JP2011220150A - シリンダボアおよびその製造方法 - Google Patents

シリンダボアおよびその製造方法 Download PDF

Info

Publication number
JP2011220150A
JP2011220150A JP2010087963A JP2010087963A JP2011220150A JP 2011220150 A JP2011220150 A JP 2011220150A JP 2010087963 A JP2010087963 A JP 2010087963A JP 2010087963 A JP2010087963 A JP 2010087963A JP 2011220150 A JP2011220150 A JP 2011220150A
Authority
JP
Japan
Prior art keywords
cylinder bore
cylinder
sliding surface
plastic working
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010087963A
Other languages
English (en)
Inventor
Koji Kobayashi
幸司 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2010087963A priority Critical patent/JP2011220150A/ja
Priority to US13/079,902 priority patent/US20110239976A1/en
Priority to CN201110085134.4A priority patent/CN102213157B/zh
Priority to DE102011006829A priority patent/DE102011006829A1/de
Publication of JP2011220150A publication Critical patent/JP2011220150A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P9/00Treating or finishing surfaces mechanically, with or without calibrating, primarily to resist wear or impact, e.g. smoothing or roughening turbine blades or bearings; Features of such surfaces not otherwise provided for, their treatment being unspecified
    • B23P9/02Treating or finishing by applying pressure, e.g. knurling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • F02F1/20Other cylinders characterised by constructional features providing for lubrication
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49231I.C. [internal combustion] engine making

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

【課題】歪みの発生なしに鋳巣を十分に除去することができるとともに、これにより耐久性向上を実現することができるシリンダボアおよびその製造方法を提供する。
【解決手段】シリンダボア10の摺動面11およびその近傍には、鋳造時に発生した鋳巣11Aが存在している。シリンダボア10の摺動面11に塑性加工を行うことにより、鋳巣11Aを押し潰すとともに、シリンダボア10の摺動面11を平滑にする。塑性加工では、ローラバニシング法を用いることが好適である。続いて、シリンダボア10の摺動面11に、耐焼付き性の高い被膜12を形成する。被膜12としてDLC膜を用いることが好適である。被膜材料として耐焼付き性を有する材料を用いることにより、摺動面の性状の自由度を向上させることができるから、上記平滑化が可能となる。
【選択図】図1

Description

本発明は、エンジンの分野で使用されるシリンダボアおよびその製造方法に係り、特に、摺動面の改良に関する。
シリンダボアは、油膜を介して相対的にピストンに摺動する摺動面を有している。摺動面では、たとえば油膜確保による耐焼付き性と耐摩耗性の向上をおもな目的として、ホーニング加工によりクロスハッチ等の溝形状が形成され、溝形状の表面には被膜が形成されている。また、Ni金属中にSiC粒子を分散させるNi−SiCめっき法等の湿式めっき法を用い、被膜としてめっき膜を形成することが実用化されている。
このような摺動面には種々の改良がなされている。たとえば特許文献1の技術では、シリンダボアの摺動面の被膜として、耐焼付き性に優れ、低フリクション性を有するDLC膜(ダイヤモンド・ライク・カーボン(Diamond-Like Carbon))を形成している。また特許文献2の技術では、シリンダボアの摺動面の被膜としてアルマイト膜を形成し、アルマイト膜を摺動面から均一に突出させるために、アルマイト膜にバニシング加工を行っている。
特開2005−69008号公報 特開平10−237693号公報
ところで、シリンダボアが形成されるシリンダブロックは、鋳造法で製造されることから、摺動面およびその近傍に鋳巣が散在している。被膜としてDLC膜を形成する場合、DLC膜が、鋳巣の部分に密着しないため、鋳巣を起点としてDLC膜の剥離が生じる虞があった。また、DLC膜が相手部材により押圧されて、DLC膜の一部が鋳巣の部分に陥没してクラックが発生する虞があった。また、被膜としてめっき膜を形成する場合、エンジン運転時に熱が加えられたとき、鋳巣中の水分が蒸発・膨張するため、摺動面表面を覆うめっき膜が破壊され、欠陥が生じる虞があった。
以上のことから、シリンダボアの耐久信頼性向上のために鋳巣発生の抑制が必要である。しかしながら、シリンダブロックの製造に用いる鋳造法では、鋳巣発生を完全に防止するために、鋳造品の品質向上を図ることは非現実的である。また、比較的鋳造品質に優れるLPDC法(Low Pressure Die Casting法)を採用すると、鋳巣量の大幅低減を図ることができるものの、その低減量は、シリンダボアの耐久性向上にとって不十分である。また、LPDC法は、HPDC(High Pressure Die Casting法)比べて生産性が大幅に悪化し、高コストを招いていた。
このような背景からシリンダブロックをHPDC法で製造し、後エ程で鋳巣除去の必要がある。そこで、被膜形成前に、シリンダブロックが容易に塑性変形する温度まで加熟し、ハンマー等でシリンダボアの摺動面を叩き、鋳巣を潰すことが考えられる。しかしながら、高い真円度が必要となるシリンダーボア等の部品に上記手法を適用した場合、歪みが発生し、製品の品質が低下する。
したがって、本発明は、歪みの発生なしに鋳巣を十分に除去することができるとともに、これにより耐久性向上を実現することができるシリンダボアおよびその製造方法を提供することを目的とする。
本発明者は、シリンダボアの摺動面について鋭意検討を重ねた結果、摺動面に形成する被膜の材質として耐焼付き性を有する材料を用いることにより、摺動面の性状の自由度を向上させることができるとの知見を得、被膜形成前の摺動面に塑性加工を行うことにより、摺動面およびその近傍の鋳巣を押し潰すとともに、摺動面を平滑にすることができることを見出し、本発明の完成に至った。
本発明のシリンダボアの製造方法は、相手部材と摺動する摺動面を有するシリンダボアの製造方法であって、鋳造ブロックにボーリング加工を行うことにより、鋳造ブロックに摺動面を形成し、ボーリング加工後、摺動面に塑性加工を行うことにより、摺動面およびその近傍の鋳巣を押し潰すとともに、摺動面を平滑にし、塑性加工後、摺動面に耐焼付き性を有する被膜を形成することを特徴とする。
本発明のシリンダボアの製造方法では、被膜形成前の摺動面に塑性加工を行うことにより、摺動面およびその近傍の鋳巣を押し潰すとともに、摺動面を平滑にしている。したがって、鋳巣等の欠陥を十分に除去することができるから、被膜の剥離やクラック発生等を防止することができる。その結果、耐久信頼性の向上を図ることができる。また、ハンマー等で摺動面を叩く必要がないから、歪みの発生を抑制することができ、その結果、製品の品質向上を図ることができる。
本発明のシリンダボアの製造方法は種々の構成を用いることができる。たとえば被膜として、単位面積比で5〜50%のSiCを含有するNi−SiC膜を用いることができる。被膜中のSiCの含有割合が単位面積比で5%未満の場合、めっき膜としての靱性を得ることができなくなる。SiCの含有割合が単位面積比で50%超の場合、耐焼付け性が悪くなる。したがって、被膜中のSiCの含有割合が単位面積比で5〜50%の範囲内であることが好適である。また、耐焼付き性を有する被膜としてDLC膜(ダイヤモンド・ライク・カーボン(Diamond-Like Carbon))を用いることができる。この態様では、耐焼付き性の向上はもちろんのこと、耐摩耗性の向上およびフリクションロスの低減を図ることができる。また、DLC膜とシリンダボア表面との間に中間膜を形成してもよい。
たとえばシリンダボアの円筒度が30μm以下に設定すると、潤滑油の消費量の低減を図ることができ、摺動面でのカジリの発生を防止することができる等、所望の性能を得ることができる。したがって、シリンダボアの円筒度を30μm以下に設定することが好適である。また、たとえばシリンダボアの円筒度を20μm以下に設定すると、製造条件を大きく変更することなく、気密性を保持させることができ、シリンダボアの更なる高性能化を図ることができる。したがって、シリンダボアの円筒度を20μm以下に設定することがより好適である。なお、円筒度は、塑性加工後のシリンダボアの孔径の最大値と最小値との差である。
シリンダボアの円筒度を30μmあるいは20μmに設定するためには、塑性加工での塑性変形量を次のように設定することが好適である。塑性変形量は、塑性加工前のシリンダボアの径と塑性加工後のシリンダボアの径との差の最大値である。
たとえば単気筒エンジンあるいはV型2気筒エンジンに適用する場合、シリンダボアの円筒度を30μm以下に設定するためには、塑性加工での塑性変形量を5μm〜145μmの範囲内に設定し、シリンダボアの円筒度を20μm以下に設定するためには、塑性加工での塑性変形量を5μm〜85μmの範囲内に設定することが好適である。
直列2気筒エンジンあるいはV型4気筒エンジンに適用する場合、シリンダボアの円筒度を30μm以下に設定するためには、塑性加工での塑性変形量を5μm〜120μmの範囲内に設定し、シリンダボアの円筒度を20μm以下に設定するためには、塑性加工での塑性変形量を5μm〜65μmの範囲内に設定することが好適である。
直列3気筒エンジンあるいはV型6気筒エンジンに適用する場合、シリンダボアの円筒度を30μm以下に設定するためには、塑性加工での塑性変形量を5μm〜125μmの範囲内に設定し、シリンダボアの円筒度を20μm以下に設定するためには、塑性加工での塑性変形量を5μm〜70μmの範囲内に設定することが好適である。
直列4気筒エンジンあるいはV型8気筒エンジンに適用する場合、シリンダボアの円筒度を30μm以下に設定するためには、塑性加工での塑性変形量を5μm〜90μmの範囲内に設定し、シリンダボアの円筒度を20μm以下に設定するためには、塑性加工での塑性変形量を5μm〜50μmの範囲内に設定することが好適である。
複数気筒を有する直列型エンジンあるいはV字の両側に複数気筒を配したV型エンジンでも、塑性加工での塑性変形量を5μm〜90μmの範囲内に設定することにより、最後に(V型エンジンの場合、V字のそれぞれの側で最後に)塑性加工を行ったシリンダボアの円筒度を30μm以下に設定することができる。また、塑性加工での塑性変形量を5μm〜50μmの範囲内に設定することにより、最後に(V型エンジンの場合、V字のそれぞれの側で最後に)塑性加工を行ったシリンダボアの円筒度を20μm以下に設定することができる。塑性加エでは、各種塑性加工手段を用いることができ、バニシングローラ法を用いることが好適である。また、たとえば面粗度Raが0.1μm以下になると、フリクションを大幅に低減させることができるから、面粗度Raを0.1μm以下に設定することが好適である。この場合、面粗度Raを0.1μm以下に設定するために、塑性加工での塑性変形量を5μm以上に設定することが好適である。
本発明のシリンダボアは、本発明のシリンダボアの製造方法により得られるものである。すなわち、本発明のシリンダボアは、相手部材と摺動する摺動面およびその近傍では鋳巣が押し潰されるとともに、摺動面は平滑にされ、摺動面に耐焼付き性を有する被膜が形成されていることを特徴とする。本発明のシリンダボアは、本発明のシリンダボアの製造方法と同様な効果を得ることができる。
本発明の本発明のシリンダボアあるいはその製造方法によれば、鋳巣等の欠陥を十分に除去することができるから、被膜でのクラック発生や被膜の剥離を防止することができるので、耐久信頼性の向上を図ることができる。
本発明の一実施形態に係るシリンダボアの製造方法の各工程を表し、(A)はボーリング後のシリンダボアの摺動面の状態、(B)は塑性加工後のシリンダボアの摺動面の状態、(C)は被膜形成後のシリンダボアの摺動面の状態を表す概略断面図である。 本実施形態に係るシリンダボアの製造方法ローラバニシング法を用いた塑性加工を行っている概略構成を表す断面図である。 実施例において、塑性加工前後のシリンダボアの面粗度Ra(μm)とバニシング量との関係を調べた結果を表すグラフである。 各評価における塑性加工でのバニシング量(μm)とシリンダボアの円筒度(μm)との関係を表すグラフである。 円筒度の算出の仕方を説明するための図である。 塑性加工を行った順序を説明するための図であり、(A)は3ボア評価の場合の図、(B)は4ボア評価の場合の図である。
以下、本発明の一実施形態について図面を参照して説明する。図1は、本発明の一実施形態に係るシリンダボア10の製造方法の各工程を表し、(A)はボーリング加工後のシリンダボア10の摺動面11の状態、(B)はバニシング加工が行われているシリンダボア10の摺動面11の状態、(C)は被膜12形成後のシリンダボア10の摺動面11の状態を表す概略断面図である。図1(A)〜(C)では、シリンダボア10の摺動面11およびその近傍のみを図示している。図2は、図1(B)のバニシング加工を摺動面11に行っている状態を表す断面図である。
まず、金型を用いた鋳造により、たとえばAlからなるシリンダブロック(鋳造ブロック)を得る。次いで、シリンダブロックにボーリング加工を行うことにより、摺動面を有するシリンダボアを形成する。図1(A)に示すように、シリンダボア10の摺動面11およびその近傍には、鋳造時に発生した鋳巣11Aが存在している。
続いて、シリンダボア10の摺動面11に塑性加工を行うことにより、鋳巣11Aを押し潰すとともに、シリンダボア10の摺動面11を平滑にする。具体的には、塑性加工では、ローラバニシング法を用いる。
図2に示すローラバニシング法で使用されるバニシングツール100では、リテーナ102の内周面にマンドレル101が回転自在に設けられ、マンドレル101の回転により回転するローラ103がリテーナ102に所定間隔をおいて設けられている。ローラ103の一部がリテーナ102の外周面から突出している。なお、符号1は、シリンダブロックの一部である。
シリンダボア10の内周面にバニシングツール100を適用した場合、マンドレル101を回転させると、マンドレル101の回転力がローラ103に伝達し、シリンダボア10の摺動面11が塑性変形する。これにより、シリンダボア10の摺動面11およびその近傍に存在する鋳巣11Aが押し潰されるとともに、シリンダボア10の摺動面11が平滑になる(鏡面となる)。
ここで、摺動面11の面粗度Raを0.1μm以下とするためには、バニシング量(塑性変形量)を5μm以上に設定することが好適である。シリンダボア10の円筒度を30μm以下に設定するために、バニシング量を5〜85μmの範囲内に設定することが好適である。シリンダボア10の円筒度を20μm以下に設定するために、バニシング量を5〜50μmの範囲内に設定することが好適である。このようにバニシング量を設定することにより、シリンダブロック1が複数のシリンダボア10を有する場合でも、円筒度の各目標値を達成することができる。
続いて、シリンダボア10の摺動面11に被膜12を形成する。被膜12の材質として、たとえば耐焼付き性の高いDLC、Ni−SiC(ニッケル−炭化ケイ素)、CrN(窒化クロム)、Au(金)、Ag(銀)、Cu(銅)を用いる。耐焼付き性の高い被膜12がない場合、たとえばAl(アルミニウム)からなるシリンダボア10とピストンの摺動により凝着が容易に生じ、焼付きが生じる虞があるが、被膜12を形成することにより、焼付きは発生しない。
被膜としてNi−SiC膜を用いる場合、単位面積比で5〜50%のSiCを含有することが好適である。SiCの含有割合が上記範囲内の場合、めっき膜としての靱性を得ることができ、かつ耐焼付け性が良好となる。DLCは、耐焼付き性に優れ、低フリクション性を有するから、被膜12の材質として好適である。DLCを用いる場合、たとえばプラズマCVDあるいはPVD法によりDLC膜を形成する。CrNを用いる場合、たとえば蒸着によりCrN膜を形成する。
本実施形態では、被膜形成前の摺動面11に塑性加工を行うことにより、摺動面11およびその近傍の鋳巣を押し潰すとともに、摺動面11を平滑にしている。したがって、鋳巣11A等の欠陥を十分に除去することができるから、被膜12の剥離やクラック発生等を防止することができる。その結果、耐久信頼性の向上を図ることができる。また、ハンマー等で摺動面を叩く必要がないから、歪みの発生を抑制することができ、その結果、製品の品質向上を図ることができる。
以下、具体的な実施例を参照して本発明をさらに詳細に説明する。実施例では、実施形態と同様な手法を用い、鋳造により得られたシリンダブロックにボーリング加工を行うことにより、摺動面を有するシリンダボアを形成した。次いで、シリンダボアの摺動面にローラバニシング法を用いた塑性加工を行った。得られた試料について、面粗度制御の評価および円筒度の評価を行い、塑性加工の最適な条件について調べた。
(1)実施例1(面粗度制御の評価)
実施例1では、面粗度制御の評価を行った。ボーリング加工では、略同程度の面粗度を有する複数のシリンダボアを得、そのシリンダボアの塑性加工では、バニシング量を変え、塑性加工前後のシリンダボアの面粗度Ra(μm)とバニシング量との関係を調べた。その結果を図3に示す。
なお、実施例1では、1つのシリンダブロックにつき1つのシリンダボアのみに塑性加工を行った。図3では、バニシング量(μm)は、塑性加工前のシリンダボアの径と、バニシングツール100のツール径(マンドレル101の中心からローラ103の最外周面までの長さ)との差とした。面粗度制御の評価では、面粗度Raが0.1μm以下になると、フリクションを大幅に低下させることができるから、面粗度Raの目標値を0.1μm以下に設定し、塑性加工後の面粗度Raがその範囲内にあるときには合格とし、その範囲外にあるときは不合格とした。
図3から判るように、バニシング量が5μm以上のとき、面粗度Raが0.1μm以下となり、目標値が達成され、所望の平滑性が得られることを確認した。この場合、塑性加工後の面粗度Raは、略一定値となり、バニシング量に関係ないことを確認した。また、塑性加工前の面粗度Raにより最適なバニシング量は変化するから、バニシング量が5μm未満の場合でも、所望の平滑性が得られる場合もあることを確認した。
(2)実施例2(円筒度の評価)
実施例2では、円筒度の評価を行った。ボーリング加工では、略同程度の面粗度を有するシリンダボアを有するシリンダブロックを得、そのシリンダボアの塑性加工では、バニシング量を変え、塑性加工後のシリンダボアの円筒度(μm)とバニシング量(μm)との関係を得、円筒度の評価を行った。なお、バニシング量は、塑性加工前のシリンダボアの径と塑性加工後のシリンダボアの径との差の最大値とした。円筒度は、図5に示すように、塑性加工後のシリンダボアの孔径の最大値R1と最小値R2との差とした。
具体的には、1つのシリンダブロックにつき1つのシリンダボアに塑性加工を行った形態についての円筒度評価(単ボア評価)、1つのシリンダブロックにつき2つのシリンダボアに塑性加工を行った形態についての円筒度評価(2ボア評価)、1つのシリンダブロックにつき3つのシリンダボアに塑性加工を行った形態についての円筒度評価(3ボア評価)、1つのシリンダブロックにつき4つのシリンダボアに塑性加工を行った形態についての円筒度評価(4ボア評価)を行った。それら円筒度評価について、塑性加工後のシリンダボアの円筒度(μm)とバニシング量(μm)との関係を表1および図4に示す。図4は、表1のデータに基づき作成したものである。なお、複数ボアの評価では、塑性加工後のシリンダボアの円筒度は、最後に塑性加工を行ったシリンダボアの円筒度とした。
Figure 2011220150
円筒度が30μm以下では、潤滑油の消費量の低減を図ることができ、摺動面でのカジリの発生を防止することができる等、所望の性能を得ることができるから、円筒度の目標値を円筒度を30μm以下(第1目標値)に設定した。また、円筒度が20μm以下では、製造条件を大きく変更することなく、気密性を保持させることができ、シリンダボアの更なる高性能化を図ることができるから、より好適な円筒度の目標値を20μm以下(第2目標値)に設定した。
(A)単ボア評価
1つのシリンダボアを有するシリンダブロックを用い、そのシリンダボアに塑性加工を行い、塑性加工後のシリンダボアの評価を行ったから、この場合の円筒度は、隣接するシリンダボアの塑性加工による影響はなく、塑性加工自体の影響のみによるものである。
表1および図4から判るように、バニシング量が大きくなるに従い、塑性加工後のシリンダボアの円筒度が徐々に悪化したものの、バニシング量が5μm以上145μm以下であるときに円筒度の第1目標値(30μm以下)が達成されることが判った。また、バニシング量が5μm以上85μm以下であるときに円筒度の第2目標値(20μm以下)が達成されることが判った。
したがって、単気筒エンジンおよびV型2気筒エンジンを用いる場合、円筒度を30μm以下に設定するためには、バニシング量を5μm〜145μmの範囲内に設定することが好適であり、円筒度を20μm以下に設定するためには、バニシング量を5μm〜85μmの範囲内に設定することが好適であることを確認した。
(B)2ボア評価
2つのシリンダボアを有するシリンダブロックを用い、それらのシリンダボアに塑性加工を行い、塑性加工後のシリンダボアの評価を行ったから、この場合の円筒度は、塑性加工自体の影響に加えて、隣接するシリンダボアの塑性加工による影響を含んだものとなる。
表1および図4から判るように、バニシング量が大きくなるに従い、最後に塑性加工を行ったシリンダボアの円筒度は、単ボアの場合よりも悪化したが、バニシング量が5μm以上120μm以下であるときに円筒度の第1目標値(30μm以下)が達成されることが判った。また、バニシング量が5μm以上65μm以下であるときに円筒度の第2目標値(20μm以下)が達成されることが判った。
したがって、直列2気筒エンジンおよびV型4気筒エンジンを用いる場合、円筒度を30μm以下に設定するためには、バニシング量を5μm〜120μmの範囲内に設定することが好適であり、円筒度を20μm以下に設定するためには、バニシング量を5μm〜65μmの範囲内に設定することが好適であることを確認した。
(C)3ボア評価
3つのシリンダボアを有するシリンダブロックを用い、それらのシリンダボアに塑性加工を行い、塑性加工後のシリンダボアの評価を行ったから、この場合の円筒度は、2ボアの場合と同様、塑性加工自体の影響に加えて、隣接するシリンダボアの塑性加工による影響を含んだものとなる。
ここで、隣接するシリンダボアの塑性加工による影響を最小限に抑制するために、塑性加工の順序について調べた結果、図6(A)に示すシリンダブロックの3つのシリンダA〜Cについて、左側から順に(すなわち、シリンダボアA、シリンダボアB、シリンダボアC、の順に)あるいは、右から順に(すなわち、シリンダボアC、シリンダボアB、シリンダボアAの順に)塑性加工を行った場合、隣接するシリンダボアの塑性加工による影響を次々と含んでしまうため、最後に塑性加工を行ったシリンダボアには、全ての塑性加工の影響が累積されてしまい、最後に塑性加工を行ったシリンダボアの円筒度が悪くなってしまった。
そこで、図6(A)に示すシリンダブロックの3つのシリンダA〜Cについて、シリンダB、シリンダA、シリンダCの順に、あるいは、シリンダB、シリンダC、シリンダAの順に塑性加工を行うと、最後に塑性加工を行ったシリンダボアの円筒度は、上記順序で行った場合よりも、良好になることが判った。
この順序で最後に塑性加工を行ったシリンダボアの円筒度(μm)とバニシング量(μm)との関係を表1および図4に示す。表1および図4から判るように、バニシング量が大きくなるに従い、最後に塑性加工を行ったシリンダボアの円筒度は、2ボアの場合と略同等の結果が得られた。具体的には、バニシング量が5μm以上125μm以下であるときに円筒度の第1目標値(30μm以下)が達成されることが判った。また、バニシング量が5μm以上70μm以下であるときに円筒度の第2目標値(20μm以下)が達成されることを判った。
したがって、直列3気筒エンジンおよびV型6気筒エンジンを用いる場合、円筒度を30μm以下に設定するためには、バニシング量を5μm〜125μmの範囲内に設定することが好適であり、円筒度を20μm以下に設定するためには、バニシング量を5μm〜70μmの範囲内に設定することが好適であることを確認した。
(D)4ボア評価
4つのシリンダボアを有するシリンダブロックを用い、隣接するシリンダボアの塑性加工による影響を最小限に抑制するために、塑性加工の順序について調べた結果、図6(B)に示すシリンダブロックの4つのシリンダA〜Dについて、左側から順に(すなわち、シリンダボアA、シリンダボアB、シリンダボアC、シリンダボアDの順に)あるいは、右から順に(すなわち、シリンダボアD、シリンダボアC、シリンダボアB、シリンダボアAの順に)塑性加工を行った場合、隣接するシリンダボアの塑性加工による影響を次々と含んでしまうため、最後に塑性加工を行ったシリンダボアには、全ての塑性加工の影響が累積されてしまい、3ボアの場合と同様、最後に塑性加工を行ったシリンダボアの円筒度が悪くなってしまった。
そこで、図6(B)に示すシリンダブロックの3つのシリンダA〜Dについて、シリンダB、シリンダA、シリンダC、シリンダボアDの順に、あるいは、シリンダC、シリンダD、シリンダB、シリンダボアAの順に塑性加工を行うと、最後に塑性加工を行ったシリンダボアの円筒度は、上記順序で行った場合よりも、良好になることが判った。
この順序で最後に塑性加工を行ったシリンダボアの円筒度(μm)とバニシング量(μm)との関係を表1および図4に示す。表1および図4から判るように、バニシング量が大きくなるに従い、最後に塑性加工を行ったシリンダボアの円筒度は、3ボアの場合よりも悪化したが、バニシング量が5μm以上90μm以下であるときに円筒度の第1目標値(30μm以下)が達成されることが判った。また、バニシング量が5μm以上50μm以下であるときに円筒度の第2目標値(20μm以下)が達成されることを判った。
したがって、直列4気筒エンジンおよびV型8気筒エンジンを用いる場合、円筒度を30μm以下に設定するためには、バニシング量を5μm〜90μmの範囲内に設定することが好適であり、円筒度を20μm以下に設定するためには、バニシング量を5μm〜50μmの範囲内に設定することが好適であることを確認した。
実施例3の3以上のボアの円筒度の評価では、それらシリンダボアについて所定の順序で塑性加工を行ったが、全てのシリンダボアの円筒度を良好とする手法としては、全てのシリンダボアの塑性加工を同時に行うことが好適であることを確認した。
10…シリンダボア、11…摺動面、11A…鋳巣、12…被膜

Claims (15)

  1. 相手部材と摺動する摺動面を有するシリンダボアの製造方法において、
    鋳造ブロックにボーリング加工を行うことにより、前記鋳造ブロックに前記摺動面を形成し、
    前記ボーリング加工後、前記摺動面に塑性加工を行うことにより、摺動面およびその近傍の鋳巣を押し潰すとともに、前記摺動面を平滑にし、
    前記塑性加工後、前記摺動面に耐焼付き性を有する被膜を形成することを特徴とするシリンダボアの製造方法。
  2. 前記被膜として、単位面積比で5〜50%のSiCを含有するNi−SiC膜を用いることを特徴とする請求項1に記載のシリンダボアの製造方法。
  3. 前記被膜としてDLC膜を用いることを特徴とする請求項1に記載のシリンダボアの製造方法。
  4. 単気筒エンジンあるいはV型2気筒エンジンに適用する場合、前記塑性加工での塑性変形量を5μm〜145μmの範囲内に設定することを特徴とする請求項1〜3のいずれかに記載のシリンダボアの製造方法。
  5. 単気筒エンジンあるいはV型2気筒エンジンに適用する場合、前記塑性加工での塑性変形量を5μm〜85μmの範囲内に設定することを特徴とする請求項1〜4のいずれかに記載のシリンダボアの製造方法。
  6. 直列2気筒エンジンあるいはV型4気筒エンジンに適用する場合、前記塑性加工での塑性変形量を5μm〜120μmの範囲内に設定することを特徴とする請求項1〜3のいずれかに記載のシリンダボアの製造方法。
  7. 直列2気筒エンジンあるいはV型4気筒エンジンに適用する場合、前記塑性加工での塑性変形量を5μm〜65μmの範囲内に設定することを特徴とする請求項1〜3,6のいずれかに記載のシリンダボアの製造方法。
  8. 直列3気筒エンジンあるいはV型6気筒エンジンに適用する場合、前記塑性加工での塑性変形量を5μm〜125μmの範囲内に設定することを特徴とする請求項1〜3のいずれかに記載のシリンダボアの製造方法。
  9. 直列3気筒エンジンあるいはV型6気筒エンジンに適用する場合、前記塑性加工での塑性変形量を5μm〜70μmの範囲内に設定することを特徴とする請求項1〜3,8のいずれかに記載のシリンダボアの製造方法。
  10. 直列4気筒エンジンあるいはV型8気筒エンジンに適用する場合、前記塑性加工での塑性変形量を5μm〜90μmの範囲内に設定することを特徴とする請求項1〜3のいずれかに記載のシリンダボアの製造方法。
  11. 直列4気筒エンジンあるいはV型8気筒エンジンに適用する場合、前記塑性加工での塑性変形量を5μm〜50μmの範囲内に設定することを特徴とする請求項1〜3,10のいずれかに記載のシリンダボアの製造方法。
  12. 前記塑性加エでは、バニシングローラ法を用いることを特徴とする請求項1〜11のいずれかに記載のシリンダボアの製造方法。
  13. 相手部材と摺動する摺動面およびその近傍では鋳巣が押し潰されるとともに、前記摺動面は平滑にされ、
    前記摺動面に耐焼付き性を有する被膜が形成されていることを特徴とするシリンダボア。
  14. 前記被膜は、単位面積比で5〜50%のSiCを含有するNi−SiC膜であることを特徴とする請求項13に記載のシリンダボア。
  15. 前記被膜は、DLC膜であることを特徴とする請求項13に記載のシリンダボア。
JP2010087963A 2010-04-06 2010-04-06 シリンダボアおよびその製造方法 Pending JP2011220150A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010087963A JP2011220150A (ja) 2010-04-06 2010-04-06 シリンダボアおよびその製造方法
US13/079,902 US20110239976A1 (en) 2010-04-06 2011-04-05 Cylinder bore and method for producing the same
CN201110085134.4A CN102213157B (zh) 2010-04-06 2011-04-06 缸膛及其制造方法
DE102011006829A DE102011006829A1 (de) 2010-04-06 2011-04-06 Zylinderbohrung und Verfahren zu deren Herstellung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010087963A JP2011220150A (ja) 2010-04-06 2010-04-06 シリンダボアおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2011220150A true JP2011220150A (ja) 2011-11-04

Family

ID=44708146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010087963A Pending JP2011220150A (ja) 2010-04-06 2010-04-06 シリンダボアおよびその製造方法

Country Status (4)

Country Link
US (1) US20110239976A1 (ja)
JP (1) JP2011220150A (ja)
CN (1) CN102213157B (ja)
DE (1) DE102011006829A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013226608A (ja) * 2012-04-24 2013-11-07 Toyota Motor Corp シリンダボアの加工方法
JP2015523487A (ja) * 2012-05-03 2015-08-13 アッシュ・ウー・エフ 内燃機関ジャケット
WO2015133490A1 (ja) * 2014-03-04 2015-09-11 本田技研工業株式会社 内燃機関用シリンダブロック及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140137831A1 (en) * 2012-11-21 2014-05-22 RZR Corporation Cylinder Bore Coating System
WO2022049667A1 (ja) * 2020-09-02 2022-03-10 日産自動車株式会社 溶射被膜及び該溶射被膜の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222589A (ja) * 1991-09-17 1993-08-31 Toyota Motor Corp エンジンシリンダの製造方法
JPH10237693A (ja) * 1997-02-21 1998-09-08 Suzuki Motor Corp アルミニウム合金製摺動部材及びアルミニウム合金製シリンダー
JP2004344924A (ja) * 2003-05-22 2004-12-09 Fuji Heavy Ind Ltd 鋳物の溶射前処理方法
JP2005069008A (ja) * 2003-08-22 2005-03-17 Nissan Motor Co Ltd 内燃機関のシリンダとピストンの組合せ

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363821A (en) * 1993-07-06 1994-11-15 Ford Motor Company Thermoset polymer/solid lubricant coating system
JP3483965B2 (ja) * 1994-12-26 2004-01-06 ヤマハ発動機株式会社 内燃機関の摺接部構造とその成形方法
JP3798496B2 (ja) * 1997-02-25 2006-07-19 トヨタ自動車株式会社 シリンダブロックのボア面の加工装置
DE19840117C2 (de) * 1998-09-03 2001-08-16 Daimler Chrysler Ag Verfahren zur Oberflächenbearbeitung der Innenseite von Zylinderbohrungen
DE19915038A1 (de) * 1999-04-01 2000-10-26 Vaw Ver Aluminium Werke Ag Leichtmetallzylinderblock, Verfahren zu seiner Herstellung und Vorrichtung zur Durchführung des Verfahrens
JP3780840B2 (ja) * 2000-11-16 2006-05-31 日産自動車株式会社 円筒内面の溶射前処理形状および溶射前処理方法
CH695339A5 (de) * 2002-02-27 2006-04-13 Sulzer Metco Ag Zylinderlaufflächenschicht für Verbrennungsmotoren sowie Verfahren zu deren Herstellung.
US6684844B1 (en) * 2002-09-10 2004-02-03 General Motors Corporation Piston and cylinder bore having improved scuffing resistance
FR2845301B1 (fr) * 2002-10-03 2005-08-05 Peugeot Citroen Automobiles Sa Dispositif de formation d'empreintes en creux sur une surface d'une piece
DE10308422B3 (de) * 2003-02-27 2004-07-15 Daimlerchrysler Ag Gleitfläche und Verfahren zur Herstellung einer Gleitfläche
EP1479946B1 (en) * 2003-05-23 2012-12-19 Nissan Motor Co., Ltd. Piston for internal combustion engine
DE102004038177B4 (de) * 2004-08-06 2016-09-08 Daimler Ag Verfahren zum thermischen Beschichten einer gegossenen Zylinderbohrung
JP4107282B2 (ja) * 2004-10-15 2008-06-25 日産自動車株式会社 溶射前処理方法およびエンジンのシリンダブロックならびに溶射前処理装置
JP4497086B2 (ja) * 2005-01-28 2010-07-07 日産自動車株式会社 シリンダブロックの溶射マスキング方法および同マスキング装置ならびに気体噴出ノズル
US7543557B2 (en) * 2005-09-01 2009-06-09 Gm Global Technology Operations, Inc. Scuff resistant aluminum piston and aluminum cylinder bore combination and method of making
CN201106497Y (zh) * 2007-11-26 2008-08-27 洛阳北方企业集团有限公司 一种摩托车发动机铝合金陶瓷气缸体
CN101327527B (zh) * 2008-07-28 2010-06-02 洛阳百成内燃机配件有限公司 一种气缸套内孔表面的机加工方法及精镗挤压刀具
CN101362282B (zh) * 2008-09-12 2010-10-13 河南省中原内配股份有限公司 一种气缸套机械加工工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222589A (ja) * 1991-09-17 1993-08-31 Toyota Motor Corp エンジンシリンダの製造方法
JPH10237693A (ja) * 1997-02-21 1998-09-08 Suzuki Motor Corp アルミニウム合金製摺動部材及びアルミニウム合金製シリンダー
JP2004344924A (ja) * 2003-05-22 2004-12-09 Fuji Heavy Ind Ltd 鋳物の溶射前処理方法
JP2005069008A (ja) * 2003-08-22 2005-03-17 Nissan Motor Co Ltd 内燃機関のシリンダとピストンの組合せ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013226608A (ja) * 2012-04-24 2013-11-07 Toyota Motor Corp シリンダボアの加工方法
JP2015523487A (ja) * 2012-05-03 2015-08-13 アッシュ・ウー・エフ 内燃機関ジャケット
JP2018076873A (ja) * 2012-05-03 2018-05-17 アッシュ・ウー・エフ 内燃機関ジャケット
JP2020125758A (ja) * 2012-05-03 2020-08-20 アッシュ・ウー・エフ 内燃機関用のライナー
WO2015133490A1 (ja) * 2014-03-04 2015-09-11 本田技研工業株式会社 内燃機関用シリンダブロック及びその製造方法
JPWO2015133490A1 (ja) * 2014-03-04 2017-04-06 本田技研工業株式会社 内燃機関用シリンダブロック及びその製造方法

Also Published As

Publication number Publication date
CN102213157A (zh) 2011-10-12
US20110239976A1 (en) 2011-10-06
DE102011006829A1 (de) 2011-11-24
CN102213157B (zh) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5956104B2 (ja) 潤滑媒体中で200MPaを超える接触圧力において動作する摩擦片
JP6231781B2 (ja) シリンダライナ用の厚さの異なるコーティング
EP1589212A1 (en) Cylinder block and method for manufacturing the same
JP2011220150A (ja) シリンダボアおよびその製造方法
JP2016510388A (ja) 摺動エレメント、特に、コーティングを有するピストンリング
JP6528736B2 (ja) シリンダブロック
JP2010261473A (ja) 内燃機関用摺動部品、内燃機関、輸送機器および内燃機関用摺動部品の製造方法
JP4984214B2 (ja) シリンダブロック用鉄系溶射薄膜及びシリンダブロック
CN110832210B (zh) 包括联接至轴承的轴的机械***以及制造这种***的方法
CA2900069C (en) Connecting rod for internal combustion engine
KR20010040948A (ko) 슬라이딩 접촉 베어링
JP6560219B2 (ja) ピストンピン及びピンに焼き付き防止コーティングを適用する方法
CN206035657U (zh) 带有铸造的气缸曲轴箱的内燃机
CN108700195B (zh) 用于内燃机的活塞环和用于获得活塞环的方法以及内燃机
JP4462077B2 (ja) 組合せ摺動部材
BRPI1101057A2 (pt) anel de pistço
US20040129214A1 (en) Method and apparatus for producing coated bores
WO2008125964A3 (en) Method for producing a crankshaft, in particular for diesel engines
JP5916829B1 (ja) コンロッド、内燃機関、自動車両およびコンロッドの製造方法
JP5781150B2 (ja) 皮膜を有さないクラッシュリリーフを備えた軸受
US20210047980A1 (en) High-temperature, wear-resistant coating for a linerless engine block
JPH11294118A (ja) 内燃機関の動弁機構
JP2017501327A (ja) 薄肉シリンダ/ライナの摩擦力学的調製方法及びシリンダ/ライナ
JPH02150574A (ja) ピストンリング
WO2021050471A1 (en) Coated piston ring for an internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140130