JP2011223893A - Agricultural sheet - Google Patents

Agricultural sheet Download PDF

Info

Publication number
JP2011223893A
JP2011223893A JP2010094264A JP2010094264A JP2011223893A JP 2011223893 A JP2011223893 A JP 2011223893A JP 2010094264 A JP2010094264 A JP 2010094264A JP 2010094264 A JP2010094264 A JP 2010094264A JP 2011223893 A JP2011223893 A JP 2011223893A
Authority
JP
Japan
Prior art keywords
aliphatic polyester
derived
agricultural sheet
starch
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010094264A
Other languages
Japanese (ja)
Inventor
Hisasumi Sakai
久純 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNYCK KK
Original Assignee
UNYCK KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNYCK KK filed Critical UNYCK KK
Priority to JP2010094264A priority Critical patent/JP2011223893A/en
Publication of JP2011223893A publication Critical patent/JP2011223893A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Protection Of Plants (AREA)
  • Greenhouses (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce generation of COwhen disposing an agricultural sheet after using it by changing the material composition as the agricultural sheet.SOLUTION: The agricultural sheet is obtained by mixing aliphatic polyester of biomass base polymer using fatty acid coming from vegetable systems such as corn starch, sugar cane starch, castor oil, and aromatic aliphatic polyester of at least more than 10 (weight)% of raw material replacing the fatty acid coming from petroleum system raw material. Thereby, carbon neutral of the raw materials coming from vegetables is achieved when disposing it after the use and generation of COis suppressed.

Description

本発明は、農地表面を被覆することにより種苗や農作物の保温性を高め、また適度の射光を確保するとともに風害をなくし、さらには過剰な水分蒸発防止、あるいは雑草繁茂の抑制用など多用途に用いられるマルチシートに関し、特に廃棄時におけるCO発生量の削減をはかることを目的とする。 The present invention increases the heat retention of seedlings and crops by covering the surface of the farmland, secures appropriate radiant light and eliminates wind damage, and further prevents the excessive moisture evaporation or suppresses the growth of weeds. The purpose of the multi-sheet used is to reduce the amount of CO 2 generated especially at the time of disposal.

従来一般に知られている農業用シートは、石油系由来と澱粉コンパウンド系、および植物由来とに大別される。石油系では、ポリエチレンに代表されるポリオレフィン系樹脂、塩化ビニル系樹脂、エチレンー酢酸ビニル共重合体樹脂フィルムなどに代えて近時とくに生分解性のものが多用されるようになった。   Conventionally known agricultural sheets are roughly classified into petroleum-based, starch compound-based, and plant-derived. In the petroleum system, biodegradable materials have recently been frequently used in place of polyolefin resins typified by polyethylene, vinyl chloride resins, ethylene-vinyl acetate copolymer resin films, and the like.

たとえば、脂肪族カルボン酸および芳香族ジカルボン酸よりなるジカルボン酸成分と、脂肪族ジオールからなるジオール成分とを縮合してなる脂肪族芳香族ポリエステルを多官能イソシアネートで高分子化した融点105〜115℃の脂肪族芳香族ポリエステル系樹脂20〜82%と、脂肪族ジカルボン酸よりなるジカルボン酸成分と、脂肪族ジオールからなるジオール成分とを縮合してなる脂肪族ポリエステルを多官能イソシアネートで高分子化した融点110〜120℃の脂肪族ポリエステル系樹脂18〜80重量%を配合することにより、特定の生分解性樹脂を組合わせることにより、インフレーション成形機によるフィルム成形が可能で、生分解性が損なわれず、しかも耐候性や柔軟性に優れた生分解性フィルムが知られている(特許第3710726号公報参照)。   For example, a melting point of 105 to 115 ° C. obtained by polymerizing an aliphatic aromatic polyester obtained by condensing a dicarboxylic acid component composed of an aliphatic carboxylic acid and an aromatic dicarboxylic acid and a diol component composed of an aliphatic diol with a polyfunctional isocyanate. An aliphatic polyester obtained by condensing 20 to 82% of the aliphatic aromatic polyester resin, a dicarboxylic acid component composed of an aliphatic dicarboxylic acid, and a diol component composed of an aliphatic diol was polymerized with a polyfunctional isocyanate. By blending 18 to 80% by weight of an aliphatic polyester resin having a melting point of 110 to 120 ° C., a specific biodegradable resin can be combined to form a film by an inflation molding machine, and the biodegradability is not impaired. In addition, biodegradable films with excellent weather resistance and flexibility are known (special features No. 3710726 see Japanese).

また生分解性ポリエステル樹脂にポリブチレンアジペートテレフタレートやポリブチレンサクシネートなどの芳香族脂肪族ポリエステル系樹脂を20重量%以上含有させるとともに、さらに炭酸カルシウムや水酸化マグネシウムなどの無機充填物を10〜50重量%含有させることにより生分解性樹脂フィルムシートの水蒸気透過性を改善して水蒸気バリア性を向上させるようにしたものも知られている(特開2005−192465号公報参照)。   The biodegradable polyester resin contains 20% by weight or more of an aromatic aliphatic polyester resin such as polybutylene adipate terephthalate or polybutylene succinate, and further contains an inorganic filler such as calcium carbonate or magnesium hydroxide in an amount of 10 to 50%. It is also known that the water vapor permeability of the biodegradable resin film sheet is improved to improve the water vapor barrier property by containing it by weight (see Japanese Patent Application Laid-Open No. 2005-192465).

さらに澱粉コンパウンド系のものでは、表面欠陥のない射出成形製品の製造用に適する生分解性熱可塑性組成物として、澱粉成分、セルロースエステルあるいはエーテル、澱粉相並びにセルロース及び誘導体の可塑剤、及び脂肪族又はポリ水酸化鎖でグラフト化されたセルロース及び/又は澱粉成分と相溶化しうるポリマーから選択された相溶化剤とからなり;2〜24C含有のヒドロキシ酸あるいはジアミンと脂肪族若しくは芳香族のジイソシアネートから得られたコポリマー;脂肪族のポリエステル、あるいはポリ尿素と脂肪族あるいは芳香族のジイソシアネートから得られたコポリマー;セルロースエステルあるいはエーテル及び/又は澱粉成分と相溶性であるポリマーを澱粉可溶性ポリオールによりグラフト化して得られたコポリマー、澱粉を錯体化できるポリマー;澱粉相溶性ポリオールから選択される、生分解性熱可塑性組成物が知られる(特開平8−231762号公報参照)。   Furthermore, in the case of starch compounds, biodegradable thermoplastic compositions suitable for the production of injection molded products free of surface defects include starch components, cellulose esters or ethers, starch phases and cellulose and derivative plasticizers, and aliphatics. Or a compatibilizing agent selected from cellulose grafted with polyhydroxyl chains and / or polymers compatible with starch components; 2-24C containing hydroxy acids or diamines and aliphatic or aromatic diisocyanates Copolymers obtained from: aliphatic polyesters, or copolymers obtained from polyurea and aliphatic or aromatic diisocyanates; polymers that are compatible with cellulose esters or ethers and / or starch components are grafted with starch-soluble polyols Copolymer obtained , Starch polymers may complexing; is selected from starch-compatible polyol, biodegradable thermoplastic composition is known (see Japanese Patent Laid-Open No. 8-231762).

また芳香族脂肪族ポリエステルのアジピン酸に代えて植物由来の有機酸を混合させたものや、あるいは炭酸カルシウムやタルクなどのフィラーを少量添加して耐久性を向上させたものも知られている。   Also known are those in which a plant-derived organic acid is mixed in place of the aromatic aliphatic polyester adipic acid, or in which durability is improved by adding a small amount of a filler such as calcium carbonate or talc.

特許第3710726号公報Japanese Patent No. 3710726 特開2005−192465号公報JP-A-2005-192465 特開平8−231762号公報JP-A-8-231762

しかしながら、上記した特許文献1あるいは特許文献2に開示されている石油系由来の樹脂フィルムシートにあっては、使用済み後の処理時に多量のCOを発生するところから環境維持の面において大きな問題があり、また生体への影響も少なくない。また特許文献3に記載されている生分解性熱可塑性組成物シートにおいても、基本的には石油系樹脂をベースとしているところから現実には処分時に発生するCOの発生量を削減する効果は小さく、現状において用いられている生分解性マルチフィルムは、依然としてその殆どが石油系由来のポリエチレン製であり、ポリブチレンサクシネートとアジベートの混合物を用いたものが多い。 However, in the petroleum-based resin film sheet disclosed in Patent Document 1 or Patent Document 2 described above, a large amount of CO 2 is generated at the time of treatment after use, which is a big problem in terms of environmental maintenance. There are also many effects on the living body. Also, the biodegradable thermoplastic composition sheet described in Patent Document 3 is basically based on a petroleum-based resin, so that the effect of actually reducing the amount of CO 2 generated at the time of disposal is Most of the biodegradable multi-films that are small and used at present are still made of petroleum-derived polyethylene, and many use a mixture of polybutylene succinate and adibate.

そのために、生分解性シートは作物の収穫後に、これを土壌中に漉き込んで土壌中の微生物により分解・消滅させることが可能であるが、土壌中において消滅しないポリエチレンを含む石油系由来の原料を主成分とした多くの農業用生分解性マルチシートにあっては使用後にいちいち剥がして回収後に焼却処分する必要があり、多量のCO発生が避けられない。 For this reason, biodegradable sheets can be sown into the soil after crops are harvested and decomposed and extinguished by microorganisms in the soil, but they are petroleum-derived raw materials containing polyethylene that do not disappear in the soil. Many agricultural biodegradable multi-sheets based on the above must be peeled off after use and incinerated after collection, and a large amount of CO 2 is inevitable.

因みに世界のマルチ栽培面積は広大であるが、とくに中国国内でのマルチ栽培面積は全世界の約90%を占めるといわれ、厚さが8μ程度のものが主流であって薄すぎて回収が困難であるために、2000年以前の17年間のマルチ栽培により、土中には1haあたり225〜375kgのフィルムが残留しているといわれる。この場合に3〜5cm程度の表層については耕作時に比較的回収されやすいが、5cm以上の深層部に残存するフィルムの回収は困難である。   By the way, the mulch cultivation area in the world is vast, but the mulch cultivation area in China is said to occupy about 90% of the whole world, and those with a thickness of about 8μ are the mainstream and are difficult to collect. Therefore, it is said that 225 to 375 kg of film per 1 hectare remains in the soil due to mulch cultivation for 17 years before 2000. In this case, the surface layer of about 3 to 5 cm is relatively easily recovered during cultivation, but it is difficult to recover the film remaining in the deep layer of 5 cm or more.

また土塊とともに隠れているフィルムは張力が弱いために土塊を崩して細かくしないと回収ができない。3〜5年間程度の連続マルチ栽培によってフィルムを回収しなければ、小麦で2〜3%、トウモロコシで10%程度、綿で10〜15%の減収になるとの報告もある。   Moreover, since the film hidden with the clot is weak in tension, it cannot be recovered unless the clot is broken and made fine. There is a report that if films are not collected by continuous multi-cultivation for about 3 to 5 years, the sales will be reduced by 2-3% for wheat, about 10% for corn, and 10-15% for cotton.

上記の課題を解決するために、本発明においては使用後の廃棄時にCO発生量削減効果のより大きな農業用生分解性マルチシートを開発したものであって、具体的には石油系由来原料の脂肪酸に代えて原料の少なくとも10%以上についてトウモロコシ澱粉、サトウキビ澱粉、ヒマシ油など植物系由来の脂肪酸を用いたバイオマスベースポリマーの脂肪族ポリエステル、芳香族脂肪族ポリエステルとした農業用シートを開発したものである。 In order to solve the above-mentioned problems, in the present invention, an agricultural biodegradable multi-sheet having a greater effect of reducing CO 2 generation at the time of disposal after use has been developed. Agricultural sheets made of biomass-based polymer aliphatic polyesters and aromatic aliphatic polyesters using plant-derived fatty acids such as corn starch, sugarcane starch and castor oil instead of fatty acids Is.

より具体的には主成分である脂肪族ポリエステル、芳香族脂肪族ポリエステル等の石油系由来の生分解性樹脂に対し、植物由来の生分解性ポリマー樹脂を少なくとも10(重量)%以上添加混合して使用するようにした農業用シートに関する。また上記により添加混合した植物由来の生分解性ポリマー樹脂の強度を向上させるために、植物由来の生分解性ポリマー樹脂の添加量に比例した量のフィラーを添加するようにした農業用シートに関する。   More specifically, at least 10% (by weight) or more of a plant-derived biodegradable polymer resin is added to and mixed with petroleum-derived biodegradable resins such as aliphatic polyester and aromatic aliphatic polyester as the main component. It is related with the sheet | seat for agriculture made to use. Moreover, in order to improve the intensity | strength of the plant-derived biodegradable polymer resin added and mixed by the above, it is related with the agricultural sheet | seat which added the quantity of the filler proportional to the addition amount of the plant-derived biodegradable polymer resin.

本発明は上記したように、石油系由来原料の脂肪酸に代えて原料の少なくとも一部としてトウモロコシ澱粉、サトウキビ澱粉、ヒマシ油など植物系由来の脂肪酸を用いたバイオマスベースポリマーの脂肪族ポリエステル、芳香族脂肪族ポリエステルとしたために、使用後の廃棄時に植物由来原料のカーボンニュートラルを実現し、COの発生量を抑制することができる。植物系由来樹脂として、とくにトウモロコシより得られるポリ乳酸などは比較的安価で効率的に得られる。 As described above, the present invention is a biomass-based polymer aliphatic polyester, aromatic using a plant-derived fatty acid such as corn starch, sugarcane starch, castor oil as at least a part of the raw material instead of the fatty acid derived from petroleum. Since the aliphatic polyester is used, carbon neutral of a plant-derived raw material can be realized at the time of disposal after use, and the generation amount of CO 2 can be suppressed. As a plant-derived resin, polylactic acid obtained from corn in particular can be obtained at a relatively low cost and efficiently.

以下において本発明の実施の形態について詳細に説明をする。本発明で用いられる石油系由来原料の脂肪酸としては、たとえば三菱化学(GS・プラ)、昭和高分子〔ビオノーレ(登録商標)〕、BASF社〔エコフレックス(登録商標)〕など汎用の脂肪族ポリエステル、あるいは芳香族脂肪族ポリエステルなどが用いられる。エコフレックスに代表される芳香族脂肪族ポリエステルは、アジピン酸およびテレフタル酸からなるジカルボン酸成分と、1,4 ブタンジオールからなるジオール成分との重縮合物を、多官能イソシアネート化合物で高分子化した脂肪である。   Hereinafter, embodiments of the present invention will be described in detail. Examples of the fatty acid of the petroleum-derived raw material used in the present invention include general-purpose aliphatic polyesters such as Mitsubishi Chemical (GS / Pura), Showa Polymer [Bionore (registered trademark)], BASF [Ecoflex (registered trademark)], and the like. Alternatively, an aromatic aliphatic polyester is used. The aromatic aliphatic polyester represented by Ecoflex is a polycondensation product of a polycondensation product of a dicarboxylic acid component consisting of adipic acid and terephthalic acid and a diol component consisting of 1,4 butanediol with a polyfunctional isocyanate compound. Is fat.

また上記したGS・プラ、およびビオノーレに代表される脂肪族ポリエステルは、コハク酸からなるジカルボン酸成分と、1,4 ブタンジオールからなるジオール成分との重縮合物を、多官能イソシアネート化合物で高分子化した脂肪である。   In addition, the aliphatic polyester represented by the above-mentioned GS / Pla and Bionore is a polycondensate of a dicarboxylic acid component composed of succinic acid and a diol component composed of 1,4 butanediol, which is a polymer with a polyfunctional isocyanate compound. Fat.

これに対してその少なくとも一部に代用される原料組成として、トウモロコシ澱粉、サトウキビ澱粉、ヒマシ油など植物系由来の脂肪酸を用いたバイオマスベースポリマーの脂肪族ポリエステル、芳香族脂肪族ポリエステルが用いられる。   On the other hand, as a raw material composition substituted for at least a part thereof, aliphatic polyester and aromatic aliphatic polyester of biomass base polymer using plant-derived fatty acids such as corn starch, sugarcane starch and castor oil are used.

具体的にはたとえば、ノバモント社(マタビー CF-99A・CF-51A)に代表されるブタンジオール/長鎖ジカルボン酸共重合体は、植物由来物質として芳香族脂肪族ポリエステルのアジピン酸の代わりに効果的に用いることができる。その他BASF社のエコバイオ(商品名)等も用いることができる。この場合にポリ乳酸は比較的安価で安定的に入手でき、トウモロコシなどに含まれるデンプンを抽出し,それを酵素分解して得た糖類を発酵させる工程を経て容易に生成することができる。   Specifically, for example, butanediol / long-chain dicarboxylic acid copolymers represented by Novamont (Mataby CF-99A / CF-51A) are effective in place of adipic acid as an aromatic aliphatic polyester as a plant-derived substance. Can be used. In addition, Eco Bio (trade name) from BASF can also be used. In this case, polylactic acid is relatively inexpensive and can be obtained stably, and can be easily produced through a process of fermenting a saccharide obtained by extracting starch contained in corn or the like and enzymatically decomposing it.

天然物質の糖類に属するものとしては、上記のほかに酢酸セルロースやエステル化澱粉、キトサンなどが使用可能である。またタンパク質に属するものとしてはフィブロイン、コラーゲン、ゼラチンなどが使用可能とみられ、その他分泌物として天然ゴムなどの使用も考えられる。   In addition to the above, cellulose acetate, esterified starch, chitosan and the like can be used as saccharides belonging to natural substances. In addition, fibroin, collagen, gelatin and the like can be used as those belonging to protein, and natural rubber or the like can also be used as a secreted product.

また上記により添加混合した植物由来の生分解性ポリマー樹脂の強度、及びインフレ生産性の向上、穴あけ時ロス低減をはかるためにタルクや炭カル等のフィラーを添加使用するとより一層有効である。なお、この場合のフィラーの添加量については実験の結果7(重量)%以下ではあまり効果はなく、また30(重量)%以上でもかえって強度劣化を招くところから8〜30(重量)%の範囲内であるのが好ましい。   Further, it is more effective to add and use fillers such as talc and charcoal cal in order to improve the strength and inflation productivity of plant-derived biodegradable polymer resin added and mixed as described above, and to reduce loss during drilling. In addition, about the addition amount of the filler in this case, if it is 7 (weight)% or less as a result of experiment, it is not so effective, and if it is 30 (weight)% or more, the strength is deteriorated. Is preferably within.

上記の組成による樹脂成分をコンパウンド、あるいはドライブレンドにより成形する。この場合の組成について種々の実験をおこなった結果、
植物由来の生分解性ポリマー樹脂量:10%〜92%、
石油系由来樹脂量:10%〜92%、
フィラー量:8%〜30%
上記の範囲内でコンパウンドあるいはドライブレンドにより成形してシートに形成するのが好ましい範囲であることが下記の実験データから明らかとなった。
The resin component having the above composition is molded by compounding or dry blending. As a result of conducting various experiments on the composition in this case,
Amount of plant-derived biodegradable polymer resin: 10% to 92%,
Petroleum-derived resin amount: 10% to 92%,
Filler amount: 8% to 30%
It became clear from the following experimental data that it is preferable that the sheet is molded by compounding or dry blending within the above range and formed into a sheet.

Figure 2011223893
Figure 2011223893

Figure 2011223893
Figure 2011223893

Claims (3)

石油系由来原料の脂肪酸に代えて、原料としてトウモロコシ澱粉、サトウキビ澱粉、ヒマシ油など植物系由来の脂肪酸を少なくとも10(重量)%以上用いたバイオマスベースポリマーの脂肪族ポリエステル、芳香族脂肪族ポリエステルとした農業用シート。   A biomass-based polymer aliphatic polyester, aromatic aliphatic polyester using at least 10% (by weight) or more of a plant-derived fatty acid such as corn starch, sugarcane starch, castor oil as a raw material instead of a fatty acid derived from petroleum Agricultural sheet. 主成分である脂肪族ポリエステル、芳香族脂肪族ポリエステル等の石油系由来の生分解性樹脂に対し、植物由来の生分解性ポリマー樹脂を少なくとも10(重量)%以上添加混合して使用するようにした農業用シート。   Use at least 10% (by weight) or more of plant-derived biodegradable polymer resin added to petroleum-derived biodegradable resins such as aliphatic polyester and aromatic aliphatic polyester as the main component. Agricultural sheet. 上記により添加混合した植物由来の生分解性ポリマー樹脂の強度を向上させるために、8〜30(重量)%のフィラーを添加するようにした請求項1又は請求項2に記載の農業用シート。
The agricultural sheet according to claim 1 or 2, wherein 8 to 30% (by weight) of filler is added in order to improve the strength of the plant-derived biodegradable polymer resin added and mixed as described above.
JP2010094264A 2010-04-15 2010-04-15 Agricultural sheet Pending JP2011223893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094264A JP2011223893A (en) 2010-04-15 2010-04-15 Agricultural sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010094264A JP2011223893A (en) 2010-04-15 2010-04-15 Agricultural sheet

Publications (1)

Publication Number Publication Date
JP2011223893A true JP2011223893A (en) 2011-11-10

Family

ID=45040077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094264A Pending JP2011223893A (en) 2010-04-15 2010-04-15 Agricultural sheet

Country Status (1)

Country Link
JP (1) JP2011223893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6029155B2 (en) * 2012-11-14 2016-11-24 国立研究開発法人産業技術総合研究所 β-1,3-glucan derivative and method for producing β-1,3-glucan derivative

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005139395A (en) * 2003-11-10 2005-06-02 Maruzen Petrochem Co Ltd Mulching film
JP2009155531A (en) * 2007-12-27 2009-07-16 Mitsubishi Chemicals Corp Resin composition, preparation method, and film including the resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005139395A (en) * 2003-11-10 2005-06-02 Maruzen Petrochem Co Ltd Mulching film
JP2009155531A (en) * 2007-12-27 2009-07-16 Mitsubishi Chemicals Corp Resin composition, preparation method, and film including the resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6029155B2 (en) * 2012-11-14 2016-11-24 国立研究開発法人産業技術総合研究所 β-1,3-glucan derivative and method for producing β-1,3-glucan derivative

Similar Documents

Publication Publication Date Title
Shogren et al. Plant-based materials and transitioning to a circular economy
Coppola et al. Bioplastic from renewable biomass: a facile solution for a greener environment
Nandakumar et al. Bioplastics: A boon or bane?
Meereboer et al. Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites
Hayes et al. Biodegradable agricultural mulches derived from biopolymers
Jiang et al. Biodegradable polymers and polymer blends
Tian et al. Research progress of biodegradable materials in reducing environmental pollution
CA2978629A1 (en) Biodegradable polymer-based biocomposites with tailored properties and method of making those
CN110678502B (en) Polymer compositions for highly disintegrable films
JP2016513153A (en) Biodegradable thin film and laminated material
JP2007197654A (en) Polyester and method for producing the same
JP5120729B2 (en) Polyester and method for producing the same
JP5378063B2 (en) Polyester and method for producing the same
JP3216909U (en) Biodegradable laminated material
JP2020050855A (en) Biodegradable resin composition, master batch, and molded body thereof
Patel et al. Biodegradable polymers: an ecofriendly approach in newer millenium
Fink The chemistry of bio-based polymers
Thanh et al. Sustainable poly (butylene adipate-co-furanoate) composites with sulfated chitin nanowhiskers: synergy leading to superior robustness and improved biodegradation
Kumar et al. An investigation of the environmental implications of bioplastics: Recent advancements on the development of environmentally friendly bioplastics solutions
Rai et al. Agriculture waste to bioplastics: A perfect substitution of plastics
Morinval et al. Systems based on biobased thermoplastics: from bioresources to biodegradable packaging applications
EP4053207A1 (en) Renewable resin composition and product manufactured from same
ElHady et al. Bioplastics, biodegradable plastics, and degradation in natural environments
JP2011223893A (en) Agricultural sheet
Upadhyay et al. Renewable bio-based materials: A journey towards the development of sustainable ecosystem

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141028