JP2011222381A - Heat-radiating housing of led light - Google Patents

Heat-radiating housing of led light Download PDF

Info

Publication number
JP2011222381A
JP2011222381A JP2010092007A JP2010092007A JP2011222381A JP 2011222381 A JP2011222381 A JP 2011222381A JP 2010092007 A JP2010092007 A JP 2010092007A JP 2010092007 A JP2010092007 A JP 2010092007A JP 2011222381 A JP2011222381 A JP 2011222381A
Authority
JP
Japan
Prior art keywords
heat
housing
heat dissipation
radiating
led light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010092007A
Other languages
Japanese (ja)
Inventor
Jim H Liang
錦宏 梁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Skynet Electronic Co Ltd
Original Assignee
Skynet Electronic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Skynet Electronic Co Ltd filed Critical Skynet Electronic Co Ltd
Priority to JP2010092007A priority Critical patent/JP2011222381A/en
Publication of JP2011222381A publication Critical patent/JP2011222381A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat-radiating housing of an LED light that effectively reduces temperature of a light-emitting element to improve light-emitting quality, light-emitting efficiency, and service life of the light-emitting element.SOLUTION: A storage hole 21 is penetrated in an axial direction of the heat-radiating housing 20 of the LED light 22. A plurality of heat-radiating fins 24 are arranged on the outer face of the heat-radiating housing along the axial direction. A plurality of parallel slots 241 are penetrated in parallel with the axial direction of the storage hole 21 in a radial direction of the heat-radiating fins 24. Both wall surfaces of the heat-radiating fins 24 are formed so as to have a predetermined contained angle. The thermal energy generated from a light-emitting element 26 to be assembled at an upper end of the heat-radiating housing 20 is simultaneously heat-exchanged with cold air in the vicinity of the heat-radiating housing 20 through the heat-radiating fins 24 and the parallel slots 241 by means of heat conduction and a thermal convection method, thereby significantly improving heat-radiating efficiency of the heat-radiating housing 20.

Description

本発明は、発光ダイオード(以下「LED」という)ライトの放熱ハウジングに関する。   The present invention relates to a heat radiating housing of a light emitting diode (hereinafter referred to as “LED”) light.

近年は科学技術の進歩につれて、エネルギーの需要も高くなっている。過去、夜間または室内の照明には、白熱灯が最も広く使われていた。しかし、白熱灯の使用寿命は極めて短く、平均寿命はおよそ1,000時間である。一方、白熱灯の電球はタングステン線を電球の内部に取付け、その空間を真空にし、または不活性ガスで充満させた上、電流をタングステン線に流すことにより、タングステン線は加熱されて白熱光線を発光する。しかし、白熱電球は、電気エネルギーから光エネルギーへの変換率が10%しかなく、残りの90%は使えない熱エネルギーとなり、大気中に放出されて、電気エネルギーのロスとなっている。大量なエネルギーを浪費するのみならず、自然環境にとって重い負担となっている。   In recent years, with the progress of science and technology, the demand for energy has increased. In the past, incandescent lamps have been most widely used for nighttime or indoor lighting. However, the service life of incandescent lamps is extremely short, with an average life of approximately 1,000 hours. On the other hand, incandescent lamps have tungsten wires attached to the interior of the bulb, the space is evacuated or filled with an inert gas, and current is passed through the tungsten wires to heat the tungsten wires and generate incandescent rays. Emits light. However, the incandescent bulb has a conversion rate from electric energy to light energy of only 10%, and the remaining 90% becomes unusable heat energy, which is released into the atmosphere, resulting in a loss of electric energy. Not only is a large amount of energy wasted, it is a heavy burden on the natural environment.

前述した白熱灯の欠点、例えば、使用寿命が短く、光電変換効率が低いという欠点を解決すべく、蛍光灯具(蛍光灯と安定器とを組み合わせた一式の照明器具)が考案されている。同じの照明条件において、蛍光灯具の使用寿命は白熱灯の6倍(約6,000時間)であるほか、蛍光灯具の電気エネルギー消費も確かに白熱灯より低い。白熱電球に比べ、蛍光灯具の電気消費量は白熱電球の約五分の一である。よって、十数年前からすでの多くの使用者は、省電力の蛍光灯具の使用に切り換えている。さらに、蛍光灯具の寸法は白熱灯に類似しており、口金の形(すなわち、ソケット)も白熱灯と同じである。よって、使用者は口金の形を交換必要がなく、白熱灯をそのまま蛍光灯具に取り替えて使用できる。このため、蛍光灯具は徐々に白熱灯に取り代わって、一般照明の主流となっている。
しかし、蛍光灯内部には人間の健康を害する水銀蒸気と燐系の蛍光物質が大量に封入されている。蛍光灯の使用寿命はやや短い(6,000時間しかない)と言われている。普及につれて大量に使用される結果、短期間に大量な蛍光灯廃棄物を発生する。みだりに廃棄すると、内部に封入されている水銀と蛍光物質によって自然環境が汚染され、エコロジーに極めて大きい危害を与える。
In order to solve the disadvantages of the incandescent lamp described above, for example, the short lifetime and low photoelectric conversion efficiency, a fluorescent lamp (a set of lighting fixtures combining a fluorescent lamp and a ballast) has been devised. Under the same lighting conditions, the service life of fluorescent lamps is six times that of incandescent lamps (about 6,000 hours), and the electrical energy consumption of fluorescent lamps is certainly lower than incandescent lamps. Compared with incandescent bulbs, fluorescent lamps consume approximately one fifth of the electricity consumed by incandescent bulbs. Therefore, many users in the past ten years have switched to the use of power-saving fluorescent lamps. Furthermore, the size of the fluorescent lamp is similar to that of an incandescent lamp, and the shape of the base (that is, the socket) is the same as that of the incandescent lamp. Therefore, the user does not need to change the shape of the cap, and the incandescent lamp can be used as it is by replacing it with a fluorescent lamp. For this reason, fluorescent lamps have gradually replaced incandescent lamps and have become the mainstream of general lighting.
However, fluorescent lamps contain a large amount of mercury vapor and phosphorous phosphors that are harmful to human health. It is said that fluorescent lamps have a slightly short service life (only 6,000 hours). As a result of being used in large quantities as it spreads, a large amount of fluorescent lamp waste is generated in a short time. When it is disposed of in a hurry, the natural environment is polluted by mercury and fluorescent substances enclosed in the inside, causing a great deal of harm to ecology.

前述の通り、時代の経過につれて、照明に関する科学技術も飛躍的に進歩している。前述の白熱電球と電球型蛍光ランプのほか、近年は多くの灯具業者から「環境保護とエネルギー対策」をうたい文句としたLEDライトが生産されている。LEDライトの使用寿命は、白熱電球の約40倍で40,000時間に及ぶ。LEDライトの消費電力は、白熱電球と蛍光灯に比べてはるかに低い。つまり、LEDライトの消費電力は白熱電球の約十分の一で、蛍光灯の約半分しかない。また、LEDライトは、水銀などの有毒物質を含まず、また、LEDから発生する光スペクトルに紫外線または赤外線を含まないため、投射光線も熱や輻射を発生しない。その上、LEDの製造技術も熟成しつつあり、原価を継続的にコストダウンした結果、電球型蛍光ランプと白熱電球に取り代わって、LEDライトが今日の照明器具の主流となっている。   As mentioned above, the science and technology related to lighting have also improved dramatically with the passage of time. In addition to the incandescent bulbs and bulb-type fluorescent lamps described above, in recent years, many lamp manufacturers have produced LED lights that complain about “environmental protection and energy measures”. The service life of LED lights is about 40 times that of incandescent bulbs and covers 40,000 hours. The power consumption of LED lights is much lower than incandescent bulbs and fluorescent lamps. That is, the power consumption of the LED light is about one-tenth that of an incandescent bulb and only about half that of a fluorescent lamp. Further, the LED light does not contain a toxic substance such as mercury, and the light spectrum generated from the LED does not contain ultraviolet rays or infrared rays, so that the projection light beam does not generate heat or radiation. In addition, LED manufacturing technology is also maturing, and as a result of continuous cost reduction, LED lights have become the mainstream of today's lighting fixtures, replacing bulb-type fluorescent lamps and incandescent bulbs.

LEDライトは、例えば、特許文献1、2、3等に開示されている。   LED lights are disclosed in, for example, Patent Documents 1, 2, 3, and the like.

特開2009−4130号公報JP 2009-4130 A 特開2006−313717号公報JP 2006-313717 A 特開2009−37995号公報JP 2009-37995 A

前述の通り、LEDライトは今日の照明器具の主流になったが、LEDは発光の過程に大量な熱を発生し、かつ輝度が高いほどLEDが発生する熱量は高い。そして、LEDが取り付けられるLEDライトが発生した熱エネルギーを順調に放出できない場合、装置自体の温度が下がらないまま高温状態を長時間継続すると、部材の劣化と光の減衰現象を引き起し、使用寿命が大きく短縮される。よって、LEDライトの放熱効果を向上し使用寿命を長くするため、業界より各種のLEDライトの放熱ハウジングが開発されている。
図1を参照しながら、従来のLEDライトの放熱ハウジングについて、以下の通り説明する。
As described above, LED lights have become the mainstream of today's lighting fixtures, but LEDs generate a large amount of heat in the process of light emission, and the higher the brightness, the higher the amount of heat generated by the LEDs. If the LED light to which the LED is attached cannot steadily release the heat energy generated, if the device is kept at a high temperature for a long time without lowering the temperature, it will cause deterioration of the member and light attenuation. Life is greatly shortened. Therefore, in order to improve the heat dissipation effect of the LED light and extend the service life, various heat dissipation housings for LED lights have been developed by the industry.
A conventional heat radiating housing of an LED light will be described with reference to FIG.

図1に示すものは放熱ハウジング10である。該放熱ハウジング10はアルミ合金の金属鋳造によって一体成形されている。その内部には、電気回路板11とその上に取り付けられたリード線111を収容するための収容穴101が設けられている。該放熱ハウジング10の径外方向には複数の放熱フィン102が設けられる。隣接する各該放熱フィン102は互いに間隔を置いて配置される。各該放熱フィン102の両側の壁面は互いに平行であり、かつ該放熱ハウジング10の側面に略垂直に接続されている。該放熱ハウジング10の下端にはソケット12が取付けられ、上端には発光モジュール13が取付けられる。   What is shown in FIG. 1 is a heat radiating housing 10. The heat radiating housing 10 is integrally formed by metal casting of an aluminum alloy. Inside thereof, an accommodation hole 101 for accommodating the electric circuit board 11 and the lead wire 111 attached thereon is provided. A plurality of heat dissipating fins 102 are provided in the radially outward direction of the heat dissipating housing 10. The adjacent heat radiating fins 102 are spaced from each other. The wall surfaces on both sides of each radiating fin 102 are parallel to each other and connected to the side surface of the radiating housing 10 substantially perpendicularly. A socket 12 is attached to the lower end of the heat radiating housing 10, and a light emitting module 13 is attached to the upper end.

該発光モジュール13は、少なくとも一つのLED131と一つの台座132とを含む。該台座132の上面に当該LED131が設けられ、下面は該放熱ハウジング10他端の上側に貼り付けられる。これにより、該ソケット12、該電気回路板11、該リード線111及び該発光モジュール13を該放熱ハウジング10に取付け、該発光モジュール13上のLED131を該リード線111と該電気回路板11とに配線し、該電気回路板11と該ソケット12を介して外部の電気を取得して、電気を当該LED131に伝送し、当該LED131を発光させる。   The light emitting module 13 includes at least one LED 131 and one pedestal 132. The LED 131 is provided on the upper surface of the pedestal 132, and the lower surface is attached to the upper side of the other end of the heat dissipation housing 10. Thereby, the socket 12, the electric circuit board 11, the lead wire 111 and the light emitting module 13 are attached to the heat radiating housing 10, and the LED 131 on the light emitting module 13 is attached to the lead wire 111 and the electric circuit board 11. Wiring is performed, external electricity is acquired through the electrical circuit board 11 and the socket 12, electricity is transmitted to the LED 131, and the LED 131 is caused to emit light.

当該LED131より発生する熱エネルギーは、該台座132の下面より該放熱ハウジング10に伝導され、かつ該放熱ハウジング10と放熱フィン102によって、周りの大気に放出される。これにより、当該LED131の稼働温度を引き下げて、当該LED131は理想的な色の光を発光することができる。   Thermal energy generated from the LED 131 is conducted from the lower surface of the pedestal 132 to the heat radiating housing 10 and is released to the surrounding atmosphere by the heat radiating housing 10 and the heat radiating fins 102. Thereby, the operating temperature of the LED 131 can be lowered and the LED 131 can emit light of an ideal color.

しかし、各該放熱フィン102の両側の壁面は互いに平行であり、かつ各該放熱フィン102は該放熱ハウジング10の側面に略垂直に接続されているため、隣接する各該放熱フィン102間に空気対流死角を作ってしまう。各該放熱フィン102間で作られた死角の空気は、熱を受け入れた結果、温度が次第に上昇し、各該放熱フィン102の周りに蓄積されることによって、各該放熱フィン102と周りの空気間の温度差が次第に小さくなり、各該放熱フィン102間の空気対流効率を悪化させる。その結果、当該LED131より伝導された熱を有効に発散できなくなり、当該LED131の稼働温度を引き下げることが出来なくなる。よって、該放熱ハウジング10に組み込まれた発光モジュール13も、同じく部材の劣化と光の減衰現象を引き起し、使用寿命が大きく短縮される。   However, the wall surfaces on both sides of each radiating fin 102 are parallel to each other, and each radiating fin 102 is connected substantially perpendicularly to the side surface of the radiating housing 10, so that there is air between the adjacent radiating fins 102. It creates a convection blind spot. As a result of accepting heat, the dead angle air created between the radiation fins 102 gradually increases in temperature and accumulates around the radiation fins 102, so that the air around the radiation fins 102 and the surrounding air are collected. The temperature difference between them becomes gradually smaller, and the air convection efficiency between the radiating fins 102 is deteriorated. As a result, the heat conducted from the LED 131 cannot be effectively dissipated, and the operating temperature of the LED 131 cannot be lowered. Therefore, the light emitting module 13 incorporated in the heat radiating housing 10 also causes deterioration of members and light attenuation phenomenon, and the service life is greatly shortened.

上記の課題に鑑み、本発明の目的は、放熱効率を大幅に向上させるLEDライトの放熱ハウジングを提供することにある。   In view of the above problems, an object of the present invention is to provide a heat dissipation housing for an LED light that greatly improves the heat dissipation efficiency.

前述の課題と欠点について、本発明者は、長年の実務経験に基づき研究実験を重ねた結果、本発明のLEDライトの放熱ハウジングを発明し、放熱ハウジングの放熱効率の向上を図り、LEDライトの使用寿命の延長を図る。   As a result of repeated research and experiments based on many years of practical experience, the inventor has invented the heat dissipation housing of the LED light of the present invention, and has improved the heat dissipation efficiency of the heat dissipation housing. Extend the service life.

本発明のLEDライトの放熱ハウジングは、主に金属鋳造法で一体成形される。該放熱ハウジングの内部にLEDライトの電気回路板とリード線とを収容するため、軸方向に沿って収容穴が貫設されている。   The heat dissipation housing of the LED light of the present invention is integrally formed mainly by a metal casting method. In order to accommodate the electric circuit board and the lead wire of the LED light inside the heat radiating housing, a housing hole is provided along the axial direction.

該放熱ハウジングの外面の径方向に延びて軸方向に沿って複数の放熱フィンが設けられる。該放熱ハウジングの下端側の各該放熱フィンの径方向の長さは、該放熱ハウジングの上端側の各該放熱フィンの径方向の長さより短い。該放熱ハウジングの下端にはソケットが取付けられ、上端には該LEDライトの発光素子(例えばLEDを設けられた台座)が取付けられる。
各該放熱フィンの両側の壁面は夾角をなし、隣接する当該放熱フィン間に空気対流の死角の形成を防止でき、当該放熱フィン間の空気対流効率を大幅に向上できる。
A plurality of heat radiating fins are provided along the axial direction extending in the radial direction of the outer surface of the heat radiating housing. The radial length of each radiating fin on the lower end side of the radiating housing is shorter than the radial length of each radiating fin on the upper end side of the radiating housing. A socket is attached to the lower end of the heat radiating housing, and a light emitting element (for example, a pedestal provided with an LED) of the LED light is attached to the upper end.
The wall surfaces on both sides of each radiating fin form a depression angle, the formation of blind spots of air convection between adjacent radiating fins can be prevented, and the air convection efficiency between the radiating fins can be greatly improved.

当該放熱フィンには、複数の平行スロットがさらに径方向に貫設される。当該平行スロットによって当該放熱フィンの放熱面積を大幅に増加できるほか、各該放熱フィン内部の熱エネルギーは、当該平行スロットを通って当該放熱フィン外部の冷たい空気との熱交換ができる。   A plurality of parallel slots are further provided in the radiating fin in the radial direction. The parallel slots can greatly increase the heat radiation area of the radiation fins, and the heat energy inside each radiation fin can exchange heat with the cold air outside the radiation fins through the parallel slots.

これにより、当該発光素子を該放熱ハウジングに組み込んで稼働し発光したとき、当該発光素子より発生する熱エネルギーは、それぞれ当該放熱ハウジングに設けられる放熱フィンと平行スロットとを介して、同時に熱伝導と熱対流方式によって、当該放熱フィン外部の冷たい空気との熱交換が行われる。当該放熱フィン間の良い空気対流効率を利用し、放熱フィンの表面と平行スロット内部の熱エネルギーを速く周りの大気に発散させることにより、該発光素子自体の温度を速やかに最適な稼働温度に引き下げて、該発光素子の発光品質、発光効率および使用寿命を向上できる。   Thus, when the light emitting element is incorporated into the heat radiating housing to operate and emit light, the heat energy generated from the light emitting element is simultaneously conducted through the heat radiating fins and the parallel slots provided in the heat radiating housing. Heat exchange with the cold air outside the radiation fin is performed by the heat convection method. Utilizing good air convection efficiency between the heat radiating fins, the heat energy in the surface of the heat radiating fins and the parallel slots is quickly dissipated into the surrounding atmosphere, thereby quickly reducing the temperature of the light emitting element itself to the optimum operating temperature. Thus, the light emission quality, light emission efficiency and service life of the light emitting element can be improved.

また、各該放熱ハウジングの内面に各該放熱フィンの位置に対応し軸方向に沿って凹み溝がそれぞれ設けられる。該放熱ハウジングの下端側の各該凹み溝の径方向の深さは、該放熱ハウジングの上端側の各該凹み溝の径方向の深さより浅く、かつ該凹み溝は当該平行スロットと互いに連通する。   In addition, a recessed groove is provided on the inner surface of each heat radiating housing along the axial direction corresponding to the position of each heat radiating fin. The radial depth of each recessed groove on the lower end side of the heat radiating housing is shallower than the radial depth of each recessed groove on the upper end side of the heat radiating housing, and the recessed grooves communicate with the parallel slots. .

これにより、各該放熱フィン内部の放熱面積を大幅に増やせるほか、該放熱ハウジング上端のLEDから発生する熱エネルギーを当該凹み溝によって提供された大きな放熱面積によって、すばやく該放熱フィンの外面に伝導させ、より高速な熱伝導効果を実現できる。その上、各該凹み溝によって該放熱ハウジング内部に大きい熱対流空間を形成できるほか、各該凹み溝は、該収容穴と当該平行スロットとを互いに連通する。よって、各該放熱フィン外部の冷たい空気は容易に当該平行スロットを介して、各該凹み溝と該収容穴内部に進入することができる。一方、該凹み溝と該収容穴内部の熱空気も容易に当該平行スロットを介して、該放熱ハウジング外部に運ばれて、より高速な熱対流効果を実現できる。   As a result, the heat radiation area inside each heat radiation fin can be greatly increased, and the heat energy generated from the LED at the upper end of the heat radiation housing can be quickly conducted to the outer surface of the heat radiation fin by the large heat radiation area provided by the concave groove. Faster heat conduction effect can be realized. In addition, a large heat convection space can be formed inside the heat radiating housing by the recessed grooves, and the recessed grooves communicate the receiving holes and the parallel slots with each other. Therefore, the cold air outside the heat radiating fins can easily enter the recessed grooves and the inside of the receiving holes through the parallel slots. On the other hand, hot air inside the recessed groove and the accommodation hole is also easily carried to the outside of the heat radiating housing via the parallel slot, so that a higher-speed thermal convection effect can be realized.

従来のLEDライトの分解斜視図である。It is a disassembled perspective view of the conventional LED light. 本発明の実施例1の放熱ハウジングとLEDライトに備えるその他素子との分解斜視図である。It is a disassembled perspective view of the heat dissipation housing of Example 1 of this invention, and the other element with which an LED light is equipped. 本発明の実施例1の放熱ハウジングの底面図である。It is a bottom view of the heat dissipation housing of Example 1 of the present invention. 本発明の実施例1の放熱ハウジングの拡大図である。It is an enlarged view of the thermal radiation housing of Example 1 of this invention.

本発明の目的、構造及びその効果のさらなる認識と理解を図るため、以下の通り実施例と図面を合わせて、詳細を説明する。   In order to further recognize and understand the object, structure, and effects of the present invention, details will be described with reference to the following examples and drawings.

通常、LEDは発光の過程で大量な熱を発生する。よって、LEDが取り付けられたLEDライトのほとんどは、LEDが発生する熱エネルギーを滞りなく周りの環境に放出させるため、放熱ハウジングが設けられている。
放熱ハウジングは、一般に、金属押出成形法または金属鋳造法で作られる。金属押出成形法からなる放熱ハウジングは、金属の板部材(例えばアルミ板材)を金属押出成形機械にて押出成形して一体成形する。しかし、金属押出成形で作られた放熱ハウジングの表面は粗いため、二次加工の必要がある。その加工プロセスは複雑であり、多大な時間と人力を要し、放熱ハウジングの製造コストが高くなり、業者の市場競争力を害する。そこで、金属押出成形に関し種々問題の解決を図った金属鋳造法が開発された。金属鋳造法による放熱ハウジングの製造では、金属合金(例えばアルミ合金)を溶融した後、金属鋳型によって一体成形する。金属合金材料の単価は金属板部材より安く、かつ金属鋳造法によって作られた放熱ハウジングは精緻な表面を有するため、二次加工の必要はない。よって、金属鋳造法からなる放熱ハウジングの生産価格、コストとも、金属押出成形による放熱ハウジングと比べ、安価になり、放熱ハウジングの大量生産に有利である。よって、金属鋳造法は放熱ハウジングの生産方法の主流になりつつある。
Usually, an LED generates a large amount of heat in the process of light emission. Therefore, most of the LED lights to which the LEDs are attached are provided with a heat radiating housing in order to release the thermal energy generated by the LEDs to the surrounding environment without delay.
The heat radiating housing is generally made by a metal extrusion method or a metal casting method. A heat radiating housing made of a metal extrusion method is integrally formed by extruding a metal plate member (for example, an aluminum plate material) with a metal extrusion molding machine. However, since the surface of the heat radiating housing made by metal extrusion is rough, secondary processing is required. The processing process is complicated, requires a lot of time and manpower, increases the manufacturing cost of the heat dissipating housing, and impairs the market competitiveness of the contractor. Therefore, a metal casting method has been developed that solves various problems related to metal extrusion. In the manufacture of a heat dissipation housing by a metal casting method, a metal alloy (for example, an aluminum alloy) is melted and then integrally formed with a metal mold. The unit price of the metal alloy material is lower than that of the metal plate member, and the heat radiating housing made by the metal casting method has a fine surface, so there is no need for secondary processing. Therefore, the production price and cost of the heat radiating housing made of a metal casting method are lower than that of the heat radiating housing by metal extrusion molding, which is advantageous for mass production of the heat radiating housing. Therefore, the metal casting method is becoming a mainstream production method of the heat radiating housing.

図2、本発明のLEDライトの放熱ハウジングの実施例1を参照する。放熱ハウジング20は、アルミ合金で、金属鋳造によって一体成形で作られる。なお、本発明の他の実施例において、該放熱ハウジング20は、銅または他の金属部材で形成することもできる。
該放熱ハウジング20内部には電気回路板23およびその上に取り付けるリード線231を収容するため、軸方向に沿って収容穴21が設けられている。
該放熱ハウジング20の外面には径方向に延びて軸方向に沿って複数の放熱フィン24が設けられる。該放熱ハウジング20の下端側の各該放熱フィン24の径方向の長さは、該放熱ハウジング20の上端側の径方向の長さより短い。
Reference is made to FIG. 2, Example 1 of the heat dissipation housing of the LED light of the present invention. The heat radiating housing 20 is made of aluminum alloy and integrally formed by metal casting. In another embodiment of the present invention, the heat radiating housing 20 may be formed of copper or other metal member.
A housing hole 21 is provided in the heat radiating housing 20 along the axial direction for housing the electric circuit board 23 and the lead wire 231 mounted thereon.
A plurality of heat radiating fins 24 are provided on the outer surface of the heat radiating housing 20 along the axial direction extending in the radial direction. The radial length of each of the radiating fins 24 on the lower end side of the radiating housing 20 is shorter than the radial length on the upper end side of the radiating housing 20.

該放熱ハウジング20の下端にはソケット25が取付けられ、上端には該LEDライト22の発光素子26が取り付けられる。本実施例において、該発光素子26は少なくとも一つのLED261と一つの台座262とを含み、該台座262の上面には当該LED261が設けられ、下面は該放熱ハウジング20の上端に貼り付けられる。該放熱ハウジング20の上端に複数の第1螺合穴27が設けられ、該台座262において、当該第1螺合穴27に対応する位置に複数の第2螺合穴28が設けられて、複数のねじ29が該第2螺合穴28をつらぬいて該第1螺合穴27に螺合し、該台座262を該放熱ハウジング20の上端に締め付ける。   A socket 25 is attached to the lower end of the heat radiating housing 20, and a light emitting element 26 of the LED light 22 is attached to the upper end. In the present embodiment, the light emitting element 26 includes at least one LED 261 and one pedestal 262, the LED 261 is provided on the upper surface of the pedestal 262, and the lower surface is attached to the upper end of the heat dissipation housing 20. A plurality of first screw holes 27 are provided at the upper end of the heat radiating housing 20, and a plurality of second screw holes 28 are provided at positions corresponding to the first screw holes 27 in the base 262. The screw 29 grabs the second screwing hole 28 and is screwed into the first screwing hole 27, and the base 262 is fastened to the upper end of the heat radiating housing 20.

図3は、放熱ハウジング20を下端側(ソケット25側)から視た底面図である。
各該放熱フィン24の基部は、各該放熱フィン24と該放熱ハウジング20が接続されるところである。各該放熱フィン24の基部の幅は該基部の遠端の幅より大きく設けられ、各該放熱フィン24の両側の壁面242、243は、夾角αをなす。夾角αは10〜30度が好ましい。本実施例において、夾角αは16度である。また、隣接する放熱フィン24の基部同士は互いに接近しており、隣接する放熱フィン24の対峙する壁面242、243は夾角βを形成する。本実施例において、夾角βは34度である。
FIG. 3 is a bottom view of the heat radiating housing 20 viewed from the lower end side (the socket 25 side).
The base of each heat radiating fin 24 is where each heat radiating fin 24 and the heat radiating housing 20 are connected. The width of the base portion of each radiating fin 24 is provided larger than the width of the far end of the base portion, and the wall surfaces 242 and 243 on both sides of each radiating fin 24 form a depression angle α. The depression angle α is preferably 10 to 30 degrees. In this embodiment, the depression angle α is 16 degrees. Further, the base portions of the adjacent radiating fins 24 are close to each other, and the wall surfaces 242 and 243 facing each other of the adjacent radiating fins 24 form a depression angle β. In this embodiment, the depression angle β is 34 degrees.

これにより、隣接する各該放熱フィン24間に空気対流の死角の形成を防止し、各該放熱フィン24間の空気対流効率を大幅に向上できる。
これに対し、従来のLEDライトの放熱ハウジングでは、各該放熱フィンの両側の壁面は互いに平行されており、かつ各該放熱フィンは該放熱ハウジングの側面に略垂直に接続されているため、隣接する当該放熱フィン間に空気対流の死角が形成される。当該放熱フィン間の死角に滞留した空気は外部の冷たい空気との対流が難しく、当該放熱フィンの周りに蓄積し、空気対流効率が良くない。
Thereby, formation of a blind spot of air convection between the adjacent radiating fins 24 can be prevented, and air convection efficiency between the radiating fins 24 can be greatly improved.
On the other hand, in the conventional heat dissipation housing of the LED light, the wall surfaces on both sides of each heat dissipation fin are parallel to each other, and each heat dissipation fin is connected to the side surface of the heat dissipation housing substantially perpendicularly. A blind spot of air convection is formed between the radiating fins. The air staying in the blind spot between the heat dissipating fins is difficult to convect with the external cold air, accumulates around the heat dissipating fins, and the air convection efficiency is not good.

前述に続き、図2と3とを参照する。本実施例では放熱面積を増やすため、各該放熱フィン24内部に複数の平行スロット241がさらに設けられる。各平行スロット241の軸は前記収容穴21の軸に平行であるため、当該平行スロット241によって各該放熱フィン24の放熱面積が大幅に増加する。該放熱ハウジング20の上端に備えるLED261より発生する熱エネルギーは、当該平行スロット241によって提供された大きな放熱面積を介して、すばやく各該放熱フィン24外部の表面に伝導し、各該放熱フィン24外部の冷たい空気との熱交換が行われ、より高速な熱伝導効果を実現できる。さらに、当該平行スロット241は各該放熱フィン24の内部で熱対流の空間が形成される。その上、当該平行スロット241は該収容穴21と互いに連通するため、各該放熱フィン24外部の冷たい空気は滞りなく当該平行スロット241を通って該収容穴21内部に進入でき、該収容穴21内部の熱空気も容易に当該平行スロット241経由に該放熱ハウジング20外部に運ばれて、より高速な熱対流効果を実現できる。   Continuing with the foregoing, reference is made to FIGS. In the present embodiment, a plurality of parallel slots 241 are further provided inside each heat radiation fin 24 in order to increase the heat radiation area. Since the axis of each parallel slot 241 is parallel to the axis of the receiving hole 21, the heat radiation area of each heat radiation fin 24 is greatly increased by the parallel slot 241. The heat energy generated from the LED 261 provided at the upper end of the heat radiating housing 20 is quickly conducted to the surface outside each heat radiating fin 24 through a large heat radiating area provided by the parallel slot 241, and Heat exchange with cold air is performed, and a faster heat conduction effect can be realized. Furthermore, the parallel slot 241 forms a heat convection space inside each heat radiating fin 24. In addition, since the parallel slots 241 communicate with the receiving holes 21, cold air outside the radiating fins 24 can enter the receiving holes 21 through the parallel slots 241 without stagnation. Internal hot air is also easily carried to the outside of the heat radiating housing 20 via the parallel slot 241 so that a higher-speed thermal convection effect can be realized.

このように、該ソケット25、該電気回路板23および該リード線231を該放熱ハウジング20上の対応する位置にそれぞれ組み込み、該発光素子26を該放熱ハウジング20の上端に組み込む。また、該発光素子26上のLED261を該リード線231と該電気回路板23とを配線し、該電気回路板23と該ソケット25を介して外部電気を取り込み、電気を当該LED261に伝送する。該発光素子26が起動され、LED261が発光する。
当該LED261から発生する熱エネルギーは、該台座262の下面を介して該放熱ハウジング20に伝導され、該放熱ハウジング20に設けられた放熱フィン24と平行スロット241を介して、同時に熱伝導と熱対流方式によって該放熱ハウジング20外部の冷たい空気との熱交換が行われる。
As described above, the socket 25, the electric circuit board 23, and the lead wire 231 are respectively incorporated at corresponding positions on the heat dissipation housing 20, and the light emitting element 26 is incorporated at the upper end of the heat dissipation housing 20. In addition, the LED 261 on the light emitting element 26 is wired between the lead wire 231 and the electric circuit board 23, external electricity is taken in via the electric circuit board 23 and the socket 25, and electricity is transmitted to the LED 261. The light emitting element 26 is activated and the LED 261 emits light.
The heat energy generated from the LED 261 is conducted to the heat radiating housing 20 via the lower surface of the pedestal 262, and simultaneously through the heat radiating fins 24 and the parallel slots 241 provided in the heat radiating housing 20, heat conduction and heat convection are performed. The heat exchange with the cold air outside the heat radiating housing 20 is performed according to the method.

これにより、当該放熱フィン24間の良好な空気対流効率を利用し、放熱フィン24の表面と平行スロット241内部の高熱エネルギーをすばやく周りの大気に発散させ、該発光素子26本体の温度をより高速に最適な稼働温度に引き下げて、該発光素子26の発光品質、発光効率と使用寿命を有効に向上できる。   Thus, by utilizing the good air convection efficiency between the heat radiating fins 24, the surface of the heat radiating fins 24 and the high thermal energy inside the parallel slots 241 are quickly dissipated into the surrounding atmosphere, so that the temperature of the light emitting element 26 body can be made faster. Therefore, the light emission quality, light emission efficiency and service life of the light emitting element 26 can be effectively improved.

引き続き、図2と4とを参照する。該放熱ハウジング20の内面に各該放熱フィン24の位置に対応して軸方向に沿って凹み溝201がそれぞれ設けられる。該放熱ハウジング20の下端側の各該凹み溝201の径方向の深さは、該放熱ハウジング20の上端側の径方向の深さより浅く、かつ該凹み溝201は当該平行スロット241と互いに連通する。   Continuing to refer to FIGS. A concave groove 201 is provided on the inner surface of the heat radiating housing 20 along the axial direction corresponding to the position of each heat radiating fin 24. The radial depth of each recessed groove 201 on the lower end side of the heat radiating housing 20 is shallower than the radial depth on the upper end side of the heat radiating housing 20, and the recessed groove 201 communicates with the parallel slot 241. .

これにより、各該放熱フィン24内部の放熱面積が大幅に増加し、該放熱ハウジング20の上端に備えるLED261から発生する熱エネルギーは、当該凹み溝201によって提供された大きい放熱面積を介して、すばやく各該放熱フィン24の外面に伝導され、各該放熱フィン24外部の冷たい空気との熱交換を行い、高速の熱伝導効果を実現できる。
当該凹み溝201はさらに該放熱ハウジング20の内部で大きな熱対流の空間を形成する一方、当該凹み溝201は該収容穴21と当該平行スロット241とを互いに連通させる。よって、各該放熱フィン24外部の冷たい空気は、滞りなく当該平行スロット241を経由して各該凹み溝201と該収容穴21内部に進入し、一方、当該凹み溝201と該収容穴21内部の熱空気は、容易に当該平行スロット241を経由して、該放熱ハウジング20外部に運ばれ、高速の熱対流効果を実現できる。
よって、当該凹み溝201と平行スロット241は各該放熱フィン24の放散、伝導面積を大幅に増加できるほか、当該凹み溝201内部の熱空気も当該平行スロット241を介して、各該放熱フィン24外部の冷たい空気より高速な熱対流を行い、各該放熱フィン24間の空気対流効率を大幅に向上できる。
As a result, the heat radiation area inside each heat radiation fin 24 is greatly increased, and the heat energy generated from the LED 261 provided at the upper end of the heat radiation housing 20 is quickly transmitted through the large heat radiation area provided by the recessed groove 201. Conducted to the outer surface of each radiating fin 24, heat exchange with the cold air outside each radiating fin 24 is performed, and a high-speed heat conduction effect can be realized.
The recessed groove 201 further forms a large heat convection space inside the heat radiating housing 20, while the recessed groove 201 allows the receiving hole 21 and the parallel slot 241 to communicate with each other. Therefore, the cold air outside the heat radiating fins 24 enters the recessed grooves 201 and the receiving holes 21 through the parallel slots 241 without any delay, while the recessed grooves 201 and the receiving holes 21 The hot air is easily carried to the outside of the heat radiating housing 20 via the parallel slot 241 so that a high-speed thermal convection effect can be realized.
Therefore, the recessed groove 201 and the parallel slot 241 can greatly increase the diffusion and conduction area of the heat radiating fins 24, and the hot air inside the recessed groove 201 also passes through the parallel slots 241 to the heat radiating fins 24. Thermal convection is performed at a speed higher than that of the external cold air, and the air convection efficiency between the radiating fins 24 can be greatly improved.

前述の実施例において、該放熱フィンの構造と、該発光素子および該放熱ハウジング間の接合方式などに使用された語彙ならびに説明は、本発明の好ましい実施例を説明することを目的とし、本発明になんらの限定を加わるものではない。よって、本発明の分野を熟知する者は、本発明で開示された内容に基づき付加、転換、削除等がされた場合、あるいはその他構造または装置の利用により実現される構成を容易に想到できる場合は、本発明と均等なものとして本発明の技術的範囲に含まれる。   In the above-described embodiments, the structure of the heat dissipating fins, the vocabulary and description used for the joining method between the light emitting element and the heat dissipating housing, etc. are intended to explain the preferred embodiments of the present invention. It does not add any limitation to the. Therefore, a person who is familiar with the field of the present invention can add, convert, delete, etc. based on the contents disclosed in the present invention, or can easily come up with a configuration realized by using other structures or devices. Is included in the technical scope of the present invention as equivalent to the present invention.

20 ・・・放熱ハウジング
21 ・・・収容穴
22 ・・・LEDライト
23 ・・・電気回路板
24 ・・・放熱フィン
25 ・・・ソケット
26 ・・・発光素子
27 ・・・第1螺合穴
28 ・・・第2螺合穴
29 ・・・ねじ
231 ・・・リード線
241 ・・・平行スロット
242、243 ・・・壁面
261 ・・・LED(発光ダイオード)
262 ・・・台座
201 ・・・凹み溝
DESCRIPTION OF SYMBOLS 20 ... Radiation housing 21 ... Accommodating hole 22 ... LED light 23 ... Electric circuit board 24 ... Radiation fin 25 ... Socket 26 ... Light emitting element 27 ... First screwing Hole 28 ... 2nd screwing hole 29 ... Screw 231 ... Lead wire 241 ... Parallel slot 242, 243 ... Wall surface 261 ... LED (light emitting diode)
262: pedestal 201: recessed groove

Claims (6)

金属鋳造によって略筒状に一体成形されるLEDライトの放熱ハウジングであって、
内部に軸方向に沿って貫設される収容穴と、
外面の径方向に延びて軸方向に沿って設けられる複数の放熱フィンと、
前記収容穴の軸方向に平行に前記放熱フィンの径方向に貫設される複数の平行スロットと、
内面に前記複数の放熱フィンの位置に対応して軸方向に沿って設けられる複数の凹み溝と、
を備えることを特徴とするLEDライトの放熱ハウジング。
A heat dissipation housing for an LED light that is integrally molded into a substantially cylindrical shape by metal casting,
A receiving hole penetrating along the axial direction inside,
A plurality of heat dissipating fins extending in the radial direction of the outer surface and provided along the axial direction;
A plurality of parallel slots penetrating in the radial direction of the radiating fin in parallel with the axial direction of the receiving hole;
A plurality of recessed grooves provided along the axial direction corresponding to the positions of the plurality of radiation fins on the inner surface;
A heat dissipating housing for an LED light, comprising:
前記放熱フィンの両側の壁面は、所定の夾角をなすように形成されていることを特徴とする請求項1記載のLEDライトの放熱ハウジング。   2. A heat dissipation housing for an LED light according to claim 1, wherein wall surfaces on both sides of the heat dissipation fin are formed to form a predetermined depression angle. 前記放熱ハウジングの下端側の前記放熱フィンの径方向の長さは、前記放熱ハウジングの上端側の前記放熱フィンの径方向の長さより短いことを特徴とする請求項2記載のLEDライトの放熱ハウジング。   3. The heat dissipation housing for an LED light according to claim 2, wherein a length in a radial direction of the heat dissipation fin on a lower end side of the heat dissipation housing is shorter than a length in a radial direction of the heat dissipation fin on an upper end side of the heat dissipation housing. . 前記放熱ハウジングの下端側の前記凹み溝の径方向の深さは、前記放熱ハウジングの上端側の前記凹み溝の径方向の深さより浅く、かつ前記凹み溝と前記平行スロットとは連通することを特徴とする請求項3記載のLEDライトの放熱ハウジング。   The depth in the radial direction of the recess groove on the lower end side of the heat dissipation housing is shallower than the depth in the radial direction of the recess groove on the upper end side of the heat dissipation housing, and the recess groove and the parallel slot communicate with each other. The heat dissipation housing for an LED light according to claim 3. 前記放熱ハウジングの上端面に、少なくとも一つの螺合穴が設けられていることを特徴とする請求項4記載のLEDライトの放熱ハウジング。   5. The heat dissipation housing for an LED light according to claim 4, wherein at least one screwing hole is provided in an upper end surface of the heat dissipation housing. 前記放熱フィンの両側の壁面の夾角は、10度から30度までの範囲にあることを特徴とする請求項2〜5のいずれか一項に記載のLEDライトの放熱ハウジング。   6. The LED light radiating housing according to claim 2, wherein the depression angles of the wall surfaces on both sides of the radiating fin are in a range of 10 degrees to 30 degrees.
JP2010092007A 2010-04-13 2010-04-13 Heat-radiating housing of led light Pending JP2011222381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010092007A JP2011222381A (en) 2010-04-13 2010-04-13 Heat-radiating housing of led light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010092007A JP2011222381A (en) 2010-04-13 2010-04-13 Heat-radiating housing of led light

Publications (1)

Publication Number Publication Date
JP2011222381A true JP2011222381A (en) 2011-11-04

Family

ID=45039095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010092007A Pending JP2011222381A (en) 2010-04-13 2010-04-13 Heat-radiating housing of led light

Country Status (1)

Country Link
JP (1) JP2011222381A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205743A (en) * 2012-03-29 2013-10-07 Sumitomo Chemical Co Ltd Method and apparatus for manufacturing polarizing plate
KR101390970B1 (en) * 2012-07-11 2014-05-27 주식회사 파인테크닉스 LED lamp housing for heatsink and the manufacture method
WO2014172749A2 (en) * 2013-04-26 2014-10-30 Theodore Valerio Heat sink and heat dissipation system for lighting module
WO2016018014A1 (en) * 2014-07-29 2016-02-04 주식회사 케이엠더블유 Led lighting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205743A (en) * 2012-03-29 2013-10-07 Sumitomo Chemical Co Ltd Method and apparatus for manufacturing polarizing plate
KR101390970B1 (en) * 2012-07-11 2014-05-27 주식회사 파인테크닉스 LED lamp housing for heatsink and the manufacture method
WO2014172749A2 (en) * 2013-04-26 2014-10-30 Theodore Valerio Heat sink and heat dissipation system for lighting module
WO2014172749A3 (en) * 2013-04-26 2014-12-18 Theodore Valerio Heat sink and heat dissipation system for lighting module
WO2016018014A1 (en) * 2014-07-29 2016-02-04 주식회사 케이엠더블유 Led lighting device

Similar Documents

Publication Publication Date Title
CN101457913B (en) LED lamp
US10107487B2 (en) LED light bulbs
US9951938B2 (en) LED lamp
US10400959B2 (en) LED lamp
RU2527555C2 (en) Illumination device with inverted-cone heat removal
US8760043B2 (en) LED-based electric lamp
US20110232886A1 (en) Heat dissipation housing for led lamp
JP2008186758A (en) Self-ballasted lighting led lamp
US20130092362A1 (en) Heat dissipating structure for light bulb
US8608352B2 (en) Illuminating device
JP2011222381A (en) Heat-radiating housing of led light
KR101149795B1 (en) A led lamp structure
CN102200258A (en) Radiating shell of light emitting diode light fixture
KR20120028534A (en) Led lamp provided an improved capability of discharging heat
JP3166364U (en) Light bulb type LED lighting device and heat dissipation structure thereof
CN201206814Y (en) LED lamp
TW201445082A (en) Light emitting device
JP3177084U (en) Combination heat dissipation structure for LED bulbs
KR20120002921U (en) The LED lamp
TWM407348U (en) Heat-dissipation lamp holder of LED lamp
TW201500688A (en) Light-emitting diode light bulb with central-axis bidirectional convection heat dissipation structure
KR20100009387U (en) LED module equipped with heat radiating system
TWM508644U (en) Light emitting device
JP2010198764A (en) Compact self-ballasted fluorescent lamp