JP2011220010A - Foundation structure - Google Patents

Foundation structure Download PDF

Info

Publication number
JP2011220010A
JP2011220010A JP2010091128A JP2010091128A JP2011220010A JP 2011220010 A JP2011220010 A JP 2011220010A JP 2010091128 A JP2010091128 A JP 2010091128A JP 2010091128 A JP2010091128 A JP 2010091128A JP 2011220010 A JP2011220010 A JP 2011220010A
Authority
JP
Japan
Prior art keywords
seismic isolation
foundation
mechanisms
isolation mechanisms
mounting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010091128A
Other languages
Japanese (ja)
Other versions
JP5462059B2 (en
Inventor
Hisaya Tanaka
久也 田中
Shigeki Nakaminami
滋樹 中南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aseismic Devices Co Ltd
Original Assignee
Aseismic Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aseismic Devices Co Ltd filed Critical Aseismic Devices Co Ltd
Priority to JP2010091128A priority Critical patent/JP5462059B2/en
Publication of JP2011220010A publication Critical patent/JP2011220010A/en
Application granted granted Critical
Publication of JP5462059B2 publication Critical patent/JP5462059B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simply configured foundation structure suitable to supporting a structure that is supported by the base.SOLUTION: The foundation structure, in replace of conventional foundation structures, includes: a plurality of base-isolating mechanisms; and a plurality of buffers, each of which is provided with a first elastic body for generating vertical compressive force, a second elastic body for generating vertical compressive force, a first member having a first attachment surface on one of an upper portion and a lower portion, a second member that is movably guided relative to the first member in vertical directions and has a second attachment surface on the other of the upper portion and lower portion, and a tension member for generating vertical compressive force. In each buffer, a tension member vertically co-fastens the first member, the first elastic body, the second member, and the second elastic body stacked in this order along the vertical direction so that the buffers and the base-isolating mechanisms which are vertically sequentially connected to support a structure.

Description

本発明は、基礎に支持され構造物を支持する基礎構造に係る。   The present invention relates to a foundation structure that is supported by a foundation and supports a structure.

地震が発生すると、建物、構造物等の構造体が水平、垂直に揺すられる。
地震等による加速度レベルが大きいと、構造体が損傷をうけたり、構造体の中にあるものが予想を越えて加速度を受けたり、予想を超える変位をうけたりする。
そこで、基礎から構造体へ伝達する振動エネルギーを減少させて振動を免震する免震機能をもつ基礎構造、または構造体が振動した際に振動エネルギーを吸収し振動レベルを小さくして振動を制振する制振機能を持つ基礎構造が提案される。
When an earthquake occurs, structures such as buildings and structures are shaken horizontally and vertically.
When the acceleration level due to an earthquake or the like is large, the structure is damaged, or an object in the structure receives an acceleration exceeding an expectation or a displacement exceeding the expectation.
Therefore, by reducing the vibration energy transmitted from the foundation to the structure, the foundation structure has a seismic isolation function to isolate the vibration, or when the structure vibrates, it absorbs the vibration energy and reduces the vibration level to control the vibration. A basic structure with vibration damping function is proposed.

例えば、基礎構造は複数の免震機構で構成される。
免震機構は、基礎と構造物との水平方向の相対移動に応じて水平反力を発生させる。
免震機構には、各種の形式のものがある。
例えば、免震機構は多段に重ねられた複数のゴム板と複数の鉄板とで構成される。
基礎と構造物との水平方向の相対移動が生じると、複数のゴム板と複数の鉄板との間に摩擦が発生する。
例えば、免震機構は水平方向に沿って直動可能なリニアガイドで構成される。
基礎と構造物との水平方向の相対移動が生じると、リニアガイドに摩擦が発生する。リニアガイドに発生する摩擦力は小さいので、比較的長周期の応答に優れる。
For example, the foundation structure is composed of a plurality of seismic isolation mechanisms.
The seismic isolation mechanism generates a horizontal reaction force according to the horizontal relative movement between the foundation and the structure.
There are various types of seismic isolation mechanisms.
For example, the seismic isolation mechanism is composed of a plurality of rubber plates and a plurality of iron plates stacked in multiple stages.
When the horizontal relative movement between the foundation and the structure occurs, friction occurs between the plurality of rubber plates and the plurality of iron plates.
For example, the seismic isolation mechanism is composed of a linear guide that can move linearly along the horizontal direction.
When the horizontal relative movement between the foundation and the structure occurs, friction is generated in the linear guide. Since the frictional force generated in the linear guide is small, the response with a relatively long period is excellent.

基礎構造は、異なる形式の免震機構の組合せで構成されることがある。
免震機構は、その形式に固有の周波数特性をもつ。
また、免震機構は、その形式に固有の垂直剛性を持つ。
異なる形式の免震機構の組合せで構成されるた基礎構造は、幅広い周波数特性をもつことができるという特徴をもつ。
その反面、異なる形式の免震機構は異なる垂直剛性をもつことが多いので、異なる形式の免震機構の間で、構造体に加速度が生じていないときにも、不陸が生ずるおそれがある。特に、構造体に加速度が生じるときに、不陸が生ずるおそれが大きくなる。
The foundation structure may consist of a combination of different types of seismic isolation mechanisms.
The seismic isolation mechanism has frequency characteristics inherent to its type.
In addition, the seismic isolation mechanism has a vertical rigidity inherent to its type.
The foundation structure composed of a combination of different types of seismic isolation mechanisms has the feature that it can have a wide range of frequency characteristics.
On the other hand, since different types of seismic isolation mechanisms often have different vertical stiffnesses, unevenness may occur between the different types of seismic isolation mechanisms even when the structure is not accelerated. In particular, when acceleration occurs in the structure, the risk of unevenness increases.

また、基礎構造が複数の免震機構で構成される場合に、構造体に大きな加速度が生ずると、上からみて周辺に配された免震機構の取り付け部に大きな引き抜き力が生ずる。
この引き抜き力による構造体の床の不陸を押さえるために、周辺に垂直剛性のおおきな免震機構を配すると、引き抜き力が大きくなる現象が生ずる。
Further, when the foundation structure is composed of a plurality of seismic isolation mechanisms, if a large acceleration is generated in the structure, a large pulling force is generated at the mounting portion of the seismic isolation mechanisms arranged in the vicinity as viewed from above.
In order to suppress the unevenness of the floor of the structure due to this pulling force, if a large seismic isolation mechanism with a large vertical rigidity is arranged in the vicinity, a phenomenon that the pulling force becomes large occurs.

また、構造体の免震機構に支持される箇所が免震機構から一時的に離間することを許容する様にすると、引き抜き力が大きくなことを抑制できる。
しかし、構造体の免震機構に支持される箇所が免震機構から一時的に離間した後で、加速度が作用しないとき姿勢に復帰する際に大きな衝撃力が発生することがある。
Further, if the portion of the structure supported by the seismic isolation mechanism is allowed to be temporarily separated from the seismic isolation mechanism, it is possible to suppress an increase in the pulling force.
However, after the part of the structure supported by the seismic isolation mechanism is temporarily separated from the seismic isolation mechanism, a large impact force may be generated when returning to the posture when no acceleration is applied.

本発明は以上に述べた問題点に鑑み案出されたもので、簡易な構成で基礎に支持され構造物を支持するのに適した基礎構造を提供しようとする。   The present invention has been devised in view of the above-described problems, and an object of the present invention is to provide a foundation structure that is supported by a foundation with a simple configuration and that is suitable for supporting a structure.

上記目的を達成するため、本発明に係る基礎に支持され構造物を支持する基礎構造を、
基礎と構造物との水平方向の相対移動に応じて水平反力を発生させる複数の免震機構と、
上下方向に圧縮されると圧縮力を発生する第一弾性体と上下方向に圧縮されると圧縮力を発生する第二弾性体と上部または下部のうちの一方に第一取付面を設けられた第一部材と前記第一部材に対し上下方向に相対的に移動自在に案内され上部または下部のうちの他方に第二取付面を設けられた第二部材と上下方向に張力を発生する張力部材とを有しており前記第一部材と前記第二部材とが前記第一弾性体を上下方向に沿って圧縮可能に挟み前記張力部材が上下方向に沿って前記第一部材、前記第一弾性体、前記第二部材、前記第二弾性体の順に重なったものを上下方向に沿って共締めする様になった複数の緩衝器と、を備え、前記緩衝器と前記免震機構とが上下方向に直列に繋がって構造物を支持する、ものとした。
In order to achieve the above object, a foundation structure that supports a structure supported by the foundation according to the present invention,
A plurality of seismic isolation mechanisms that generate a horizontal reaction force according to the horizontal relative movement between the foundation and the structure;
A first mounting surface is provided on one of the upper and lower portions of the first elastic body that generates a compressive force when compressed in the vertical direction, the second elastic body that generates a compressive force when compressed in the vertical direction, and A second member having a second mounting surface on the other of the upper part and the lower part, which is guided so as to be movable in the vertical direction relative to the first member and the first member, and a tension member that generates tension in the vertical direction The first member and the second member sandwich the first elastic body so that the first elastic body can be compressed along the vertical direction, and the tension member extends along the vertical direction. A plurality of shock absorbers configured to fasten together a body, the second member, and the second elastic body in the vertical direction, and the shock absorber and the seismic isolation mechanism are The structure is connected in series with the direction to support the structure.

上記本発明の構成により、複数の免震機構が、基礎と構造物との水平方向の相対移動に応じて水平反力を発生させる。複数の緩衝器が、第一弾性体と第二弾性体と第一部材と第二部材と張力部材とを有している。第一弾性体が、上下方向に圧縮されると圧縮力を発生する。第二弾性体が、上下方向に圧縮されると圧縮力を発生する。第一部材が、上部または下部のうちの一方に第一取付面を設けられる。第二部材が、前記第一部材に対し上下方向に相対的に移動自在に案内され上部または下部のうちの他方に第二取付面を設けられる。張力部材が、上下方向に張力を発生する。前記第一部材と前記第二部材とが前記第一弾性体を上下方向に沿って圧縮可能に挟む。前記張力部材が上下方向に沿って前記第一部材、前記第一弾性体、前記第二部材、前記第二弾性体の順に重なったものを上下方向に沿って共締めする。前記緩衝器と前記免震機構とが上下方向に直列に繋がって構造物を支持する。
その結果、複数の免震機構に異なる力が作用したときに、前記第一弾性体と前記第二弾性体とが各々に圧縮されて前記第一取付面と前記第二取付面との離間距離が変化して、複数の免震機構が支持する支持点の間に生じる不陸を調整できる。
With the above-described configuration of the present invention, the plurality of seismic isolation mechanisms generate a horizontal reaction force in accordance with the horizontal relative movement between the foundation and the structure. The plurality of shock absorbers include a first elastic body, a second elastic body, a first member, a second member, and a tension member. When the first elastic body is compressed in the vertical direction, a compressive force is generated. When the second elastic body is compressed in the vertical direction, a compressive force is generated. The first member is provided with a first mounting surface on one of an upper part or a lower part. The second member is guided so as to be movable in the vertical direction relative to the first member, and a second mounting surface is provided on the other of the upper part and the lower part. The tension member generates tension in the vertical direction. The first member and the second member sandwich the first elastic body in a vertically compressible manner. The tension member overlaps the first member, the first elastic body, the second member, and the second elastic body in this order along the vertical direction. The shock absorber and the seismic isolation mechanism are connected in series in the vertical direction to support the structure.
As a result, when different forces act on a plurality of seismic isolation mechanisms, the first elastic body and the second elastic body are compressed to each other, and the separation distance between the first mounting surface and the second mounting surface Changes to adjust the unevenness that occurs between the support points supported by a plurality of seismic isolation mechanisms.

以下に、本発明の実施形態に係る基礎構造を説明する。本発明は、以下に記載した実施形態のいずれか、またはそれらの中の二つ以上が組み合わされた態様を含む。   Below, the basic structure which concerns on embodiment of this invention is demonstrated. The present invention includes any of the embodiments described below, or a combination of two or more of them.

本発明の実施形態に係る基礎構造は、加速度が基礎構造に作用しないときに前記第一弾性体と前記第二弾性体とが予圧縮される様になった。
上記の実施形態の構成により、加速度が基礎構造に作用しないときに前記第一弾性体と前記第二弾性体とが予圧縮される。
その結果、加速度が基礎構造に作用して複数の免震機構に異なる力が作用したときに、前記第一取付面と前記第二取付面との離間距離にガタが発生しにくく、複数の免震機構が各々に支持する複数の支持点の間に生じる不陸を調整できる。
In the foundation structure according to the embodiment of the present invention, when the acceleration does not act on the foundation structure, the first elastic body and the second elastic body are pre-compressed.
With the configuration of the above embodiment, the first elastic body and the second elastic body are pre-compressed when acceleration does not act on the foundation structure.
As a result, when acceleration acts on the foundation structure and different forces act on a plurality of seismic isolation mechanisms, the separation between the first mounting surface and the second mounting surface is unlikely to occur, and a plurality of The unevenness that occurs between the support points that the seismic mechanism supports each can be adjusted.

本発明の実施形態に係る基礎構造は、前記緩衝器が前記免震機構と構造体との間に納まる様に前記第一取付面又は前記第二取付面のうちの一方を構造体の下部に固定され前記第一取付面又は前記第二取付面のうちの他方を前記免震機構の上部に固定される。
上記の実施形態の構成により、前記緩衝器が前記免震機構と構造体との間に納まる様に前記第一取付面または前記第二取付面のうちの一方を構造体の下部に固定され前記第一取付面または前記第二取付面のうちの他方を前記免震機構の上部に固定される。
その結果、複数の免震機構に異なる力が作用したときに、構造体の下部と前記免震機器の上部との離間距離が変化して、複数の免震機構が支持する支持点の間に生じる不陸を調整できる。
In the foundation structure according to the embodiment of the present invention, one of the first mounting surface and the second mounting surface is placed below the structure so that the shock absorber is placed between the seismic isolation mechanism and the structure. The other of the first mounting surface and the second mounting surface is fixed to the upper part of the seismic isolation mechanism.
According to the configuration of the above embodiment, one of the first mounting surface and the second mounting surface is fixed to the lower part of the structure so that the shock absorber fits between the seismic isolation mechanism and the structure. The other of the first mounting surface and the second mounting surface is fixed to the upper part of the seismic isolation mechanism.
As a result, when different forces act on the plurality of seismic isolation mechanisms, the separation distance between the lower part of the structure and the upper part of the seismic isolation device changes, and between the support points supported by the plurality of seismic isolation mechanisms. You can adjust the resulting unevenness.

本発明の実施形態に係る基礎構造は、複数の免震機構が各々に基礎に支持され構造物を支持する複数の第一免震機構と各々に基礎に支持され構造物を支持する複数の第二免震機構とを有し、前記第一免震機構の垂直剛性と前記第二免震機構の垂直剛性とが異なる。
上記の実施形態の構成により、複数の免震機構が各々に基礎に支持され構造物を支持する複数の第一免震機構と各々に基礎に支持され構造物を支持する複数の第二免震機構とを有する。前記第一免震機構の垂直剛性と前記第二免震機構の垂直剛性とが異なる。
その結果、周波数特性の異なる前記第一免震機構と前記第二免震機構とを採用して、複数の免震機構が支持する支持点の間に生じる不陸を調整しつつ、全体として広い周波数に良好な免震制振特性をもたせることをできる。
A foundation structure according to an embodiment of the present invention includes a plurality of first seismic isolation mechanisms that support a structure with a plurality of seismic isolation mechanisms supported by the foundation and a plurality of first isolation mechanisms that are supported by the foundation and support the structure. And the vertical stiffness of the first seismic isolation mechanism is different from the vertical stiffness of the second seismic isolation mechanism.
According to the configuration of the above-described embodiment, a plurality of first seismic isolation mechanisms that are supported by a foundation and each support a structure and a plurality of second seismic isolation mechanisms that are supported by the foundation and each support a structure. Mechanism. The vertical stiffness of the first seismic isolation mechanism is different from the vertical stiffness of the second seismic isolation mechanism.
As a result, the first seismic isolation mechanism and the second seismic isolation mechanism with different frequency characteristics are adopted to adjust the unevenness that occurs between the support points supported by the plurality of seismic isolation mechanisms, and as a whole is wide. The frequency can have good seismic isolation characteristics.

本発明の実施形態に係る基礎構造は、複数の免震機構が各々に基礎に支持され構造物を支持する複数の第一免震機構と各々に基礎に支持され構造物を支持する複数の第二免震機構とを有し、前記第一免震機構が多段に重ねられた複数のゴム板と複数の鉄板とを持ち、前記第二免震機構が水平方向に沿って直動可能なリニアガイドを持ち、前記緩衝器が前記第一免震機構または前記第二免震機構のうちの少なくとも一方と構造体との間に納まる様に前記第一取付面または前記第二取付面のうちの一方を構造体の下部に固定され前記第一取付面または前記第二取付面のうちの他方を前記免震機構の上部に固定される。
上記の実施形態の構成により、複数の免震機構が各々に基礎に支持され構造物を支持する複数の第一免震機構と各々に基礎に支持され構造物を支持する複数の第二免震機構とを有する。前記第一免震機構が多段に重ねられた複数のゴム板と複数の鉄板とを持つ。前記第二免震機構が水平方向に沿って直動可能なリニアガイドを持つ。前記緩衝器が前記第一免震機構または前記第二免震機構のうちの少なくとも一方と構造体との間に納まる様に前記第一取付面または前記第二取付面の一方を構造体の下部に固定され前記第一取付面または前記第二取付面のうちの他方を前記免震機構の上部に固定される。
その結果、相対的に高い周波数に良好な免震制振特性を持つ前記第一免震機器と相対的に低い周波数に良好な免震制振特性をもつ前記第二免震機器を組み合わせて広い周波数に良好な免震制振特性をもたせることをできる。
A foundation structure according to an embodiment of the present invention includes a plurality of first seismic isolation mechanisms that support a structure with a plurality of seismic isolation mechanisms supported by the foundation and a plurality of first isolation mechanisms that are supported by the foundation and support the structure. A second seismic isolation mechanism, wherein the first seismic isolation mechanism has a plurality of stacked rubber plates and a plurality of iron plates, and the second seismic isolation mechanism is linearly movable in a horizontal direction. A guide is provided, and the shock absorber is placed between at least one of the first seismic isolation mechanism or the second seismic isolation mechanism and the structure. One is fixed to the lower part of the structure, and the other of the first mounting surface or the second mounting surface is fixed to the upper part of the seismic isolation mechanism.
According to the configuration of the above-described embodiment, a plurality of first seismic isolation mechanisms that are supported by a foundation and each support a structure and a plurality of second seismic isolation mechanisms that are supported by the foundation and each support a structure. Mechanism. The first seismic isolation mechanism has a plurality of rubber plates and a plurality of iron plates stacked in multiple stages. The second seismic isolation mechanism has a linear guide that can move linearly along the horizontal direction. One of the first mounting surface or the second mounting surface is positioned below the structure so that the shock absorber is placed between at least one of the first seismic isolation mechanism or the second seismic isolation mechanism and the structure. The other of the first mounting surface and the second mounting surface is fixed to the upper part of the seismic isolation mechanism.
As a result, the first seismic isolation device having a good seismic isolation characteristic at a relatively high frequency and the second seismic isolation device having a good seismic isolation characteristic at a relatively low frequency are combined and wide The frequency can have good seismic isolation characteristics.

本発明の第一の実施形態に係る基礎構造は、上から見て複数の前記第二免震機構が複数の第一免震機構よりも周辺に配置され、前記緩衝器と前記第二免震機構とが上下方向に直列に繋がって構造物を支持する。
上記の実施形態の構成により、上から見て複数の前記第二免震機構が複数の第一免震機構よりも周辺に配置される。前記緩衝器と前記第二免震機構とが上下方向に直列に繋がって構造物を支持する。
その結果、大きな加速度が作用したときに、周辺に配される第二免震機構に発生した引き抜き力を緩和して、良好な免震制振特性をもたせることをできる。
In the foundation structure according to the first embodiment of the present invention, when viewed from above, the plurality of second seismic isolation mechanisms are arranged in the periphery of the plurality of first seismic isolation mechanisms, and the shock absorber and the second seismic isolation The mechanism is connected in series in the vertical direction to support the structure.
With the configuration of the above-described embodiment, the plurality of second seismic isolation mechanisms are arranged in the vicinity of the plurality of first seismic isolation mechanisms as viewed from above. The shock absorber and the second seismic isolation mechanism are connected in series in the vertical direction to support the structure.
As a result, when a large acceleration is applied, the pulling force generated in the second seismic isolation mechanism arranged in the vicinity can be relaxed, and good seismic isolation characteristics can be provided.

本発明の実施形態に係る基礎構造は、予め想定される加速度である想定加速度が基礎構造に作用すると仮定したときに上向きの垂直荷重が複数の免震機構のうちの特定の免震機構であるN(N=1、2、3、・・)個の特定免震機構に各々に作用し、上向きの垂直荷重が複数の免震機構のうちのN個の前記特定免震機構を除く他の複数の免震機構に作用せず、複数の前記緩衝器とN個の前記特定免震機構とが上下方向に各々に直列に繋がって構造物を各々に支持する。
上記の実施形態の構成により、予め想定される加速度である想定加速度が基礎構造に作用すると仮定したときに上向きの垂直荷重が複数の免震機構のうちの特定の免震機構であるN(N=1、2、3、・・)個の特定免震機構に各々に作用し、上向きの垂直荷重が複数の免震機構のうちのN個の前記特定免震機構を除く他の複数の免震機構に作用しない。
複数の前記緩衝器とN個の前記特定免震機構とが上下方向に各々に直列に繋がって構造物を各々に支持する。
その結果、想定加速度に匹敵する加速度が作用したときに、上向きに垂直荷重の作用する前記免震機構に発生する引き抜き力を緩和して、良好な免震制振特性をもたせることをできる。
The foundation structure according to the embodiment of the present invention is a specific seismic isolation mechanism among a plurality of seismic isolation mechanisms when it is assumed that an assumed acceleration, which is an acceleration assumed in advance, acts on the foundation structure. N (N = 1, 2, 3,...) Other specific seismic isolation mechanisms acting on each other, and an upward vertical load other than the N specific seismic isolation mechanisms among a plurality of seismic isolation mechanisms The plurality of shock absorbers and the N number of specific seismic isolation mechanisms are connected in series in the vertical direction to support the structure without acting on the plurality of seismic isolation mechanisms.
With the configuration of the above embodiment, when it is assumed that an assumed acceleration that is a presumed acceleration acts on the foundation structure, the upward vertical load is N (N = 1, 2, 3,...) Other specific seismic isolation mechanisms acting on each of the specific seismic isolation mechanisms, and an upward vertical load other than the N specific seismic isolation mechanisms among the plurality of seismic isolation mechanisms. Does not affect the seismic mechanism.
The plurality of shock absorbers and the N number of specific seismic isolation mechanisms are connected in series in the vertical direction to support the structure.
As a result, when an acceleration equivalent to the assumed acceleration is applied, the pulling-out force generated in the seismic isolation mechanism in which the vertical load is applied upward can be relaxed, and good seismic isolation characteristics can be provided.

本発明の実施形態に係る基礎構造は、加速度が基礎構造に作用しないときに複数の免震機構のうちの特定の免震機構であるN(N=1、2、3、・・)個の特定免震機構に各々に支持されるN個の垂直荷重が予め想定される垂直荷重である想定垂直荷重より各々に小さく、複数の免震機構のうちのN個の前記特定免震機構を除く他の複数の免震機構に各々に支持される複数の垂直荷重が前記想定垂直荷重より小さくなく、複数の前記緩衝器とN個の特定免震機構とが上下方向に各々に直列に繋がって構造物を各々に支持する。
上記の実施形態の構成により、加速度が基礎構造に作用しないときに複数の免震機構のうちの特定の免震機構であるN(N=1、2、3、・・)個の特定免震機構に各々に支持されるN個の垂直荷重が予め想定される垂直荷重である想定垂直荷重より各々に小さく、複数の免震機構のうちのN個の前記特定免震機構を除く他の複数の免震機構に各々に支持される複数の垂直荷重が前記想定垂直荷重より小さくない。複数の前記緩衝器とN個の特定免震機構とが上下方向に各々に直列に繋がって構造物を各々に支持する。
その結果、想定垂直荷重より大きな垂直荷重を生じさせる加速度が作用したときに、上向きに垂直荷重の作用する可能性のある前記免震機構に発生する引き抜き力を緩和して、良好な免震制振特性をもたせることをできる。
The foundation structure according to the embodiment of the present invention has N (N = 1, 2, 3,...) Pieces of a particular base isolation mechanism among a plurality of base isolation mechanisms when acceleration does not act on the base structure. Each of the N vertical loads supported by the specific seismic isolation mechanism is smaller than an assumed vertical load, which is a vertical load assumed in advance, and excludes the N specific seismic isolation mechanisms among a plurality of seismic isolation mechanisms A plurality of vertical loads supported by each of the other plurality of seismic isolation mechanisms are not smaller than the assumed vertical load, and the plurality of shock absorbers and N number of specific seismic isolation mechanisms are connected in series in the vertical direction. Each structure is supported.
With the configuration of the above embodiment, N (N = 1, 2, 3,...) Specific seismic isolations that are specific seismic isolation mechanisms among a plurality of seismic isolation mechanisms when acceleration does not act on the foundation structure. The N vertical loads supported by the mechanisms are smaller than the assumed vertical loads, which are assumed vertical loads, and a plurality of other than the specific seismic isolation mechanisms N of the plurality of seismic isolation mechanisms. A plurality of vertical loads supported by each of the seismic isolation mechanisms is not smaller than the assumed vertical load. The plurality of shock absorbers and N specific seismic isolation mechanisms are connected in series in the vertical direction to support the structure.
As a result, when an acceleration that generates a vertical load greater than the assumed vertical load is applied, the pulling force generated in the base isolation mechanism that may cause the vertical load to operate upward is alleviated to achieve a good seismic isolation control. It can give vibration characteristics.

本発明の実施形態に係る基礎構造は、加速度が基礎構造に作用しないときに前記第一部材と前記第二部材とが上下方向に当接しない様になった。
上記の実施形態の構成により、加速度が基礎構造に作用しないときに前記第一部材と前記第二部材が上下方向に当接しない。
その結果、加速度が作用したときに、前記第一部材と前記第二部材とが前記第一弾性体を圧縮して離間距離を変化させ、良好な免震制振特性をもたせることをできる。
In the foundation structure according to the embodiment of the present invention, when the acceleration does not act on the foundation structure, the first member and the second member do not contact in the vertical direction.
With the configuration of the above embodiment, when the acceleration does not act on the foundation structure, the first member and the second member do not contact in the vertical direction.
As a result, when acceleration is applied, the first member and the second member can compress the first elastic body to change the separation distance, thereby providing good seismic isolation characteristics.

本発明の実施形態に係る基礎構造は、前記第一部材または前記第二部材のうちの一つの部材の少なくとも一部が構造体のコンクリート躯体に埋め込まれる。
上記の実施形態の構成により、前記第一部材または前記第二部材のうちの一つの部材の少なくとも一部が構造体のコンクリート躯体に埋め込まれる。
その結果、構造体と基礎との隙間高さを低くできる。
In the foundation structure according to the embodiment of the present invention, at least a part of one of the first member and the second member is embedded in a concrete casing of the structure.
According to the configuration of the above-described embodiment, at least a part of one member of the first member or the second member is embedded in the concrete casing of the structure.
As a result, the gap height between the structure and the foundation can be reduced.

以上説明したように、本発明に係る基礎構造は、その構成により、以下の効果を有する。
上下方向の直列に繋がった前記緩衝器と前記免震機構とが構造物を支持し、前記緩衝器が前記第一部材と前記第一弾性体と前記第二部材と前記第二弾性体とを重ねたものを前記張力部材で共締めし、前記第一部材と前記第二部材とが前記第一弾性体を弾性可能に挟む様にしたので、複数の免震機構に異なる力が作用したときに、前記第一弾性体と前記第二弾性体とが各々に圧縮されて前記第一取付面と前記第二取付面との離間距離が変化して、複数の免震機構が支持する支持点の間に生じる不陸を調整できる。
また、加速度が基礎構造に作用しないときに前記第一弾性体と前記第二弾性体とが予圧縮される様にしたので、加速度が基礎構造に作用して複数の免震機構に異なる力が作用したときに、前記第一部材と前記第二部材との離間距離にガタが発生しにくく、複数の免震機構が支持する支持点の間に生じる不陸を調整できる。
また、前記緩衝器が前記第一取付面または前記第二取付面の一方を構造体の下部に固定され、前記第一取付面または前記第二取付面の他方を前記免震機構の上部に固定される様にしたので、複数の免震機構に異なる力が作用したときに、構造体の下部と前記免震機器の上部との離間距離が変化して、複数の免震機構が支持する支持点の間に生じる不陸を調整できる。
また、前記第一免震機構の垂直剛性と前記第二免震機構の垂直剛性とが異なる様にしたので、周波数特性の異なる前記第一免震機構と前記第二免震機構とを採用して、複数の免震機構が支持する支持点の間に生じる不陸を調整しつつ、全体として広い周波数に良好な免震制振特性をもたせることをできる。
また、多段に重ねられた複数のゴム板と複数の鉄板とを持つ複数の前記第一免震機器と水平方向に沿って直動可能なリニアガイドを持つ複数の前記第二免震機器とで構造物を各々に支持し、前記緩衝器を前記第一免震機構または前記第二免震機構のうちの少なくとも一方と構造体との間に納まる様にしたので、相対的に高い周波数に良好な免震制振特性を持つ前記第一免震機器と相対的に低い周波数に良好な免震制振特性をもつ前記第二免震機器を組み合わせて広い周波数に良好な免震制振特性をもたせることをできる。
また、上から見て複数の前記第二免震機構が複数の第一免震機構よりも周辺に配し、前記緩衝器と前記第二免震機構とが上下方向に直列に繋がって構造物を支持する様にしたので、大きな加速度が作用したときに、外周に配される第二免震機構に発生した引き抜き力を緩和して、良好な免震制振特性をもたせることをできる。
また、想定加速度が作用すると仮定するときに上向きの垂直荷重が作用するN個の免震機構と複数の緩衝器とが上下方向に各々に直列に繋がって構造物を支持する様にしたので、想定加速度に匹敵する加速度が作用したときに、上向きに垂直荷重の作用する前記免震機構に発生する引き抜き力を緩和して、良好な免震制振特性をもたせることをできる。
また、加速度が作用しないときに想定垂直荷重より小さな垂直荷重を支持するN個の免震機構と複数の緩衝器とが上下方向に各々に直列に繋がって構造物を支持する様にしたので、想定垂直荷重より大きな垂直荷重を生じさせる加速度が作用したときに、上向きに垂直荷重の作用する可能性のある前記免震機構に発生する引き抜き力を緩和して、良好な免震制振特性をもたせることをできる。
また、加速度が基礎構造に作用しないときに前記第一部材と前記第二部材が上下方向に当接しない様にしたので、加速度が作用したときに、前記第一部材と前記第二部材とが前記第一弾性体をさらに圧縮して離間距離を変化させ、良好な免震制振特性をもたせることをできる。
また、前記第一部材または前記第二部材の少なくとも一部が構造体のコンクリート躯体に埋め込まれる様にしたので、構造体と基礎との隙間高さを低くできる。
従って、簡易な構成で基礎に支持され構造物を支持するのに適した基礎構造を提供できる。
As described above, the basic structure according to the present invention has the following effects due to its configuration.
The shock absorber and the seismic isolation mechanism connected in series in the vertical direction support the structure, and the shock absorber includes the first member, the first elastic body, the second member, and the second elastic body. When the overlapping members are fastened together with the tension member, and the first member and the second member sandwich the first elastic body elastically, different forces act on a plurality of seismic isolation mechanisms. In addition, the first elastic body and the second elastic body are respectively compressed to change the separation distance between the first mounting surface and the second mounting surface, and the support points supported by the plurality of seismic isolation mechanisms You can adjust the unevenness that occurs during.
Further, since the first elastic body and the second elastic body are pre-compressed when the acceleration does not act on the foundation structure, the acceleration acts on the foundation structure and different forces are applied to the plurality of seismic isolation mechanisms. When acting, it is difficult for rattling to occur in the separation distance between the first member and the second member, and unevenness generated between support points supported by a plurality of seismic isolation mechanisms can be adjusted.
The shock absorber has one of the first mounting surface and the second mounting surface fixed to the lower part of the structure, and the other of the first mounting surface or the second mounting surface fixed to the upper part of the seismic isolation mechanism. As a result, when different forces act on multiple seismic isolation mechanisms, the separation distance between the lower part of the structure and the upper part of the seismic isolation device changes, and the support supported by the multiple seismic isolation mechanisms You can adjust the unevenness that occurs between points.
In addition, since the vertical stiffness of the first seismic isolation mechanism is different from the vertical stiffness of the second seismic isolation mechanism, the first seismic isolation mechanism and the second seismic isolation mechanism having different frequency characteristics are employed. Thus, it is possible to give good seismic isolation characteristics to a wide frequency as a whole while adjusting the unevenness generated between the support points supported by a plurality of seismic isolation mechanisms.
In addition, a plurality of the first seismic isolation devices having a plurality of rubber plates and a plurality of iron plates stacked in multiple stages, and a plurality of the second seismic isolation devices having a linear guide that can move linearly along the horizontal direction. Each structure is supported, and the shock absorber is placed between at least one of the first seismic isolation mechanism or the second seismic isolation mechanism and the structure, so it is good for relatively high frequencies. Combining the first seismic isolation device with excellent seismic isolation characteristics with the second seismic isolation device with good seismic isolation characteristics at a relatively low frequency provides good seismic isolation characteristics over a wide frequency range. I can give it.
Further, a plurality of the second seismic isolation mechanisms are arranged around the first seismic isolation mechanisms as viewed from above, and the shock absorber and the second seismic isolation mechanism are connected in series in the vertical direction. Therefore, when a large acceleration is applied, the pulling force generated in the second seismic isolation mechanism arranged on the outer periphery can be alleviated, and good seismic isolation characteristics can be provided.
In addition, when assuming that the assumed acceleration acts, N seismic isolation mechanisms and a plurality of shock absorbers on which an upward vertical load acts are connected in series in the vertical direction to support the structure. When an acceleration equivalent to the assumed acceleration is applied, the pulling-out force generated in the seismic isolation mechanism in which the vertical load is applied upward can be relaxed, and a good seismic isolation control characteristic can be provided.
In addition, since the N seismic isolation mechanisms supporting a vertical load smaller than the assumed vertical load and a plurality of shock absorbers are connected in series in the vertical direction when acceleration is not applied, the structure is supported. When acceleration that generates a vertical load larger than the assumed vertical load is applied, the pull-out force generated in the base isolation mechanism, which may be affected by the vertical load upward, is alleviated to provide good seismic isolation characteristics. I can give it.
In addition, since the first member and the second member do not contact in the vertical direction when the acceleration does not act on the foundation structure, the first member and the second member are The first elastic body can be further compressed to change the separation distance, thereby providing good seismic isolation characteristics.
Moreover, since at least one part of said 1st member or said 2nd member was embedded in the concrete frame of a structure, the clearance gap height between a structure and a foundation can be made low.
Therefore, the foundation structure suitable for supporting the structure supported by the foundation with a simple configuration can be provided.

本発明の第一の実施形態に係る基礎構造の正面図、A−A矢視図である。It is a front view of the foundation structure concerning a first embodiment of the present invention, and an AA arrow line view. 本発明の第一の実施形態に係る免震機構の特性図である。It is a characteristic view of the seismic isolation mechanism which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る基礎構造の部分拡大図である。It is the elements on larger scale of the foundation structure concerning a first embodiment of the present invention. 本発明の第一の実施形態に係る基礎構造のB−B矢視図である。It is a BB arrow line view of the foundation structure concerning a first embodiment of the present invention. 本発明の第一の実施形態に係る基礎構造の部分拡大図である。It is the elements on larger scale of the foundation structure concerning a first embodiment of the present invention. 本発明の第一の実施形態に係る基礎構造のC−C矢視図である。It is CC arrow line view of the basic structure which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る緩衝器その1の断面図である。It is sectional drawing of the buffer 1 which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る緩衝器その2の断面図である。It is sectional drawing of the buffer 2 which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る緩衝器の特性図である。It is a characteristic view of the shock absorber according to the first embodiment of the present invention. 本発明の第一の実施形態に係る緩衝器の作用図その1である。It is the effect | action figure 1 of the buffer which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る緩衝器の作用図その2である。It is the effect | action figure 2 of the buffer which concerns on 1st embodiment of this invention. 本発明の第二の実施形態にかかる基礎構造の正面図である。It is a front view of the basic structure concerning 2nd embodiment of this invention. 本発明の第二の実施形態にかかる基礎構造の側面図である。It is a side view of the basic structure concerning 2nd embodiment of this invention. 本発明の第二の実施形態にかかる基礎構造の垂直荷重表である。It is a vertical load table | surface of the foundation structure concerning 2nd embodiment of this invention.

以下、本発明を実施するための形態を、図面を参照して説明する。
図1は、本発明の第一の実施形態に係る基礎構造の正面図、A−A矢視図である。図2は、本発明の第一の実施形態に係る免震機構の特性図である。図3は、本発明の第一の実施形態に係る基礎構造の部分拡大図である。図4は、本発明の第一の実施形態に係る基礎構造のB−B矢視図である。図5は、本発明の第一の実施形態に係る基礎構造の部分拡大図である。図6は、本発明の第一の実施形態に係る基礎構造のC−C矢視図である。図7は、本発明の第一の実施形態に係る緩衝器その1の断面図である。図8は、本発明の第一の実施形態に係る緩衝器その2の断面図である。図9は、本発明の第一の実施形態に係る緩衝器の特性図である。図10は、本発明の第一の実施形態に係る緩衝器の作用図その1である。図11は、本発明の第一の実施形態に係る緩衝器の作用図その2である。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a front view of the foundation structure according to the first embodiment of the present invention, as viewed from the direction of arrows AA. FIG. 2 is a characteristic diagram of the seismic isolation mechanism according to the first embodiment of the present invention. FIG. 3 is a partially enlarged view of the foundation structure according to the first embodiment of the present invention. FIG. 4 is a BB arrow view of the foundation structure according to the first embodiment of the present invention. FIG. 5 is a partially enlarged view of the foundation structure according to the first embodiment of the present invention. FIG. 6 is a CC arrow view of the foundation structure according to the first embodiment of the present invention. FIG. 7 is a sectional view of the shock absorber 1 according to the first embodiment of the present invention. FIG. 8 is a sectional view of the shock absorber 2 according to the first embodiment of the present invention. FIG. 9 is a characteristic diagram of the shock absorber according to the first embodiment of the present invention. FIG. 10 is an operation diagram 1 of the shock absorber according to the first embodiment of the present invention. FIG. 11 is an operation diagram 2 of the shock absorber according to the first embodiment of the present invention.

本発明の第一の実施形態にかかる基礎構造は、基礎に支持され構造物50を支持する構造である。
例えば、基礎構造は、基礎に支持され建造物50を支持する構造である。
例えば、基礎構造は、建物内の基礎スラブに支持されを構造床を支持する構造である。
本発明の第一の実施形態にかかる基礎構造は、複数の免震機構100と複数の緩衝器200とダンパー300とで構成される。
本発明の第一の実施形態にかかる基礎構造は基礎構造は、複数の免震機構100と複数の緩衝器200と複数のダンパー300とで構成されてもよい。
The foundation structure according to the first embodiment of the present invention is a structure that is supported by the foundation and supports the structure 50.
For example, the foundation structure is a structure that is supported by the foundation and supports the building 50.
For example, the foundation structure is a structure that is supported by a foundation slab in a building and supports a structural floor.
The basic structure according to the first embodiment of the present invention includes a plurality of seismic isolation mechanisms 100, a plurality of shock absorbers 200, and dampers 300.
The foundation structure according to the first embodiment of the present invention may include a plurality of seismic isolation mechanisms 100, a plurality of shock absorbers 200, and a plurality of dampers 300.

免震機構100は、基礎と構造物50との水平方向の相対移動に応じて水平反力を発生させる機構である。
複数の免震機構100は、各々に基礎に支持され構造物50を支持する複数の第一免震機構110と複数の第二免震機構120とで構成されてもよい。
第一免震機構110の垂直剛性と第二免震機構120の垂直剛性とが異なっていてもよい。
第一免震機構110は、多段に重ねられた複数のゴム板と複数の鉄板とで構成されてもよい。
第二免震機構120は、水平方向に沿って直動可能なリニアガイドを持っていてもよい。第二免震機構120は、互いに直交して水平方向に直動可能な上部リニアガイド121と下部リニアガイド122とを持っていてもよい。
The seismic isolation mechanism 100 is a mechanism that generates a horizontal reaction force according to the horizontal relative movement between the foundation and the structure 50.
The plurality of seismic isolation mechanisms 100 may be composed of a plurality of first seismic isolation mechanisms 110 and a plurality of second seismic isolation mechanisms 120 that are supported by the foundation and support the structure 50.
The vertical stiffness of the first seismic isolation mechanism 110 and the vertical stiffness of the second seismic isolation mechanism 120 may be different.
The first seismic isolation mechanism 110 may be composed of a plurality of rubber plates and a plurality of iron plates stacked in multiple stages.
The second seismic isolation mechanism 120 may have a linear guide that can move linearly along the horizontal direction. The second seismic isolation mechanism 120 may have an upper linear guide 121 and a lower linear guide 122 that are orthogonal to each other and can move in the horizontal direction.

緩衝器200は、免震機構に作用する垂直荷重を緩衝するための機器である。
以下に、緩衝器200の第一の構造を、図を基に、説明する。
図7は、本発明の第一の実施形態にかかる緩衝器その1の断面図を示す。
緩衝器200は、第一弾性体210と第二弾性体220と第一部材230と第二部材240と張力部材250とで構成される。
The shock absorber 200 is a device for buffering a vertical load acting on the seismic isolation mechanism.
Below, the 1st structure of the buffer 200 is demonstrated based on a figure.
FIG. 7: shows sectional drawing of the shock absorber 1 concerning 1st embodiment of this invention.
The shock absorber 200 includes a first elastic body 210, a second elastic body 220, a first member 230, a second member 240, and a tension member 250.

第一弾性体210は、上下方向に圧縮されると内部に圧縮力を発生する機械要素である。
第一弾性体210は、単数または複数の皿ばねであってもよい。
例えば、第一弾性体210、並列に並べられた複数の第二皿ばね211である。
第一弾性体210は、ばねであってもよい。
第一弾性体210は、弾性樹脂であってもよい。
The first elastic body 210 is a mechanical element that generates a compressive force when compressed in the vertical direction.
The first elastic body 210 may be a single or a plurality of disc springs.
For example, the first elastic body 210 and a plurality of second disc springs 211 arranged in parallel.
The first elastic body 210 may be a spring.
The first elastic body 210 may be an elastic resin.

第二弾性体220は、上下方向に圧縮されると内部に圧縮力を発生する機械要素である。
第二弾性体220は、単数または複数の皿ばねであってもよい。
例えば、第二弾性体220は、直列に並べられた複数の第二皿ばね221である。
例えば、第二弾性体220は、並列に並べられた2枚の第二皿ばね221を1組として、6組の皿ばねを直列に並べたものである。
第二弾性体220は、ばねであってもよい。
第二弾性体220は、弾性樹脂であってもよい。
The second elastic body 220 is a mechanical element that generates a compressive force when compressed in the vertical direction.
The second elastic body 220 may be a single or a plurality of disc springs.
For example, the second elastic body 220 is a plurality of second disc springs 221 arranged in series.
For example, the second elastic body 220 is a set of two disc springs 221 arranged in parallel and six disc springs arranged in series.
The second elastic body 220 may be a spring.
The second elastic body 220 may be an elastic resin.

第一部材230は、上部または下部の一方に第一取付面S1を設けられた部材である。
例えば、第一部材230は、上部に第一取付面S1を設けられた部材である。
以下では、説明の便宜上、上部に第一取付面S1を設けられる場合を例に説明する。
第一部材230は、第一フランジ部231と第一本体部232と第一シリンダ部233とを形成されてもよい。
第一フランジ部231は、上部に形成されたフランジ状の部分である。
第一フランジ部231の上面が第一取付面S1を形成する。
第一本体部232は、第一フランジ部231の下部に連なる円筒状の外形を持つ部分である。
第一シリンダ部233は、第一本体部232の下部に開口を持つシリンダ状の窪みを持つ部分である。
第一シリンダ部233は、所定の内径D1を持つ。
The first member 230 is a member provided with a first attachment surface S1 on one of the upper part and the lower part.
For example, the first member 230 is a member provided with a first attachment surface S1 on the top.
Below, for convenience of explanation, a case where the first mounting surface S1 is provided on the upper part will be described as an example.
The first member 230 may be formed with a first flange portion 231, a first main body portion 232, and a first cylinder portion 233.
The 1st flange part 231 is a flange-shaped part formed in the upper part.
The upper surface of the first flange portion 231 forms the first mounting surface S1.
The first body portion 232 is a portion having a cylindrical outer shape that continues to the lower portion of the first flange portion 231.
The first cylinder part 233 is a part having a cylindrical recess having an opening in the lower part of the first main body part 232.
The first cylinder part 233 has a predetermined inner diameter D1.

第二部材240は、第一部材230に対し上下方向に相対的に移動自在に案内され、上部または下部の他方に第二取付面S2を設けられた部材である。
例えば、第二部材240は、第一部材230に対し上下方向に相対的に移動自在に案内され、下部に第二取付面S2を設けられた部材である。
以下では、説明の便宜上、下部に第二取付面S2を設けられる場合を例に説明する。
第二部材240は、第二フランジ部241と第二本体部242と第二窪み部243と第二シリンダ部244とを形成されてもよい。
第二フランジ部241は、下部に形成されたフランジ状の部分である。
第二フランジ部241の下面が、第二取付面S2を形成する。
第二本体部242は、第二フランジ部241の上部に連なる円筒状の外形を持つ部分である。
第二本体部242が、第一シリンダ部233に嵌まり合う。
第二本体部242の外径が、第一シリンダ部233の内径より僅かに小さい。
第二本体部242が、第一シリンダ部233に上下方向に相対的に摺動自在に案内される。
第二窪み部243は、第二本体部242の上部に開口をもつシリンダ状の窪みを持つ部分である。
第二シリンダ部244は、第二本体部242の下部に開口をもつシリンダ状の窪みを持つ部分である。
第二窪み部243と第二シリンダ部244とは、所定の内径D2を持つ。

第一弾性部材210は、第二窪み部243に嵌まる。
例えば、第一皿ばね211の外径は、第二窪み部243の所定の内径D2より小さい。
第二弾性部材220は、第二シリンダ244に嵌まる。
例えば、第二皿ばね221の外径は、第二シリンダ部244の所定の内径D2より小さい。
The second member 240 is a member that is guided so as to be relatively movable in the vertical direction with respect to the first member 230 and is provided with a second attachment surface S2 on the other of the upper part and the lower part.
For example, the second member 240 is a member that is guided so as to be relatively movable in the vertical direction with respect to the first member 230 and is provided with a second attachment surface S2 in the lower part.
Below, for convenience of explanation, a case where the second mounting surface S2 is provided in the lower part will be described as an example.
The second member 240 may be formed with a second flange portion 241, a second main body portion 242, a second recess portion 243, and a second cylinder portion 244.
The 2nd flange part 241 is a flange-shaped part formed in the lower part.
The lower surface of the second flange portion 241 forms the second mounting surface S2.
The second main body portion 242 is a portion having a cylindrical outer shape that continues to the upper portion of the second flange portion 241.
The second main body part 242 fits into the first cylinder part 233.
The outer diameter of the second main body portion 242 is slightly smaller than the inner diameter of the first cylinder portion 233.
The second main body portion 242 is guided by the first cylinder portion 233 so as to be relatively slidable in the vertical direction.
The second dent portion 243 is a portion having a cylindrical dent having an opening at the top of the second main body portion 242.
The second cylinder part 244 is a part having a cylindrical recess having an opening in the lower part of the second main body part 242.
The second depression 243 and the second cylinder 244 have a predetermined inner diameter D2.

The first elastic member 210 is fitted in the second recess 243.
For example, the outer diameter of the first disc spring 211 is smaller than the predetermined inner diameter D2 of the second recess 243.
The second elastic member 220 is fitted into the second cylinder 244.
For example, the outer diameter of the second disc spring 221 is smaller than the predetermined inner diameter D2 of the second cylinder portion 244.

張力部材250は、上下方向に張力を発生する部材である。
張力部材250は、シリンダ座金251と高力ボルト252とで構成されてもよい。
シリンダ座金251は、中心部にボルト穴を設けられた円盤状の部材である。シリンダ部材252の外径は、第二シリンダ部244の内径よりも小さい。
高力ボルト252は、ボルトとナットとで構成される。
The tension member 250 is a member that generates tension in the vertical direction.
The tension member 250 may be composed of a cylinder washer 251 and a high strength bolt 252.
The cylinder washer 251 is a disk-shaped member having a bolt hole at the center. The outer diameter of the cylinder member 252 is smaller than the inner diameter of the second cylinder portion 244.
The high-strength bolt 252 includes a bolt and a nut.

第一部材230と第二部材240とが第一弾性体210を上下方向に沿って圧縮可能に挟み、張力部材250が上下方向に沿って第一部材230、第一弾性体210、第二部材240、第二弾性体220の順に重なったものを上下方向に沿って共締めする。
例えば、第一部材230と第二部材240とが第一弾性体210を上下方向に沿って圧縮可能に挟み、張力部材250が上から下へ第一部材230、第一弾性体210、第二部材240、第二弾性体220の順に重なったものを上下方向に沿って共締めする。
第一部材230と第二部材240とが第一弾性体210を上下方向に沿って圧縮可能に挟み、第二部材240とシリンダ座金251とが第二弾性体220を上下方向に圧縮可能に挟み、張力部材250が上下方向に沿って第一部材230、第一弾性体210、第二部材240、第二弾性体220の順に重なったものを上下方向に沿って共締めする。
例えば、第一部材230と第二部材240とが第一弾性体210を上下方向に沿って圧縮可能に挟み、第二部材240とシリンダ座金251とが第二弾性体220を上下方向に圧縮可能に挟み、張力部材250が上から下へ第一部材230、第一弾性体210、第二部材240、第二弾性体220の順に重なったものを上下方向に沿って共締めする。
The first member 230 and the second member 240 sandwich the first elastic body 210 so as to be compressible along the vertical direction, and the tension member 250 is aligned along the vertical direction with the first member 230, the first elastic body 210, and the second member. 240 and the 2nd elastic body 220 which overlapped in order are tightened along the up-down direction.
For example, the first member 230 and the second member 240 sandwich the first elastic body 210 so that the first elastic body 210 can be compressed in the vertical direction, and the tension member 250 moves from the top to the bottom in the first member 230, the first elastic body 210, and the second. The members 240 and the second elastic body 220 that overlap in this order are fastened together in the vertical direction.
The first member 230 and the second member 240 sandwich the first elastic body 210 in a vertically compressible manner, and the second member 240 and the cylinder washer 251 sandwich the second elastic body 220 in a vertically compressible manner. The first member 230, the first elastic body 210, the second member 240, and the second elastic body 220, which are overlapped in this order along the vertical direction, are tightened together in the vertical direction.
For example, the first member 230 and the second member 240 sandwich the first elastic body 210 so as to be compressible along the vertical direction, and the second member 240 and the cylinder washer 251 can compress the second elastic body 220 in the vertical direction. The first member 230, the first elastic body 210, the second member 240, and the second elastic body 220, which are overlapped in this order from the top to the bottom, are fastened together in the vertical direction.

加速度が基礎構造に作用しないときに、第一弾性体210と第二弾性体220とが予圧縮される様にしてもよい。   When the acceleration does not act on the basic structure, the first elastic body 210 and the second elastic body 220 may be pre-compressed.

加速度が基礎構造に作用しないときに、第一部材230と第二部材240が上下方向に当接しない様にしてもよい。
言い換えれば、加速度が基礎構造に作用しないときに、第一弾性体310が上下方向にさらに圧縮変形できてもよい。
図7、図8は、第一シリンダ部233の底面と第二本体部242の上面との間に所定の隙間Gがあり、第一部材230と第二部材240が上下方向に当接しない様子を示している。
この状態で、第一部材230と第二部材240が上下方向に当接するまでは、第一弾性体210はさらに圧縮可能である。
When the acceleration does not act on the foundation structure, the first member 230 and the second member 240 may not be in contact with each other in the vertical direction.
In other words, when the acceleration does not act on the foundation structure, the first elastic body 310 may be further compressively deformed in the vertical direction.
7 and 8, there is a predetermined gap G between the bottom surface of the first cylinder part 233 and the upper surface of the second main body part 242, and the first member 230 and the second member 240 do not contact each other in the vertical direction. Is shown.
In this state, the first elastic body 210 can be further compressed until the first member 230 and the second member 240 contact each other in the vertical direction.

図9は、本発明の第一の実施形態に係る緩衝器の特性を示す。
図中で、鉛直変位がマイナスが引き抜き方向の変位である。
図中で、基礎構造に加速度が作用せず、構造物の重量が設計値であるときに、鉛直変位がゼロとなる。
図中では、第一弾性体110のばね定数が第二弾性体120のばね定数より大きい。
図中で、鉛直変位が最大値になる点が、第一部材230と第二部材240とが上下方向に当接した状態である。
FIG. 9 shows the characteristics of the shock absorber according to the first embodiment of the present invention.
In the figure, the vertical displacement is minus in the drawing direction.
In the figure, when the acceleration does not act on the foundation structure and the weight of the structure is the design value, the vertical displacement becomes zero.
In the drawing, the spring constant of the first elastic body 110 is larger than the spring constant of the second elastic body 120.
In the figure, the point at which the vertical displacement becomes the maximum value is a state where the first member 230 and the second member 240 are in contact with each other in the vertical direction.

次に、緩衝器200の第二の構造を、図を基に、説明する。
図8は、本発明の第一の実施形態にかかる緩衝器の第二の構造の断面図を示す。
緩衝器200は、第一弾性体210と第二弾性体220と第一部材230と第二部材240と張力部材250とで構成される。
第一弾性体210と第二弾性体220と第一部材230と第二部材240と張力部材250の主要構造は、第一の構造のものと同じなので説明を省略し、異なる点のみを設ん利する。
以下では、説明の便宜上、上部に第一取付面を設けられる例で説明する。
Next, the second structure of the shock absorber 200 will be described based on the drawings.
FIG. 8 shows a cross-sectional view of the second structure of the shock absorber according to the first embodiment of the present invention.
The shock absorber 200 includes a first elastic body 210, a second elastic body 220, a first member 230, a second member 240, and a tension member 250.
Since the main structures of the first elastic body 210, the second elastic body 220, the first member 230, the second member 240, and the tension member 250 are the same as those of the first structure, description thereof is omitted and only different points are provided. Profit.
Hereinafter, for convenience of description, an example in which the first mounting surface is provided on the upper part will be described.

第一部材230または第二部材のうちの一つの部材の少なくとも一部が、構造体50のコンクリート躯体に埋め込まれる。
例えば、第一部材230の少なくとも一部が、構造体50のコンクリート躯体に埋め込まれる。
第一部材230は、上部に第一取付面を設けられた部材である。
第一部材230は、第一本体部232と第一シリンダ部233とを形成されてもよい。
第一本体部232は、第一フランジ部231の下部に連なる円筒状の外形を持つ部分である。
第一本体部232の上部が構造体のコンクリート躯体に埋め込まれる第一取付面を形成する。
第一シリンダ部233は、第一本体部232の下部に開口を持つシリンダ状の窪みを持つ部分である。
第一シリンダ部233は、所定の内径D1を持つ。
At least a part of one of the first member 230 and the second member is embedded in the concrete frame of the structure 50.
For example, at least a part of the first member 230 is embedded in the concrete frame of the structure 50.
The first member 230 is a member provided with a first mounting surface on the top.
The first member 230 may be formed with a first body portion 232 and a first cylinder portion 233.
The first body portion 232 is a portion having a cylindrical outer shape that continues to the lower portion of the first flange portion 231.
The upper part of the first main body portion 232 forms a first attachment surface embedded in the concrete casing of the structure.
The first cylinder part 233 is a part having a cylindrical recess having an opening in the lower part of the first main body part 232.
The first cylinder part 233 has a predetermined inner diameter D1.

ダンパー300は、基礎と構造物50との水平移動に応じて加速エネルギーを減衰させる機器である。   The damper 300 is a device that attenuates acceleration energy according to the horizontal movement between the foundation and the structure 50.

免震機構100と緩衝器200とが上下方向に直列に繋がって構造物50を支持する。
1つの免震機構100と並列にした複数の緩衝器とが直列に繋がって構造物50を支持してもよい。
緩衝器200が免震機構100と構造体との間に納まる様に第一取付面S1又は第二取付面S2のうちの一方を構造体の下部に固定され第一取付面S1又は第二取付面S2のうちの他方を免震機構100の上部に固定されてもよい。
例えば、緩衝器200が、免震機構100と構造体との間に納まる様に、第一取付面を構造体の下部に固定され第二取付面が免震機構100の上部に固定されてもよい。
The seismic isolation mechanism 100 and the shock absorber 200 are connected in series in the vertical direction to support the structure 50.
A single seismic isolation mechanism 100 and a plurality of shock absorbers in parallel may be connected in series to support the structure 50.
One of the first mounting surface S1 and the second mounting surface S2 is fixed to the lower part of the structure so that the shock absorber 200 is placed between the seismic isolation mechanism 100 and the structure, and the first mounting surface S1 or the second mounting surface. The other of the surfaces S2 may be fixed to the upper part of the seismic isolation mechanism 100.
For example, even if the shock absorber 200 fits between the seismic isolation mechanism 100 and the structure, the first mounting surface is fixed to the lower part of the structure and the second mounting surface is fixed to the upper part of the seismic isolation mechanism 100. Good.

複数の免震機構100が各々に基礎に支持され構造物50を支持する複数の第一免震機構110と各々に基礎に支持され構造物50を支持する複数の第二免震機構120とで構成される場合に、緩衝器200が第一免震機構110または第二免震機構120のうちの少なくとも一方と構造体との間に納まる様に第一取付面S1または第二取付面S2の一方を構造体の下部に固定され第一取付面S1または第二取付面S2の他方を免震機構100の上部に固定されてもよい。
例えば、複数の免震機構が各々に基礎に支持され構造物50を支持する複数の第一免震機構110と各々に基礎に支持され構造物50を支持する複数の第二免震機構120とで構成される場合に、緩衝器200が第一免震機構110または第二免震機構120のうちの少なくとも一方と構造体との間に納まる様に第一取付面S1を構造体の下部に固定され第二取付面S2が免震機構の上部に固定される。
例えば、第一免震機構が多段に重ねられた複数のゴム板と複数の鉄板とを持ち、第二免震機構が水平方向に沿って直動可能なリニアガイドを持つ。
図3、図4は、第二免震機構120と複数の緩衝器200とが直列になったものが構造物50を支持する様子を示している。
複数のアンカーボルト60が、碁盤の目状に配置される。
図5、図6は、第一免震機構110と複数の緩衝器200とが直列になったものが構造物50を支持する様子を示している。
複数のアンカーボルト60が、円周状に配置される。
この様にすると、引き抜き力の集中する現象を緩和できて、アンカーボルトの数を減らしたり、アンカーボルトを小型化できる。
A plurality of first seismic isolation mechanisms 110 each supporting a structure 50 with a plurality of seismic isolation mechanisms 100 supported by the foundation and a plurality of second seismic isolation mechanisms 120 supported by each foundation and supporting the structure 50 When configured, the first mounting surface S1 or the second mounting surface S2 is configured such that the shock absorber 200 is placed between at least one of the first seismic isolation mechanism 110 and the second seismic isolation mechanism 120 and the structure. One may be fixed to the lower part of the structure, and the other of the first mounting surface S1 or the second mounting surface S2 may be fixed to the upper part of the seismic isolation mechanism 100.
For example, a plurality of first seismic isolation mechanisms 110 each supporting a structure 50 with a plurality of seismic isolation mechanisms supported by the foundation, and a plurality of second seismic isolation mechanisms 120 supported by each foundation and supporting the structure 50, When the shock absorber 200 is configured as follows, the first mounting surface S1 is placed at the lower part of the structure so that the shock absorber 200 fits between at least one of the first seismic isolation mechanism 110 or the second seismic isolation mechanism 120 and the structure. The second mounting surface S2 is fixed to the upper part of the seismic isolation mechanism.
For example, the first seismic isolation mechanism has a plurality of rubber plates and a plurality of iron plates stacked in multiple stages, and the second seismic isolation mechanism has a linear guide that can move linearly in the horizontal direction.
3 and 4 show a state in which the second seismic isolation mechanism 120 and the plurality of shock absorbers 200 support the structure 50 in series.
A plurality of anchor bolts 60 are arranged in a grid pattern.
5 and 6 show a state in which the first seismic isolation mechanism 110 and the plurality of shock absorbers 200 support the structure 50 in series.
A plurality of anchor bolts 60 are arranged circumferentially.
In this way, the phenomenon in which the pulling force is concentrated can be alleviated, the number of anchor bolts can be reduced, and the anchor bolts can be downsized.

上から見て複数の第二免震機構120が複数の第一免震機構110よりも周辺に配置され、緩衝器と第二免震機構とが上下方向に直列に繋がって構造物50を支持してもよい。
例えば、上から見て複数の第二免震機構120が複数の第一免震機構110よりも構造部のの支持面の外周部分に配置され、緩衝器と第二免震機構とが上下方向に直列に繋がって構造物50を支持する。
図1は、第二免震機器120が構造物50の矩形の支持面の隅部に配させる様子を示す。
例えば、複数の緩衝器200を構造物50の支持面の四隅に配し、第一取付面S1を支持面に固定し、第二取付面S2を第二免震機器の上部に固定する。
When viewed from above, a plurality of second seismic isolation mechanisms 120 are arranged in the periphery of the plurality of first seismic isolation mechanisms 110, and the shock absorber and the second seismic isolation mechanism are connected in series in the vertical direction to support the structure 50. May be.
For example, when viewed from above, the plurality of second seismic isolation mechanisms 120 are arranged on the outer peripheral portion of the support surface of the structural portion rather than the plurality of first seismic isolation mechanisms 110, and the shock absorber and the second seismic isolation mechanism are vertically oriented. Are connected in series to support the structure 50.
FIG. 1 shows a state in which the second seismic isolation device 120 is arranged at the corner of the rectangular support surface of the structure 50.
For example, the plurality of shock absorbers 200 are arranged at the four corners of the support surface of the structure 50, the first mounting surface S1 is fixed to the support surface, and the second mounting surface S2 is fixed to the upper part of the second seismic isolation device.

以下に、本発明の第一の実施形態にかかる基礎構造の作用その1を、図を基に説明する。
図10は、本発明の第一の実施形態に係る緩衝器の1番目の作用を示す。
複数の免震機構100が、互いに異なる垂直剛性をもつことがある。
例えば、第一免震機構110の垂直剛性と第二免震機構120の垂直剛性は、互いに異なる。
構造物50の重量が変化した場合に、複数の免震機構100の沈み込み量に垂直剛性の差によるばらつきが生ずる。
このような現象が発生したときに、複数の免震機構100に各々に直列に繋がった緩衝器200の第一取付面S1と第二取付面S2との離間距離が各々に変化するので、基礎構造が支持する構造体の各々の支持点での不陸が緩和される。
図10は、構造体の中央部と周辺部のと免震機構の沈み込み量が異なる現象が生じたときに、各々の免震機構100に直列に繋がる緩衝器200の第一取付面と第二取付面との離間距離が変化する様子を示す。
Below, the effect | action 1 of the basic structure concerning 1st embodiment of this invention is demonstrated based on a figure.
FIG. 10 shows the first action of the shock absorber according to the first embodiment of the present invention.
The plurality of seismic isolation mechanisms 100 may have different vertical stiffnesses.
For example, the vertical stiffness of the first seismic isolation mechanism 110 and the vertical stiffness of the second seismic isolation mechanism 120 are different from each other.
When the weight of the structure 50 changes, the amount of subsidence of the plurality of seismic isolation mechanisms 100 varies due to the difference in vertical rigidity.
When such a phenomenon occurs, the separation distance between the first mounting surface S1 and the second mounting surface S2 of the shock absorber 200 connected in series to each of the plurality of seismic isolation mechanisms 100 changes. The unevenness at each supporting point of the structure supported by the structure is alleviated.
FIG. 10 shows the first mounting surface and the first mounting surface of the shock absorber 200 connected in series to each seismic isolation mechanism 100 when a phenomenon occurs in which the amount of subsidence of the seismic isolation mechanism differs between the central part and the peripheral part of the structure. A mode that the separation distance with two attachment surfaces changes is shown.

次に、本発明の第一の実施形態にかかる基礎構造の作用その2を、図を基に説明する。
図11の右図は、本発明の第一の実施形態に係る緩衝器の2番目の作用を示す。
構造体に大きな加速度が作用した場合に、複数の免震機構100のいくつかに大きな引き抜き力が作用する。
一般的に、基礎構造を上から見たときに、中心よりも周辺に配された免震機構100に大きな引き抜き力が作用する傾向がある。
この様なときに、大きな引き抜き力の作用した免震機構100に直列に繋がる緩衝器200の第二弾性体220が大きく圧縮される。
この結果、引き抜き力が特定の免震機構100に集中するのを緩和される。
Next, operation 2 of the basic structure according to the first embodiment of the present invention will be described with reference to the drawings.
The right figure of FIG. 11 shows the second action of the shock absorber according to the first embodiment of the present invention.
When a large acceleration acts on the structure, a large pulling force acts on some of the plurality of seismic isolation mechanisms 100.
Generally, when the foundation structure is viewed from above, there is a tendency that a large pulling force acts on the seismic isolation mechanisms 100 arranged around the center rather than the center.
In such a case, the second elastic body 220 of the shock absorber 200 connected in series to the seismic isolation mechanism 100 on which a large pulling force is applied is greatly compressed.
As a result, the drawing force is alleviated from being concentrated on the specific seismic isolation mechanism 100.

次に、本発明の第一の実施形態にかかる基礎構造の作用その3を、図を基に、説明する。
図11の左図は、本発明の第一の実施形態にかかる緩衝器の3番目の作用を示す。
特定の免震機構に大きな引き抜き力が作用するよ、2番目の作用により緩衝器200の第二弾性体220が圧縮して、構造体の支持点が上方に変位する。
引き抜き力が小さくなると、構造体の支持点が下降して緩衝器200の第一部材230と第二部材240が第二弾性体220を上下方向に圧縮する。
その結果、仮に第二弾性体220がない場合に比べて、支持点に生ずる力が緩和される。
Next, operation 3 of the basic structure according to the first embodiment of the present invention will be described with reference to the drawings.
The left figure of FIG. 11 shows the 3rd effect | action of the buffer concerning 1st embodiment of this invention.
When a large pulling force acts on a specific seismic isolation mechanism, the second elastic body 220 of the shock absorber 200 is compressed by the second action, and the support point of the structure is displaced upward.
When the pulling force is reduced, the support point of the structure is lowered, and the first member 230 and the second member 240 of the shock absorber 200 compress the second elastic body 220 in the vertical direction.
As a result, compared with the case where there is no second elastic body 220, the force generated at the support point is reduced.

次に、本発明の第二の実施形態にかかる基礎構造を、図を基に、説明する。
図12は、本発明の第二の実施形態にかかる基礎構造の正面図である。図13は、本発明の第二の実施形態にかかる基礎構造の側面図である。図14は、本発明の第二の実施形態にかかる基礎構造の垂直荷重表である。
Next, the basic structure according to the second embodiment of the present invention will be described with reference to the drawings.
FIG. 12 is a front view of the foundation structure according to the second embodiment of the present invention. FIG. 13 is a side view of the foundation structure according to the second embodiment of the present invention. FIG. 14 is a vertical load table of the foundation structure according to the second embodiment of the present invention.

本発明の第二の実施形態にかかる基礎構造は、基礎に支持され構造物50を支持する構造である。
例えば、基礎構造は、基礎に支持され建造物50を支持する構造である。
例えば、基礎構造は、建物内の基礎スラブに支持されを構造床を支持する構造である。
本発明の第一の実施形態にかかる基礎構造は、複数の免震機構100と複数の緩衝器200とダンパー300とで構成される。
The foundation structure according to the second embodiment of the present invention is a structure that is supported by the foundation and supports the structure 50.
For example, the foundation structure is a structure that is supported by the foundation and supports the building 50.
For example, the foundation structure is a structure that is supported by a foundation slab in a building and supports a structural floor.
The basic structure according to the first embodiment of the present invention includes a plurality of seismic isolation mechanisms 100, a plurality of shock absorbers 200, and dampers 300.

本発明の第二の実施形態にかかる基礎構造は、複数の免震機構100と複数の緩衝器200と複数のダンパー300とで構成されてもよい。
免震機構100と緩衝器200とダンパー300の構造は、第一の実施形態にかかる基礎構造のものと同じなので、説明を省略する。
The basic structure according to the second embodiment of the present invention may include a plurality of seismic isolation mechanisms 100, a plurality of shock absorbers 200, and a plurality of dampers 300.
Since the structure of the seismic isolation mechanism 100, the shock absorber 200, and the damper 300 is the same as that of the basic structure according to the first embodiment, the description thereof is omitted.

予め想定される加速度である想定加速度が基礎構造に作用すると仮定したときに上向きの垂直荷重が複数の免震機構のうちの特定の免震機構であるN(N=1、2、3、・・)個の特定免震機構に各々に作用し、上向きの垂直荷重が複数の免震機構のうちのN個の交番荷重特定免震機構を除く他の複数の免震機構に作用せず、複数の交番荷重緩衝器とN個の交番荷重特定免震機構とが上下方向に各々に直列に繋がって構造物を各々に支持する。
加速度が基礎構造に作用しないときに、構造物の重量を支持する垂直荷重の反力である下向きの垂直荷重が複数の免震機構に作用する。
想定加速度が基礎構造に作用すると、加速度が基礎構造に作用しないときに免震機構に作用する垂直荷重に想定加速度により生じた交番荷重が加算された合計の垂直荷重が複数の免震機構に作用する。
想定加速度より小さな加速度が基礎構造に作用した際に、複数の免震機構の各々について、加速度により生じた交番荷重の振幅値が構造物を支持するための垂直荷重の反力である下向きの垂直荷重の絶対値より小さいので、上向きの垂直荷重が免震機構に作用しない。
想定加速度より大きい加速度が基礎構造に作用したときに、複数の免震機構のうちの幾つかの免震機構に上向きの垂直荷重が作用する。複数の交番荷重緩衝器とN個の交番荷重特定免震機構とが上下方向に各々に直列に繋がって構造物を各々に支持すると、緩衝器200が免震機器100に作用する引き抜き力を緩和する。
N (N = 1, 2, 3,...) Is a specific seismic isolation mechanism among a plurality of seismic isolation mechanisms when it is assumed that the assumed acceleration, which is an assumed acceleration, acts on the foundation structure.・) Acts on each of the specified seismic isolation mechanisms, and the upward vertical load does not act on a plurality of seismic isolation mechanisms other than the N alternating load specific seismic isolation mechanisms of the plurality of seismic isolation mechanisms, A plurality of alternating load shock absorbers and N alternating load specific seismic isolation mechanisms are connected in series in the vertical direction to support the structure.
When the acceleration does not act on the foundation structure, a downward vertical load that is a reaction force of the vertical load that supports the weight of the structure acts on the plurality of seismic isolation mechanisms.
When the assumed acceleration acts on the foundation structure, the total vertical load obtained by adding the alternating load generated by the assumed acceleration to the vertical load that acts on the seismic isolation mechanism when the acceleration does not act on the foundation structure acts on multiple seismic isolation mechanisms To do.
When an acceleration smaller than the assumed acceleration is applied to the foundation structure, the downward vertical force in which the amplitude value of the alternating load generated by the acceleration is the reaction force of the vertical load to support the structure for each of the seismic isolation mechanisms Since it is smaller than the absolute value of the load, upward vertical load does not act on the seismic isolation mechanism.
When an acceleration greater than the assumed acceleration is applied to the foundation structure, an upward vertical load is applied to some of the plurality of base isolation mechanisms. When a plurality of alternating load shock absorbers and N alternating load specific seismic isolation mechanisms are connected in series in the vertical direction to support each structure, the shock absorber 200 reduces the pulling force acting on the seismic isolation device 100. To do.

または、加速度が基礎構造に作用しないときに複数の免震機構のうちの特定の免震機構であるN(N=1、2、3、・・)個の特定免震機構に各々に支持されるN個の垂直荷重が予め想定される垂直荷重である想定垂直荷重より各々に小さく、複数の免震機構のうちのN個の交番荷重特定免震機構を除く他の複数の免震機構に各々に支持される複数の垂直荷重が想定垂直荷重より小さくなく、複数の交番荷重緩衝器200とN個の特定免震機構100とが上下方向に各々に直列に繋がって構造物を各々に支持する。
加速度が基礎構造に作用しないときに、構造物の重量を支持する垂直荷重の反力である下向きの垂直荷重が複数の免震機構100に作用する。
加速度が基礎構造に作用すると、加速度が基礎構造に作用しないときに免震機構に作用する垂直荷重に加速度により生じた交番荷重が加算された合計の垂直荷重が複数の免震機構に作用する。
設定垂直荷重を下回る垂直荷重を生じさせる加速度が基礎構造体に作用したときに、複数の免震機構の各々について、加速度により生じた交番荷重の振幅値が構造物を支持するための垂直荷重の反力である下向きの垂直荷重の絶対値より小さいので、上向きの垂直荷重が免震機構に作用しない。
設定垂直荷重を上回る垂直荷重を生じさせる加速度が基礎構造体に作用したときに、複数の免震機構のうちの幾つかの免震機構に上向きの垂直荷重が作用する。複数の交番荷重緩衝器とN個の交番荷重特定免震機構とが上下方向に各々に直列に繋がって構造物を各々に支持すると、緩衝器200が免震機器100に作用する引き抜き力を緩和する。
Or, when acceleration does not act on the foundation structure, each is supported by N (N = 1, 2, 3,...) Specific seismic isolation mechanisms that are specific seismic isolation mechanisms. N vertical loads are smaller than the assumed vertical load, which is a vertical load assumed in advance, and a plurality of seismic isolation mechanisms other than the N alternating load specific seismic isolation mechanisms among the plurality of seismic isolation mechanisms A plurality of vertical loads supported by each are not smaller than an assumed vertical load, and a plurality of alternating load buffers 200 and N number of specified seismic isolation mechanisms 100 are connected in series in the vertical direction to support the structure. To do.
When the acceleration does not act on the foundation structure, a downward vertical load that is a reaction force of the vertical load that supports the weight of the structure acts on the plurality of seismic isolation mechanisms 100.
When the acceleration acts on the base structure, a total vertical load obtained by adding the alternating load generated by the acceleration to the vertical load acting on the base isolation mechanism when the acceleration does not act on the base structure acts on the plurality of base isolation mechanisms.
When acceleration that generates a vertical load below the set vertical load is applied to the foundation structure, the amplitude value of the alternating load generated by the acceleration for each of the seismic isolation mechanisms is the vertical load for supporting the structure. Since it is smaller than the absolute value of the downward vertical load that is the reaction force, the upward vertical load does not act on the seismic isolation mechanism.
When an acceleration that generates a vertical load exceeding the set vertical load is applied to the foundation structure, an upward vertical load is applied to some of the plurality of base isolation mechanisms. When a plurality of alternating load shock absorbers and N alternating load specific seismic isolation mechanisms are connected in series in the vertical direction to support each structure, the shock absorber 200 reduces the pulling force acting on the seismic isolation device 100. To do.

図12乃至図14に、構造体の構造と加速度が作用しないときの構造体を支持する免震機構100に作用する構造体の重量による垂直荷重の設計値を示す。
図14は、構造体の階数の低い箇所を支持する免震機構に作用する構造体の重量による垂直荷重が相対的に小さい様子、階段のための空間の様に吹き抜け構造となっている箇所を支持する免震機構に作用する構造体の重量による垂直荷重が相対的に小さい様子を示す。
FIG. 12 to FIG. 14 show the design value of the vertical load due to the weight of the structure acting on the seismic isolation mechanism 100 that supports the structure when the structure and acceleration do not act.
FIG. 14 shows a state in which the vertical load due to the weight of the structure acting on the seismic isolation mechanism that supports the place where the floor of the structure is low is relatively small, and the place where the structure has an atrium structure like a space for stairs. It shows how the vertical load due to the weight of the structure acting on the supporting seismic isolation mechanism is relatively small.

本発明の実施形態に係る基礎構造は、その構成により、以下の効果を有する。
直列に繋がった緩衝器200と免震機構100とが構造物50を支持し、緩衝器200が第一部材230と第一弾性体210と第二部材240と第二弾性体220とを重ねたものを張力部材250で共締めし、第一部材230と第二部材240とが第一弾性体210を挟んで圧縮できる様にしたので、複数の免震機構に異なる力が作用したときに、第一弾性体210と第二弾性体220とが各々に圧縮されて第一部材230と第二部材240との離間距離が変化して、複数の免震機構が支持する支持点の間に生じる不陸を調整できる。
また、加速度が基礎構造に作用しないときに第一弾性体210と第二弾性体220とが予圧縮される様にしたので、加速度が基礎構造に作用して複数の免震機構に異なる力が作用したときに、第一部材230と第二部材240との離間距離にガタが発生しにくく、複数の免震機構が支持する支持点の間に生じる不陸を調整できる。
また、緩衝器200が第一取付面S1を構造体の下部に固定され、第二取付面S2を免震機構100の上部に固定される様にしたので、複数の免震機構100に異なる力が作用したときに、構造体の下部と免震機器100の上部との離間距離が変化して、複数の免震機構100が支持する支持点の間に生じる不陸を調整できる。
また、第一免震機構110の垂直剛性と第二免震機構120の垂直剛性とが異なる様にしたので、周波数特性の異なる第一免震機構110と第二免震機構120とを併用して、複数の免震機構100が支持する支持点の間に生じる不陸を調整しつつ、全体として広い周波数に良好な免震制振特性をもたせることをできる。
また、多段に重ねられた複数のゴム板と複数の鉄板とを持つ複数の第一免震機器110と水平方向に沿って直動可能なリニアガイドを持つ複数の第二免震機器120とで構造物50を支持し、緩衝器200を第一免震機構110または第二免震機構120のうちの一方と構造体との間に納まる様にしたので、相対的に高い周波数に良好な免震制振特性を持つ第一免震機器110と相対的に低い周波数に良好な免震制振特性をもつ第二免震機器120を組み合わせて広い周波数に良好な免震制振特性をもたせることをできる。
また、多段に重ねられた複数のゴム板と複数の鉄板とを持つ複数の第一免震機器110と水平方向に沿って直動可能なリニアガイドを持つ複数の第二免震機器120とで構造物50を支持し、緩衝器200を第一免震機構110または第二免震機構120の両方と構造体との間に納まる様にしたので、相対的に高い周波数に良好な免震制振特性を持つ第一免震機器110と相対的に低い周波数に良好な免震制振特性をもつ第二免震機器120を組み合わせて広い周波数に良好な免震制振特性をもたせることをできる。
また、上から見て複数の第二免震機構120が複数の第一免震機構110よりも周辺に配し、緩衝器200と第二免震機構120とが上下方向に直列に繋がって構造物を支持する様にしたので、大きな加速度が作用したときに、外周に配される第二免震機構120に発生した引き抜き力を緩和して、良好な免震制振特性をもたせることをできる。
また、加速度が基礎構造に作用しないときに第一部材230と第二部材240が上下方向に当接しない様にし第一弾性体210を圧縮できる様にしたので、加速度が作用したときに、第一部材230と第二部材240とが第一弾性体210を圧縮して離間距離を変化させ、良好な免震制振特性をもたせることをできる。
また、第一部材230の少なくとも一部が構造体のコンクリート躯体に埋め込まれる様にしたので、構造体と基礎との隙間高さを低くできる。
また、基礎構造を上から見たときに、中心よりも周辺に配された免震機構100に大きな引き抜き力が作用する傾向があり、この様なときに、大きな引き抜き力の作用した免震機構100に直列に繋がる緩衝器200の第二弾性体220が大きく圧縮されるので、引き抜き力が特定の免震機構100に集中するのを緩和される。
また、想定加速度が作用すると仮定するときに上向きの垂直荷重が作用するN個の免震機構100と複数の緩衝器200とが上下方向に各々に直列に繋がって構造物を支持する様にしたので、想定加速度に匹敵する加速度が作用したときに、上向きに垂直荷重の作用する免震機構100に発生する引き抜き力を緩和して、良好な免震制振特性をもたせることをできる。
また、加速度が作用しないときに特定垂直荷重より小さな垂直荷重を支持するN個の免震機構100と複数の緩衝器200とが上下方向に各々に直列に繋がって構造物を支持する様にしたので、設定垂直荷重より大きな垂直荷重を生じさせる加速度が作用したときに、上向きに垂直荷重の作用する可能性のある免震機構100に発生する引き抜き力を緩和して、良好な免震制振特性をもたせることをできる。
また、特定の免震機構に大きな引き抜き力が作用すると、引き抜き力の作用により緩衝器200の第二弾性体220が圧縮して、構造体の支持点が上方に変位し、引き抜き力が小さくなると、構造体の支持点が下降して緩衝器200の第一部材230と第二部材240が第二弾性体220を上下方向に圧縮するので、仮に第二弾性体220がない場合に比べて、支持点に生ずる力が緩和される。
また、免震機構100による支持力が構造物の支持面の一点に集中する場合に、免震機構とっ構造物の間に複数の緩衝器200を介在させることで、免震機構100の周囲の不陸を緩和できる。
また、第一免震機構と緩衝器を直列にしたもので構造物を支持すると、引き抜き力を緩和し、浮上り後の衝撃を緩和できる。
また、第二免震機構と緩衝器を直列にしたもので構造物を支持すると、アンカーボルト60を簡略化でき、鉛直剛性を調製でき、浮上り後の衝撃を緩和できる。
また、第一免震機構と緩衝器を直列にしたものと第二免震機構と緩衝器を直列にしたものとを並列にしたもので構造物を支持してもよい。
The foundation structure which concerns on embodiment of this invention has the following effects by the structure.
The shock absorber 200 and the seismic isolation mechanism 100 connected in series support the structure 50, and the shock absorber 200 overlaps the first member 230, the first elastic body 210, the second member 240, and the second elastic body 220. Since the first member 230 and the second member 240 can be compressed with the first elastic body 210 sandwiched between the tension members 250, when different forces act on the plurality of seismic isolation mechanisms, The first elastic body 210 and the second elastic body 220 are compressed to each other, and the separation distance between the first member 230 and the second member 240 is changed to be generated between support points supported by a plurality of seismic isolation mechanisms. Can adjust the unevenness.
In addition, since the first elastic body 210 and the second elastic body 220 are precompressed when the acceleration does not act on the foundation structure, the acceleration acts on the foundation structure and different forces are applied to the plurality of seismic isolation mechanisms. When acting, the distance between the first member 230 and the second member 240 is less likely to be loose, and the unevenness that occurs between the support points supported by the plurality of seismic isolation mechanisms can be adjusted.
In addition, since the shock absorber 200 has the first mounting surface S1 fixed to the lower part of the structure and the second mounting surface S2 fixed to the upper part of the seismic isolation mechanism 100, different force is applied to the plurality of seismic isolation mechanisms 100. , The separation distance between the lower part of the structure and the upper part of the seismic isolation device 100 changes, and the unevenness generated between the support points supported by the plurality of seismic isolation mechanisms 100 can be adjusted.
Also, since the vertical stiffness of the first seismic isolation mechanism 110 and the vertical stiffness of the second seismic isolation mechanism 120 are different, the first seismic isolation mechanism 110 and the second seismic isolation mechanism 120 having different frequency characteristics are used in combination. Thus, it is possible to give good seismic isolation characteristics to a wide frequency as a whole while adjusting the unevenness generated between the support points supported by the plurality of seismic isolation mechanisms 100.
In addition, a plurality of first seismic isolation devices 110 having a plurality of rubber plates and a plurality of iron plates stacked in multiple stages, and a plurality of second seismic isolation devices 120 having linear guides that can move linearly along the horizontal direction. Since the structure 50 is supported and the shock absorber 200 is placed between one of the first seismic isolation mechanism 110 and the second seismic isolation mechanism 120 and the structure, it is possible to obtain a good isolation at a relatively high frequency. Combining the first seismic isolation device 110 having seismic control characteristics with the second seismic isolation device 120 having good seismic isolation characteristics at a relatively low frequency to provide good seismic isolation characteristics at a wide frequency range. Can do.
In addition, a plurality of first seismic isolation devices 110 having a plurality of rubber plates and a plurality of iron plates stacked in multiple stages, and a plurality of second seismic isolation devices 120 having linear guides that can move linearly along the horizontal direction. Since the structure 50 is supported and the shock absorber 200 is placed between both the first seismic isolation mechanism 110 or the second seismic isolation mechanism 120 and the structure, the seismic isolation system is excellent at a relatively high frequency. By combining the first seismic isolation device 110 having vibration characteristics and the second seismic isolation device 120 having good seismic isolation characteristics at a relatively low frequency, it is possible to provide good seismic isolation characteristics over a wide frequency range. .
In addition, a plurality of second seismic isolation mechanisms 120 are arranged around the first seismic isolation mechanisms 110 as viewed from above, and the shock absorber 200 and the second seismic isolation mechanism 120 are connected in series in the vertical direction. Since the object is supported, when a large acceleration is applied, the pulling force generated in the second seismic isolation mechanism 120 arranged on the outer periphery can be relaxed, and a good seismic isolation characteristic can be provided. .
In addition, since the first elastic body 210 can be compressed by preventing the first member 230 and the second member 240 from contacting each other when the acceleration does not act on the foundation structure, The one member 230 and the second member 240 can compress the first elastic body 210 to change the separation distance, thereby providing good seismic isolation characteristics.
Moreover, since at least a part of the first member 230 is embedded in the concrete frame of the structure, the gap height between the structure and the foundation can be reduced.
In addition, when the foundation structure is viewed from above, there is a tendency for a large pulling force to act on the seismic isolation mechanism 100 arranged around the center, and in such a case, the seismic isolation mechanism to which a large pulling force is applied. Since the second elastic body 220 of the shock absorber 200 connected in series to 100 is greatly compressed, it is possible to reduce the concentration of the pulling force on the specific seismic isolation mechanism 100.
Further, when assuming that the assumed acceleration is applied, N seismic isolation mechanisms 100 and a plurality of shock absorbers 200 on which an upward vertical load is applied are connected in series in the vertical direction to support the structure. Therefore, when an acceleration equivalent to the assumed acceleration is applied, the pulling-out force generated in the seismic isolation mechanism 100 in which the vertical load is applied upward can be alleviated, and good seismic isolation characteristics can be provided.
In addition, when the acceleration does not act, N seismic isolation mechanisms 100 that support a vertical load smaller than a specific vertical load and a plurality of shock absorbers 200 are connected in series in the vertical direction to support the structure. Therefore, when an acceleration that generates a vertical load larger than the set vertical load is applied, the pull-out force generated in the seismic isolation mechanism 100 that may be applied with the vertical load upward is alleviated, and good seismic isolation control is achieved. It can have characteristics.
Further, when a large pulling force acts on a specific seismic isolation mechanism, the second elastic body 220 of the shock absorber 200 is compressed by the action of the pulling force, the support point of the structure is displaced upward, and the pulling force becomes small. Since the support member of the structure is lowered and the first member 230 and the second member 240 of the shock absorber 200 compress the second elastic body 220 in the vertical direction, compared to the case where the second elastic body 220 is not provided, The force generated at the support point is reduced.
Further, when the supporting force by the seismic isolation mechanism 100 is concentrated on one point of the support surface of the structure, a plurality of shock absorbers 200 are interposed between the seismic isolation mechanism and the structure, so that Can relieve unevenness.
In addition, if the structure is supported by the first seismic isolation mechanism and the shock absorber in series, the pulling force can be reduced and the impact after rising can be reduced.
Further, when the structure is supported by the second seismic isolation mechanism and the shock absorber in series, the anchor bolt 60 can be simplified, the vertical rigidity can be adjusted, and the impact after lifting can be reduced.
Moreover, you may support a structure by what paralleled the thing which connected the 1st seismic isolation mechanism and the shock absorber in series, and the thing which connected the 2nd seismic isolation mechanism and the shock absorber in series.

本発明は以上に述べた実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で各種の変更が可能である。
第一免震機構が多段に重ねられた複数のゴム板と複数の鉄板とを持つものとし、第二免震機構が水平方向に沿って直動可能なリニアガイドを持つものとしたが、これに限定されず、免震機構が空気ばねであってもよい。
第一取付面S1を上方へ向け、第二取付面S2を下方へ向ける例で説明したがこれに限定されず、例えば、第一取付面S1を下方へ向け、第二取付面S2を上方へ向けてもよい。
構造物の柱の負担する軸力が小さい箇所に緩衝器を配すると、その箇所に過大な軸力が大きくなるのを抑制できる。
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the scope of the invention.
The first seismic isolation mechanism has a plurality of rubber plates and a plurality of iron plates stacked in multiple stages, and the second seismic isolation mechanism has a linear guide that can move linearly in the horizontal direction. However, the seismic isolation mechanism may be an air spring.
The first mounting surface S1 is directed upward and the second mounting surface S2 is directed downward. However, the present invention is not limited to this. For example, the first mounting surface S1 is directed downward and the second mounting surface S2 is directed upward. You may turn it.
When a shock absorber is disposed at a location where the axial force borne by the pillar of the structure is small, an excessive axial force can be suppressed from increasing at that location.

D1 第一シリンダ部内径
D2 第二シリンダ部内径
G 隙間
S1 第一取付面
S2 第二取付面
50 構造物
60 アンカーボルト
100 免震機構
110 第一免震機構
120 第二免震機構
121 上部リニアガイド
122 下部リニアガイド
200 緩衝器
210 第一弾性体
211 第一皿バネ
220 第二弾性体
221 第二皿バネ
230 第一部材
231 第一フランジ部
232 第一本体部
233 第一シリンダ部
240 第二部材
241 第二フランジ部
242 第二本体部
243 第二窪み部
244 第二シリンダ部
250 張力部材
251 シリンダ座金
252 高力ボルト
300 ダンパー
D1 1st cylinder part inside diameter D2 2nd cylinder part inside diameter G Gap S1 1st mounting surface S2 2nd mounting surface 50 Structure 60 Anchor bolt 100 Seismic isolation mechanism 110 1st seismic isolation mechanism 120 2nd seismic isolation mechanism 121 Upper linear guide 122 lower linear guide 200 shock absorber 210 first elastic body 211 first disc spring 220 second elastic body 221 second disc spring 230 first member 231 first flange portion 232 first main body portion 233 first cylinder portion 240 second member 241 2nd flange part 242 2nd main body part 243 2nd hollow part 244 2nd cylinder part 250 Tension member 251 Cylinder washer 252 High-strength bolt 300 Damper

特許第3799450号Patent No. 3799450 特開2003−90145号JP 2003-90145 A 実開2001−329716号ACT 2001-329716 特開平11−230260号JP-A-11-230260 特開平11−153191号JP-A-11-153191

Claims (18)

基礎に支持され構造物を支持する基礎構造であって、
基礎と構造物との水平方向の相対移動に応じて水平反力を発生させる複数の免震機構と、
上下方向に圧縮されると圧縮力を発生する第一弾性体と上下方向に圧縮されると圧縮力を発生する第二弾性体と上部または下部のうちの一方に第一取付面を設けられた第一部材と前記第一部材に対し上下方向に相対的に移動自在に案内され上部または下部のうちの他方に第二取付面を設けられた第二部材と上下方向に張力を発生する張力部材とを有しており前記第一部材と前記第二部材とが前記第一弾性体を上下方向に沿って圧縮可能に挟み前記張力部材が上下方向に沿って前記第一部材、前記第一弾性体、前記第二部材、前記第二弾性体の順に重なったものを上下方向に沿って共締めする様になった複数の緩衝器と、
を備え、
前記緩衝器と前記免震機構とが上下方向に直列に繋がって構造物を支持する、
ことを特徴とする基礎構造。
A foundation structure supported by a foundation and supporting a structure,
A plurality of seismic isolation mechanisms that generate a horizontal reaction force according to the horizontal relative movement between the foundation and the structure;
A first mounting surface is provided on one of the upper and lower portions of the first elastic body that generates a compressive force when compressed in the vertical direction, the second elastic body that generates a compressive force when compressed in the vertical direction, and A second member having a second mounting surface on the other of the upper part and the lower part, which is guided so as to be movable in the vertical direction relative to the first member and the first member, and a tension member that generates tension in the vertical direction The first member and the second member sandwich the first elastic body so that the first elastic body can be compressed along the vertical direction, and the tension member extends along the vertical direction. A plurality of shock absorbers configured to fasten the body, the second member, and the second elastic body in order along the vertical direction;
With
The shock absorber and the seismic isolation mechanism are connected in series in the vertical direction to support the structure,
Basic structure characterized by that.
加速度が基礎構造に作用しないときに前記第一弾性体と前記第二弾性体とが予圧縮される様になった、
ことを特徴とする請求項1に記載の基礎構造。
When the acceleration does not act on the foundation structure, the first elastic body and the second elastic body are precompressed.
The foundation structure according to claim 1, wherein:
前記緩衝器が前記免震機構と構造体との間に納まる様に前記第一取付面又は前記第二取付面のうちの一方を構造体の下部に固定され前記第一取付面又は前記第二取付面のうちの他方を前記免震機構の上部に固定される、
ことを特徴とする請求項2に記載の基礎構造。
One of the first mounting surface or the second mounting surface is fixed to the lower part of the structure so that the shock absorber is placed between the seismic isolation mechanism and the structure, and the first mounting surface or the second mounting surface is fixed. The other of the mounting surfaces is fixed to the upper part of the seismic isolation mechanism,
The foundation structure according to claim 2 characterized by things.
複数の免震機構が各々に基礎に支持され構造物を支持する複数の第一免震機構と各々に基礎に支持され構造物を支持する複数の第二免震機構とを有し、
前記第一免震機構の垂直剛性と前記第二免震機構の垂直剛性とが異なる、
ことを特徴とする請求項3に記載の基礎構造。
A plurality of first seismic isolation mechanisms each supporting a structure supported on a foundation and a plurality of second seismic isolation mechanisms supported on each foundation supporting a structure;
The vertical stiffness of the first seismic isolation mechanism is different from the vertical stiffness of the second seismic isolation mechanism,
The foundation structure according to claim 3.
複数の免震機構が各々に基礎に支持され構造物を支持する複数の第一免震機構と各々に基礎に支持され構造物を支持する複数の第二免震機構とを有し、
前記第一免震機構が多段に重ねられた複数のゴム板と複数の鉄板とを持ち、
前記第二免震機構が水平方向に沿って直動可能なリニアガイドを持ち、
前記緩衝器が前記第一免震機構または前記第二免震機構のうちの少なくとも一方と構造体との間に納まる様に前記第一取付面または前記第二取付面のうちの一方を構造体の下部に固定され前記第一取付面または前記第二取付面のうちの他方を前記免震機構の上部に固定される、
ことを特徴とする請求項4に記載の基礎構造。
A plurality of first seismic isolation mechanisms each supporting a structure supported on a foundation and a plurality of second seismic isolation mechanisms supported on each foundation supporting a structure;
The first seismic isolation mechanism has a plurality of rubber plates and a plurality of iron plates stacked in multiple stages,
The second seismic isolation mechanism has a linear guide that can move linearly along the horizontal direction,
One of the first mounting surface and the second mounting surface is a structure so that the shock absorber fits between at least one of the first seismic isolation mechanism or the second seismic isolation mechanism and the structure. The other of the first mounting surface and the second mounting surface is fixed to the upper part of the seismic isolation mechanism.
The foundation structure according to claim 4, wherein:
上から見て複数の前記第二免震機構が複数の第一免震機構よりも周辺に配置され、
前記緩衝器と前記第二免震機構とが上下方向に直列に繋がって構造物を支持する、
ことを特徴とする請求項5に記載の基礎構造。
A plurality of the second seismic isolation mechanisms as viewed from above are arranged around the plurality of first seismic isolation mechanisms,
The shock absorber and the second seismic isolation mechanism are connected in series in the vertical direction to support the structure,
The foundation structure according to claim 5, wherein:
予め想定される加速度である想定加速度が基礎構造に作用すると仮定したときに上向きの垂直荷重が複数の免震機構のうちの特定の免震機構であるN(N=1、2、3、・・)個の特定免震機構に各々に作用し、上向きの垂直荷重が複数の免震機構のうちのN個の前記特定免震機構を除く他の複数の免震機構に作用せず、
複数の前記緩衝器とN個の前記特定免震機構とが上下方向に各々に直列に繋がって構造物を各々に支持する、
ことを特徴とする請求項5に記載の基礎構造。
N (N = 1, 2, 3,...) Is a specific seismic isolation mechanism among a plurality of seismic isolation mechanisms when it is assumed that the assumed acceleration, which is an assumed acceleration, acts on the foundation structure. -) Acts on each of the specific seismic isolation mechanisms, and the upward vertical load does not act on a plurality of other seismic isolation mechanisms other than the N specific seismic isolation mechanisms among the plurality of seismic isolation mechanisms,
The plurality of shock absorbers and the N specific seismic isolation mechanisms are connected in series in the vertical direction to support each structure,
The foundation structure according to claim 5, wherein:
加速度が基礎構造に作用しないときに複数の免震機構のうちの特定の免震機構であるN(N=1、2、3、・・)個の特定免震機構に各々に支持されるN個の垂直荷重が予め設定される垂直荷重である設定垂直荷重より各々に小さく、複数の免震機構のうちのN個の前記特定免震機構を除く他の複数の免震機構に各々に支持される複数の垂直荷重が前記設定垂直荷重より小さくなく、
複数の前記緩衝器とN個の特定免震機構とが上下方向に各々に直列に繋がって構造物を各々に支持する、
ことを特徴とする請求項5に記載の基礎構造。
N supported by N (N = 1, 2, 3,...) Specific seismic isolation mechanisms that are specific seismic isolation mechanisms among a plurality of seismic isolation mechanisms when acceleration does not act on the foundation structure Each vertical load is smaller than a set vertical load which is a preset vertical load, and is supported by each of a plurality of seismic isolation mechanisms other than the N specific seismic isolation mechanisms among a plurality of seismic isolation mechanisms. A plurality of vertical loads that are not smaller than the set vertical load,
A plurality of the shock absorbers and N specific seismic isolation mechanisms are connected in series in the vertical direction to support the structure.
The foundation structure according to claim 5, wherein:
加速度が基礎構造に作用しないときに前記第一部材と前記第二部材が上下方向に当接しない様になった、
ことを特徴とする請求項6に記載の基礎構造。
When the acceleration does not act on the foundation structure, the first member and the second member do not come into contact in the vertical direction.
The foundation structure according to claim 6 characterized by things.
前記第一部材または前記第二部材のうちの一つの部材の少なくとも一部が構造体のコンクリート躯体に埋め込まれる、
ことを特徴とする請求項9に記載の基礎構造。
At least a part of one member of the first member or the second member is embedded in a concrete frame of the structure,
The foundation structure according to claim 9.
前記緩衝器が前記免震機構と構造体との間に納まる様に前記第一取付面又は前記第二取付面のうちの一方を構造体の下部に固定され前記第一取付面又は前記第二取付面のうちの他方を前記免震機構の上部に固定される、
ことを特徴とする請求項1に記載の基礎構造。
One of the first mounting surface or the second mounting surface is fixed to the lower part of the structure so that the shock absorber is placed between the seismic isolation mechanism and the structure, and the first mounting surface or the second mounting surface is fixed. The other of the mounting surfaces is fixed to the upper part of the seismic isolation mechanism,
The foundation structure according to claim 1, wherein:
複数の免震機構が各々に基礎に支持され構造物を支持する複数の第一免震機構と各々に基礎に支持され構造物を支持する複数の第二免震機構とを有し、
前記第一免震機構の垂直剛性と前記第二免震機構の垂直剛性とが異なる、
ことを特徴とする請求項1に記載の基礎構造。
A plurality of first seismic isolation mechanisms each supporting a structure supported on a foundation and a plurality of second seismic isolation mechanisms supported on each foundation supporting a structure;
The vertical stiffness of the first seismic isolation mechanism is different from the vertical stiffness of the second seismic isolation mechanism,
The foundation structure according to claim 1, wherein:
複数の免震機構が各々に基礎に支持され構造物を支持する複数の第一免震機構と各々に基礎に支持され構造物を支持する複数の第二免震機構とを有し、
前記第一免震機構が多段に重ねられた複数のゴム板と複数の鉄板とを持ち、
前記第二免震機構が水平方向に沿って直動可能なリニアガイドを持ち、
前記緩衝器が前記第一免震機構または前記第二免震機構のうちの少なくとも一方と構造体との間に納まる様に前記第一取付面または前記第二取付面のうちの一方を構造体の下部に固定され前記第一取付面または前記第二取付面のうちの他方を前記免震機構の上部に固定される、
ことを特徴とする請求項1に記載の基礎構造。
A plurality of first seismic isolation mechanisms each supporting a structure supported on a foundation and a plurality of second seismic isolation mechanisms supported on each foundation supporting a structure;
The first seismic isolation mechanism has a plurality of rubber plates and a plurality of iron plates stacked in multiple stages,
The second seismic isolation mechanism has a linear guide that can move linearly along the horizontal direction,
One of the first mounting surface and the second mounting surface is a structure so that the shock absorber fits between at least one of the first seismic isolation mechanism or the second seismic isolation mechanism and the structure. The other of the first mounting surface and the second mounting surface is fixed to the upper part of the seismic isolation mechanism.
The foundation structure according to claim 1, wherein:
上から見て複数の前記第二免震機構が複数の第一免震機構よりも周辺に配置され、
前記緩衝器と前記第二免震機構とが上下方向に直列に繋がって構造物を支持する、
ことを特徴とする請求項1に記載の基礎構造。
A plurality of the second seismic isolation mechanisms as viewed from above are arranged around the plurality of first seismic isolation mechanisms,
The shock absorber and the second seismic isolation mechanism are connected in series in the vertical direction to support the structure,
The foundation structure according to claim 1, wherein:
予め想定される加速度である想定加速度が基礎構造に作用すると仮定したときに上向きの垂直荷重が複数の免震機構のうちの特定の免震機構であるN(N=1、2、3、・・)個の特定免震機構に各々に作用し、上向きの垂直荷重が複数の免震機構のうちのN個の前記特定免震機構を除く他の複数の免震機構に作用せず、
複数の前記緩衝器とN個の前記特定免震機構とが上下方向に各々に直列に繋がって構造物を各々に支持する、
ことを特徴とする請求項1に記載の基礎構造。
N (N = 1, 2, 3,...) Is a specific seismic isolation mechanism among a plurality of seismic isolation mechanisms when it is assumed that the assumed acceleration, which is an assumed acceleration, acts on the foundation structure. -) Acts on each of the specific seismic isolation mechanisms, and the upward vertical load does not act on a plurality of other seismic isolation mechanisms other than the N specific seismic isolation mechanisms among the plurality of seismic isolation mechanisms,
The plurality of shock absorbers and the N specific seismic isolation mechanisms are connected in series in the vertical direction to support each structure,
The foundation structure according to claim 1, wherein:
加速度が基礎構造に作用しないときに複数の免震機構のうちの特定の免震機構であるN(N=1、2、3、・・)個の特定免震機構に各々に支持されるN個の垂直荷重が予め設定される垂直荷重である設定垂直荷重より各々に小さく、複数の免震機構のうちのN個の前記特定免震機構を除く他の複数の免震機構に各々に支持される複数の垂直荷重が前記設定垂直荷重より小さくなく、
複数の前記緩衝器とN個の特定免震機構とが上下方向に各々に直列に繋がって構造物を各々に支持する、
ことを特徴とする請求項1に記載の基礎構造。
N supported by N (N = 1, 2, 3,...) Specific seismic isolation mechanisms that are specific seismic isolation mechanisms among a plurality of seismic isolation mechanisms when acceleration does not act on the foundation structure Each vertical load is smaller than a set vertical load which is a preset vertical load, and is supported by each of a plurality of seismic isolation mechanisms other than the N specific seismic isolation mechanisms among a plurality of seismic isolation mechanisms. A plurality of vertical loads that are not smaller than the set vertical load,
A plurality of the shock absorbers and N specific seismic isolation mechanisms are connected in series in the vertical direction to support the structure.
The foundation structure according to claim 1, wherein:
加速度が基礎構造に作用しないときに前記第一部材と前記第二部材とが上下方向に当接しない様になった、
ことを特徴とする請求項1に記載の基礎構造。
When the acceleration does not act on the foundation structure, the first member and the second member do not come into contact in the vertical direction.
The foundation structure according to claim 1, wherein:
前記第一部材または前記第二部材のうちの一つの部材の少なくとも一部が構造体のコンクリート躯体に埋め込まれる、
ことを特徴とする請求項1に記載の基礎構造。
At least a part of one member of the first member or the second member is embedded in a concrete frame of the structure,
The foundation structure according to claim 1, wherein:
JP2010091128A 2010-04-12 2010-04-12 Foundation structure Expired - Fee Related JP5462059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010091128A JP5462059B2 (en) 2010-04-12 2010-04-12 Foundation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010091128A JP5462059B2 (en) 2010-04-12 2010-04-12 Foundation structure

Publications (2)

Publication Number Publication Date
JP2011220010A true JP2011220010A (en) 2011-11-04
JP5462059B2 JP5462059B2 (en) 2014-04-02

Family

ID=45037323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010091128A Expired - Fee Related JP5462059B2 (en) 2010-04-12 2010-04-12 Foundation structure

Country Status (1)

Country Link
JP (1) JP5462059B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169548A (en) * 2013-03-01 2014-09-18 Hayashi Bussan Co Ltd Base isolation member coping with liquefaction ground
US10100546B2 (en) * 2014-11-25 2018-10-16 Mitsubishi Hitachi Power Systems, Ltd. Support structure
JP7183491B1 (en) * 2022-06-23 2022-12-06 株式会社人財育成コンサルティング Seismic isolation structure to prevent house collapse

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09144810A (en) * 1995-11-27 1997-06-03 Kawasaki Heavy Ind Ltd Three-dimensional base isolation device for structure
JP2000291025A (en) * 1999-04-12 2000-10-17 Shimizu Corp Pile head aseismic base isolation method for pile group building
JP2001241202A (en) * 2000-02-25 2001-09-04 Toshiba Corp Community symbiosis plant
JP2001288930A (en) * 2001-02-13 2001-10-19 Sumitomo Constr Co Ltd Seismically isolated structure
JP2002054322A (en) * 2000-08-07 2002-02-20 Taisei Corp Seismic isolation equipment
JP2002070946A (en) * 2000-08-24 2002-03-08 Hitachi Cable Ltd Base isolation device
JP2003096795A (en) * 2001-09-26 2003-04-03 Daiwa House Ind Co Ltd Base isolated building provided with pile
JP2005240929A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Seismic isolator
JP2008014057A (en) * 2006-07-07 2008-01-24 Nitta Ind Corp Horizontal support device
JP2009007876A (en) * 2007-06-29 2009-01-15 Takenaka Komuten Co Ltd Base isolated building

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09144810A (en) * 1995-11-27 1997-06-03 Kawasaki Heavy Ind Ltd Three-dimensional base isolation device for structure
JP2000291025A (en) * 1999-04-12 2000-10-17 Shimizu Corp Pile head aseismic base isolation method for pile group building
JP2001241202A (en) * 2000-02-25 2001-09-04 Toshiba Corp Community symbiosis plant
JP2002054322A (en) * 2000-08-07 2002-02-20 Taisei Corp Seismic isolation equipment
JP2002070946A (en) * 2000-08-24 2002-03-08 Hitachi Cable Ltd Base isolation device
JP2001288930A (en) * 2001-02-13 2001-10-19 Sumitomo Constr Co Ltd Seismically isolated structure
JP2003096795A (en) * 2001-09-26 2003-04-03 Daiwa House Ind Co Ltd Base isolated building provided with pile
JP2005240929A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Seismic isolator
JP2008014057A (en) * 2006-07-07 2008-01-24 Nitta Ind Corp Horizontal support device
JP2009007876A (en) * 2007-06-29 2009-01-15 Takenaka Komuten Co Ltd Base isolated building

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014169548A (en) * 2013-03-01 2014-09-18 Hayashi Bussan Co Ltd Base isolation member coping with liquefaction ground
US10100546B2 (en) * 2014-11-25 2018-10-16 Mitsubishi Hitachi Power Systems, Ltd. Support structure
JP7183491B1 (en) * 2022-06-23 2022-12-06 株式会社人財育成コンサルティング Seismic isolation structure to prevent house collapse

Also Published As

Publication number Publication date
JP5462059B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
US9394967B2 (en) Three-dimensional shock-absorbing device
CN108240415B (en) Large-load high-damping vibration absorber of composite bending beam/plate negative-stiffness dynamic vibration absorber
JP5462059B2 (en) Foundation structure
KR102191280B1 (en) Vibration isolation device using ball and spring
JP6456779B2 (en) Vibration control structure
JP2012042016A (en) Three-dimensional base isolation device
US20160265243A1 (en) Boiler support structure
WO2019020991A1 (en) Building, integrated damping unit, and method of damping
JP6420012B1 (en) Passive vibration control device for buildings
KR20010074179A (en) Multi-directional Seismic Isolation Devices
JP2016125636A (en) Vibration reduction device
JP2020012560A (en) Vibration controller for structure
KR102033825B1 (en) Seismic equipment for mechanical structures
JP5639766B2 (en) Floor structure
KR101059944B1 (en) Seismic device of rack
JP5917291B2 (en) Mass damper type damping device
JP3157352U (en) Elliptical leaf spring unit, elliptical multi-stage leaf spring device, vertical vibration damping device, horizontal uniaxial vibration damping device, and upper and lower floor seismic isolation device
JPH1130278A (en) Base isolation construction
JP2016151278A (en) Vibration control device
JP2001041283A (en) Three-dimensional base isolation device
JP6150489B2 (en) Vibration control device
JP2011038617A (en) Pantograph type base isolation system
JP2012219879A (en) Vertical base isolation device
JP5852394B2 (en) Seismic isolation device
JP7266468B2 (en) Seismic isolation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140116

R150 Certificate of patent or registration of utility model

Ref document number: 5462059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees