sb、U、Ga、Ca、Sn、Se、Fe、Th、Be、Mg、Mn及びこれらの合金が挙げられる。これらの金属のうち、導電性及び耐腐食性の観点からNi、Ag、Au、Cuが好ましく、Niがより好ましい。これらは1種を単独で、又は2種以上を組み合わせて用いることができる。   Examples of the metal constituting the metal fine particle 2 include Ni, Ag, Au, Cu, Co, Zn, Al, Sb, U, Ga, Ca, Sn, Se, Fe, Th, Be, Mg, Mn, and alloys thereof. Is mentioned. Among these metals, Ni, Ag, Au, and Cu are preferable from the viewpoint of conductivity and corrosion resistance, and Ni is more preferable. These can be used alone or in combination of two or more.

金属微粒子2の平均粒径は、用途などに応じて適宜設計可能であるが、200〜1000nmであることが好ましく、400〜800nmであることがより好ましく、400〜500nmであることが更に好ましい。平均粒径が200nm未満であると、表面に酸化膜が形成されている金属の回路電極を接続する場合、酸化膜を十分に突き破ることができず、接続部分の抵抗値が高くなる傾向がある。他方、平均粒径が1000nmを越えると、隣接する回路との絶縁性が不十分となる傾向がある。   The average particle size of the metal fine particles 2 can be appropriately designed depending on the application, but is preferably 200 to 1000 nm, more preferably 400 to 800 nm, and still more preferably 400 to 500 nm. When the average particle size is less than 200 nm, when connecting a metal circuit electrode having an oxide film formed on the surface, the oxide film cannot be sufficiently penetrated, and the resistance value of the connection portion tends to increase. . On the other hand, when the average particle diameter exceeds 1000 nm, the insulation with an adjacent circuit tends to be insufficient.

金属めっき層3の内側であり基材粒子1の表面上に配置する金属微粒子2の数は、基材粒子1個当たり10〜40個であることが好ましく、10〜30個であることがより好ましく、10〜20個であることが更に好ましい。金属微粒子2の数が10個未満であると、接続抵抗値の上昇の抑制が不十分となる傾向がある。他方、金属微粒子2の数が40個を越えると、隣接する回路との絶縁性が不十分となる傾向がある。   The number of the metal fine particles 2 arranged on the inner surface of the metal plating layer 3 and on the surface of the base particle 1 is preferably 10 to 40, more preferably 10 to 30 per base particle. The number is preferably 10 to 20, and more preferably. When the number of the metal fine particles 2 is less than 10, the increase in the connection resistance value tends to be insufficient. On the other hand, when the number of the metal fine particles 2 exceeds 40, the insulation with an adjacent circuit tends to be insufficient.

金属めっき層3は基材粒子1及び金属微粒子2の表面の少なくとも一部を覆うものである。ただし、金属微粒子2の脱落をより確実に防止する観点から、実質的に基材粒子1及び金属微粒子2の表面をすべて覆うものであることが好ましい。   The metal plating layer 3 covers at least part of the surface of the base particle 1 and the metal fine particle 2. However, from the viewpoint of more reliably preventing the metal fine particles 2 from falling off, it is preferable that substantially all the surfaces of the base particle 1 and the metal fine particles 2 are covered.

金属めっき層3の膜厚は、80〜200nmであることが好ましく、100〜150nmであることがより好ましく、100〜110nmであることが更に好ましい。金属めっき層3の膜厚が80nm未満であると、接続部分の抵抗値が高くなる傾向がある。他方、金属めっき層3の膜厚が200nmを超えると、隣接する回路との絶縁性が不十分となる傾向がある。   The thickness of the metal plating layer 3 is preferably 80 to 200 nm, more preferably 100 to 150 nm, and still more preferably 100 to 110 nm. There exists a tendency for the resistance value of a connection part to become it high that the film thickness of the metal plating layer 3 is less than 80 nm. On the other hand, when the film thickness of the metal plating layer 3 exceeds 200 nm, the insulation with an adjacent circuit tends to be insufficient.

導電粒子10を製造する方法としては、基材粒子1の表面に金属微粒子2を物理的に付着させた後、金属めっき層3を形成させるめっき処理を行う方法が挙げられる。この場合、添加する金属微粒子2の量を調整することによって基材粒子1の表面に付着する金属微粒子2の数を制御することができる。そして、これに対して無電解めっき処理を施すことで導電粒子10が製造される。   Examples of the method for producing the conductive particles 10 include a method in which the metal fine particles 2 are physically attached to the surface of the substrate particles 1 and then a plating process for forming the metal plating layer 3 is performed. In this case, the number of the metal fine particles 2 attached to the surface of the base particle 1 can be controlled by adjusting the amount of the metal fine particles 2 to be added. And the electroconductive particle 10 is manufactured by performing an electroless-plating process with respect to this.

次に、導電粒子1を分散させる接着剤成分について説明する。接着剤成分20としては、(a)熱硬化性樹脂及び(b)熱硬化性樹脂用硬化剤からなる接着剤を含有する組成物、並びに、(c)加熱又は光によって遊離ラジカルを発生する硬化剤及び(d)ラジカル重合性物質からなる接着剤を含有する組成物が好ましい。あるいは、上記の(a)、(b)、(c)及び(d)の混合組成物が好ましい。   Next, the adhesive component for dispersing the conductive particles 1 will be described. The adhesive component 20 includes a composition containing an adhesive composed of (a) a thermosetting resin and (b) a curing agent for a thermosetting resin, and (c) curing that generates free radicals by heating or light. A composition containing an agent and an adhesive comprising (d) a radical polymerizable substance is preferred. Or the mixed composition of said (a), (b), (c) and (d) is preferable.

(a)熱硬化性樹脂としては、任意の温度範囲における硬化処理が可能な熱硬化性樹脂であれば特に限定されないが、エポキシ樹脂であることが好ましい。エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、脂肪族鎖状エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、ハロゲン化されていてもよく、水素添加されていてもよい。これらのエポキシ樹脂は、1種を単独で、又は2種以上を組み合わせて使用することができる。   (A) Although it will not specifically limit as a thermosetting resin if it is a thermosetting resin which can be hardened | cured in arbitrary temperature ranges, It is preferable that it is an epoxy resin. Epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolak type epoxy resin, fat Examples thereof include cyclic epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, hydantoin type epoxy resins, isocyanurate type epoxy resins, and aliphatic chain epoxy resins. These epoxy resins may be halogenated or hydrogenated. These epoxy resins can be used individually by 1 type or in combination of 2 or more types.

(b)熱硬化性樹脂用硬化剤としては、アミン系、フェノール系、酸無水物系、イミダゾール系、ヒドラジド系、ジシアンジアミド、三フッ化ホウ素−アミン錯体、スルホニウム塩、ヨードニウム塩、アミンイミド等が挙げられる。これらは、単独または2種以上を混合して使用することができ、分解促進剤、抑制剤等を混合して用いてもよい。また、これらの硬化剤をポリウレタン系、ポリエステル系の高分子物質等で被覆してマイクロカプセル化したものは、可使時間が延長されるために好ましい。   (B) Examples of curing agents for thermosetting resins include amines, phenols, acid anhydrides, imidazoles, hydrazides, dicyandiamide, boron trifluoride-amine complexes, sulfonium salts, iodonium salts, and amine imides. It is done. These can be used alone or in admixture of two or more, and may be used by mixing a decomposition accelerator, an inhibitor and the like. In addition, those encapsulating these curing agents with polyurethane-based or polyester-based polymeric substances and the like and microencapsulated are preferable because the pot life is extended.

(b)熱硬化性樹脂用硬化剤の配合量は、接着剤成分の総質量を基準として、0.1〜60.0質量%程度であると好ましく、1.0〜20.0質量%であるとより好ましい。熱硬化性樹脂用硬化剤の配合量が0.1質量%未満であると、硬化反応の進行が不十分となり、良好な接着強度や接続抵抗値を得ることが困難となる傾向がある。他方、配合量が60質量%を越えると、接着剤成分の流動性が低下したり、ポットライフが短くなったりする傾向があるとともに、接続部分の接続抵抗値が高くなる傾向がある。   (B) The compounding quantity of the hardening | curing agent for thermosetting resins is preferable in it being about 0.1-60.0 mass% on the basis of the total mass of an adhesive component, and is 1.0-20.0 mass%. More preferably. When the blending amount of the curing agent for thermosetting resin is less than 0.1% by mass, the progress of the curing reaction becomes insufficient, and it tends to be difficult to obtain good adhesive strength and connection resistance value. On the other hand, when the blending amount exceeds 60% by mass, the fluidity of the adhesive component tends to be reduced, the pot life tends to be shortened, and the connection resistance value of the connection portion tends to be high.

(c)加熱又は光により遊離ラジカルを発生する硬化剤としては、過酸化化合物、アゾ系化合物などの、加熱又は光により分解して遊離ラジカルを発生するものが挙げられる。硬化剤は目的とする接続温度、接続時間、ポットライフ等により適宜選定される。高反応性とポットライフの点から、半減期10時間の温度が40℃以上かつ、半減期1分の温度が180℃以下の有機過酸化物が好ましい。この場合、(c)加熱又は光により遊離ラジカルを発生する硬化剤の配合量は、接着剤成分の総質量を基準として、0.05〜10質量%であると好ましく、0.1〜5質量%であるとより好ましい。   (C) As a hardening | curing agent which generate | occur | produces a free radical by heating or light, what decomposes | disassembles by heating or light and generate | occur | produces a free radical, such as a peroxide compound and an azo compound, is mentioned. The curing agent is appropriately selected depending on the intended connection temperature, connection time, pot life, and the like. From the viewpoint of high reactivity and pot life, an organic peroxide having a half-life of 10 hours at a temperature of 40 ° C. or more and a half-life of 1 minute at a temperature of 180 ° C. or less is preferred. In this case, the amount of (c) the curing agent that generates free radicals by heating or light is preferably 0.05 to 10% by mass, based on the total mass of the adhesive component, and 0.1 to 5% by mass. % Is more preferable.

(c)加熱又は光により遊離ラジカルを発生する硬化剤は、具体的には、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステル、パーオキシケタール、ジアルキルパーオキサイド、ハイドロパーオキサイドなどから選定できる。回路部材の接続端子の腐食を抑えるために、パーオキシエステル、ジアルキルパーオキサイド、ハイドロパーオキサイドから選定されることが好ましく、高反応性が得られるパーオキシエステルから選定されることがより好ましい。   (C) The curing agent that generates free radicals by heating or light can be specifically selected from diacyl peroxide, peroxydicarbonate, peroxyester, peroxyketal, dialkyl peroxide, hydroperoxide, and the like. In order to suppress the corrosion of the connection terminals of the circuit member, it is preferably selected from peroxyesters, dialkyl peroxides, and hydroperoxides, and more preferably selected from peroxyesters that provide high reactivity.

ジアシルパーオキサイド類としては、例えば、イソブチルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシニックパーオキサイド、ベンゾイルパーオキシトルエン、ベンゾイルパーオキサイド等が挙げられる。   Examples of diacyl peroxides include isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, and succinic peroxide. Examples thereof include oxide, benzoyl peroxytoluene, and benzoyl peroxide.

パーオキシジカーボネート類としては、例えば、ジ−n−プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−2−エトキシメトキシパーオキシジカーボネート、ジ(2−エチルヘキシルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチルパーオキシ)ジカーボネート等が挙げられる。   Examples of peroxydicarbonates include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, and di-2-ethoxymethoxyperoxydicarbonate. , Di (2-ethylhexylperoxy) dicarbonate, dimethoxybutylperoxydicarbonate, di (3-methyl-3-methoxybutylperoxy) dicarbonate, and the like.

パーオキシエステル類としては、例えば、クミルパーオキシネオデカノエート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、1−シクロヘキシル−1−メチルエチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオデカノエート、t−ブチルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、2,5−ジメチル−2,5−ビス(2−エチルヘキサノイルパーオキシ)ヘキサン、1−シクロヘキシル−1−メチルエチルパーオキシ−2−エチルヘキサノエート、t−ヘキシルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシイソブチレート、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシラウレート、2,5−ジメチル−2,5−ビス(m−トルオイルパーオキシ)ヘキサン、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ヘキシルパーオキシベンゾエート、t−ブチルパーオキシアセテート等が挙げられる。   Examples of peroxyesters include cumyl peroxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate, t-hexylperoxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanoate, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2- Ethylhexanoate, t-butyl peroxyisobutyrate, 1,1-bis (t-butylperoxy) cycle Hexane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, 2,5-dimethyl-2,5-bis (m- Toluoyl peroxy) hexane, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-hexyl peroxybenzoate, t-butyl peroxyacetate and the like.

パーオキシケタール類としては、例えば、1,1−ビス(t−ヘキシルパーオキシ)−3,5,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,5,5−トリメチルシクロヘキサン、1,1−(t−ブチルパーオキシ)シクロドデカン、2,2−ビス(t−ブチルパーオキシ)デカン等が挙げられる。   Examples of peroxyketals include 1,1-bis (t-hexylperoxy) -3,5,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1-bis. (T-Butylperoxy) -3,5,5-trimethylcyclohexane, 1,1- (t-butylperoxy) cyclododecane, 2,2-bis (t-butylperoxy) decane and the like.

ジアルキルパーオキサイド類としては、例えば、α,α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、t−ブチルクミルパーオキサイド等が挙げられる。   Examples of dialkyl peroxides include α, α'-bis (t-butylperoxy) diisopropylbenzene, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, Examples include t-butyl cumyl peroxide.

ハイドロパーオキサイド類としては、例えば、ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド等が挙げられる。   Examples of hydroperoxides include diisopropylbenzene hydroperoxide and cumene hydroperoxide.

これらの(c)加熱又は光により遊離ラジカルを発生する硬化剤は1種を単独で又は2種以上を混合して使用することができ、分解促進剤、抑制剤等を混合して用いてもよい。   These (c) curing agents that generate free radicals by heating or light can be used singly or in combination of two or more, and can be used by mixing decomposition accelerators, inhibitors and the like. Good.

(d)ラジカル重合性物質は、ラジカルにより重合する官能基を有する物質であり、例えば、(メタ)アクリレート、マレイミド化合物等が挙げられる。   (D) A radically polymerizable substance is a substance having a functional group that is polymerized by radicals, and examples thereof include (meth) acrylates and maleimide compounds.

(メタ)アクリレートとしては、例えば、ウレタン(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、2−ヒドロキシ−1,3−ジ(メタ)アクリロキシプロパン、2,2−ビス〔4−((メタ)アクリロキシメトキシ)フェニル〕プロパン、2,2−ビス〔4−((メタ)アクリロキシポリエトキシ)フェニル〕プロパン、ジシクロペンテニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ビス((メタ)アクリロキシエチル)イソシアヌレート、ε−カプロラクトン変性トリス((メタ)アクリロキシエチル)イソシアヌレート、トリス((メタ)アクリロキシエチル)イソシアヌレート等が挙げられる。   Examples of the (meth) acrylate include urethane (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, isopropyl (meth) acrylate, isobutyl (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di ( (Meth) acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, 2-hydroxy-1,3-di (meth) acryloxypropane, 2,2 -Bis [4-((meth) acryloxymethoxy) phenyl] propane, 2,2-bis [4-((meth) acryloxypolyethoxy) phenyl] propane, dicyclopentenyl (meth) acrylate, tris Rodekaniru (meth) acrylate, bis ((meth) acryloxy ethyl) isocyanurate, .epsilon.-caprolactone-modified tris ((meth) acryloxy ethyl) isocyanurate, tris ((meth) acryloxy ethyl) isocyanurate.

このようなラジカル重合性物質は1種を単独で、又は2種以上を組み合わせて用いることができる。接着剤成分は、25℃での粘度が100000〜1000000mPa・sであるラジカル重合性物質を少なくとも含有することが特に好ましく、特に100000〜500000mPa・sの粘度(25℃)を有するラジカル重合性物質を含有することが好ましい。ラジカル重合性物質の粘度の測定は、市販のE型粘度計を用いて測定できる。   Such radically polymerizable substances can be used singly or in combination of two or more. It is particularly preferable that the adhesive component contains at least a radically polymerizable substance having a viscosity at 25 ° C. of 100,000 to 1,000,000 mPa · s, particularly a radically polymerizable substance having a viscosity (25 ° C.) of 100,000 to 500,000 mPa · s. It is preferable to contain. The viscosity of the radical polymerizable substance can be measured using a commercially available E-type viscometer.

ラジカル重合性物質の中でも、接着性の観点からウレタンアクリレート又はウレタンメタアクリレートを使用することが好ましい。また、耐熱性を向上させるために用いる有機過酸化物との橋かけ後、単独で100℃以上のTgを示すラジカル重合性物質を併用して用いることが特に好ましい。このようなラジカル重合性物質としては、ジシクロペンテニル基、トリシクロデカニル基及び/又はトリアジン環を分子内に有するものを用いることができる。特に、トリシクロデカニル基やトリアジン環を分子内に有するラジカル重合性物質が好適に用いられる。   Among radically polymerizable substances, it is preferable to use urethane acrylate or urethane methacrylate from the viewpoint of adhesiveness. Further, it is particularly preferable to use a radical polymerizable substance having a Tg of 100 ° C. or more alone in combination after crosslinking with an organic peroxide used for improving heat resistance. As such a radically polymerizable substance, a substance having a dicyclopentenyl group, a tricyclodecanyl group and / or a triazine ring in the molecule can be used. In particular, a radically polymerizable substance having a tricyclodecanyl group or a triazine ring in the molecule is preferably used.

マレイミド化合物としては、分子中にマレイミド基を少なくとも2個以上含有するものが好ましく、例えば、1−メチル−2,4−ビスマレイミドベンゼン、N,N’−m−フェニレンビスマレイミド、N,N’−p−フェニレンビスマレイミド、N,N’−m−トルイレンビスマレイミド、N,N’−4,4−ビフェニレンビスマレイミド、N,N’−4,4−(3,3’−ジメチル−ビフェニレン)ビスマレイミド、N,N’−4,4−(3,3’−ジメチルジフェニルメタン)ビスマレイミド、N,N’−4,4−(3,3’−ジエチルジフェニルメタン)ビスマレイミド、N,N’−4,4−ジフェニルメタンビスマレイミド、N,N’−4,4−ジフェニルプロパンビスマレイミド、N,N’−4,4−ジフェニルエーテルビスマレイミド、N,N’−3,3’−ジフェニルスルホンビスマレイミド、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]プロパン、2,2−ビス[3−s−ブチル−4,8−(4−マレイミドフェノキシ)フェニル]プロパン、1,1−ビス[4−(4−マレイミドフェノキシ)フェニル]デカン、4,4’−シクロヘキシリデン−ビス[1−(4−マレイミドフェノキシ)−2−シクロヘキシル]ベンゼン、2,2−ビス[4−(4−マレイミドフェノキシ)フェニル]ヘキサフルオロプロパンなどが挙げられる。これらは、1種を単独で又は2種以上を併用して用いてもよく、アリルフェノール、アリルフェニルエーテル、安息香酸アリルなどのアリル化合物と併用して用いてもよい。   As the maleimide compound, those containing at least two maleimide groups in the molecule are preferable. For example, 1-methyl-2,4-bismaleimidebenzene, N, N′-m-phenylenebismaleimide, N, N ′ -P-phenylene bismaleimide, N, N'-m-toluylene bismaleimide, N, N'-4,4-biphenylene bismaleimide, N, N'-4,4- (3,3'-dimethyl-biphenylene ) Bismaleimide, N, N′-4,4- (3,3′-dimethyldiphenylmethane) bismaleimide, N, N′-4,4- (3,3′-diethyldiphenylmethane) bismaleimide, N, N ′ -4,4-diphenylmethane bismaleimide, N, N'-4,4-diphenylpropane bismaleimide, N, N'-4,4-diphenyl ether bisma Imido, N, N′-3,3′-diphenylsulfone bismaleimide, 2,2-bis [4- (4-maleimidophenoxy) phenyl] propane, 2,2-bis [3-s-butyl-4,8 -(4-maleimidophenoxy) phenyl] propane, 1,1-bis [4- (4-maleimidophenoxy) phenyl] decane, 4,4'-cyclohexylidene-bis [1- (4-maleimidophenoxy) -2 -Cyclohexyl] benzene, 2,2-bis [4- (4-maleimidophenoxy) phenyl] hexafluoropropane and the like. These may be used alone or in combination of two or more, and may be used in combination with allyl compounds such as allylphenol, allylphenyl ether, and allyl benzoate.

また、必要に応じて、ハイドロキノン、メチルエーテルハイドロキノン類などの重合禁止剤を適宜用いてもよい。   Moreover, you may use suitably polymerization inhibitors, such as hydroquinone and methyl ether hydroquinones, as needed.

接着剤成分20はフィルム形成性高分子を含有してもよい。接着剤成分20の全質量を基準として、フィルム形成性高分子の含有量は、2〜80質量%であることが好ましく、5〜70質量%であることがより好ましく、10〜60質量%であることが更に好ましい。フィルム形成性高分子としては、ポリスチレン、ポリエチレン、ポリビニルブチラール、ポリビニルホルマール、ポリイミド、ポリアミド、ポリエステル、ポリ塩化ビニル、ポリフェニレンオキサイド、尿素樹脂、メラミン樹脂、フェノール樹脂、キシレン樹脂、ポリイソシアネート樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリエステルウレタン樹脂などが用いられる。   The adhesive component 20 may contain a film-forming polymer. Based on the total mass of the adhesive component 20, the content of the film-forming polymer is preferably 2 to 80% by mass, more preferably 5 to 70% by mass, and 10 to 60% by mass. More preferably it is. As the film-forming polymer, polystyrene, polyethylene, polyvinyl butyral, polyvinyl formal, polyimide, polyamide, polyester, polyvinyl chloride, polyphenylene oxide, urea resin, melamine resin, phenol resin, xylene resin, polyisocyanate resin, phenoxy resin, A polyimide resin, a polyester urethane resin, or the like is used.

上記のフィルム形成性高分子の中でも水酸基等の官能基を有する樹脂は接着性を向上させることができるので、より好ましい。また、これらの高分子をラジカル重合性の官能基で変性したものも用いることができる。フィルム形成性高分子の重量平均分子量は10000〜10000000であると好ましい。   Among the above film-forming polymers, a resin having a functional group such as a hydroxyl group is more preferable because it can improve adhesiveness. Also, those obtained by modifying these polymers with radically polymerizable functional groups can be used. The weight average molecular weight of the film-forming polymer is preferably 10,000 to 10,000,000.

更に、回路接続材料50は、充填材、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤、フェノール樹脂、メラミン樹脂、イソシアネート類等を含有することもできる。   Furthermore, the circuit connection material 50 contains a filler, a softener, an accelerator, an anti-aging agent, a colorant, a flame retardant, a thixotropic agent, a coupling agent, a phenol resin, a melamine resin, isocyanates, and the like. You can also.

充填材を含有した場合、接続信頼性等の向上が得られるので好ましい。充填材は、その最大径が導電粒子の粒径未満であれば使用でき、5〜60体積%の範囲が好ましい。60体積%を越えると、信頼性向上の効果が飽和する。   The inclusion of a filler is preferable because it improves connection reliability and the like. The filler can be used if its maximum diameter is smaller than the particle diameter of the conductive particles, and the range of 5 to 60% by volume is preferable. If it exceeds 60% by volume, the effect of improving reliability is saturated.

カップリング剤としては、ビニル基、アクリル基、アミノ基、エポキシ基及びイソシアネート基からなる群より選ばれる1種以上の基を含有する化合物が、接着性の向上の点から好ましい。   As the coupling agent, a compound containing one or more groups selected from the group consisting of a vinyl group, an acrylic group, an amino group, an epoxy group, and an isocyanate group is preferable from the viewpoint of improving adhesiveness.

回路接続材料50において導電粒子10の含有量は、回路接続材料50の全体積を100体積部とすると、0.5〜60体積部であることが好ましく、その含有量は用途により使い分ける。   The content of the conductive particles 10 in the circuit connection material 50 is preferably 0.5 to 60 parts by volume, where the total volume of the circuit connection material 50 is 100 parts by volume, and the content is properly used depending on the application.

図4は本発明に係る回路接続材料50がフィルム状の支持体60上に設けられている状態を示す断面図である。支持体60としては、例えば、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリエチレンイソフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリオレフィン系フィルム、ポリアセテートフィルム、ポリカーボネートフィルム、ポリフェニレンサルファイドフィルム、ポリアミドフィルム、エチレン−酢酸ビニル共重合体フィルム、ポリ塩化ビニルフィルム、ポリ塩化ビニリデンフィルム、合成ゴム系フィルム、液晶ポリマーフィルム等の各種フィルムを使用することが可能である。上記のフィルムの表面に対し、必要に応じてコロナ放電処理、アンカーコート処理、帯電防止処理などが施された支持体を使用してもよい。   FIG. 4 is a sectional view showing a state in which the circuit connecting material 50 according to the present invention is provided on a film-like support 60. Examples of the support 60 include a polyethylene terephthalate film, a polyethylene naphthalate film, a polyethylene isophthalate film, a polybutylene terephthalate film, a polyolefin film, a polyacetate film, a polycarbonate film, a polyphenylene sulfide film, a polyamide film, and an ethylene-vinyl acetate copolymer. Various films such as a polymer film, a polyvinyl chloride film, a polyvinylidene chloride film, a synthetic rubber film, and a liquid crystal polymer film can be used. You may use the support body which gave the corona discharge process, the anchor coat process, the antistatic process, etc. with respect to the surface of said film as needed.

回路接続材料50を使用する際に、回路接続材料50から支持体60を容易に剥離できるように、必要に応じて支持体60の表面には剥離処理剤をコーティングして使用してもよい。剥離処理剤として、シリコーン樹脂、シリコーンと有機系樹脂との共重合体、アルキッド樹脂、アミノアルキッド樹脂、長鎖アルキル基を有する樹脂、フルオロアルキル基を有する樹脂、セラック樹脂などの各種剥離処理剤を用いることができる。   When using the circuit connection material 50, the surface of the support 60 may be coated with a release treatment agent as necessary so that the support 60 can be easily peeled from the circuit connection material 50. Various release treatment agents such as silicone resins, copolymers of silicone and organic resins, alkyd resins, amino alkyd resins, resins having long chain alkyl groups, resins having fluoroalkyl groups, shellac resins, etc. Can be used.

支持体60の膜厚は、特に制限されるものではないが、作製された回路接続材料50の保管、使用時の利便性等を考慮して、4〜200μmとすることが好ましい。さらに、支持体60の膜厚は、材料コストや生産性を考慮して、15〜75μmとすることがより好ましい。   The film thickness of the support 60 is not particularly limited, but is preferably 4 to 200 μm in consideration of storage and convenience of use of the manufactured circuit connection material 50. Furthermore, the film thickness of the support 60 is more preferably 15 to 75 μm in consideration of material cost and productivity.

回路接続材料は、回路接続材料50のような単層構造に限定されず、複数の層が積層された多層構造であってもよい。多層構造の回路接続材料は、接着剤成分及び導電粒子の種類あるいはこれらの含有量が異なる層を複数積層することによって製造することができる。例えば、回路接続材料は、導電粒子を含有する導電粒子含有層と、この導電粒子含有層の少なくとも一方の面上に設けられた、導電粒子を含有しない導電粒子非含有層とを備えるものであってもよい。   The circuit connection material is not limited to a single layer structure like the circuit connection material 50, and may be a multilayer structure in which a plurality of layers are stacked. A circuit connection material having a multilayer structure can be produced by laminating a plurality of layers having different types of adhesive components and conductive particles or different contents thereof. For example, the circuit connection material includes a conductive particle-containing layer containing conductive particles and a conductive particle-free layer that does not contain conductive particles and is provided on at least one surface of the conductive particle-containing layer. May be.

図5は、二層構造の回路接続材料が支持体に支持されている状態を示す断面図である。図5に示す回路接続材料70は、導電粒子を含有する導電粒子含有層70a及び導電粒子を含有しない導電粒子非含有層70bから構成されている。回路接続材料70の両最外面には、それぞれ支持体60a,60bが設けられている。回路接続材料70は、支持体60aの表面上に導電粒子含有層70aを形成し、他方、支持体60bの表面上に導電粒子非含有層70bを形成し、これらの層を従来公知のラミネータなどを使用して貼り合わせることで作製することができる。回路接続材料70を使用するに際には、適宜支持体60a,60bを剥離して使用する。   FIG. 5 is a cross-sectional view showing a state in which the circuit connecting material having a two-layer structure is supported by a support. The circuit connection material 70 shown in FIG. 5 is composed of a conductive particle containing layer 70a containing conductive particles and a conductive particle non-containing layer 70b containing no conductive particles. Support bodies 60a and 60b are provided on both outermost surfaces of the circuit connecting material 70, respectively. The circuit connection material 70 forms a conductive particle-containing layer 70a on the surface of the support 60a, while forming a conductive particle-free layer 70b on the surface of the support 60b. These layers are used as a conventionally known laminator or the like. It can produce by bonding together using. When the circuit connection material 70 is used, the support bodies 60a and 60b are appropriately peeled off.

回路接続材料70によれば、回路部材同士の接合時に、接着剤成分の流動に起因する回路電極上における導電粒子の個数の減少を十分に抑制することができる。このため、例えば、ICチップを基板上に実装する場合、ICチップの金属バンプ(接続端子)上の導電粒子の個数を十分に確保することができる。この場合、ICチップの金属バンプを備える面と導電粒子非含有層70bとが、他方、ICチップを実装すべき基板と導電粒子含有層70aとが、それぞれ当接するように回路接続材料70を配置することが好ましい。   According to the circuit connecting material 70, it is possible to sufficiently suppress the decrease in the number of conductive particles on the circuit electrode due to the flow of the adhesive component when the circuit members are joined to each other. For this reason, for example, when an IC chip is mounted on a substrate, the number of conductive particles on a metal bump (connection terminal) of the IC chip can be sufficiently secured. In this case, the circuit connecting material 70 is arranged so that the surface of the IC chip with the metal bumps and the conductive particle non-containing layer 70b are in contact with the substrate on which the IC chip is to be mounted and the conductive particle containing layer 70a, respectively. It is preferable to do.

(接続方法)
図6は、本発明に係る回路部材の接続方法の一実施形態を概略断面図により示す工程図であり、回路接続材料50を熱硬化させて接続構造を製造するまでの一連の工程を示す。
(Connection method)
FIG. 6 is a process diagram showing an embodiment of a circuit member connection method according to the present invention in a schematic cross-sectional view, and shows a series of processes until the connection structure is manufactured by thermosetting the circuit connection material 50.

先ず、上述した第1の回路部材30と、フィルム状の回路接続材料50を用意する。回路接続材料50は、導電粒子10を含有する接着剤組成物からなる。   First, the first circuit member 30 and the film-like circuit connection material 50 described above are prepared. The circuit connection material 50 is made of an adhesive composition containing the conductive particles 10.

回路接続材料50の厚さは、5〜50μmであることが好ましい。回路接続材料50の厚さが5μm未満であると、第1及び第2の回路電極32,42間に回路接続材料50が充填不足となる傾向がある。他方、厚さが50μmを超えると、第1及び第2の回路電極32,42間の導通の確保が困難となる傾向がある。   The thickness of the circuit connection material 50 is preferably 5 to 50 μm. If the thickness of the circuit connection material 50 is less than 5 μm, the circuit connection material 50 tends to be insufficiently filled between the first and second circuit electrodes 32 and 42. On the other hand, if the thickness exceeds 50 μm, it tends to be difficult to ensure conduction between the first and second circuit electrodes 32 and 42.

次に、回路接続材料50を第1の回路部材30の回路電極32が形成されている面上に載せる。そして、回路接続材料50を、図6(a)の矢印A及びB方向に加圧し、回路接続材料50を第1の回路部材30に仮接続する(図6(b))。   Next, the circuit connection material 50 is placed on the surface of the first circuit member 30 on which the circuit electrodes 32 are formed. Then, the circuit connection material 50 is pressurized in the directions of arrows A and B in FIG. 6A to temporarily connect the circuit connection material 50 to the first circuit member 30 (FIG. 6B).

このときの圧力は回路部材に損傷を与えない範囲であれば特に制限されないが、一般的には0.1〜30.0MPaとすることが好ましい。また、加熱しながら加圧してもよく、加熱温度は回路接続材料50が実質的に硬化しない温度とする。加熱温度は一般的には50〜190℃にするのが好ましい。これらの加熱及び加圧は0.5〜120秒間の範囲で行うことが好ましい。   Although the pressure at this time will not be restrict | limited especially if it is a range which does not damage a circuit member, Generally it is preferable to set it as 0.1-30.0 MPa. Moreover, you may pressurize, heating, and let heating temperature be the temperature which the circuit connection material 50 does not harden | cure substantially. In general, the heating temperature is preferably 50 to 190 ° C. These heating and pressurization are preferably performed in the range of 0.5 to 120 seconds.

次いで、図6(c)に示すように、第2の回路部材40を、第2の回路電極42を第1の回路部材30の側に向けるようにして回路接続材料50上に載せる。そして、フィルム状回路接続材料50を加熱しながら、図6(c)の矢印A及びB方向に全体を加圧する。   Next, as shown in FIG. 6C, the second circuit member 40 is placed on the circuit connection material 50 so that the second circuit electrode 42 faces the first circuit member 30 side. And the whole is pressurized in the arrow A and B direction of FIG.6 (c), heating the film-form circuit connection material 50. FIG.

このときの加熱温度は、回路接続材料50が硬化可能な温度とする。加熱温度は、60〜180℃が好ましく、70〜170℃がより好ましく、80〜160℃が更に好ましい。加熱温度が60℃未満であると硬化速度が遅くなる傾向があり、180℃を超えると望まない副反応が進行し易い傾向がある。加熱時間は、0.1〜180秒が好ましく、0.5〜180秒がより好ましく、1〜180秒が更に好ましい。   The heating temperature at this time is a temperature at which the circuit connecting material 50 can be cured. The heating temperature is preferably 60 to 180 ° C, more preferably 70 to 170 ° C, and still more preferably 80 to 160 ° C. If the heating temperature is less than 60 ° C, the curing rate tends to be slow, and if it exceeds 180 ° C, unwanted side reactions tend to proceed. The heating time is preferably 0.1 to 180 seconds, more preferably 0.5 to 180 seconds, and still more preferably 1 to 180 seconds.

回路接続材料50の硬化により接着部50aが形成されて、図1に示すような接続体100が得られる。接続の条件は、使用する用途、接着剤組成物、回路部材によって適宜選択される。なお、回路接続材料50の接着剤成分として、光によって硬化するものを使用した場合には、回路接続材料50に対して活性光線やエネルギー線を適宜照射すればよい。活性光線としては、紫外線、可視光、赤外線等が挙げられる。エネルギー線としては、電子線、エックス線、γ線、マイクロ波等が挙げられる。   The adhesive part 50a is formed by hardening the circuit connection material 50, and the connection body 100 as shown in FIG. 1 is obtained. The connection conditions are appropriately selected depending on the application to be used, the adhesive composition, and the circuit member. In addition, when what is hardened | cured with light is used as an adhesive agent component of the circuit connection material 50, what is necessary is just to irradiate the circuit connection material 50 with an actinic ray and an energy ray suitably. Examples of the active light include ultraviolet light, visible light, and infrared light. Examples of energy rays include electron beams, X-rays, γ rays, and microwaves.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. The present invention can be variously modified without departing from the gist thereof.

以下、実施例により本発明の内容を更に具体的に説明するが、本発明はこれらの実施例に制限されるものではない。   EXAMPLES Hereinafter, the content of the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(実施例1)
フィルム形成性高分子として、フェノキシ樹脂溶液(フェノキシ樹脂/トルエン/酢酸エチル=40/30/30質量部)100質量部、エポキシ樹脂と潜在性硬化剤の混合物としてマイクロカプセル型潜在性硬化剤を含有する液状エポキシ(旭化成株式会社製、商品名:ノバキュア3941)60質量部、導電粒子としてNi/Auめっきポリスチレン粒子10質量部、及びシランカップリング剤(東レ・ダウコーニング・シリコーン株式会社製、商品名:SZ6030)10質量部を混合し、回路接続用の接着剤組成物を調製した。なお、フェノキシ樹脂として、FX−293(商品名、東都化成株式会社製)を用いた。
Example 1
Contains 100 parts by mass of a phenoxy resin solution (phenoxy resin / toluene / ethyl acetate = 40/30/30 parts by mass) as a film-forming polymer, and a microcapsule type latent curing agent as a mixture of an epoxy resin and a latent curing agent 60 parts by mass of liquid epoxy (Asahi Kasei Co., Ltd., trade name: Novacure 3941), 10 parts by mass of Ni / Au plated polystyrene particles as conductive particles, and a silane coupling agent (manufactured by Toray Dow Corning Silicone Co., Ltd., trade name) : SZ6030) 10 parts by mass was mixed to prepare an adhesive composition for circuit connection. Note that FX-293 (trade name, manufactured by Toto Kasei Co., Ltd.) was used as the phenoxy resin.

上記のNi/Auめっきポリスチレン粒子は、平均粒径3μmのポリスチレン粒子(基材粒子)の表面に、平均粒径400nmのNi微粒子(金属微粒子)を付着させた後、無電解めっきによりNi層を形成し、最後にAu層を形成させて作製した。めっき処理後の導電粒子をSEMにより倍率6000倍にて観察した結果、Ni微粒子に起因する突起の数(金属めっき層の内側に配置されている金属微粒子の数)は32個であった。ポリスチレン粒子の20%圧縮変形時の圧縮弾性率は750kgf/mmであり、最大荷重5mNで圧縮させた後の圧縮回復率は70%であった。 The Ni / Au plated polystyrene particles are obtained by attaching Ni fine particles (metal fine particles) having an average particle diameter of 400 nm to the surface of polystyrene particles (base material particles) having an average particle diameter of 3 μm, and then forming an Ni layer by electroless plating. It was formed by finally forming an Au layer. As a result of observing the conductive particles after the plating treatment with a SEM at a magnification of 6000, the number of protrusions attributed to the Ni fine particles (the number of metal fine particles arranged inside the metal plating layer) was 32. The compression elastic modulus at the time of 20% compression deformation of the polystyrene particles was 750 kgf / mm 2 , and the compression recovery rate after being compressed at a maximum load of 5 mN was 70%.

PET(ポリエチレンテレフタレート)からなる支持体(膜厚50μm)上に上記の接着剤組成物を塗布した。その後、これを70℃で10分間乾燥させて、支持体上に設けられた導電粒子含有層(膜厚25μm)を得た。   The above adhesive composition was applied on a support (film thickness 50 μm) made of PET (polyethylene terephthalate). Then, this was dried at 70 degreeC for 10 minute (s), and the electroconductive particle content layer (film thickness of 25 micrometers) provided on the support body was obtained.

他方、接着剤組成物の溶液の代わりに、フェノキシ樹脂溶液(フェノキシ樹脂/トルエン/酢酸エチル=40/30/30質量部)100質量部及びエポキシ樹脂と潜在性硬化剤の混合物としてマイクロカプセル型潜在性硬化剤を含有する液状エポキシ(旭化成株式会社製、商品名:ノバキュア3941)60質量部からなる接着剤成分の溶液を、PETからなる支持体(膜厚50μm)上に塗布した。その後、これを70℃で10分間乾燥させて、支持体上に設けられた導電粒子非含有層(膜厚25μm)を得た。   On the other hand, instead of the solution of the adhesive composition, 100 parts by mass of a phenoxy resin solution (phenoxy resin / toluene / ethyl acetate = 40/30/30 parts by mass) and a microcapsule type latent as a mixture of an epoxy resin and a latent curing agent A solution of an adhesive component composed of 60 parts by mass of a liquid epoxy (trade name: Novacure 3941, manufactured by Asahi Kasei Co., Ltd.) containing an adhesive curing agent was applied on a support (film thickness 50 μm) made of PET. Then, this was dried at 70 degreeC for 10 minute (s), and the electroconductive particle non-containing layer (film thickness of 25 micrometers) provided on the support body was obtained.

上記の導電粒子含有層と導電粒子非含有層とを、従来公知のラミネータを用いて貼り合わせた。これにより、図5に示す状態の二層構成の回路接続材料を得た。これを帯状に切断し、回路接続材料を作製した。   The conductive particle-containing layer and the conductive particle non-containing layer were bonded together using a conventionally known laminator. As a result, a circuit connecting material having a two-layer structure in the state shown in FIG. 5 was obtained. This was cut into strips to produce a circuit connection material.

(実施例2)
Ni/Auめっきポリスチレン粒子を下記のようにして作製した以外は、実施例1と同様にして回路接続材料を得た。Ni/Auめっきポリスチレン粒子は、実施例1で使用したものと同一のポリスチレン粒子の表面に、平均粒径200nmのNi微粒子を付着させた後、無電解めっきによりNi層を形成し、最後にAu層を形成させて作製した。めっき処理後の導電粒子をSEMにより倍率6000倍にて観察した結果、Ni微粒子に起因する突起の数は20個であった。
(Example 2)
A circuit connecting material was obtained in the same manner as in Example 1 except that Ni / Au plated polystyrene particles were prepared as follows. The Ni / Au plated polystyrene particles were formed by depositing Ni fine particles having an average particle diameter of 200 nm on the surface of the same polystyrene particles used in Example 1, and then forming an Ni layer by electroless plating. A layer was formed. As a result of observing the conductive particles after the plating treatment with a SEM at a magnification of 6000, the number of protrusions attributed to the Ni fine particles was 20.

(実施例3)
Ni/Auめっきポリスチレン粒子を下記のようにして作製した以外は、実施例1と同様にして回路接続材料を得た。Ni/Auめっきポリスチレン粒子は、実施例1で使用したものと同一のポリスチレン粒子の表面に、平均粒径800nmのNi微粒子を付着させた後、無電解めっきによりNi層を形成し、最後にAu層を形成させて作製した。めっき処理後の導電粒子をSEMにより倍率6000倍にて観察した結果、Ni微粒子に起因する突起の数は15個であった。
(Example 3)
A circuit connecting material was obtained in the same manner as in Example 1 except that Ni / Au plated polystyrene particles were prepared as follows. The Ni / Au plated polystyrene particles were formed by depositing Ni fine particles having an average particle size of 800 nm on the surface of the same polystyrene particles used in Example 1, and then forming an Ni layer by electroless plating. A layer was formed. As a result of observing the conductive particles after the plating treatment with a SEM at a magnification of 6000, the number of protrusions attributed to the Ni fine particles was 15.

(実施例4)
Ni/Auめっきポリスチレン粒子を下記のようにして作製した以外は、実施例1と同様にして回路接続材料を得た。Ni/Auめっきポリスチレン粒子は、20%圧縮変形時の圧縮弾性率が300kgf/mmであるポリスチレン粒子の表面に、平均粒径400nmのNi微粒子を付着させた後、無電解めっきによりNi層を形成し、最後にAu層を形成させて作製した。めっき処理後の導電粒子をSEMにより倍率6000倍にて観察した結果、Ni微粒子に起因する突起の数は30個であった。
Example 4
A circuit connecting material was obtained in the same manner as in Example 1 except that Ni / Au plated polystyrene particles were prepared as follows. The Ni / Au plated polystyrene particles are formed by attaching Ni fine particles having an average particle diameter of 400 nm to the surface of polystyrene particles having a compression modulus of 300 kgf / mm 2 at 20% compression deformation, and then forming an Ni layer by electroless plating. It was formed by finally forming an Au layer. As a result of observing the conductive particles after the plating treatment with a SEM at a magnification of 6000, the number of protrusions attributed to the Ni fine particles was 30.

(実施例5)
Ni/Auめっきポリスチレン粒子を下記のようにして作製した以外は、実施例1と同様にして回路接続材料を得た。Ni/Auめっきポリスチレン粒子は、20%圧縮変形時の圧縮弾性率が600kgf/mmであり、且つ、最大荷重5mNで圧縮させた後の圧縮回復率が40%であるポリスチレン粒子の表面に、平均粒径400nmのNi微粒子を付着させた後、無電解めっきによりNi層を形成し、最後にAu層を形成させて作製した。めっき処理後の導電粒子をSEMにより倍率6000倍にて観察した結果、Ni微粒子に起因する突起の数は30個であった。
(Example 5)
A circuit connecting material was obtained in the same manner as in Example 1 except that Ni / Au plated polystyrene particles were prepared as follows. The Ni / Au plated polystyrene particles have a compression elastic modulus at 20% compression deformation of 600 kgf / mm 2 and a compression recovery rate of 40% after compression at a maximum load of 5 mN. After depositing Ni fine particles having an average particle diameter of 400 nm, a Ni layer was formed by electroless plating, and finally an Au layer was formed. As a result of observing the conductive particles after the plating treatment with a SEM at a magnification of 6000, the number of protrusions attributed to the Ni fine particles was 30.

(実施例6)
Ni/Auめっきポリスチレン粒子を下記のようにして作製した以外は、実施例1と同様にして回路接続材料を得た。Ni/Auめっきポリスチレン粒子は、平均粒径が4μmであり、且つ、20%圧縮変形時の圧縮弾性率が700kgf/mmであるポリスチレン粒子の表面に、平均粒径400nmのNi微粒子を付着させた後、無電解めっきによりNi層を形成し、最後にAu層を形成させて作製した。めっき処理後の導電粒子をSEMにより倍率6000倍にて観察した結果、Ni微粒子に起因する突起の数は32個であった。
(Example 6)
A circuit connecting material was obtained in the same manner as in Example 1 except that Ni / Au plated polystyrene particles were prepared as follows. The Ni / Au plated polystyrene particles have an average particle diameter of 4 μm, and Ni fine particles having an average particle diameter of 400 nm are attached to the surface of the polystyrene particles having a compression modulus of 700 kgf / mm 2 at 20% compression deformation. Thereafter, a Ni layer was formed by electroless plating, and finally an Au layer was formed. As a result of observing the conductive particles after the plating treatment with a SEM at a magnification of 6000, the number of protrusions attributed to the Ni fine particles was 32.

(実施例7)
Ni/Auめっきポリスチレン粒子を下記のようにして作製した以外は、実施例1と同様にして回路接続材料を得た。Ni/Auめっきポリスチレン粒子は、平均粒径が3μmであり、且つ、20%圧縮変形時の圧縮弾性率が450kgf/mmであるポリスチレン粒子の表面に、平均粒径160nmのNi微粒子を付着させた後、無電解めっきによりNi層を形成し、最後にAu層を形成させて作製した。めっき処理後の導電粒子をSEMにより倍率6000倍にて観察した結果、Ni微粒子に起因する突起の数は8個であった。
(Example 7)
A circuit connecting material was obtained in the same manner as in Example 1 except that Ni / Au plated polystyrene particles were prepared as follows. The Ni / Au plated polystyrene particles have an average particle diameter of 3 μm, and Ni fine particles having an average particle diameter of 160 nm are attached to the surface of the polystyrene particles having a compression modulus of 450 kgf / mm 2 at 20% compression deformation. Thereafter, a Ni layer was formed by electroless plating, and finally an Au layer was formed. As a result of observing the conductive particles after the plating treatment with a SEM at a magnification of 6000, the number of protrusions attributed to the Ni fine particles was eight.

(実施例8)
Ni/Auめっきポリスチレン粒子を下記のようにして作製した以外は、実施例1と同様にして回路接続材料を得た。Ni/Auめっきポリスチレン粒子は、平均粒径が3μmであり、且つ、20%圧縮変形時の圧縮弾性率が500kgf/mmであるポリスチレン粒子の表面に、平均粒径230nmのNi微粒子を付着させた後、無電解めっきによりNi層を形成し、最後にAu層を形成させて作製した。めっき処理後の導電粒子をSEMにより倍率6000倍にて観察した結果、Ni微粒子に起因する突起の数は47個であった。
(Example 8)
A circuit connecting material was obtained in the same manner as in Example 1 except that Ni / Au plated polystyrene particles were prepared as follows. The Ni / Au plated polystyrene particles have an average particle size of 3 μm, and Ni particles having an average particle size of 230 nm are attached to the surface of polystyrene particles having a compression modulus of 500 kgf / mm 2 at 20% compression deformation. Thereafter, a Ni layer was formed by electroless plating, and finally an Au layer was formed. As a result of observing the conductive particles after the plating treatment with a SEM at a magnification of 6000, the number of protrusions attributed to the Ni fine particles was 47.

(実施例9)
Ni/Auめっきポリスチレン粒子を下記のようにして作製した以外は、実施例1と同様にして回路接続材料を得た。Ni/Auめっきポリスチレン粒子は、平均粒径が3μmであり、且つ、20%圧縮変形時の圧縮弾性率が90kgf/mmであるポリスチレン粒子の表面に、平均粒径200nmのNi微粒子を付着させた後、無電解めっきによりNi層を形成し、最後にAu層を形成させて作製した。めっき処理後の導電粒子をSEMにより倍率6000倍にて観察した結果、Ni微粒子に起因する突起の数は23個であった。
Example 9
A circuit connecting material was obtained in the same manner as in Example 1 except that Ni / Au plated polystyrene particles were prepared as follows. The Ni / Au plated polystyrene particles have an average particle diameter of 3 μm, and Ni particles having an average particle diameter of 200 nm are attached to the surface of the polystyrene particles having a compression modulus of 90 kgf / mm 2 at 20% compression deformation. Thereafter, a Ni layer was formed by electroless plating, and finally an Au layer was formed. As a result of observing the conductive particles after the plating treatment with a SEM at a magnification of 6000, the number of protrusions attributed to the Ni fine particles was 23.

(実施例10)
Ni/Auめっきポリスチレン粒子を下記のようにして作製した以外は、実施例1と同様にして回路接続材料を得た。Ni/Auめっきポリスチレン粒子は、最大荷重5mNで圧縮させた後の圧縮回復率が25%であり、且つ、20%圧縮変形時の圧縮弾性率が700kgf/mmであるポリスチレン粒子の表面に、平均粒径400nmのNi微粒子を付着させた後、無電解めっきによりNi層を形成し、最後にAu層を形成させて作製した。めっき処理後の導電粒子をSEMにより倍率6000倍にて観察した結果、Ni微粒子に起因する突起の数は30個であった。
(Example 10)
A circuit connecting material was obtained in the same manner as in Example 1 except that Ni / Au plated polystyrene particles were prepared as follows. The Ni / Au plated polystyrene particles have a compression recovery rate of 25% after being compressed at a maximum load of 5 mN, and the surface of the polystyrene particles having a compression elastic modulus at 20% compression deformation of 700 kgf / mm 2 . After depositing Ni fine particles having an average particle diameter of 400 nm, a Ni layer was formed by electroless plating, and finally an Au layer was formed. As a result of observing the conductive particles after the plating treatment with a SEM at a magnification of 6000, the number of protrusions attributed to the Ni fine particles was 30.

(比較例1)
Ni/Auめっきポリスチレン粒子の代わりに、下記のようにして作製したAuめっきポリスチレン粒子を使用したことの以外は、実施例1と同様にして回路接続材料を得た。実施例1で使用したものと同一のポリスチレン粒子の表面上に、無電解めっきによりAu層を形成し、Auめっきポリスチレン粒子を作製した。
(Comparative Example 1)
A circuit connecting material was obtained in the same manner as in Example 1 except that instead of the Ni / Au plated polystyrene particles, Au plated polystyrene particles produced as described below were used. On the surface of the same polystyrene particles used in Example 1, an Au layer was formed by electroless plating to produce Au-plated polystyrene particles.

(比較例2)
Ni/Auめっきポリスチレン粒子を下記のようにして作製した以外は、実施例1と同様にして回路接続材料を得た。Ni/Auめっきポリスチレン粒子は、実施例1で使用したものと同一のポリスチレン粒子の表面に、無電解ニッケルめっきを施してNi層を形成するとともにNi塊を析出させ、その後、Au層をめっきして作製した。めっき処理後の導電粒子をSEMにより倍率6000倍にて観察した結果、Ni塊に起因する突起の数は35個であった。
(Comparative Example 2)
A circuit connecting material was obtained in the same manner as in Example 1 except that Ni / Au plated polystyrene particles were prepared as follows. The Ni / Au plated polystyrene particles are subjected to electroless nickel plating to form the Ni layer on the surface of the same polystyrene particles used in Example 1 and to precipitate the Ni mass, and then the Au layer is plated. Made. As a result of observing the conductive particles after the plating treatment with a SEM at a magnification of 6000, the number of protrusions attributed to the Ni lump was 35.

次に、上記実施例及び比較例で作製した回路接続材料について、各種評価を行った。   Next, various evaluation was performed about the circuit connection material produced in the said Example and comparative example.

(初期接続抵抗の評価)
バンプ寸法50μm×50μm、ピッチ100μm、高さ20μmの金バンプを備えるICチップと表面上にアルミニウム電極が形成されたガラス基板(厚さ0.7mm)を準備した。アルミニウム電極と金バンプとを回路接続材料で電気的に接続して接続構造を作製し、この抵抗値を測定することで接続部分の初期接続抵抗値の評価を行った。
(Evaluation of initial connection resistance)
An IC chip having gold bumps with a bump size of 50 μm × 50 μm, a pitch of 100 μm, and a height of 20 μm and a glass substrate (thickness 0.7 mm) on which an aluminum electrode was formed were prepared. An aluminum electrode and a gold bump were electrically connected with a circuit connection material to produce a connection structure, and the initial connection resistance value of the connection portion was evaluated by measuring the resistance value.

具体的には、まず、導電粒子含有層側の支持体を剥離し、導電粒子含有層がガラス基板と当接するように回路接続材料をガラス基板上に配置し、予備圧着を行った。そして、導電粒子非含有層側の支持体を剥離した後、金バンプが導電粒子非含有層と当接するようにICチップを載置した。ICチップの配置後、加熱しながら回路接続材料を挟む方向に加圧して接続した。予備圧着の条件は、温度70℃、圧力0.5MPa(バンプ面積換算)、保持時間1秒間とした。一方、接続の条件は、温度210℃、圧力70MPa(バンプ面積換算)、保持時間5秒間とした。   Specifically, first, the support on the conductive particle-containing layer side was peeled off, and the circuit connecting material was placed on the glass substrate so that the conductive particle-containing layer was in contact with the glass substrate, and pre-compression was performed. And after peeling the support body by the side of an electroconductive particle non-contained layer, IC chip was mounted so that a gold bump might contact an electroconductive particle non-contained layer. After placement of the IC chip, it was pressed and connected in a direction to sandwich the circuit connection material while heating. The pre-bonding conditions were a temperature of 70 ° C., a pressure of 0.5 MPa (bump area conversion), and a holding time of 1 second. On the other hand, the connection conditions were a temperature of 210 ° C., a pressure of 70 MPa (bump area conversion), and a holding time of 5 seconds.

このようにして接続された接続構造の抵抗値(R)を測定した。初期接続抵抗の評価は以下の基準に基づいて行った。
A:Rが1Ω未満、
B:Rが1〜2Ω、
C:Rが2Ωを超える。
回路接続材料として実施例及び比較例の回路接続材料を、それぞれ使用した場合の初期接続抵抗の評価結果を表1及び表2に示す。
The resistance value (R 0 ) of the connection structure thus connected was measured. The initial connection resistance was evaluated based on the following criteria.
A: R 0 is less than 1Ω,
B: R 0 is 1 to 2Ω,
C: R 0 exceeds 2Ω.
Tables 1 and 2 show the evaluation results of the initial connection resistance when the circuit connection materials of Examples and Comparative Examples are used as circuit connection materials, respectively.

(熱サイクル試験後の接続抵抗の評価)
上記の初期接続抵抗の評価を行った後、接続構造に対して昇温降温を繰り返す熱サイクル試験を行い、熱サイクル試験後の接続抵抗の評価を行った。熱サイクル試験は接続構造を室温から100℃に昇温、次に−40℃まで降温した後に室温まで昇温する工程を20回繰り返すことで行った。熱サイクル試験後の接続構造の抵抗値(R)を用いて測定した。
(Evaluation of connection resistance after thermal cycle test)
After evaluating the initial connection resistance, a thermal cycle test in which the temperature was raised and lowered was performed on the connection structure, and the connection resistance after the thermal cycle test was evaluated. The thermal cycle test was performed by repeating the process of raising the temperature of the connection structure from room temperature to 100 ° C., then lowering the temperature to −40 ° C. and then raising the temperature to room temperature 20 times. It was measured using the resistance of the connection structure after thermal cycle test (R 1).

熱サイクル試験後の接続抵抗の評価は以下の基準に基づいて行った。
A:Rが3Ω未満、
B:Rが3〜4Ω、
C:Rが4Ωを超える。
回路接続材料として実施例及び比較例の回路接続材料をそれぞれ使用した場合の熱サイクル試験後の接続抵抗の評価結果を表1及び表2に示す。
The connection resistance after the heat cycle test was evaluated based on the following criteria.
A: R 1 is less than 3Ω,
B: R 1 is 3-4Ω,
C: R 1 is more than 4Ω.
Tables 1 and 2 show the evaluation results of the connection resistance after the thermal cycle test when the circuit connection materials of Examples and Comparative Examples are used as circuit connection materials, respectively.

(絶縁性の評価)
バンプ寸法50μm×100μm、ピッチ15μm、高さ20μmの金バンプを備えるICチップとITO基板とを準備した。ITO基板と複数の金バンプとを回路接続材料で電気的に接続して接続構造を作製し、隣接する金バンプ間の抵抗値を測定することで接続部分の隣接する金バンプ間の電気絶縁性の評価を行った。なお、ITO基板は、ガラス基板(厚さ0.7mm)上に、インジュウム−錫酸化物(ITO)を蒸着させ、ITO電極(表面抵抗≦20Ω/□)を形成したものである。
(Insulation evaluation)
An IC chip and an ITO substrate provided with gold bumps having a bump size of 50 μm × 100 μm, a pitch of 15 μm, and a height of 20 μm were prepared. Electrical connection between adjacent gold bumps in the connection area by electrically connecting the ITO substrate and multiple gold bumps with a circuit connection material to create a connection structure and measuring the resistance value between adjacent gold bumps Was evaluated. The ITO substrate is obtained by depositing indium-tin oxide (ITO) on a glass substrate (thickness 0.7 mm) to form an ITO electrode (surface resistance ≦ 20Ω / □).

まず、導電粒子含有層側の支持体を剥離し、導電粒子含有層がITO基板と当接するように回路接続材料をITO基板上に配置し、予備圧着を行った。そして、導電粒子非含有層側の支持体を剥離した後、金バンプが導電粒子非含有層と当接するようにICチップを載置した。ICチップの配置後、加熱しながら回路接続材料を挟む方向に加圧して接続した。予備圧着の条件は、温度70℃、圧力0.5MPa(バンプ面積換算)、保持時間1秒間とした。一方、接続の条件は、温度210℃、圧力70MPa(バンプ面積換算)、保持時間5秒間とした。   First, the support on the conductive particle-containing layer side was peeled off, and the circuit connection material was placed on the ITO substrate so that the conductive particle-containing layer was in contact with the ITO substrate, and pre-compression was performed. And after peeling the support body by the side of an electroconductive particle non-contained layer, IC chip was mounted so that a gold bump might contact an electroconductive particle non-contained layer. After placement of the IC chip, it was pressed and connected in a direction to sandwich the circuit connection material while heating. The pre-bonding conditions were a temperature of 70 ° C., a pressure of 0.5 MPa (bump area conversion), and a holding time of 1 second. On the other hand, the connection conditions were a temperature of 210 ° C., a pressure of 70 MPa (bump area conversion), and a holding time of 5 seconds.

このようにして接続された接続構造の隣接する金バンプ間に、50Vの電圧を1分間印加した後、当該金バンプ間の絶縁抵抗値(R)を測定した。絶縁性の評価は以下の基準に基づいて行った。
A:Rが1×1010Ω以上、
B:Rが1×10〜1×1010Ω、
C:Rが1×10Ω未満。
回路接続材料として実施例及び比較例の回路接続材料をそれぞれ使用した場合の絶縁性の評価結果を表1及び表2に示す。
A voltage of 50 V was applied for 1 minute between adjacent gold bumps of the connection structure thus connected, and then the insulation resistance value (R 2 ) between the gold bumps was measured. Insulation was evaluated based on the following criteria.
A: R 2 is 1 × 10 10 Ω or more,
B: R 2 is 1 × 10 9 to 1 × 10 10 Ω,
C: R 2 is less than 1 × 10 9 Ω.
Tables 1 and 2 show the evaluation results of the insulation properties when the circuit connection materials of Examples and Comparative Examples are used as the circuit connection materials, respectively.

Figure 2011231326
Figure 2011231326

Figure 2011231326
Figure 2011231326

表1に示すように、実施例1〜6の回路接続材料は、評価項目すべてについて評価がAであった。これにより、実施例1〜6に係る回路接続材料によれば、低い初期接続抵抗及び隣接する回路電極との良好な絶縁性の両方を高水準に達成可能であることが示された。これに加え、熱サイクル試験後の接続抵抗の評価がAとなっていることから、接続抵抗値の上昇を十分に抑制可能であることが示された。   As shown in Table 1, the circuit connection materials of Examples 1 to 6 were evaluated as A for all evaluation items. Thereby, according to the circuit connection material which concerns on Examples 1-6, it was shown that both low initial connection resistance and favorable insulation with an adjacent circuit electrode can be achieved to a high level. In addition, since the evaluation of the connection resistance after the heat cycle test is A, it was shown that the increase in the connection resistance value can be sufficiently suppressed.

また、Ni微粒子に起因する突起が設けられていない比較例1の回路接続材料は、初期接続抵抗の評価がBであり、熱サイクル試験後の接続抵抗の評価がCであった。   Further, the circuit connection material of Comparative Example 1 in which no protrusion due to Ni fine particles was provided had an initial connection resistance evaluation of B, and the connection resistance evaluation after the thermal cycle test was C.

上記の結果から、本発明によれば、高いファインピッチ化が要求されている回路電極同士を接続するに際し、回路電極が表面に酸化膜が形成されやすい金属材料からなるものであっても、接続構造の初期抵抗値を十分に低くすることが可能な回路接続材料を提供できることが示された。   From the above results, according to the present invention, when connecting circuit electrodes that are required to have a high fine pitch, even if the circuit electrodes are made of a metal material on which an oxide film is easily formed, the connection It has been shown that it is possible to provide a circuit connecting material capable of sufficiently reducing the initial resistance value of the structure.

本発明によれば、接続すべき電極が、表面に酸化膜が形成されやすい金属材料からなるものであっても、接続構造の初期抵抗値を十分に低くすることが可能な接着剤組成物及びこれを用いた回路接続材料を提供することができる。また、本発明によれば、低い接続抵抗で回路部材が接続された接続構造、並びにこれを得るための回路部材の接続方法を提供することができる。   According to the present invention, even if the electrode to be connected is made of a metal material on which an oxide film is easily formed, an adhesive composition capable of sufficiently reducing the initial resistance value of the connection structure and A circuit connection material using this can be provided. In addition, according to the present invention, it is possible to provide a connection structure in which circuit members are connected with a low connection resistance, and a circuit member connection method for obtaining the connection structure.

1…基材粒子、2…金属微粒子、3…金属めっき層、10…導電粒子、20…接着剤成分、30…第1の回路部材、31…回路基板(第1の回路基板)、32…回路電極(第1の回路電極)、40…第2の回路部材、41…回路基板(第2の回路基板)、42…回路電極(第2の回路電極)、50,70…回路接続材料、60,60a,60b…支持体、100…接続構造。 DESCRIPTION OF SYMBOLS 1 ... Base particle, 2 ... Metal fine particle, 3 ... Metal plating layer, 10 ... Conductive particle, 20 ... Adhesive component, 30 ... 1st circuit member, 31 ... Circuit board (1st circuit board), 32 ... Circuit electrode (first circuit electrode), 40 ... second circuit member, 41 ... circuit board (second circuit board), 42 ... circuit electrode (second circuit electrode), 50, 70 ... circuit connection material, 60, 60a, 60b ... support, 100 ... connection structure.

Claims (9)

接着剤成分と、前記接着剤成分中に分散している導電粒子とを備える接着剤組成物であって、
前記導電粒子は、当該導電粒子の中心部分を構成する基材粒子と、前記基材粒子の表面の少なくとも一部を覆う金属めっき層と、前記金属めっき層の内側であり前記基材粒子の表面上に配置された複数の金属微粒子とを有する、接着剤組成物。
An adhesive composition comprising an adhesive component and conductive particles dispersed in the adhesive component,
The conductive particles are base particles constituting a central portion of the conductive particles, a metal plating layer covering at least a part of the surface of the base particles, and the inner surface of the metal plating layer and the surface of the base particles An adhesive composition having a plurality of fine metal particles disposed thereon.
前記金属微粒子の平均粒径が200〜1000nmである、請求項1記載の接着剤組成物。   The adhesive composition according to claim 1, wherein the metal fine particles have an average particle size of 200 to 1000 nm. 前記金属微粒子の数が、基材粒子1個当たり10〜40個である、請求項1又は2記載の接着剤組成物。   The adhesive composition according to claim 1 or 2, wherein the number of metal fine particles is 10 to 40 per base particle. 前記基材粒子は、粒子直径の20%圧縮変形時の圧縮弾性率が100〜1000kgf/mmである材質からなるものである、請求項1〜3のいずれか一項に記載の接着剤組成物。 The substrate particles are those 20% compressive deformation during the compression modulus of the particles diameter made of a material which is 100~1000kgf / mm 2, the adhesive composition according to any one of claims 1 to 3 object. 前記基材粒子は、最大荷重5mNで圧縮させた後の圧縮回復率が40%以上である、請求項1〜4のいずれか一項に記載の接着剤組成物。   The adhesive composition according to any one of claims 1 to 4, wherein the base particle has a compression recovery rate of 40% or more after being compressed at a maximum load of 5 mN. 前記基材粒子の平均粒径が、1〜10μmである、請求項1〜5のいずれか一項に記載の接着剤組成物。   The adhesive composition according to any one of claims 1 to 5, wherein the average particle diameter of the substrate particles is 1 to 10 µm. 請求項1〜6のいずれか一項に記載の接着剤組成物からなり、回路部材同士を接着するとともにそれぞれの回路部材が有する回路電極同士を電気的に接続するために用いられる、回路接続材料。   A circuit connection material comprising the adhesive composition according to any one of claims 1 to 6 and used for bonding circuit members to each other and electrically connecting circuit electrodes included in each circuit member. . 対向配置された一対の回路部材と、
請求項7に記載の回路接続材料の硬化物からなり、前記一対の回路部材の間に介在しそれぞれの回路部材が有する回路電極同士が電気的に接続されるように当該回路部材同士を接着する接続部と、を備える接続構造。
A pair of circuit members disposed opposite to each other;
It consists of the hardened | cured material of the circuit connection material of Claim 7, and the said circuit members are adhere | attached so that the circuit electrodes which are interposed between the said pair of circuit members and each circuit member has may be electrically connected. And a connection part.
対向配置された一対の回路部材の間に請求項7に記載の回路接続材料を介在させ、全体を加熱及び加圧して、前記回路接続材料の硬化物からなり、前記一対の回路部材の間に介在しそれぞれの回路部材が有する回路電極同士が電気的に接続されるように前記回路部材同士を接着する接続部を形成することにより、前記一対の回路部材及び前記接続部を備える接続構造を得る、回路部材の接続方法。   The circuit connection material according to claim 7 is interposed between a pair of circuit members arranged opposite to each other, and the whole is heated and pressurized to be made of a cured product of the circuit connection material, and between the pair of circuit members. A connection structure including the pair of circuit members and the connection portion is obtained by forming a connection portion that bonds the circuit members so that the circuit electrodes of the respective circuit members that are interposed are electrically connected to each other. The connection method of a circuit member.
JP2011123727A 2005-11-18 2011-06-01 Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method Withdrawn JP2011231326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011123727A JP2011231326A (en) 2005-11-18 2011-06-01 Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005334235 2005-11-18
JP2005334235 2005-11-18
JP2006178346 2006-06-28
JP2006178346 2006-06-28
JP2011123727A JP2011231326A (en) 2005-11-18 2011-06-01 Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007545234A Division JP4877230B2 (en) 2005-11-18 2006-11-14 Adhesive composition, circuit connection material, connection structure, and circuit member connection method

Publications (1)

Publication Number Publication Date
JP2011231326A true JP2011231326A (en) 2011-11-17

Family

ID=38048545

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007545234A Expired - Fee Related JP4877230B2 (en) 2005-11-18 2006-11-14 Adhesive composition, circuit connection material, connection structure, and circuit member connection method
JP2011123727A Withdrawn JP2011231326A (en) 2005-11-18 2011-06-01 Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007545234A Expired - Fee Related JP4877230B2 (en) 2005-11-18 2006-11-14 Adhesive composition, circuit connection material, connection structure, and circuit member connection method

Country Status (5)

Country Link
JP (2) JP4877230B2 (en)
KR (2) KR101049609B1 (en)
CN (1) CN101309993B (en)
TW (2) TW201202375A (en)
WO (1) WO2007058159A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181131A (en) * 2012-03-02 2013-09-12 Dexerials Corp Circuit connection material, and method for producing real unit using the same
WO2015146434A1 (en) * 2014-03-26 2015-10-01 デクセリアルズ株式会社 Electroconductive particles, electroconductive adhesive, method for manufacturing connection body, method for connecting electronic component, and connection body

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5018270B2 (en) * 2007-06-22 2012-09-05 パナソニック株式会社 Semiconductor laminate and semiconductor device using the same
CN101689410B (en) * 2007-08-02 2013-10-16 日立化成株式会社 Circuit connection material, and connection structure of circuit member and connection method of circuit member using the circuit connection material
KR101130377B1 (en) * 2007-10-18 2012-03-27 히다치 가세고교 가부시끼가이샤 Adhesive composition, circuit connecting material using the adhesive composition, method for connecting circuit member, and circuit connecting body
JP4623224B2 (en) * 2008-06-26 2011-02-02 日立化成工業株式会社 Resin film sheet and electronic parts
WO2010001900A1 (en) * 2008-07-01 2010-01-07 日立化成工業株式会社 Circuit connection material and circuit connection structure
US20110300326A1 (en) * 2009-02-27 2011-12-08 Hitachi Chemical Company, Ltd. Adhesive material reel
JP5375374B2 (en) * 2009-07-02 2013-12-25 日立化成株式会社 Circuit connection material and circuit connection structure
WO2011002084A1 (en) * 2009-07-02 2011-01-06 日立化成工業株式会社 Conductive particle
JP4640532B2 (en) * 2009-07-02 2011-03-02 日立化成工業株式会社 Coated conductive particles
JP4640531B2 (en) * 2009-07-02 2011-03-02 日立化成工業株式会社 Conductive particles
JP5589361B2 (en) * 2009-11-16 2014-09-17 日立化成株式会社 Conductive particles and method for producing the same
JP5580729B2 (en) * 2010-12-28 2014-08-27 積水化学工業株式会社 Conductive particles, anisotropic conductive materials, and connection structures
KR101151366B1 (en) 2011-11-24 2012-06-08 한화케미칼 주식회사 Conductive particles and method for preparing the same
JP6333552B2 (en) * 2012-01-19 2018-05-30 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
KR20150092077A (en) * 2012-12-06 2015-08-12 세키스이가가쿠 고교가부시키가이샤 Conductive material, connection structure and method for producing connection structure
JP6212366B2 (en) * 2013-08-09 2017-10-11 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures
TWI624356B (en) * 2013-11-11 2018-05-21 Nippon Steel & Sumitomo Metal Corp Metal joint structure using metal nanoparticle, metal joint method, and metal joint material
KR20160106004A (en) * 2014-01-08 2016-09-09 세키스이가가쿠 고교가부시키가이샤 Conductive particles for back contact solar cell modules, conductive material, and solar cell module
KR101985581B1 (en) * 2014-01-14 2019-06-03 도요 알루미늄 가부시키가이샤 Composite conductive particles, conductive resin composition containing same and conductive coated article
CN112863732B (en) * 2014-10-29 2023-01-17 迪睿合株式会社 Method for manufacturing connection structure, and conductive material
JP2016089153A (en) * 2014-10-29 2016-05-23 デクセリアルズ株式会社 Conductive material
JP7007138B2 (en) * 2016-09-09 2022-02-10 積水化学工業株式会社 Metal atom-containing particles, connection materials, connection structures and methods for manufacturing connection structures

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2504057B2 (en) * 1987-06-02 1996-06-05 日立化成工業株式会社 Conductive particles
JP3083535B2 (en) * 1990-06-01 2000-09-04 積水化学工業株式会社 Conductive fine particles and conductive adhesive
JP3420809B2 (en) * 1993-12-16 2003-06-30 信越ポリマー株式会社 Conductive particles and anisotropic conductive adhesive using the same
JP2823799B2 (en) * 1994-07-29 1998-11-11 信越ポリマー株式会社 Anisotropic conductive adhesive
JP3766123B2 (en) * 1995-10-03 2006-04-12 積水化学工業株式会社 Conductive connection method between electrodes and conductive fine particles
JP3379456B2 (en) * 1998-12-25 2003-02-24 ソニーケミカル株式会社 Anisotropic conductive adhesive film
JP3696429B2 (en) * 1999-02-22 2005-09-21 日本化学工業株式会社 Conductive electroless plating powder, method for producing the same, and conductive material comprising the plating powder
JP4663158B2 (en) * 2000-06-14 2011-03-30 積水化学工業株式会社 Fine particle arrangement film, conductive connection film, conductive connection structure, and fine particle arrangement method
JP2004164874A (en) * 2002-11-08 2004-06-10 Osugi Kk Electroconductive fine particle for anisotropic electroconductive adhesive
JP2005108870A (en) * 2003-09-26 2005-04-21 Sekisui Chem Co Ltd Ic chip, its manufacturing method, semiconductor package, and liquid crystal display device
JP5247968B2 (en) * 2003-12-02 2013-07-24 日立化成株式会社 Circuit connection material and circuit member connection structure using the same
KR101131229B1 (en) * 2004-01-30 2012-03-28 세키스이가가쿠 고교가부시키가이샤 Conductive particle and anisotropic conductive material
JP4563110B2 (en) * 2004-08-20 2010-10-13 積水化学工業株式会社 Method for producing conductive fine particles
JP4593302B2 (en) * 2005-02-03 2010-12-08 積水化学工業株式会社 Conductive fine particles and anisotropic conductive materials
JP4674096B2 (en) * 2005-02-15 2011-04-20 積水化学工業株式会社 Conductive fine particles and anisotropic conductive materials
JP4860163B2 (en) * 2005-02-15 2012-01-25 積水化学工業株式会社 Method for producing conductive fine particles
JP2006269296A (en) * 2005-03-24 2006-10-05 Sekisui Chem Co Ltd Manufacturing method of particle with protrusions, particle with protrusions, conductive particle with protrusions, and anisotropic conductive material
JP4936678B2 (en) * 2005-04-21 2012-05-23 積水化学工業株式会社 Conductive particles and anisotropic conductive materials
JP2006331714A (en) * 2005-05-24 2006-12-07 Sekisui Chem Co Ltd Conductive fine particle and anisotropic conductive material
JP4589810B2 (en) * 2005-06-07 2010-12-01 積水化学工業株式会社 Conductive fine particles and anisotropic conductive materials
JP2007035574A (en) * 2005-07-29 2007-02-08 Sekisui Chem Co Ltd Conductive particulates, anisotropic conductive material, and connection structural body
JP4598621B2 (en) * 2005-07-29 2010-12-15 積水化学工業株式会社 Conductive fine particles and anisotropic conductive material
JP4718926B2 (en) * 2005-07-29 2011-07-06 積水化学工業株式会社 Conductive fine particles and anisotropic conductive material
JP4950451B2 (en) * 2005-07-29 2012-06-13 積水化学工業株式会社 Conductive fine particles, anisotropic conductive material, and connection structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181131A (en) * 2012-03-02 2013-09-12 Dexerials Corp Circuit connection material, and method for producing real unit using the same
WO2015146434A1 (en) * 2014-03-26 2015-10-01 デクセリアルズ株式会社 Electroconductive particles, electroconductive adhesive, method for manufacturing connection body, method for connecting electronic component, and connection body
JP2015195178A (en) * 2014-03-26 2015-11-05 デクセリアルズ株式会社 Conductive particle, conductive adhesive, method for producing connection body, method for connecting electronic component, and connection body

Also Published As

Publication number Publication date
WO2007058159A1 (en) 2007-05-24
JP4877230B2 (en) 2012-02-15
KR101049609B1 (en) 2011-07-14
TW200730599A (en) 2007-08-16
TWI367246B (en) 2012-07-01
KR20110048079A (en) 2011-05-09
JPWO2007058159A1 (en) 2009-04-30
TW201202375A (en) 2012-01-16
CN101309993B (en) 2012-06-27
CN101309993A (en) 2008-11-19
KR20080072658A (en) 2008-08-06

Similar Documents

Publication Publication Date Title
JP4877230B2 (en) Adhesive composition, circuit connection material, connection structure, and circuit member connection method
JP4862921B2 (en) Circuit connection material, circuit connection structure and manufacturing method thereof
JP4293187B2 (en) Circuit connection material, film-like circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
JP5247968B2 (en) Circuit connection material and circuit member connection structure using the same
JP5067355B2 (en) Circuit connection material and circuit member connection structure
KR101410108B1 (en) Circuit-connecting material, and connection structure for circuit member
JP4967482B2 (en) Conductive particles, adhesive composition and circuit connecting material
KR101205170B1 (en) Circuit connecting material and structure for connecting circuit member
JP2013055058A (en) Circuit connection material and connection structure of circuit member
JP5176139B2 (en) Circuit connection material and circuit member connection structure using the same
JP4154919B2 (en) Circuit connection material and circuit terminal connection structure using the same
JP4844461B2 (en) Circuit connection material and circuit terminal connection structure using the same
JP2019065062A (en) Conductive adhesive film
JP3877090B2 (en) Circuit connection material and circuit board manufacturing method
JP4325379B2 (en) Circuit connection material, film-like circuit connection material using the same, circuit member connection structure, and manufacturing method thereof
JP7006029B2 (en) Adhesive compositions and structures for circuit connections
JP2005206717A (en) Substrate-provided adhesive, manufacturing method of substrate-provided adhesive, and circuit connecting structure using the adhesive
JP4400674B2 (en) Circuit connection material and circuit terminal connection structure using the same
JP5387592B2 (en) Circuit connection material and method of manufacturing circuit member connection structure
JP2009289729A (en) Anisotropic conductive film
JP2002226807A (en) Adhesive for connecting circuit, method for connecting circuit by using the same, and connecting structure
JP2013103947A (en) Adhesive film for circuit connection, circuit-connected body using the adhesive film, and method of producing the circuit-connected body
JP2010004067A (en) Circuit connection material
JP2009182365A (en) Manufacturing method of circuit board, and circuit connection material

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120104