JP2011222453A - Base material with conductive film - Google Patents

Base material with conductive film Download PDF

Info

Publication number
JP2011222453A
JP2011222453A JP2010093338A JP2010093338A JP2011222453A JP 2011222453 A JP2011222453 A JP 2011222453A JP 2010093338 A JP2010093338 A JP 2010093338A JP 2010093338 A JP2010093338 A JP 2010093338A JP 2011222453 A JP2011222453 A JP 2011222453A
Authority
JP
Japan
Prior art keywords
conductive film
less
base material
represented
organic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010093338A
Other languages
Japanese (ja)
Inventor
Tatsumi Kawaguchi
竜巳 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2010093338A priority Critical patent/JP2011222453A/en
Publication of JP2011222453A publication Critical patent/JP2011222453A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PROBLEM TO BE SOLVED: To provide a base material with a conductive film with excellent transparency, lower surface resistance, and enhanced gas barrier and adhesiveness.SOLUTION: A base material 10 with the conductive film according to the present invention is sequentially laminated with a resin film 11, an organic resin layer 12 containing silane coupling agents having a functional group represented with -OR, an inorganic cured layer 13 obtained by applying a cohydrolysis solution added at least one or more kinds of metal alkoxides represented with M(OR)n or phosphates represented with PO(OR)to tetra alkoxy silanes represented with Si(OR)and heating on condition of 120°C or higher and the glass transition temperature of a resin film or lower, and a conductive film 14 including a conductive nano fiber 16.

Description

本発明は、導電膜付き基材に関する。   The present invention relates to a substrate with a conductive film.

特許文献1には、被成膜材料に、正の電解質ポリマーからなる層と、負の電解質ポリマーからなる層とを交互に成膜する方法、およびそれにより得られた交互吸着膜を有する構造体が記載されている。
また、特許文献2には、基板と、該基板上に形成された銀ナノワイヤーを含む導電層を備える透明導電体が記載されている。
Patent Document 1 discloses a method of alternately forming a layer made of a positive electrolyte polymer and a layer made of a negative electrolyte polymer on a film forming material, and a structure having an alternately adsorbed film obtained thereby. Is described.
Patent Document 2 describes a transparent conductor including a substrate and a conductive layer including silver nanowires formed on the substrate.

国際公開2000/13806号パンフレットInternational Publication No. 2000/13806 Pamphlet 特表2009−505358号公報Special table 2009-505358 特開平9−157419号公報JP-A-9-157419

しかしながら、上記文献記載の従来技術は、以下の点で改善の余地を有していた。
特許文献1に記載の交互吸着膜を有する構造体は、表面抵抗に若干の改良の余地があった。
However, the prior art described in the above literature has room for improvement in the following points.
The structure having the alternately adsorbing films described in Patent Document 1 has room for slight improvement in surface resistance.

特許文献2に記載の透明導電体は表面抵抗が低減されているものの、ガスバリアー性や基材との接着性に課題があった。   Although the transparent conductor described in Patent Document 2 has reduced surface resistance, it has problems in gas barrier properties and adhesion to a substrate.

本発明は上記事情に鑑みてなされたものであり、その目的とするところは、透明性が良好で、表面抵抗が低く、ガスバリアー性や基材との接着性にも優れた導電膜付き基材を提供することにある。   The present invention has been made in view of the above circumstances, and the object of the present invention is a base with a conductive film that has good transparency, low surface resistance, and excellent gas barrier properties and adhesion to a substrate. To provide materials.

本発明は以下に示される。
(1)樹脂フィルムと、
−OR1(H−OR1で表される化合物の常圧における沸点が120℃以下となるアルコール残基)で表される官能基を有するシランカップリング剤を含む有機樹脂層と、が順に積層されてなり、
前記有機樹脂層が導電性ナノ繊維を含む導電膜付き基材。
The present invention is shown below.
(1) a resin film;
An organic resin layer containing a silane coupling agent having a functional group represented by —OR 1 (an alcohol residue having a boiling point of 120 ° C. or less at normal pressure of the compound represented by H—OR 1 ) is sequentially laminated. Being
The base material with an electrically conductive film in which the said organic resin layer contains electroconductive nanofiber.

(2)樹脂フィルムと、
−OR1(H−OR1で表される化合物の常圧における沸点が120℃以下となるアルコール残基)で表される官能基を有するシランカップリング剤を含む有機樹脂層と、
Si(OR2)4(R2は炭素数4以下のアルキル基)で表されるテトラアルコキシシランに、M(OR3)n(Mは金属元素、R3は炭素数4以下のアルキル基、nは3から5の整数)で表される金属アルコキシドまたはPO(OR4)3(R4は炭素数4以下のアルキル基)で表されるリン酸エステルのうち、少なくとも1種以上を加えたものの共加水分解溶液を塗布し、120℃以上で樹脂フィルムのガラス転移温度以下の条件で加熱して得られる無機硬化層と、
導電性ナノ繊維を含む導電膜と、が順に積層された導電膜付き基材。
(2) a resin film;
An organic resin layer containing a silane coupling agent having a functional group represented by —OR 1 (an alcohol residue having a boiling point of 120 ° C. or less at normal pressure of the compound represented by H—OR 1 );
Tetraalkoxysilane represented by Si (OR 2 ) 4 (R 2 is an alkyl group having 4 or less carbon atoms), M (OR 3 ) n (M is a metal element, R 3 is an alkyl group having 4 or less carbon atoms, n is an integer from 3 to 5), and at least one or more of phosphoric acid esters represented by PO (OR 4 ) 3 (R 4 is an alkyl group having 4 or less carbon atoms) is added. An inorganic hardened layer obtained by applying a co-hydrolysis solution of the object and heating at 120 ° C. or higher and under the glass transition temperature of the resin film;
The base material with an electrically conductive film by which the electrically conductive film containing electroconductive nanofiber was laminated | stacked in order.

(3)前記導電性ナノ繊維は、平均繊維径が5nm以上、150nm以下、平均繊維長が100nm以上、100μm以下である(1)または(2)に記載の導電膜付き基材。 (3) The conductive nanofiber according to (1) or (2), wherein the conductive nanofiber has an average fiber diameter of 5 nm to 150 nm and an average fiber length of 100 nm to 100 μm.

(4)前記導電性ナノ繊維は、金属繊維である(1)乃至(3)のいずれかに記載の導電膜付き基材。 (4) The conductive film-attached substrate according to any one of (1) to (3), wherein the conductive nanofiber is a metal fiber.

(5)前記金属繊維は銀を含む(4)に記載の導電膜付き基材。 (5) The base material with a conductive film according to (4), wherein the metal fiber includes silver.

(6)前記有機樹脂層または前記導電膜は、前記導電性ナノ繊維を25体積%以上、75体積%以下の量で含む(1)乃至(5)のいずれかに記載の導電膜付き基材。 (6) The base material with a conductive film according to any one of (1) to (5), wherein the organic resin layer or the conductive film includes the conductive nanofibers in an amount of 25% by volume to 75% by volume. .

(7)表面抵抗値が10Ω/□以上、300Ω/□以下である(1)乃至(6)のいずれかに記載の導電膜付き基材。 (7) The substrate with a conductive film according to any one of (1) to (6), wherein the surface resistance value is 10Ω / □ or more and 300Ω / □ or less.

(8)波長400nm以上500nm以下における透過率が85%以上である(1)乃至(7)のいずれかに記載の導電膜付き基材。 (8) The base material with a conductive film according to any one of (1) to (7), wherein transmittance at a wavelength of 400 nm to 500 nm is 85% or more.

本発明によれば、透明性が良好で、表面抵抗が低く、ガスバリアー性や基材との接着性にも優れた導電膜付き基材を提供することができる。   According to the present invention, it is possible to provide a substrate with a conductive film that has good transparency, low surface resistance, and excellent gas barrier properties and adhesion to the substrate.

第1実施形態における導電膜付き基材の概略断面図である。It is a schematic sectional drawing of the base material with an electrically conductive film in 1st Embodiment.

第2実施形態における導電膜付き基材の概略断面図である。It is a schematic sectional drawing of the base material with an electrically conductive film in 2nd Embodiment.

以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

<第1実施形態>
図1に示すように、本実施形態の導電膜付き基材10は、樹脂フィルム11と、導電性ナノ繊維16を含む有機樹脂層12とが順に積層されてなる。
<First Embodiment>
As shown in FIG. 1, the base material 10 with a conductive film of this embodiment is formed by laminating a resin film 11 and an organic resin layer 12 including conductive nanofibers 16 in order.

(樹脂フィルム11)
本実施形態における樹脂フィルム11としては、例えば、ポリアクリレート、ポリオレフィン、ポリ塩化ビニル、ポリアミド、ポリイミド、ポリスルホン、シリコン、ポリエチレンテレフタレート(PET)などのポリエステル、ポリビニル、アクリロニトリル−ブタジエン−スチレン共重合体、ポリカーボネート、ポリメタクリル酸メチル(PMMA)、ポリエーテルスルフォン等を含む樹脂フィルムを挙げることができる。
樹脂フィルム11の厚さは、導電膜付き基材の用途により好ましい範囲が異なるが、タッチパネルとして用いる場合、10nm以上、500nm以下程度である。
(Resin film 11)
Examples of the resin film 11 in the present embodiment include polyacrylate, polyolefin, polyvinyl chloride, polyamide, polyimide, polysulfone, silicon, polyester such as polyethylene terephthalate (PET), polyvinyl, acrylonitrile-butadiene-styrene copolymer, and polycarbonate. And a resin film containing polymethyl methacrylate (PMMA), polyether sulfone and the like.
Although the preferable range of the thickness of the resin film 11 varies depending on the use of the substrate with a conductive film, it is about 10 nm or more and 500 nm or less when used as a touch panel.

(有機樹脂層12)
本実施形態における有機樹脂層12は、導電性ナノ繊維16を含む。
本実施形態における有機樹脂層12は、−OR1(H−OR1で表される化合物の常圧における沸点が120℃以下となるアルコール残基)で表される官能基を有するシランカップリング剤を含む。
(Organic resin layer 12)
The organic resin layer 12 in the present embodiment includes conductive nanofibers 16.
The organic resin layer 12 in the present embodiment is a silane coupling agent having a functional group represented by —OR 1 (an alcohol residue having a boiling point of 120 ° C. or less at normal pressure of the compound represented by H—OR 1 ). including.

H−ORで表される化合物の常圧における沸点が120℃以下となる化合物残基を有する化合物としては、−OCH、−OC等のアルコール残基を有する化合物が挙げられる。特に、入手が容易であり、有機樹脂やそれを塗布液とするための溶剤への溶解性にすぐれるシランカップリング剤を用いることが好ましい。 Examples of the compound having a compound residue having a boiling point of 120 ° C. or less at normal pressure of the compound represented by H—OR 1 include compounds having an alcohol residue such as —OCH 3 and —OC 2 H 5 . In particular, it is preferable to use a silane coupling agent that is easily available and has excellent solubility in an organic resin or a solvent for using it as a coating solution.

シランカップリング剤としては、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、β−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシランなどを挙げることができる。   Examples of silane coupling agents include vinyltriethoxysilane, vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, β- (3,4 epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane and the like can be mentioned.

有機樹脂層12を構成する樹脂としては、紫外線等の活性エネルギー線又は熱で硬化できる各種樹脂が適用できる。好ましい硬化性樹脂組成物としては、アクリレート化合物、エポキシ樹脂、オキセタン化合物から選ばれる1種以上を主成分とした液状の紫外線硬化性樹脂組成物や、エポキシ樹脂、フェノール樹脂、シアネート樹脂から選ばれる1種以上を主成分とした熱硬化性樹脂組成物、またはこれらを混合したもの等が挙げられる。これらの樹脂組成物は、塗布装置によりベースシート上に塗布し、溶剤を含む場合には乾燥装置により溶剤を揮発させる。樹脂組成物成分には、必要に応じてフィラー成分、界面活性剤、消泡剤、帯電防止剤などを添加しても良い。   As the resin constituting the organic resin layer 12, various resins that can be cured by active energy rays such as ultraviolet rays or heat can be applied. Preferred curable resin compositions are selected from liquid ultraviolet curable resin compositions mainly composed of one or more selected from acrylate compounds, epoxy resins, and oxetane compounds, epoxy resins, phenol resins, and cyanate resins. The thermosetting resin composition which has more than seed | species as a main component, what mixed these, etc. are mentioned. These resin compositions are apply | coated on a base sheet with an application | coating apparatus, and when a solvent is included, a solvent is volatilized with a drying apparatus. You may add a filler component, surfactant, an antifoamer, an antistatic agent, etc. to a resin composition component as needed.

有機樹脂層12は、グラビアコーター、ダイコーター、ロールコーター等を用いて形成することができる。   The organic resin layer 12 can be formed using a gravure coater, a die coater, a roll coater or the like.

導電性ナノ繊維16としては、カーボン繊維、銀、銅、プラチナ等からなる金属繊維などを用いることができる。本実施形態においては、導電性付与の観点から金属繊維を用いることが好ましい。導電性ナノ繊維16としては、平均繊維径5nm以上、150nm以下、好ましくは30nm以上、100nm以下、平均繊維長100nm以上、100μm以下、好ましくは1μm以上、30μm以下、のものを用いることができる。   As the conductive nanofiber 16, a metal fiber made of carbon fiber, silver, copper, platinum or the like can be used. In the present embodiment, it is preferable to use metal fibers from the viewpoint of imparting electrical conductivity. As the conductive nanofiber 16, one having an average fiber diameter of 5 nm or more and 150 nm or less, preferably 30 nm or more and 100 nm or less, and an average fiber length of 100 nm or more and 100 μm or less, preferably 1 μm or more and 30 μm or less can be used.

有機樹脂層12における導電性ナノ繊維16の割合は、有機樹脂層12を100体積%とした場合において、25体積%以上、75体積%以下、好ましくは45体積%以上、60体積%以下である。25体積%より低い場合には導電性ナノ繊維同士の接合が不十分となり所望の導電性を発現できない。また75体積%より高くなると樹脂フィルム11と有機樹脂層12との密着性が低下し、好ましくない。つまり、有機樹脂層12中に導電性ナノ繊維16が上記範囲で含まれていると、所望の導電性を発現するとともに、樹脂フィルム11と有機樹脂層12との密着性に優れる。   The ratio of the conductive nanofibers 16 in the organic resin layer 12 is 25% by volume or more and 75% by volume or less, preferably 45% by volume or more and 60% by volume or less, when the organic resin layer 12 is 100% by volume. . When it is lower than 25% by volume, the bonding between the conductive nanofibers becomes insufficient, and the desired conductivity cannot be expressed. Moreover, when it becomes higher than 75 volume%, the adhesiveness of the resin film 11 and the organic resin layer 12 falls, and it is not preferable. That is, when the conductive nanofibers 16 are included in the above range in the organic resin layer 12, desired conductivity is exhibited and the adhesiveness between the resin film 11 and the organic resin layer 12 is excellent.

導電性ナノ繊維16を有機樹脂層12に分散させる方法には特に制限はなく、有機樹脂中に導電性ナノ繊維16を分散させることのできる装置であればオリフィス収縮流を利用した分散装置、回転せん断流を利用した分散装置、超音波を利用した分散装置、あるいはこれらを組合せた分散装置を利用することができる。   The method for dispersing the conductive nanofibers 16 in the organic resin layer 12 is not particularly limited, and a dispersion device using an orifice contraction flow, rotation, as long as the device can disperse the conductive nanofibers 16 in the organic resin. A dispersion device using shear flow, a dispersion device using ultrasonic waves, or a dispersion device combining these can be used.

本実施形態において、有機樹脂層12に、導電性ナノ繊維16を含むので、表面抵抗が低減された導電膜付き基材を提供することができる。   In this embodiment, since the organic resin layer 12 includes the conductive nanofibers 16, it is possible to provide a substrate with a conductive film with reduced surface resistance.

有機樹脂層12は、導電性ナノ繊維16が分散している樹脂組成物を用い、
グラビアコーター、ダイコーター、ロールコーター、バーコーター等の方法により形成することができる。
The organic resin layer 12 uses a resin composition in which conductive nanofibers 16 are dispersed,
It can be formed by a method such as a gravure coater, a die coater, a roll coater or a bar coater.

<第2実施形態>
図2に示すように、本実施形態の導電膜付き基材10は、樹脂フィルム11と、有機樹脂層12と、無機硬化層13と、導電性ナノ繊維16を含む導電膜14とが順に積層されてなる。
Second Embodiment
As shown in FIG. 2, the substrate 10 with a conductive film of the present embodiment has a resin film 11, an organic resin layer 12, an inorganic cured layer 13, and a conductive film 14 including conductive nanofibers 16 stacked in order. Being done.

本実施形態において、樹脂フィルム11は第1実施形態と同様の構成とすることができる。また、有機樹脂層12は、導電性ナノ繊維16を含まない以外は第1実施形態と同様の構成とすることができる。   In the present embodiment, the resin film 11 can have the same configuration as that of the first embodiment. The organic resin layer 12 can have the same configuration as in the first embodiment except that the conductive nanofiber 16 is not included.

(無機硬化層13)
本実施形態における無機硬化層13は、有機樹脂層12上に、Si(OR2)4(R2は炭素数4以下のアルキル基)で表されるテトラアルコキシシランに、M(OR3)n(Mは金属元素、R3は炭素数4以下のアルキル基、nは3から5の整数)で表される金属アルコキシドまたはPO(OR4)3(R4は炭素数4以下のアルキル基)で表されるリン酸エステルのうち、少なくとも1種以上を加えたものの共加水分解溶液を塗布し、120℃以上で樹脂フィルム11のガラス転移温度以下の条件で加熱して得られる。
(Inorganic cured layer 13)
In the present embodiment, the inorganic cured layer 13 is formed on the organic resin layer 12 by tetraalkoxysilane represented by Si (OR 2 ) 4 (R 2 is an alkyl group having 4 or less carbon atoms), M (OR 3 ) n. (M is a metal element, R 3 is an alkyl group having 4 or less carbon atoms, n is an integer of 3 to 5) or PO (OR 4 ) 3 (R 4 is an alkyl group having 4 or less carbon atoms) It is obtained by applying a cohydrolyzed solution of at least one of the phosphoric acid esters represented by the formula (1) and heating at 120 ° C. or higher and below the glass transition temperature of the resin film 11.

M(OR3)n(Mは金属元素、R3は炭素数4以下のアルキル基、nは3から5の整数)で表される金属アルコキシドは、周期表の3A族、4A族、5A族、4B族又は5B族のいずれかの金属元素からなる金属アルコキシドであり、例えば、Ti、Al、Zr等である。上記以外の金属元素では十分なガスバリアー性を保有する無機硬化層は得られない。 Metal alkoxides represented by M (OR 3 ) n (M is a metal element, R 3 is an alkyl group having 4 or less carbon atoms, and n is an integer of 3 to 5) are Group 3A, Group 4A, Group 5A in the periodic table. It is a metal alkoxide composed of a metal element of either group 4B or group 5B, such as Ti, Al, Zr, and the like. A metal element other than the above cannot provide an inorganic hardened layer having sufficient gas barrier properties.

Si(OR2)4(R2は炭素数4以下のアルキル基)で表されるテトラアルコキシシランの加水分解方法はすでに良く知られており、例えば作花済夫著『ゾルーゲル法の科学』(アグネ承風社)等を参照することが出来る。加水分解物やその縮重合物を塗布し無機膜を形成することも知られている。しかし、タッチパネル用透明導電フィルムに求められる特性を損なわず、目的とするガスバリアー性と可撓性、密着性を兼ね備えた無機硬化層13は、本発明によって初めて達成される。 The hydrolysis method of tetraalkoxysilane represented by Si (OR 2 ) 4 (R 2 is an alkyl group having 4 or less carbon atoms) is already well known. For example, “Science of Sol-Gel Method” written by Sakuo Sakuo ( You can refer to Agne Jofusha). It is also known to form an inorganic film by applying a hydrolyzate or a condensation polymer thereof. However, the inorganic cured layer 13 having the desired gas barrier property, flexibility, and adhesiveness is achieved for the first time by the present invention without impairing the properties required for the transparent conductive film for touch panel.

まず、第一に単なる加水分解物の塗布によっては、加熱無機化での体積収縮によりフィルムがカールしたり、無機膜にクラックが入る。よって、塗布液はあらかじめ縮重合を進めたものでなくてはならない。次に、テトラアルコキシシランのR2は炭素数4以下のアルキル基でなくてはならない。これは、無機化の為の加熱条件である120℃以上の温度で、脱離反応で発生してくるアルコールが気体の状態であるために重要である。液体や固体であると、無機膜に求めるガスバリアー性や密着性に重大な障害が発生する。 First, depending on the simple application of the hydrolyzate, the film curls or cracks in the inorganic film due to volume shrinkage due to heat mineralization. Therefore, the coating solution must have been subjected to condensation polymerization in advance. Next, R 2 of the tetraalkoxysilane must be an alkyl group having 4 or less carbon atoms. This is important because the alcohol generated in the elimination reaction is in a gaseous state at a temperature of 120 ° C. or higher, which is a heating condition for mineralization. If it is liquid or solid, serious obstacles occur in gas barrier properties and adhesion required for inorganic films.

(導電膜14)
本実施形態における導電膜14は、上述の導電性ナノ繊維16を含む。導電膜14は有機樹脂から構成されている。
(Conductive film 14)
The conductive film 14 in the present embodiment includes the conductive nanofiber 16 described above. The conductive film 14 is made of an organic resin.

導電膜14における導電性ナノ繊維16の割合は、導電膜14を100体積%とした場合において、25体積%以上、75体積%以下、好ましくは45体積%以上、60体積%以下である。25体積%より低い場合には導電性ナノ繊維同士の接合が不十分となり所望の導電性を発現できない。また75体積%より高くなると無機硬化層13と導電膜14との密着性が低下し、好ましくない。つまり、導電膜14中に導電性ナノ繊維16が上記範囲で含まれていると、所望の導電性を発現するとともに、無機硬化層13と導電膜14との密着性に優れる。   The ratio of the conductive nanofibers 16 in the conductive film 14 is 25 volume% or more and 75 volume% or less, preferably 45 volume% or more and 60 volume% or less when the conductive film 14 is 100 volume%. When it is lower than 25% by volume, the bonding between the conductive nanofibers becomes insufficient, and the desired conductivity cannot be expressed. On the other hand, if it exceeds 75% by volume, the adhesion between the inorganic cured layer 13 and the conductive film 14 is lowered, which is not preferable. That is, when the conductive nanofibers 16 are included in the above range in the conductive film 14, the desired conductivity is exhibited and the adhesiveness between the inorganic cured layer 13 and the conductive film 14 is excellent.

導電性ナノ繊維16を導電膜14に分散させる方法には特に制限はなく、有機樹脂中に導電性ナノ繊維16を分散させることの出来る装置であればオリフィス収縮流を利用した分散装置、回転せん断流を利用した分散装置、超音波を利用した分散装置、あるいはこれらを組合せた分散装置を利用することができる。   The method for dispersing the conductive nanofibers 16 in the conductive film 14 is not particularly limited, and any dispersion apparatus, rotary shear using an orifice contraction flow can be used as long as the apparatus can disperse the conductive nanofibers 16 in an organic resin. A dispersion device using a flow, a dispersion device using ultrasonic waves, or a dispersion device combining these can be used.

有機樹脂としては、紫外線等の活性エネルギー線又は熱で硬化できる各種樹脂が適用できる。好ましい硬化性樹脂組成物としては、アクリレート化合物、エポキシ樹脂、オキセタン化合物から選ばれる1種以上を主成分とした液状の紫外線硬化性樹脂組成物や、エポキシ樹脂、フェノール樹脂、シアネート樹脂から選ばれる1種以上を主成分とした熱硬化性樹脂組成物、またはこれらを混合したもの等が挙げられる。これらの樹脂組成物は、塗布装置によりベースシート上に塗布し、溶剤を含む場合には乾燥装置により溶剤を揮発させる。樹脂組成物成分には、必要に応じてフィラー成分、界面活性剤、消泡剤、帯電防止剤などを添加しても良い。   As the organic resin, various kinds of resins that can be cured by active energy rays such as ultraviolet rays or heat can be used. Preferred curable resin compositions are selected from liquid ultraviolet curable resin compositions mainly composed of one or more selected from acrylate compounds, epoxy resins, and oxetane compounds, epoxy resins, phenol resins, and cyanate resins. The thermosetting resin composition which has more than seed | species as a main component, what mixed these, etc. are mentioned. These resin compositions are apply | coated on a base sheet with an application | coating apparatus, and when a solvent is included, a solvent is volatilized with a drying apparatus. You may add a filler component, surfactant, an antifoamer, an antistatic agent, etc. to a resin composition component as needed.

本実施形態において、導電膜14に、導電性ナノ繊維16を含むので、表面抵抗が低減された導電膜付き基材を提供することができる。   In this embodiment, since the conductive nanofiber 16 is included in the conductive film 14, a substrate with a conductive film with reduced surface resistance can be provided.

導電膜14は、導電性ナノ繊維16が分散している樹脂組成物を用い、
グラビアコーター、ダイコーター、ロールコーター、バーコーター等の方法により形成することができる。
The conductive film 14 uses a resin composition in which conductive nanofibers 16 are dispersed,
It can be formed by a method such as a gravure coater, a die coater, a roll coater or a bar coater.

導電膜14を無機硬化層13上に形成する前に、無機硬化層13に導電膜14との密着力を向上させるために下地処理をおこなうことも有効である。特に、シランカップリング剤を含むUV硬化型アクリレート樹脂硬化層を塗布することは、導電膜14との密着性も無機硬化層13との密着性も優れており好ましい。   Before forming the conductive film 14 on the inorganic cured layer 13, it is also effective to perform a base treatment to improve the adhesion between the inorganic cured layer 13 and the conductive film 14. In particular, it is preferable to apply a UV curable acrylate resin cured layer containing a silane coupling agent because the adhesion to the conductive film 14 and the adhesion to the inorganic cured layer 13 are excellent.

なお、第1および第2実施形態においては、樹脂フィルム11の一方の面にのみ積層構造を有する態様により説明したが、両面に積層構造を有していてもよい。さらに、第1実施形態の積層構造と、第2実施形態の積層構造とを組み合わせて用いることもできる。   In addition, in 1st and 2nd embodiment, although demonstrated by the aspect which has a laminated structure only in one surface of the resin film 11, you may have a laminated structure in both surfaces. Furthermore, the laminated structure of the first embodiment can be used in combination with the laminated structure of the second embodiment.

(導電膜付き基材の物性)
第1および第2実施形態の導電膜付き基材10の表面抵抗値は、10Ω/□以上、300Ω/□以下とすることができる。このように本実施形態の導電膜付き基材10は、その表面抵抗を低減させることができるので、後述する抵抗膜式タッチパネルだけでなく静電容量タイプのタッチパネルにも適用することができる。
(Physical properties of substrate with conductive film)
The surface resistance value of the base material with a conductive film 10 of the first and second embodiments can be 10Ω / □ or more and 300Ω / □ or less. Thus, since the base material 10 with an electrically conductive film of this embodiment can reduce the surface resistance, it can be applied not only to a resistance film type touch panel described later but also to a capacitance type touch panel.

さらに、第1および第2実施形態の導電膜付き基材10は、波長400nm以上500nm以下における透過率を80%以上、好ましくは85%以上とすることができる。第1および第2実施形態の導電膜付き基材10は光線透過性にも優れているので、上記の用途以外にも、後述する色素増感タイプの太陽電池の電極や、有機薄膜タイプの太陽電池の電極にも適用することができる。   Furthermore, the base material 10 with a conductive film of the first and second embodiments can have a transmittance of 80% or more, preferably 85% or more at a wavelength of 400 nm to 500 nm. Since the base material 10 with a conductive film of the first and second embodiments is also excellent in light transmittance, in addition to the above-mentioned uses, an electrode of a dye-sensitized solar cell, which will be described later, or an organic thin film type solar cell The present invention can also be applied to battery electrodes.

<用途>
第1および第2実施形態の導電膜付き基材10は、透明性に優れ、表面抵抗が低減されているので、抵抗膜式タッチパネルや静電容量タイプのタッチパネル等における導電膜が形成された表面フィルム;色素増感タイプの太陽電池や有機薄膜タイプの太陽電池等における電極などとして用いることができる。
<Application>
Since the base material with a conductive film 10 of the first and second embodiments is excellent in transparency and has a reduced surface resistance, the surface on which the conductive film is formed in a resistive touch panel, a capacitive touch panel, or the like. Film: It can be used as an electrode in a dye-sensitized solar cell, an organic thin-film solar cell, or the like.

以下、実施例に基づいて本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically based on examples.

(導電性ナノ繊維16)
導電性ナノ繊維16として、Agナノワイヤーは、製品番号(ClearOhm Ink−A AQ)、CAMBRIOS社製のものを用いた。Agナノワイヤーのサイズは、繊維長約数10μm、直径約80nmであった。
(Conductive nanofiber 16)
As the conductive nanofibers 16, Ag nanowires manufactured by Product Number (ClearOhm Ink-A AQ), manufactured by CAMBRIOS were used. The size of the Ag nanowire was a fiber length of about several tens of μm and a diameter of about 80 nm.

(抵抗値測定方法)
高精度抵抗率計(三菱化学株式会社製LorestaGP(MCP−T610))を用いて測定した。
(Resistance measurement method)
It measured using the high precision resistivity meter (Mitsubishi Chemical Corporation LorestaGP (MCP-T610)).

[実験例1]
ポリエーテルサルホンフィルム(住友ベークライト(株)製スミライトFS−5300、ガラス転移温度223℃、厚み100μm、リターデーション10nm)の片面に、エポキシアクリレート15重量部、ウレタンアクリレート10重量部、ポリエステルアクリレート10重量部、γ−メタクリロキシプロピルトリメトキシシラン2重量部、UV架橋開始剤1重量部、溶剤65重量部を混合した塗布液を、グラビアコーターにより、乾燥厚み3μmとなるよう塗布し硬化させて有機樹脂層12を形成した。その上に、テトラエトキシシラン187g、チタンテトラエトキシド23g(テトラエトキシシランとチタンテトラエトキシドのモル比が90対10)、イソプロピルアルコール120gを混合し、40℃で12時間攪拌し、イソプロピルアルコール1.7kgを加えて塗布液とし、リバースコーターにより、計算による乾燥塗布厚が0.1μmになるように塗布し、180℃の熱風乾燥炉によって加熱無機膜化し無機硬化層13を形成した。この無機硬化膜13を形成した段階で、オキシトラン法により、酸素ガス透過係数を測定したところ、湿度0%において0.6cc/m2・day・atm、湿度95%において0.7cc/m2・day・atmと、塗布前のフィルムでは、湿度0%においても、200cc/m2・day・atmであったのに比べ格段に向上していた。さらに、この無機硬化膜13の表面に、最初の工程でポリエーテルサルホンフィルムに塗布した塗布液と同じものを、リバースコーターにより乾燥厚み3μmとなるように塗布し硬化させてUV硬化型アクリレート樹脂硬化層を形成した。次に、このUV硬化型アクリレート樹脂硬化層の上に、ダイコーターにより導電性ナノ繊維16が分散している導電膜14を形成した。得られた導電膜付きフィルム10に対し、100℃で1時間熱処理を行った。熱処理前後での表面抵抗率を測定した。結果は250Ω/□であった。
[Experimental Example 1]
On one side of a polyethersulfone film (Sumilite FS-5300 manufactured by Sumitomo Bakelite Co., Ltd., glass transition temperature 223 ° C., thickness 100 μm, retardation 10 nm), epoxy acrylate 15 parts by weight, urethane acrylate 10 parts by weight, polyester acrylate 10 parts by weight A coating solution in which 2 parts by weight, 2 parts by weight of γ-methacryloxypropyltrimethoxysilane, 1 part by weight of a UV crosslinking initiator, and 65 parts by weight of a solvent are mixed with a gravure coater so as to have a dry thickness of 3 μm is cured and organic resin Layer 12 was formed. Further, 187 g of tetraethoxysilane, 23 g of titanium tetraethoxide (molar ratio of tetraethoxysilane and titanium tetraethoxide is 90 to 10), and 120 g of isopropyl alcohol are mixed and stirred at 40 ° C. for 12 hours. 0.7 kg was added to form a coating solution, which was coated with a reverse coater so that the calculated dry coating thickness was 0.1 μm, and heated to an inorganic film by a hot air drying oven at 180 ° C. to form an inorganic cured layer 13. At the stage of forming the inorganic cured film 13, by Okishitoran method was measured oxygen gas permeability coefficient, 0.7cc / m 2 · 0.6cc / m 2 · day · atm, at 95% humidity at 0% humidity Day · atm and the film before coating were significantly improved even when the humidity was 0%, compared to 200 cc / m 2 · day · atm. Further, the same coating liquid as that applied to the polyethersulfone film in the first step was applied to the surface of the inorganic cured film 13 by a reverse coater so as to have a dry thickness of 3 μm, and cured to obtain a UV curable acrylate resin. A cured layer was formed. Next, on the UV curable acrylate resin cured layer, a conductive film 14 in which conductive nanofibers 16 were dispersed was formed by a die coater. The obtained film with conductive film 10 was heat-treated at 100 ° C. for 1 hour. The surface resistivity before and after heat treatment was measured. The result was 250Ω / □.

[実験例2]
導電性ナノ繊維16を用いない以外は、実験例1と同様にして導電膜付きフィルムを作成した。熱処理前後での表面抵抗率を測定した。結果は、1×1015Ω/□であった。
[Experiment 2]
A film with a conductive film was prepared in the same manner as in Experimental Example 1 except that the conductive nanofibers 16 were not used. The surface resistivity before and after heat treatment was measured. The result was 1 × 10 15 Ω / □.

上記の結果から、導電性ナノ繊維16を含む導電膜付きフィルムがタッチパネル用透明導電フィルムに求められる表面抵抗値を満足し、さらにガスバリアー性にも優れることが確認された。さらに、樹脂フィルムとの接着性にも優れていることが確認された。また、図1の構成の導電膜付き基材においても、同様の効果を得ることができた。   From the above results, it was confirmed that the film with the conductive film containing the conductive nanofibers 16 satisfied the surface resistance value required for the transparent conductive film for touch panels and was excellent in gas barrier properties. Furthermore, it was confirmed that the adhesiveness with the resin film is also excellent. Moreover, the same effect was able to be acquired also in the base material with a electrically conductive film of the structure of FIG.

10 導電膜付き基材
11 樹脂フィルム
12 有機樹脂層
13 無機硬化層
14 導電膜
16 導電性ナノ繊維
DESCRIPTION OF SYMBOLS 10 Base material 11 with conductive film Resin film 12 Organic resin layer 13 Inorganic cured layer 14 Conductive film 16 Conductive nanofiber

Claims (8)

樹脂フィルムと、
−OR1(H−OR1で表される化合物の常圧における沸点が120℃以下となるアルコール残基)で表される官能基を有するシランカップリング剤を含む有機樹脂層と、が順に積層されてなり、
前記有機樹脂層が導電性ナノ繊維を含む導電膜付き基材。
A resin film;
An organic resin layer containing a silane coupling agent having a functional group represented by —OR 1 (an alcohol residue having a boiling point of 120 ° C. or less at normal pressure of the compound represented by H—OR 1 ) is sequentially laminated. Being
The base material with an electrically conductive film in which the said organic resin layer contains electroconductive nanofiber.
樹脂フィルムと、
−OR1(H−OR1で表される化合物の常圧における沸点が120℃以下となるアルコール残基)で表される官能基を有するシランカップリング剤を含む有機樹脂層と、
Si(OR2)4(R2は炭素数4以下のアルキル基)で表されるテトラアルコキシシランに、M(OR3)n(Mは金属元素、R3は炭素数4以下のアルキル基、nは3から5の整数)で表される金属アルコキシドまたはPO(OR4)3(R4は炭素数4以下のアルキル基)で表されるリン酸エステルのうち、少なくとも1種以上を加えたものの共加水分解溶液を塗布し、120℃以上で樹脂フィルムのガラス転移温度以下の条件で加熱して得られる無機硬化層と、
導電性ナノ繊維を含む導電膜と、が順に積層された導電膜付き基材。
A resin film;
An organic resin layer containing a silane coupling agent having a functional group represented by —OR 1 (an alcohol residue having a boiling point of 120 ° C. or less at normal pressure of the compound represented by H—OR 1 );
Tetraalkoxysilane represented by Si (OR 2 ) 4 (R 2 is an alkyl group having 4 or less carbon atoms), M (OR 3 ) n (M is a metal element, R 3 is an alkyl group having 4 or less carbon atoms, n is an integer from 3 to 5), and at least one or more of phosphoric acid esters represented by PO (OR 4 ) 3 (R 4 is an alkyl group having 4 or less carbon atoms) is added. An inorganic hardened layer obtained by applying a co-hydrolysis solution of the object and heating at 120 ° C. or higher and under the glass transition temperature of the resin film;
The base material with an electrically conductive film by which the electrically conductive film containing electroconductive nanofiber was laminated | stacked in order.
前記導電性ナノ繊維は、平均繊維径が5nm以上、150nm以下、平均繊維長が100nm以上、100μm以下である請求項1または2に記載の導電膜付き基材。   The substrate with a conductive film according to claim 1 or 2, wherein the conductive nanofiber has an average fiber diameter of 5 nm or more and 150 nm or less, and an average fiber length of 100 nm or more and 100 µm or less. 前記導電性ナノ繊維は、金属繊維である請求項1乃至3のいずれか一項に記載の導電膜付き基材。   The substrate with a conductive film according to any one of claims 1 to 3, wherein the conductive nanofiber is a metal fiber. 前記金属繊維は銀を含む請求項4に記載の導電膜付き基材。   The base material with a conductive film according to claim 4, wherein the metal fiber includes silver. 前記有機樹脂層または前記導電膜は、前記導電性ナノ繊維を25体積%以上、75体積%以下の量で含む請求項1乃至5のいずれか一項に記載の導電膜付き基材。   The said organic resin layer or the said electrically conductive film is a base material with an electrically conductive film as described in any one of Claims 1 thru | or 5 which contains the said electroconductive nanofiber in the quantity of 25 volume% or more and 75 volume% or less. 表面抵抗値が10Ω/□以上、300Ω/□以下である請求項1乃至6のいずれか一項に記載の導電膜付き基材。   The substrate with a conductive film according to any one of claims 1 to 6, wherein the surface resistance value is 10Ω / □ or more and 300Ω / □ or less. 波長400nm以上500nm以下における透過率が85%以上である請求項1乃至7のいずれか一項に記載の導電膜付き基材。   The substrate with a conductive film according to any one of claims 1 to 7, wherein a transmittance at a wavelength of 400 nm or more and 500 nm or less is 85% or more.
JP2010093338A 2010-04-14 2010-04-14 Base material with conductive film Pending JP2011222453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010093338A JP2011222453A (en) 2010-04-14 2010-04-14 Base material with conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010093338A JP2011222453A (en) 2010-04-14 2010-04-14 Base material with conductive film

Publications (1)

Publication Number Publication Date
JP2011222453A true JP2011222453A (en) 2011-11-04

Family

ID=45039149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010093338A Pending JP2011222453A (en) 2010-04-14 2010-04-14 Base material with conductive film

Country Status (1)

Country Link
JP (1) JP2011222453A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141333A1 (en) * 2012-03-23 2013-09-26 富士フイルム株式会社 Electroconductive member, method for producing same, touch panel, and solar cell
JP2013225467A (en) * 2012-03-23 2013-10-31 Fujifilm Corp Conductive member and method of manufacturing the same
JP2016091183A (en) * 2014-10-31 2016-05-23 大日本印刷株式会社 Intermediate base material film, conductivity film and touch panel sensor
EP3598185A3 (en) * 2013-02-15 2020-04-22 Cambrios Film Solutions Corporation Methods to incorporate silver nanowire-based transparent conductors in electronic devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141333A1 (en) * 2012-03-23 2013-09-26 富士フイルム株式会社 Electroconductive member, method for producing same, touch panel, and solar cell
JP2013225467A (en) * 2012-03-23 2013-10-31 Fujifilm Corp Conductive member and method of manufacturing the same
EP3598185A3 (en) * 2013-02-15 2020-04-22 Cambrios Film Solutions Corporation Methods to incorporate silver nanowire-based transparent conductors in electronic devices
JP2016091183A (en) * 2014-10-31 2016-05-23 大日本印刷株式会社 Intermediate base material film, conductivity film and touch panel sensor

Similar Documents

Publication Publication Date Title
KR102581899B1 (en) Transparent electrodes and electronic devices including the same
KR20120117646A (en) Transparent conductive film with adhesive layer, laminate film and touch panel
KR101479811B1 (en) Substrate films for transparent electrode films
JP5370151B2 (en) Substrate with transparent conductive film, method for producing the same, and touch panel using the same
US20050209392A1 (en) Polymer binders for flexible and transparent conductive coatings containing carbon nanotubes
JP2009135044A (en) Transparent conductive material and transparent conductor
JP2018504749A (en) Transparent sheet heating element
TW200948617A (en) Transparent heat shielding multilayer structure
KR20110029769A (en) Composition for encapsulating organic light emitting display, adhesive film, preparation method thereof and organic light emitting display
WO2014061545A1 (en) Organic-inorganic hybrid particles, conductive particles, conductive material, and connection structure
JP2017522581A (en) Low refractive composition, method for producing the same, and transparent conductive film
JP2013545222A (en) Electrode substrate manufacturing method
KR20110027297A (en) Transparent conductive film, touch panel and display device comprising the same
JP2011222453A (en) Base material with conductive film
KR102452651B1 (en) Electrical conductors, production methods thereof, and electronic devices including the same
Sun et al. HDPE/EVOH multilayered, high barrier films for flexible organic photovoltaic device packaging
WO2010082652A1 (en) Transparent conductive film encapsulating mesh-like structure formed from metal microparticles, substrate on which transparent conductive film is laminated, and method for producing the same
JP2011082165A (en) Method of manufacturing electrode substrate
KR101236072B1 (en) Transparent conductive multilayered body having organic-inorganic hybrid buffer layer
CN106433398A (en) Transparent conductive gluing compound, touch panel, preparation method thereof and display device
JP2011138711A (en) Transparent conductive adhesive and photoelectric conversion element having transparent conductive adhesive layer formed of the same
KR20170016145A (en) Methods of preparing conductors, conductors prepared therefrom, and electronic devices including the same
JP2012111141A (en) Transparent conductive film, and liquid crystal display element, organic el element and organic thin film solar cell using the same
TWI772599B (en) Coating composition, conductive film, and liquid crystal display panel
KR102030267B1 (en) Manufacturing method of smart window film and smart window film thereby