JP2011219872A - Fiber treatment agent - Google Patents

Fiber treatment agent Download PDF

Info

Publication number
JP2011219872A
JP2011219872A JP2010086373A JP2010086373A JP2011219872A JP 2011219872 A JP2011219872 A JP 2011219872A JP 2010086373 A JP2010086373 A JP 2010086373A JP 2010086373 A JP2010086373 A JP 2010086373A JP 2011219872 A JP2011219872 A JP 2011219872A
Authority
JP
Japan
Prior art keywords
mesoporous silica
particles
fragrance
silica particles
composite particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010086373A
Other languages
Japanese (ja)
Other versions
JP5460429B2 (en
Inventor
Risako Yamashita
理紗子 山下
Koji Hosokawa
浩司 細川
Yuriko Honma
由利子 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2010086373A priority Critical patent/JP5460429B2/en
Publication of JP2011219872A publication Critical patent/JP2011219872A/en
Application granted granted Critical
Publication of JP5460429B2 publication Critical patent/JP5460429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber treatment agent containing composite particles which have improved adhesion of the composite particles to the fiber and residual property of functional materials to the composite particles.SOLUTION: The fiber treatment agent contains composite particles which comprise meso porous silica particles having a non-ionic organic group having two or more carbon atoms on the particle surface and functional materials.

Description

本発明は、繊維処理剤に関する。   The present invention relates to a fiber treatment agent.

衣料等への香りや防虫効果の付与のため、香料や防虫剤などの機能性物質を含む繊維処理剤の開発が進んでいる。例えば、特許文献1には、シリカやゼオライトY等の多孔性無機粒子に香料を吸収させた複合粒子、及びその複合粒子と繊維柔軟剤を含む繊維柔軟剤組成物が開示されている。しかしながら、ゼオライトYは細孔径が0.7nmであり、それよりも小さい分子サイズの香料しか担持できない。また、シリカゲルやフュームドシリカは、約10nmの一次粒子が凝集した構造を持ち、その一次粒子間の空隙に由来する数nm〜数10nmの細孔を有するが、一般的に、その細孔径分布にばらつきがあるため、香料の放出制御が困難である。   Development of fiber treatment agents containing functional substances such as fragrances and insect repellents is progressing in order to impart fragrance and insect repellent effects to clothing and the like. For example, Patent Document 1 discloses composite particles in which a perfume is absorbed in porous inorganic particles such as silica and zeolite Y, and a fiber softener composition including the composite particles and a fiber softener. However, zeolite Y has a pore size of 0.7 nm, and can only carry a perfume having a molecular size smaller than that. Silica gel and fumed silica have a structure in which primary particles of about 10 nm are aggregated and have pores of several nm to several tens of nm derived from voids between the primary particles. Therefore, it is difficult to control the release of the fragrance.

一方、多孔性無機粒子として、数nmの均一な細孔径の細孔(メソ細孔)を持つメソポーラスシリカ粒子が注目されている(非特許文献1)。例えば、特許文献2には、片面に1層以上の樹脂層を有している繊維構造物において、該樹脂層中に、機能性薬剤を担持している平均粒径0.01〜5μmのメソポーラスシリカを含有している機能性繊維構造物が開示されている。また、特に、粒子の外殻部にメソ細孔構造を持ち、外殻部の内部(以下、「中空部」ともいう。)に空洞を持つメソポーラスシリカ粒子(以下、「中空メソポーラスシリカ粒子」ともいう。)は、該中空部に機能性化合物を多量に担持でき、また、粒子の構造を制御することによりその中空部に保持された機能性化合物の粒子外への放出速度を制御できる。それゆえ、中空メソポーラスシリカ粒子は、高性能な徐放担体として期待されている。例えば、特許文献3には、中空メソポーラスシリカ粒子を徐放担体に用い、その中空部に香料を担持させるにより香料徐放性の優れた複合シリカ粒子が得られることが開示されている。さらに、特許文献4には、有機シランで表面処理しメソ細孔の細孔径を縮小させた中空メソポーラスシリカ粒子を用いて複合シリカ粒子を製造することにより、水への香料流出を抑制できることが開示されている。   On the other hand, mesoporous silica particles having pores (mesopores) having a uniform pore diameter of several nm are attracting attention as porous inorganic particles (Non-patent Document 1). For example, Patent Document 2 discloses a mesoporous medium having an average particle diameter of 0.01 to 5 μm in which a functional drug is supported in a fiber structure having one or more resin layers on one side. A functional fiber structure containing silica is disclosed. In particular, a mesoporous silica particle (hereinafter referred to as “hollow mesoporous silica particle”) having a mesoporous structure in the outer shell portion of the particle and having a cavity inside the outer shell portion (hereinafter also referred to as “hollow portion”). )) Can carry a large amount of the functional compound in the hollow part, and the release rate of the functional compound held in the hollow part to the outside of the particle can be controlled by controlling the structure of the particle. Therefore, hollow mesoporous silica particles are expected as a high-performance sustained release carrier. For example, Patent Document 3 discloses that composite silica particles having excellent perfume sustained release properties can be obtained by using hollow mesoporous silica particles as a sustained release carrier and supporting a perfume in the hollow part. Furthermore, Patent Document 4 discloses that perfume outflow into water can be suppressed by producing composite silica particles using hollow mesoporous silica particles that have been surface-treated with organosilane to reduce the mesopore diameter. Has been.

特開平5−209188号公報JP-A-5-209188 特開2003−82580号公報JP 2003-82580 A 特開2009−155400号公報JP 2009-155400 A 特開2009−203116号公報JP 2009-203116 A

C.T.Kresge, et.al., Nature, 359, 710 (1992)C. T.A. Kresge, et. al. , Nature, 359, 710 (1992)

しかし、メソポーラスシリカ粒子に機能性物質を保持させた複合粒子を繊維処理剤の成分として使用する場合、該複合粒子が繊維へ付着しにくいという問題がある。また、該複合粒子に保持される機能性物質は、該複合粒子から溶出又は流出しやすいという問題もある。そこで、本発明は、複合粒子の繊維への付着性及び機能性物質の複合粒子への残存性が向上した複合粒子を含有する繊維処理剤を提供する。   However, when composite particles in which a functional substance is held in mesoporous silica particles are used as a component of a fiber treatment agent, there is a problem that the composite particles are difficult to adhere to fibers. In addition, there is a problem in that the functional substance held in the composite particles is likely to elute or flow out from the composite particles. Then, this invention provides the fiber processing agent containing the composite particle which the adhesiveness to the fiber of composite particle and the persistence to the composite particle of a functional substance improved.

本発明は、複合粒子を含有する繊維処理剤であって、前記複合粒子は、粒子表面に炭素数2以上の非イオン性有機基を有するメソポーラスシリカ粒子と機能性物質とを含む繊維処理剤に関する。   The present invention relates to a fiber treatment agent containing composite particles, wherein the composite particles include a mesoporous silica particle having a nonionic organic group having 2 or more carbon atoms on the particle surface and a functional substance. .

本発明によれば、複合粒子の繊維への付着性の向上及び機能性物質の複合粒子への残存性の向上の両立が可能な複合粒子を含有する繊維処理剤を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the fiber treatment agent containing the composite particle which can improve the adhesiveness of the composite particle to the fiber and the improvement of the persistence of the functional substance to the composite particle can be provided.

本発明は、メソポーラスシリカ粒子に機能性物質を保持させた複合粒子において、該メソポーラスシリカ粒子の表面に非イオン性の有機基の修飾を行うと、該複合粒子の繊維への吸着性が向上し、かつ、該機能性物質の該メソポーラスシリカ粒子からの水への溶出及び流出が抑制され、繊維処理剤成分として優れた機能を発揮しうるという知見に基く。   In the composite particles in which a functional substance is held in mesoporous silica particles, the present invention improves the adsorptivity of the composite particles to fibers when the surface of the mesoporous silica particles is modified with a nonionic organic group. And based on the knowledge that elution and outflow to the water from this mesoporous silica particle of this functional substance are suppressed, and the function outstanding as a fiber processing agent component can be exhibited.

すなわち、本発明は、複合粒子を含有する繊維処理剤であって、前記複合粒子が粒子表面に炭素数2以上の非イオン性有機基を有するメソポーラスシリカ粒子と機能性物質とを含む、繊維処理剤(以下、「本発明の繊維処理剤」ともいう)に関する。本発明の繊維処理剤によれば、複合粒子の繊維への付着性の向上及び機能性物質の複合粒子への残存性の向上の両立が可能となり、よって、繊維への機能付与の効率及び該繊維の該機能維持が向上し得る。   That is, the present invention is a fiber treatment agent containing composite particles, wherein the composite particles include mesoporous silica particles having a nonionic organic group having 2 or more carbon atoms on the particle surface and a functional substance. The present invention relates to an agent (hereinafter also referred to as “fiber treatment agent of the present invention”). According to the fiber treatment agent of the present invention, it is possible to improve both the adhesion of the composite particles to the fibers and the improvement of the persistence of the functional substance to the composite particles. Maintenance of the function of the fiber can be improved.

複合粒子の繊維への付着性の向上及び機能性物質の複合粒子への残存性の向上の両立が可能となる詳細なメカニズムは不明であるが、以下のように推定される。まず、メソポーラスシリカ粒子の表面を疎水性とすることで該シリカ粒子と保持される機能性物質との親和性が高くなり該機能性物質が溶出又は流出しにくくなる。そして、繊維表面は通常疎水性であるため、表面が疎水化された該複合粒子は繊維へ付着しやすくなる。但し、本発明はこのメカニズムに限定して解釈されなくてもよい。   Although the detailed mechanism that makes it possible to improve both the adhesion of the composite particles to the fiber and the persistence of the functional substance to the composite particles is unknown, it is estimated as follows. First, by making the surface of the mesoporous silica particles hydrophobic, the affinity between the silica particles and the functional substance to be retained is increased, and the functional substance is less likely to elute or flow out. Since the fiber surface is usually hydrophobic, the composite particles having a hydrophobic surface are likely to adhere to the fiber. However, the present invention is not limited to this mechanism.

[複合粒子]
本発明の繊維処理剤は、粒子表面に炭素数2以上の非イオン性有機基を有するメソポーラスシリカ粒子と機能性物質とを含む複合粒子(以下、「本発明における複合粒子」ともいう)を含有する組成物である。本発明の繊維処理剤は、一態様において、溶媒(例えば、ベース液)に本発明における複合粒子が分散又は懸濁した液体組成物であってもよい。また、本発明の繊維処理剤は、その他の態様において、溶媒(例えば、ベース液)に分散又は懸濁する前の本発明における複合粒子そのものであってもよい。
[Composite particles]
The fiber treatment agent of the present invention contains composite particles containing mesoporous silica particles having a nonionic organic group having 2 or more carbon atoms on the particle surface and a functional substance (hereinafter also referred to as “composite particles in the present invention”). Composition. In one embodiment, the fiber treatment agent of the present invention may be a liquid composition in which the composite particles of the present invention are dispersed or suspended in a solvent (for example, a base solution). Moreover, the fiber treatment agent of this invention may be the composite particle itself in this invention before disperse | distributing or suspending in a solvent (for example, base liquid) in another aspect.

[非イオン性メソポーラスシリカ粒子]
本発明における複合粒子を構成要素の1つであるメソポーラスシリカ粒子は、粒子表面に炭素数2以上の非イオン性有機基を有するメソポーラスシリカ粒子(以下、「本発明における非イオン性メソポーラスシリカ粒子」ともいう)である。
[Nonionic mesoporous silica particles]
The mesoporous silica particles that are one of the constituent elements of the composite particles in the present invention are mesoporous silica particles having nonionic organic groups having 2 or more carbon atoms on the particle surface (hereinafter referred to as “nonionic mesoporous silica particles in the present invention”). It is also called).

[メソポーラスシリカ粒子]
本発明における非イオン性メソポーラスシリカ粒子の構成要素の1つであるメソポーラスシリカ粒子(非イオン性有機基を有さないもの;「メソポーラスシリカ粒子原料」ともいう)としては、ヘキサゴナル配列のメソポーラス(メソ細孔)構造を有する粒子が挙げられる。具体的には、該メソポーラスシリカ粒子としては、粉末X線回折測定において、結晶格子面間隔(d)が1〜10nmの範囲に相当する回折角(2θ)に1本以上のピークを示し、結晶格子面間隔(d)が1nm未満の範囲に相当する回折角(2θ)にピークを示さない粒子が挙げられる。粉末X線回折(XRD)測定において、結晶格子面間隔(d)が1〜10nmの範囲に相当する回折角(2θ)に1本以上のピークを示すことは、このシリカ粒子がメソ領域に周期性のある物質であることを意味する。また、結晶格子面間隔(d)が1nm未満の範囲に相当する回折角(2θ)にピークを示さないことは、ゼオライトなどの結晶性化合物と異なるものであることを意味する。本発明における非イオン性メソポーラスシリカ粒子を構成するメソポーラスシリカとしては、後述するとおり、中空メソポーラスシリカ及び中実メソポーラスシリカが挙げられ、複合粒子の繊維への付着性の向上及び機能性物質の複合粒子への残存性の向上の両立の観点から、中空メソポーラスシリカが好ましい。
[Mesoporous silica particles]
The mesoporous silica particles (one having no nonionic organic group; also referred to as “mesoporous silica particle raw material”), which is one of the components of the nonionic mesoporous silica particles in the present invention, are hexagonal array mesoporous (mesoporous). And particles having a (pore) structure. Specifically, the mesoporous silica particles have one or more peaks at a diffraction angle (2θ) corresponding to a crystal lattice spacing (d) in the range of 1 to 10 nm in powder X-ray diffraction measurement. Examples thereof include particles that do not show a peak at the diffraction angle (2θ) corresponding to the lattice spacing (d) of less than 1 nm. In powder X-ray diffraction (XRD) measurement, one or more peaks are shown at a diffraction angle (2θ) corresponding to a crystal lattice spacing (d) in the range of 1 to 10 nm. It means that the substance is a sex substance. Moreover, the fact that the crystal lattice spacing (d) does not show a peak at the diffraction angle (2θ) corresponding to a range of less than 1 nm means that it is different from a crystalline compound such as zeolite. As described later, the mesoporous silica constituting the nonionic mesoporous silica particles in the present invention includes hollow mesoporous silica and solid mesoporous silica, and the adhesion of the composite particles to the fibers and the composite particles of the functional substance are included. Hollow mesoporous silica is preferable from the standpoint of improving the persistence of the resin.

メソポーラスシリカ粒子原料は、その主成分がシリカで構成され、好ましくは50モル%以上、より好ましくは70モル%以上、さらに好ましくは90モル%以上、さらにより好ましくは95モル%以上が二酸化ケイ素であると換算される。メソポーラスシリカ粒子は、Al、Ti、V、Cr、Co、Ni、Cu、Zn、Zr、B、Mn、Fe等の他元素を担持した形態、又はシリカの一部が他元素で置換された形態であってもよい。これら元素を導入する場合はそれらの金属を含有するアルコキシ塩やハロゲン化塩等の金属原料を製造時又は製造後に添加すればよい。   The mesoporous silica particle raw material is composed mainly of silica, preferably 50 mol% or more, more preferably 70 mol% or more, further preferably 90 mol% or more, and even more preferably 95 mol% or more is silicon dioxide. Converted to exist. Mesoporous silica particles have a form in which other elements such as Al, Ti, V, Cr, Co, Ni, Cu, Zn, Zr, B, Mn, Fe are supported, or a part of silica is substituted with other elements. It may be. When these elements are introduced, a metal raw material such as an alkoxy salt or a halogenated salt containing these metals may be added during or after production.

[非イオン性有機基]
本発明の非イオン性メソポーラスシリカ粒子において、炭素数2以上の非イオン性有機基は、複合粒子の繊維への付着性の向上及び機能性物質の複合粒子への残存性の向上の両立の観点から、少なくとも該粒子表面に存在し、さらに、メソ細孔内に存在してもよい。また、炭素数2以上の非イオン性有機基としては、例えば、メソポーラスシリカ粒子に非イオン性を付与できる基であって、複合粒子の繊維への付着性の向上及び機能性物質の複合粒子への残存性の向上の両立の観点から、炭素数2以上の疎水性有機基が好ましい。該疎水性有機基としては、複合粒子の繊維への付着性の向上及び機能性物質の複合粒子への残存性の向上の両立の観点から、ハロゲン又はチオール基で置換されてもよい炭素数2〜30の炭化水素基が好ましく、ハロゲン又はチオール基で置換されてもよい炭素数2〜30のアルキル基若しくはアルケニル基又はアリール基がより好ましく、ハロゲン又はチオール基で置換されてもよいアルキル基がさらに好ましく、炭素数2〜30のアルキル基がさらにより好ましい。本発明の非イオン性メソポーラスシリカ粒子において、非イオン性有機基は、単独又は2種類以上を組み合わせて用いることができる。
[Nonionic organic group]
In the nonionic mesoporous silica particles of the present invention, the nonionic organic group having 2 or more carbon atoms can improve the adhesion of the composite particles to the fiber and improve the persistence of the functional substance to the composite particles. Therefore, it may be present at least on the surface of the particle and further in the mesopores. The nonionic organic group having 2 or more carbon atoms is, for example, a group capable of imparting nonionicity to the mesoporous silica particles, and improving the adhesion of the composite particles to the fibers and the composite particles of a functional substance. From the standpoint of improving the persistence of the above, a hydrophobic organic group having 2 or more carbon atoms is preferred. The hydrophobic organic group has 2 carbon atoms that may be substituted with a halogen or thiol group from the viewpoint of improving the adhesion of the composite particles to the fiber and improving the persistence of the functional substance to the composite particles. Is preferably a hydrocarbon group having ˜30, more preferably an alkyl group, alkenyl group or aryl group having 2 to 30 carbon atoms which may be substituted with a halogen or thiol group, and an alkyl group which may be substituted with a halogen or thiol group. More preferably, an alkyl group having 2 to 30 carbon atoms is even more preferable. In the nonionic mesoporous silica particles of the present invention, the nonionic organic groups can be used alone or in combination of two or more.

非イオン性有機基の炭素数は、複合粒子の繊維への付着性の向上及び機能性物質の複合粒子への残存性の向上の両立の観点から、2以上であって、4以上が好ましく、6以上がより好ましく、10以上がさらに好ましい。また、同様の観点から、炭素数は30以下が好ましく、20以下がより好ましい。   The number of carbon atoms of the nonionic organic group is 2 or more, preferably 4 or more, from the viewpoint of improving the adhesion of the composite particles to the fiber and improving the persistence of the functional substance to the composite particles. 6 or more is more preferable, and 10 or more is more preferable. From the same viewpoint, the carbon number is preferably 30 or less, more preferably 20 or less.

炭素数2以上の非イオン性有機基の具体例としては、CH3CH2−、ClCH2CH2−、CH2=CH−、CF3CH2CH2−、CH3CH2CH2−、CH2=CHCH2−、(CH32CH−、BrCH2CH2CH2−、ClCH2CH2CH2−、CF3CH2CH2CH2−、SHCH2CH2CH2−、(CH2=CH)2−、CH3CH2CH2CH2−、(CH32CHCH2−、(C252−、CH3CH2CH2CH2CH2−、CF3(CF23CH2CH2−、Ph−、(CH2=CHCH22−、C521−、C611−、C613−、C817−、C1021−、C1225−、C1429−、C1633−、C1837−、(C253−、CH3Ph−、(C373−、OCNCH2CH2CH2−、(C372−、CH2=CHPh−、(Ph)2−、(C6132−、(C492−、(C493−、(Ph)3−、BrC1123−、CH3OCO(CH210−、CH3OCOCH2CH2−、ClCH2CH(CH3)CH2−、C815−、C59−、(C252−、(C8172−、C2245−、ICH2CH2CH2−、OCNCH2CH2CH2−、CH3C(CH32CH2CH(CH3)CH2−、HS(CH211−、CH3OCH2CH2CH2−、CH3O(CH2CH2O)3(CH23−等が挙げられる。複合粒子の繊維への付着性の向上及び機能性物質の複合粒子への残存性の向上の両立の観点から、CH3CH2−、CH3CH2CH2−、CH3CH2CH2CH2−、C521−、C613−、C817−、C1021−、C1225−、C1429−、C1633−、C1837−、CF3CH2CH2CH2−、SHCH2CH2CH2−が好ましく、C1021−、C1225−、C1429−、C1633−、C1837−がより好ましい。 Specific examples of the nonionic organic group having 2 or more carbon atoms include CH 3 CH 2 —, ClCH 2 CH 2 —, CH 2 ═CH—, CF 3 CH 2 CH 2 —, CH 3 CH 2 CH 2 —, CH 2 = CHCH 2 -, ( CH 3) 2 CH-, BrCH 2 CH 2 CH 2 -, ClCH 2 CH 2 CH 2 -, CF 3 CH 2 CH 2 CH 2 -, SHCH 2 CH 2 CH 2 -, ( CH 2 = CH) 2 -, CH 3 CH 2 CH 2 CH 2 -, (CH 3) 2 CHCH 2 -, (C 2 H 5) 2 -, CH 3 CH 2 CH 2 CH 2 CH 2 -, CF 3 (CF 2) 3 CH 2 CH 2 -, Ph -, (CH 2 = CHCH 2) 2 -, C 5 H 21 -, C 6 H 11 -, C 6 H 13 -, C 8 H 17 -, C 10 H 21 -, C 12 H 25 -, C 14 H 29 -, C 16 H 33 -, C 18 H 37 -, (C 2 H 5) 3 -, CH 3 Ph -, (C 3 H 7) 3 - , OCNC 2 CH 2 CH 2 -, ( C 3 H 7) 2 -, CH 2 = CHPh -, (Ph) 2 -, (C 6 H 13) 2 -, (C 4 H 9) 2 -, (C 4 H 9) 3 -, (Ph) 3 -, BrC 11 H 23 -, CH 3 OCO (CH 2) 10 -, CH 3 OCOCH 2 CH 2 -, ClCH 2 CH (CH 3) CH 2 -, C 8 H 15 -, C 5 H 9 -, (C 2 H 5) 2 -, (C 8 H 17) 2 -, C 22 H 45 -, ICH 2 CH 2 CH 2 -, OCNCH 2 CH 2 CH 2 -, CH 3 C (CH 3) 2 CH 2 CH (CH 3) CH 2 -, HS (CH 2) 11 -, CH 3 OCH 2 CH 2 CH 2 -, CH 3 O (CH 2 CH 2 O) 3 (CH 2) 3- and the like. From the viewpoint of improving the adhesion of the composite particles to the fiber and improving the persistence of the functional substance to the composite particles, CH 3 CH 2 —, CH 3 CH 2 CH 2 —, CH 3 CH 2 CH 2 CH 2 -, C 5 H 21 - , C 6 H 13 -, C 8 H 17 -, C 10 H 21 -, C 12 H 25 -, C 14 H 29 -, C 16 H 33 -, C 18 H 37 - CF 3 CH 2 CH 2 CH 2 — and SHCH 2 CH 2 CH 2 — are preferred, and C 10 H 21 —, C 12 H 25 —, C 14 H 29 —, C 16 H 33 —, C 18 H 37 — Is more preferable.

本発明における非イオン性メソポーラスシリカ粒子において、非イオン性有機基の量は、複合粒子の繊維への付着性の向上及び機能性物質の複合粒子への残存性の向上の両立の観点から、C/Si原子比で、好ましくは0.15〜1.20であり、より好ましくは0.2〜1.10、さらに好ましくは0.25〜1.00である。また、本発明における非イオン性メソポーラスシリカ粒子中の非イオン性有機基の量は、複合粒子の繊維への付着性の向上及び機能性物質の複合粒子への残存性の向上の両立の観点から、1〜50質量%が好ましく、5〜30質量%がより好ましく、10〜20質量%がさらに好ましい。また、本発明の非イオン性メソポーラススシリカ粒子は、SiO2質量換算で、好ましくは50〜90質量%、より好ましくは70〜90質量%のシリカを含有することが好ましい。なお、これらの物性は、核磁気共鳴測定を用いたケイ素原子(29Si−NMR)や炭素原子(13C−NMR)の測定、赤外分光分析、元素分析、熱重量分析等により同定、定量することができ、具体的には下記実施例で示した方法で測定できる。 In the nonionic mesoporous silica particles in the present invention, the amount of the nonionic organic group is selected from the viewpoint of improving the adhesion of the composite particles to the fiber and improving the persistence of the functional substance to the composite particles. / Si atomic ratio is preferably 0.15 to 1.20, more preferably 0.2 to 1.10, and still more preferably 0.25 to 1.00. In addition, the amount of nonionic organic groups in the nonionic mesoporous silica particles in the present invention is from the viewpoint of both improving the adhesion of composite particles to fibers and improving the persistence of functional substances to composite particles. 1-50 mass% is preferable, 5-30 mass% is more preferable, 10-20 mass% is further more preferable. The nonionic mesoporous silica particles of the present invention preferably contain 50 to 90% by mass, more preferably 70 to 90% by mass of silica in terms of SiO 2 mass. These physical properties are identified and quantified by measuring silicon atoms ( 29 Si-NMR) and carbon atoms ( 13 C-NMR) using nuclear magnetic resonance measurement, infrared spectroscopic analysis, elemental analysis, thermogravimetric analysis, etc. Specifically, it can be measured by the method shown in the following examples.

[平均細孔径]
本明細書において、本発明における非イオン性メソポーラスシリカ粒子のメソ細孔構造の平均細孔径は、複合粒子の繊維への付着性の向上及び機能性物質の複合粒子への残存性の向上の両立の観点から、1〜10nmが好ましく、1〜5nmがより好ましく、1〜2nmがさらに好ましく、1〜1.5nmがさらにより好ましい。メソ細孔の平均細孔径は、窒素吸着測定を行い、窒素吸着等温線からBJH法により求めることができ、具体的には実施例に記載の方法で測定できる。また、メソポーラスシリカ粒子は、複合粒子の繊維への付着性の向上及び機能性物質の複合粒子への残存性の向上の両立の観点から、メソ細孔径が揃っていることが好ましく、メソ細孔の好ましくは70%以上、より好ましくは75%以上、さらに好ましくは80%以上が平均細孔径±30%以内に入る。なお、メソ細孔構造を有する外殻部の構造は、透過型電子顕微鏡(TEM)を用いて観察することができ、具体的には、実施例に記載の方法で測定できる。また、TEM観察により、その細孔径、細孔規則性、及び、中空メソポーラスシリカ粒子の場合には外殻部から内部への細孔の繋がり具合を確認することができる。
[Average pore diameter]
In the present specification, the average pore diameter of the mesoporous structure of the nonionic mesoporous silica particles in the present invention is compatible with the improvement of the adhesion of the composite particles to the fiber and the improvement of the persistence of the functional substance to the composite particles. From this viewpoint, 1 to 10 nm is preferable, 1 to 5 nm is more preferable, 1 to 2 nm is more preferable, and 1 to 1.5 nm is even more preferable. The average pore diameter of mesopores can be determined by nitrogen adsorption measurement and determined from the nitrogen adsorption isotherm by the BJH method, and specifically by the method described in the examples. Further, the mesoporous silica particles preferably have uniform mesopore diameters from the viewpoint of improving the adhesion of the composite particles to the fibers and improving the persistence of the functional substance to the composite particles. Preferably, 70% or more, more preferably 75% or more, and still more preferably 80% or more falls within the average pore diameter of ± 30%. In addition, the structure of the outer shell part which has a mesopore structure can be observed using a transmission electron microscope (TEM), and can be specifically measured by the method as described in an Example. Further, by TEM observation, the pore diameter, pore regularity, and in the case of hollow mesoporous silica particles, it is possible to confirm how the pores are connected from the outer shell to the inside.

非イオン性メソポーラスシリカ粒子の細孔径の調整は、例えば、所望する細孔径に近い細孔径を有する、非イオン性基を付与する前のメソポーラスシリカ粒子原料を用いればよい。非イオン性基の付与工程において多少の細孔径の減少は起こる可能性があるが、その点を考慮すれば、目的の細孔径のものを調製することができる。また、非イオン性基を付与する前のメソポーラスシリカ粒子原料の合成時に、細孔径のテンプレートとして働く界面活性剤のアルキル鎖長、水溶性高分子化合物の親水性と親油性の比率等を適宜調整することにより、前記メソポーラスシリカ粒子の細孔径を調整することができる。特に平均細孔径が約5nm以上のメソポーラスシリカ粒子原料を調製するためには、ポリエチレンオキシドとポリプロピレンオキシドのブロック重合からなる非イオン性高分子化合物を用いることが好ましく、平均細孔径が8nm以下のメソポーラスシリカ粒子原料を得るためには、第四級アンモニウム塩を用いることが好ましい。   Adjustment of the pore diameter of the nonionic mesoporous silica particles may be performed using, for example, a mesoporous silica particle raw material having a pore diameter close to a desired pore diameter and before imparting a nonionic group. There is a possibility that a slight decrease in the pore size may occur in the step of applying the nonionic group. In consideration of this point, it is possible to prepare a target pore size. In addition, when synthesizing the raw material of the mesoporous silica particles before adding the nonionic group, the alkyl chain length of the surfactant that acts as a template for the pore diameter, the ratio between the hydrophilicity and lipophilicity of the water-soluble polymer compound, etc. are appropriately adjusted. By doing so, the pore diameter of the mesoporous silica particles can be adjusted. In particular, in order to prepare a mesoporous silica particle raw material having an average pore diameter of about 5 nm or more, it is preferable to use a nonionic polymer compound comprising block polymerization of polyethylene oxide and polypropylene oxide, and mesoporous having an average pore diameter of 8 nm or less. In order to obtain a silica particle raw material, it is preferable to use a quaternary ammonium salt.

[BET比表面積]
本発明における非イオン性メソポーラスシリカ粒子のBET比表面積は、複合粒子の繊維への付着性の向上及び機能性物質の複合粒子への残存性の向上の両立の観点から、100〜1500m2/gが好ましく、より好ましくは200〜1500m2/g、さらに好ましくは500〜1000m2/gである。BET比表面積は、具体的には、実施例に記載の方法で測定できる。
[BET specific surface area]
The BET specific surface area of the nonionic mesoporous silica particles in the present invention is from 100 to 1500 m 2 / g from the viewpoint of improving the adhesion of the composite particles to the fiber and improving the persistence of the functional substance to the composite particles. Is preferable, more preferably 200 to 1500 m 2 / g, still more preferably 500 to 1000 m 2 / g. Specifically, the BET specific surface area can be measured by the method described in Examples.

[平均一次粒子径]
本発明における非イオン性メソポーラスシリカ粒子の平均一次粒子径は、複合粒子の繊維への付着性の向上及び機能性物質の複合粒子への残存性の向上の両立の観点から、好ましくは0.02〜10μm、より好ましくは0.05〜5μm、さらに好ましくは0.1〜1μmである。本明細書において、本発明における非イオン性メソポーラスシリカ粒子の平均一次粒子径は、TEMを用いて得られる数平均粒子径であって、具体的には、実施例に記載の方法で測定できる。本発明における非イオン性メソポーラスシリカ粒子は、複合粒子の繊維への付着性の向上及び機能性物質の複合粒子への残存性の向上の両立の観点から、揃った粒子径の粒子群から構成されていることが好ましい。具体的には、本発明における非イオン性メソポーラスシリカ粒子は、同様の観点から、好ましくは一次粒子全体の80%以上、より好ましくは85%以上、さらに好ましくは90%以上、特に好ましくは95%以上が平均一次粒子径±30%以内の一次粒子径を有していることが好ましい。
[Average primary particle size]
The average primary particle size of the nonionic mesoporous silica particles in the present invention is preferably 0.02 from the viewpoint of improving the adhesion of the composite particles to the fiber and improving the persistence of the functional substance to the composite particles. It is 10-10 micrometers, More preferably, it is 0.05-5 micrometers, More preferably, it is 0.1-1 micrometer. In the present specification, the average primary particle diameter of the nonionic mesoporous silica particles in the present invention is a number average particle diameter obtained using TEM, and can be specifically measured by the method described in Examples. The nonionic mesoporous silica particles in the present invention are composed of a group of particles having uniform particle diameters from the viewpoint of improving the adhesion of composite particles to fibers and improving the persistence of functional substances to composite particles. It is preferable. Specifically, the nonionic mesoporous silica particles in the present invention are preferably 80% or more, more preferably 85% or more, still more preferably 90% or more, particularly preferably 95% of the entire primary particles from the same viewpoint. The above preferably has a primary particle size within an average primary particle size of ± 30%.

[中空シリカ粒子(A−1)及び(A−2)]
本発明における非イオン性メソポーラスシリカ粒子の形状は、特に制限されず、不定形、球状等でもよく、それらの混合物でもよいが、機能性物質を徐放する観点から、球状が好ましい。特に、メソ細孔構造の外殻部を持ち内部が中空の球状粒子である、非イオン性有機基を有する中空メソポーラスシリカ粒子(A−1)(以下、「中空シリカ粒子(A−1)」ともいう)、及び、内部が中空でなく、その中心部から放射状にメソ細孔が配列している球状粒子である、非イオン性有機基を有する中実メソポーラスシリカ粒子(A−2)(以下、「中実シリカ粒子(A−2)」ともいう)がより好ましく、本発明における複合粒子の機能性物質の保持量を高める観点から、中空シリカ粒子(A−1)がより好ましい。
[Hollow silica particles (A-1) and (A-2)]
The shape of the nonionic mesoporous silica particles in the present invention is not particularly limited, and may be indefinite or spherical, and may be a mixture thereof, but spherical is preferred from the viewpoint of sustained release of the functional substance. In particular, a hollow mesoporous silica particle (A-1) having a nonionic organic group (hereinafter referred to as “hollow silica particle (A-1)”) which is a spherical particle having an outer shell portion having a mesoporous structure and a hollow inside. Solid mesoporous silica particles having nonionic organic groups (A-2) (hereinafter referred to as spherical particles in which mesopores are not hollow and are radially arranged from the center thereof) , Also referred to as “solid silica particles (A-2)”), and hollow silica particles (A-1) are more preferable from the viewpoint of increasing the amount of the functional substance retained in the composite particles in the present invention.

[外殻部の平均厚み及び中空部の平均径]
前記中空シリカ粒子(A−1)の外殻部(メソポーラスシリカ部)の平均厚みは、複合粒子が担体としての強度を維持できる範囲で薄い方が好ましい。また、前記中空シリカ粒子(A−1)の平均径は、内包物を多く保持する観点から大きい方が好ましい。これらの観点から、外殻部の平均厚みは、好ましくは10〜500nm、より好ましくは20〜400nm、さらに好ましくは100〜300nmである。中空部の平均径は、同様の観点から、好ましくは10〜5000nm、より好ましくは100〜1000nm、さらに好ましくは200〜800nmである。また、外殻部の平均厚みと平均粒子径の比(外殻部厚み/平均粒子径)は、複合粒子の繊維への付着性の向上及び機能性物質の複合粒子への残存性の向上の両立の観点から、好ましくは0.001〜0.4、より好ましくは0.01〜0.3、さらに好ましくは0.1〜0.3である。さらに、中空部の平均径と外殻部の平均厚みとの比(中空部平均径/外殻部厚み)は、同様の観点から、好ましくは0.1〜100、より好ましくは、1〜10である。外殻部の平均厚み、及び、中空部の平均径は、TEMの観察により測定でき、具体的は後述する実施例に記載のように測定できる。
[Average thickness of outer shell part and average diameter of hollow part]
The average thickness of the outer shell portion (mesoporous silica portion) of the hollow silica particles (A-1) is preferably as thin as the composite particles can maintain the strength as a carrier. Moreover, the one where the average diameter of the said hollow silica particle (A-1) is larger is preferable from a viewpoint of hold | maintaining many inclusions. From these viewpoints, the average thickness of the outer shell is preferably 10 to 500 nm, more preferably 20 to 400 nm, and still more preferably 100 to 300 nm. From the same viewpoint, the average diameter of the hollow portion is preferably 10 to 5000 nm, more preferably 100 to 1000 nm, and still more preferably 200 to 800 nm. In addition, the ratio of the average thickness of the outer shell part to the average particle diameter (outer shell part thickness / average particle diameter) improves the adhesion of the composite particles to the fibers and improves the persistence of the functional substance to the composite particles. From the viewpoint of compatibility, it is preferably 0.001 to 0.4, more preferably 0.01 to 0.3, and still more preferably 0.1 to 0.3. Furthermore, the ratio of the average diameter of the hollow part to the average thickness of the outer shell part (average hollow part diameter / outer shell part thickness) is preferably 0.1 to 100, more preferably 1 to 10 from the same viewpoint. It is. The average thickness of the outer shell part and the average diameter of the hollow part can be measured by TEM observation, and specifically can be measured as described in Examples described later.

[非イオン性有機基を有する化合物(B)]
本発明における非イオン性メソポーラスシリカ粒子は、メソポーラスシリカ粒子原料を非イオン性有機基を有する化合物(B)で処理することによって得ることができる。本発明における非イオン性有機基を有する化合物(B)としては、特に制限はないが、メソポーラスシリカ粒子に非イオン性有機基(好ましくは疎水性有機基)を効率的に含有させる観点から、上述した非イオン性有機基を有する加水分解性有機シラン化合物が好ましく、上述した非イオン性有機基を有するアルコキシシランがより好ましい。より具体的には下記一般式(1)で表される非イオン性有機基を有するアルコキシシラン及びこの誘導体が挙げられる。該誘導体は、一般式(1)から誘導可能な化合物であり、具体的には該アルコキシシランの加水分解物又は加水分解縮合物等が挙げられる。
[Compound (B) having nonionic organic group]
The nonionic mesoporous silica particles in the present invention can be obtained by treating a mesoporous silica particle raw material with a compound (B) having a nonionic organic group. Although there is no restriction | limiting in particular as a compound (B) which has a nonionic organic group in this invention, From a viewpoint of making a mesoporous silica particle contain a nonionic organic group (preferably hydrophobic organic group) efficiently, it is the above-mentioned. The hydrolyzable organosilane compound having a nonionic organic group is preferable, and the above-mentioned alkoxysilane having a nonionic organic group is more preferable. More specifically, an alkoxysilane having a nonionic organic group represented by the following general formula (1) and derivatives thereof may be mentioned. The derivative is a compound derivable from the general formula (1), and specific examples thereof include a hydrolyzate or hydrolysis condensate of the alkoxysilane.

12 n-1Si(OR34-n (1)
(上記一般式(1)において、R1は上述した非イオン性有機基であり、R2は水素原子又は炭素数1〜20、好ましくは炭素数1〜10の炭化水素基である。OR3は炭素数1〜6、好ましくは炭素数1〜4、より好ましくは炭素数1〜3のアルコキシ基であり、特にメトキシ基、エトキシ基が好ましい。nは1〜3の数であり、複数のR2は同一でも異なっていてもよい。)
R 1 R 2 n-1 Si (OR 3 ) 4-n (1)
(In the general formula (1), R 1 is the above-described nonionic organic group, and R 2 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms. OR 3 Is an alkoxy group having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, more preferably 1 to 3 carbon atoms, particularly preferably a methoxy group or an ethoxy group, n is a number of 1 to 3, R 2 may be the same or different.)

非イオン性有機基を有するアルコキシシランの具体例としては、エチルトリメトキシシラン、エチルトリエトキシシラン、ジエトキシジエチルシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ペンタトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、ジエトキシメチルオクタデシルシラン、オクタデシルトリエトキシシラン、3−ブロモプロピルトリメトキシシラン、11−ブロモウンデシルトリメトキシシラン、10−(カルボメトキシ)デシルジメチルメトキシシラン、2−(カルボメトキシ)エチルトリメトキシシラン、2−クロロエチルメチルジメトキシシラン、2−クロロエチルトリエトキシシラン、3−クロロイソブチルジメチルメトキシシラン、3−クロロプロピルジメチルメトキシシラン、3−クロロプロピルジメチルエトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、ジブチルジメトキシシラン、ジエチルジエトキシシラン、ジオクチルジメトキシシラン、ドコシルトリエトキシシラン、テトラデシルトリメトキシシラン、テトラデシルトリエトキシシラン、ヘキサデシルトリメトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、3−ヨードプロピルトリメトキシシラン、3−イソシアナートプロピルトリエトキシシラン、3−イソシアナートプロピルトリメトキシシラン、イソオクチルトリエトキシシラン、イソオクチルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、11−メルカプトウンデシルトリメトキシシラン、3−メトキシプロピルトリメトキシシラン、メトキシトリエチレンオキシプロピルトリメトキシシラン、オクタデシルジエトキシクロロシラン、オクタデシルジメチルメトキシシラン、オクタデシルメトキシジクロロシラン、オクタデシルメチルジエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルメチルジメトキシシラン、オクチルジメチルメトキシシラン、オクチルメチルジエトキシシラン、オクチルメチルジメトキシシラン、オクチルトリメトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン、(3,3,3−トリフルオロプロピル)メチルジメトキシシラン等が挙げられる。これらのなかでも、複合粒子の繊維への付着性の向上及び機能性物質の複合粒子への残存性の向上の両立の観点から、デシルトリメトキシシラン、ドデシルトリメトキシシラン、テトラデシルトリメトキシシラン、ヘキサデシルトリメトキシシラン、オクタデシルトリメトキシシランがより好ましい。非イオン性有機基を有する化合物(B)は、単独又は2種以上を混合して用いることができる。   Specific examples of the alkoxysilane having a nonionic organic group include ethyltrimethoxysilane, ethyltriethoxysilane, diethoxydiethylsilane, propyltrimethoxysilane, propyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, Pentatriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltrimethoxysilane, decyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, diethoxymethyloctadecylsilane, octadecyltriethoxysilane 3-bromopropyltrimethoxysilane, 11-bromoundecyltrimethoxysilane, 10- (carbomethoxy) decyldimethylmethoxysilane, 2 (Carbomethoxy) ethyltrimethoxysilane, 2-chloroethylmethyldimethoxysilane, 2-chloroethyltriethoxysilane, 3-chloroisobutyldimethylmethoxysilane, 3-chloropropyldimethylmethoxysilane, 3-chloropropyldimethylethoxysilane, 3 -Chloropropylmethyldimethoxysilane, 3-chloropropyltriethoxysilane, 3-chloropropyltrimethoxysilane, dibutyldimethoxysilane, diethyldiethoxysilane, dioctyldimethoxysilane, docosyltriethoxysilane, tetradecyltrimethoxysilane, tetradecyl Triethoxysilane, hexadecyltrimethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, 3-iodopropyltrimethoxysilane 3-isocyanatopropyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane, isooctyltriethoxysilane, isooctyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 11-mercaptoundecyltrimethoxysilane, 3- Methoxypropyltrimethoxysilane, methoxytriethyleneoxypropyltrimethoxysilane, octadecyldiethoxychlorosilane, octadecyldimethylmethoxysilane, octadecylmethoxydichlorosilane, octadecylmethyldiethoxysilane, octadecyltrimethoxysilane, octadecylmethyldimethoxysilane, octyldimethylmethoxysilane , Octylmethyldiethoxysilane, octylmethyldimethoxysilane, octyltrimethoxy Examples include silane, (3,3,3-trifluoropropyl) trimethoxysilane, (3,3,3-trifluoropropyl) methyldimethoxysilane, and the like. Among these, decyltrimethoxysilane, dodecyltrimethoxysilane, tetradecyltrimethoxysilane, from the viewpoint of improving the adhesion of composite particles to fibers and improving the persistence of functional substances to composite particles, Hexadecyltrimethoxysilane and octadecyltrimethoxysilane are more preferable. The compound (B) which has a nonionic organic group can be used individually or in mixture of 2 or more types.

[非イオン性有機基を有する化合物(B)による処理]
非イオン性有機基を有する化合物(B)による処理方法は特に限定されず、気相法、液相法等の常法に従い行うことができる。非イオン性有機基を有する化合物(B)の種類に依存するが、製造容易性の観点から液相法が好ましい。液相法としては、例えば、メソポーラスシリカ粒子原料を非イオン性有機基を有する化合物(B)のトルエン溶液に分散させ、120℃で1日攪拌、反応後、洗浄、乾燥する方法が挙げられる。具体例として、非イオン性有機基を有する化合物(B)をメソポーラスシリカ粒子原料100質量部に対し1〜500質量部添加し、20〜150℃で1〜120時間処理することにより行うことができる。
[Treatment with Compound (B) Having Nonionic Organic Group]
The processing method by the compound (B) which has a nonionic organic group is not specifically limited, It can carry out in accordance with conventional methods, such as a gaseous-phase method and a liquid phase method. Although depending on the type of the compound (B) having a nonionic organic group, the liquid phase method is preferred from the viewpoint of ease of production. Examples of the liquid phase method include a method in which a mesoporous silica particle raw material is dispersed in a toluene solution of the compound (B) having a nonionic organic group, stirred at 120 ° C. for 1 day, washed, and dried. As a specific example, the compound (B) having a nonionic organic group can be added by adding 1 to 500 parts by mass with respect to 100 parts by mass of the mesoporous silica particle raw material and treating at 20 to 150 ° C. for 1 to 120 hours. .

非イオン性有機基を有する化合物(B)として、上述の非イオン性有機基を有するアルコキシシランを用いて液相処理する場合、性能発現、製造容易性、コストの観点から、該アルコキシシランの添加量は、メソポーラスシリカ粒子原料100質量部に対し、1〜500質量部が好ましく、10〜200質量部がより好ましく、20〜100質量部がさらに好ましく、25〜60質量部が特に好ましい。また、処理溶媒は該アルコキシシランの種類等にも依存するが、非水系溶媒が好ましく、メタノール、エタノール、n−ヘキサン、トルエンがより好ましく、トルエンがさらに好ましい。処理溶媒は、単独又は2種以上を組み合わせて用いることができる。処理温度は、20〜150℃が好ましく、50〜140℃がより好ましく、80〜130℃がさらに好ましく、処理時間は、1〜120時間が好ましく、2〜80時間がより好ましく、3〜30時間がさらに好ましい。非イオン性有機基を有する化合物(B)の処理工程の後に、未反応化合物や副生化合物を除去するために、未反応化合物や副生化合物の沸点以上の温度で熱処理したり、未反応化合物や副生化合物が可溶な溶媒で洗浄することもできる。   When the liquid phase treatment is performed using the above-mentioned alkoxysilane having a nonionic organic group as the compound (B) having a nonionic organic group, the addition of the alkoxysilane is performed from the viewpoint of performance expression, manufacturability, and cost. The amount is preferably 1 to 500 parts by weight, more preferably 10 to 200 parts by weight, still more preferably 20 to 100 parts by weight, and particularly preferably 25 to 60 parts by weight with respect to 100 parts by weight of the mesoporous silica particle raw material. Moreover, although a process solvent is dependent also on the kind etc. of this alkoxysilane, a non-aqueous solvent is preferable, methanol, ethanol, n-hexane, and toluene are more preferable, and toluene is further more preferable. A processing solvent can be used individually or in combination of 2 or more types. The treatment temperature is preferably 20 to 150 ° C, more preferably 50 to 140 ° C, further preferably 80 to 130 ° C, and the treatment time is preferably 1 to 120 hours, more preferably 2 to 80 hours, and 3 to 30 hours. Is more preferable. After the treatment step of the compound (B) having a nonionic organic group, in order to remove unreacted compounds and by-products, heat treatment is performed at a temperature equal to or higher than the boiling point of the unreacted compounds and by-products, or unreacted compounds It can also be washed with a solvent in which the by-product compound is soluble.

なお、中空シリカ粒子(A−1)を得るためには、中空メソポーラスシリカ粒子原料(C−1)(以下、「中空シリカ粒子原料(C−1)」ともいう)を、中実シリカ粒子(A−2)を得るためには、中実メソポーラスシリカ粒子原料(C−2)(以下、「中実シリカ粒子原料(C−2)」ともいう)を、それぞれ、非イオン性有機基を含有する化合物(B)と反応させることが好ましい。   In order to obtain the hollow silica particles (A-1), the hollow mesoporous silica particle raw material (C-1) (hereinafter also referred to as “hollow silica particle raw material (C-1)”) is replaced with solid silica particles ( In order to obtain A-2), the solid mesoporous silica particle raw material (C-2) (hereinafter also referred to as “solid silica particle raw material (C-2)”) each contains a nonionic organic group. It is preferable to make it react with the compound (B).

中空シリカ粒子原料(C−1)の製造方法に特に制限はないが、特開2008−110905号公報、特開2008−150229号公報、特開2008−174435号公報記載の方法により容易に調製することができる。   Although there is no restriction | limiting in particular in the manufacturing method of a hollow silica particle raw material (C-1), It prepares easily by the method of Unexamined-Japanese-Patent No. 2008-110905, Unexamined-Japanese-Patent No. 2008-150229, and Unexamined-Japanese-Patent No. 2008-174435. be able to.

中実シリカ粒子原料(C−2)の製造方法に特に制限はない。例えば加水分解によりシラノール化合物を生成するテトラメチルシランやテトラエトキシシラン等のアルコキシシラン等のシリカ源を、メソ孔のテンプレートとして働く陽イオン界面活性剤又はエチレンオキシド−プロピレンオキシドブロック重合体等の共存下で、水溶液中で反応させることにより製造することができる。   There is no restriction | limiting in particular in the manufacturing method of a solid silica particle raw material (C-2). For example, silica sources such as tetramethylsilane and tetraethoxysilane that produce silanol compounds by hydrolysis can be used in the presence of a cationic surfactant or ethylene oxide-propylene oxide block polymer that acts as a template for mesopores. It can be produced by reacting in an aqueous solution.

[機能性物質]
本発明における複合シリカ粒子が含有する機能性物質としては、香料、農薬用基材、防虫基材、防カビ基材、医薬用基材、皮膚手入れ用基材、保湿材等から選ばれる1種類以上が好ましく、中でも香料が好ましい。本発明における複合粒子は、これらの機能性物質を単独で又は2種以上を組み合わせて使用することができる。これらの機能性物質は、一般に、流出しやすく、その効果を保持するのが困難であることが多いが、非イオン性有機基を有するメソポーラスシリカ粒子に保持させることにより、水や溶媒(例えば、ベース液)中に安定に配合することが可能である。さらに、メソポーラスシリカ粒子表面を非イオン性有機基にて疎水化することで、該シリカ粒子と機能性物質との親和性を向上させて水や溶媒(例えば、ベース液)中での溶出を防ぐことから、機能性物質としては疎水性物質が好ましい。
[Functional substances]
As the functional substance contained in the composite silica particles in the present invention, one kind selected from a fragrance, an agrochemical substrate, an insect repellent substrate, an antifungal substrate, a pharmaceutical substrate, a skin care substrate, a moisturizing material and the like. The above is preferable, and among them, a fragrance is preferable. In the composite particles in the present invention, these functional substances can be used alone or in combination of two or more. In general, these functional substances are likely to flow out and are difficult to maintain their effects. However, by holding them in mesoporous silica particles having nonionic organic groups, water or a solvent (for example, (Base solution) can be blended stably. Further, by hydrophobizing the surface of the mesoporous silica particles with a nonionic organic group, the affinity between the silica particles and the functional substance is improved to prevent elution in water or a solvent (for example, a base solution). Therefore, the functional substance is preferably a hydrophobic substance.

本発明における複合シリカ粒子では、本発明における非イオン性メソポーラスシリカ粒子が機能性物質を保持する。本発明における複合シリカ粒子は、一実施形態において、上述の方法で得られた本発明における非イオン性メソポーラスシリカ粒子に機能性物質を保持させることにより得ることができる。また、本発明における複合シリカ粒子は、その他の実施形態において、機能性物質を保持させたメソポーラスシリカ粒子や機能性物質を保持させたテンプレート含有シリカ粒子に非イオン性有機基を導入することによっても得ることができる。複合粒子の繊維への付着性の向上及び機能性物質の複合粒子への残存性の向上の両立の観点から、本発明における非イオン性メソポーラスシリカ粒子に機能性物質を保持させる方法が好ましい。   In the composite silica particles in the present invention, the nonionic mesoporous silica particles in the present invention retain a functional substance. In one embodiment, the composite silica particles in the present invention can be obtained by retaining a functional substance in the nonionic mesoporous silica particles in the present invention obtained by the above-described method. In another embodiment, the composite silica particles of the present invention can be obtained by introducing a nonionic organic group into mesoporous silica particles holding a functional substance or template-containing silica particles holding a functional substance. Obtainable. From the viewpoint of improving the adhesion of the composite particles to the fiber and improving the persistence of the functional substance to the composite particles, the method of retaining the functional substance in the nonionic mesoporous silica particles in the present invention is preferable.

[香料]
本明細書において用いられる香料としては、天然香料、合成香料のいずれも使用可能であり、常温常圧下で固体でも液体でも使用可能である。香料としては、炭化水素系香料、アルコール系香料、アルデヒド系香料、ケトン系香料、エステル系香料、フェノール系香料、エーテル系香料、アミン系香料、ラクトン系香料、アセタール系香料、ニトリル系香料から選ばれるものを適宜選択し、単独で又は2種以上を組み合わせて使用することができる。主な例を下記に示すが、これらの香料成分に限定されるものではない。なお、本発明で用いた香料素材の名称は、印藤元一著、「合成香料 化学と商品知識」(化学工業日報社、1996年3月6日発行)の記載に従った。
[Fragrance]
As a fragrance | flavor used in this specification, both a natural fragrance | flavor and a synthetic | combination fragrance | flavor can be used, and it can be used by solid or liquid under normal temperature normal pressure. The fragrance is selected from hydrocarbon fragrance, alcohol fragrance, aldehyde fragrance, ketone fragrance, ester fragrance, phenol fragrance, ether fragrance, amine fragrance, lactone fragrance, acetal fragrance, and nitrile fragrance. Can be appropriately selected and used alone or in combination of two or more. Although main examples are shown below, it is not limited to these fragrance components. In addition, the name of the fragrance | flavor raw material used by this invention followed the description of Motoichi Into, "Synthetic fragrance | flavor chemistry and merchandise knowledge" (Chemical Industry Daily, published on March 6, 1996).

炭化水素系香料としては、α−ピネン、β−ピネン、カンフェン、リモネン、ジテルペン、テルピノーレン、ミルセン等が挙げられ、アルコール系香料としては、ゲラニオール、ジヒドロミルセノール、リナロール、サンダルマイソールコア、2−メチル−4−(2,2,3−トリメチル−3−シクロペンテン−1−イル)−2−ブテン−1−オール、テトラヒドロリナロール、フェニルエチルアルコール、シトロネロール、1−(2−t−ブチルシクロヘキシルオキシ)−2−ブタノール、テルピネロール、3−メチル−5−フェニルペンタノール、エチルリナロール、テトラヒドロムゴール、cis−3−ヘキセノール、ネロール、l−メントール、3−フェニルプロピルアルコール、2,2,6−トリメチルシクロヘキシル−3−ヘキサノール、アセチルイソオイゲノール、エストラゴール、トリメチルヘキサノール等が挙げられる。   Examples of the hydrocarbon-based fragrances include α-pinene, β-pinene, camphene, limonene, diterpene, terpinolene, myrcene, and the like, and alcohol-based fragrances include geraniol, dihydromyrsenol, linalool, sandalmysole core, 2- Methyl-4- (2,2,3-trimethyl-3-cyclopenten-1-yl) -2-buten-1-ol, tetrahydrolinalol, phenylethyl alcohol, citronellol, 1- (2-t-butylcyclohexyloxy) -2-butanol, terpineol, 3-methyl-5-phenylpentanol, ethyl linalool, tetrahydromegol, cis-3-hexenol, nerol, l-menthol, 3-phenylpropyl alcohol, 2,2,6-trimethylcyclohexyl -3-hexa Nord, acetylisoeugenol, estragole, trimethylhexanol and the like.

アルデヒド系香料としては、アルデヒドC−111、シトラール、シトロネラール、ヘキシルシンナミックアルデヒド、リリアール、アミルシンアミックアルデヒド、4(3)−(4−ヒドロキシ−4−メチルペンチル)−3−シクロヘキセン−1−カルボキシアルデヒド(リラール)、ヘリオトロピン、バニリン、エチルバニリン、アニスアルデヒド、マイラックアルデヒド、ジメチルテトラヒドロベンズアルデヒド(トリプラール)、2,4−ジメチル−3−シクロヘキセニルカルボキシアルデヒド、n−ヘキサナール、n−オクタナール、n−ノナナール、cis−4−デセナール、ヘリオナール、ベンズアルデヒド、10−ウンデセナール等が挙げられ、ケトン系香料としては、メチルイオノンG、イソ・イー・スーパー、アセチルセドレン、ラズベリーケトン、α−ヨノン、β−ヨノン、メチル−β−ナフチルケトン、ヘプチルシクロペンタノン、ベンジルアセトン、メチレンテトラメチルヘプタノン、ヘリオトピルアセトン、cis−ジャスモン、エチルマルトール、シクロヘキサデセノン、ムスコン、α−ダマスコン、β−ダマスコン、δ−ダマスコン、ダマセノン、イソダマスコン等が挙げられる。   Aldehyde perfumes include aldehyde C-111, citral, citronellal, hexylcinnamic aldehyde, lyial, amylcinamic aldehyde, 4 (3)-(4-hydroxy-4-methylpentyl) -3-cyclohexene-1-carboxyl Aldehyde (Lilal), Heliotropin, Vanillin, Ethylvanillin, Anisaldehyde, Mylacaldehyde, Dimethyltetrahydrobenzaldehyde (Triplal), 2,4-Dimethyl-3-cyclohexenylcarboxaldehyde, n-hexanal, n-octanal, n- Nonanal, cis-4-decenal, helional, benzaldehyde, 10-undecenal, and the like. Examples of the ketone flavor include methylionone G, iso-e super, acetyl Drain, raspberry ketone, α-ionone, β-yonone, methyl-β-naphthyl ketone, heptylcyclopentanone, benzylacetone, methylenetetramethylheptanone, heliotopylacetone, cis-jasmon, ethylmaltol, cyclohexadecenone, muscone , Α-damascon, β-damascon, δ-damascon, damacenone, isodamascon, and the like.

エステル系香料としては、酢酸フェニルエチル、アリルアミルグリコレート、酢酸スチラリル、酢酸o−t−ブチルシクロヘキシル、酢酸シトロネリル、酢酸ゲラニル、酢酸リナリル、アセチルオイゲノール、酢酸シンナミル、酢酸ジメチルベンジルカルビニル、サリチル酸シクロヘキシル、酢酸トリシクロデセニル、エチル−2−tert−ブチルシクロヘキシルカルボネート、酢酸ベンジル、エチルトリシクロ[5.2.1.02.6]デカン−2−カルボキシレート、サリチル酸ベンジル、酢酸テルピニル、プロピオン酸トリシクトデセニル、2−シクロヘキシルプロピオン酸エチル、サリチル酸アミル、ヘプタン酸アリル、サリチル酸cis−3−ヘキセニル、酢酸セドリル(セドレニル)、プロピオン酸スチラリル、プロピオン酸アリルシクロヘキサン、酢酸ネリル、マンザネート、ヘキサン酸アリル(カプロン酸アリル)、2−メチル酪酸エチル、酢酸イソアミル、酢酸イソボニル、酢酸cis−3−ヘキセニル、2,2−ジメチルプロピオン酸−3−メチル−3−ブテニル、2−エチルカプロン酸エチル等が挙げられる。 Examples of ester flavors include phenylethyl acetate, allyl amyl glycolate, styraryl acetate, ot-butylcyclohexyl acetate, citronellyl acetate, geranyl acetate, linalyl acetate, acetyl eugenol, cinnamyl acetate, dimethylbenzyl carvinyl acetate, cyclohexyl salicylate, Tricyclodecenyl acetate, ethyl-2-tert-butylcyclohexyl carbonate, benzyl acetate, ethyl tricyclo [5.2.1.0 2.6 ] decane-2-carboxylate, benzyl salicylate, terpinyl acetate, trisipropionate Octdecenyl, ethyl 2-cyclohexylpropionate, amyl salicylate, allyl heptanoate, cis-3-hexenyl salicylate, cedolyl acetate (cedenyl), styrylyl propionate, propylpropionate Cyclohexane, neryl acetate, manzanate, allyl hexanoate (allyl caproate), ethyl 2-methylbutyrate, isoamyl acetate, isobornyl acetate, cis-3-hexenyl acetate, 2,2-dimethylpropionic acid-3-methyl-3- Examples include butenyl and ethyl 2-ethylcaproate.

フェノール系香料としては、オイゲノール、イソオイゲノール、モスシンス、チモール、バニトロープ等が挙げられ、エーテル系香料としては、アンブロキサン、アネトール、メチルイソオイゲノール、ネロリンヤラヤラ、ガラクソライド、β−ナフトールエチルエーテル、エトキシメチルシクロドデシルエーテル、ジフェニルオキサイド、ローズオキサイド、アントキサン等が挙げられる。   Examples of phenolic fragrances include eugenol, isoeugenol, mussins, thymol, and banitrope. Ether-based fragrances include ambroxan, anethole, methylisoeugenol, neroline jarara, galaxolide, β-naphthol ethyl ether, ethoxymethylcyclododecyl. Examples include ether, diphenyl oxide, rose oxide, and anthoxane.

アミン系香料としては、N−メチルアントラニル酸メチル、アントラニル酸メチル、イソブチルキノリン等が挙げられ、ラクトン系香料としては、オキサシクロヘキサデセン−2−オン、シクロペンタデカノリド、γ−ウンデカラクトン、クマリン、エチレンブラシレート、γ−デカラクトン、δ−デカラクトン、δ−ドデカラクトン、γ−ノナラクトン等が挙げられ、アセタール系香料としては、カラナール、2−ブチル−4,4,6−トリメチル−1,3−ジオキサン等が挙げられ、ニトリル系香料としては、ペオニル、シトロネリルニトリル等が挙げられる。   Examples of amine-based fragrances include methyl N-methylanthranilate, methyl anthranilate, and isobutylquinoline. Examples of lactone-based fragrances include oxacyclohexadecen-2-one, cyclopentadecanolide, γ-undecalactone, Coumarin, ethylene brushate, γ-decalactone, δ-decalactone, δ-dodecalactone, γ-nonalactone and the like. Examples of acetal fragrances include caranal, 2-butyl-4,4,6-trimethyl-1,3. -Dioxane etc. are mentioned, As a nitrile fragrance | flavor, a peonyl, citronellyl nitrile, etc. are mentioned.

本明細書において、複合粒子の繊維への付着性の向上及び機能性物質の複合粒子への残存性の向上の両立の観点から、メソポーラスシリカ粒子原料及び/又は本発明における非イオン性メソポーラシスシリカ粒子の細孔径よりも小さい香料を用いることが好ましい。用いられるメソポーラスシリカ粒子原料及び/又は本発明における非イオン性メソポーラシスシリカ粒子の細孔径にも依存するが、前記香料の中では、炭化水素系香料としてはリモネン、アルコール系香料としては、ゲラニオール、リナロール、フェニルエチルアルコール、シトロネロール、cis−3−ヘキセノール、l−メントール、トリメチルヘキサノール、アルデヒド系香料としては、シトラール、リリアール、バニリン、エチルバニリン、ヘリオナール、ケトン系香料としては、イソ・イー・スーパー、δ−ダマスコン、エステル系香料としては、酢酸o−t−ブチルシクロヘキシル、酢酸リナリル、エチルトリシクロ[5.2.1.02.6]デカン−2−カルボキシレート、アミン系香料としてはアントラニル酸メチル等が好適に挙げられ、リモネン、エチルバニリン、ヘリオナール、δ−ダマスコン、エチルトリシクロ[5.2.1.02.6]デカン−2−カルボキシレート、アントラニル酸メチルがさらに好ましい。 In the present specification, from the viewpoints of improving the adhesion of composite particles to the fiber and improving the persistence of functional substances to the composite particles, the mesoporous silica particle raw material and / or the nonionic mesoporous in the present invention is used. It is preferable to use a fragrance smaller than the pore diameter of the silica particles. Depending on the raw material of mesoporous silica particles used and / or the pore size of the nonionic mesoporous silica particles in the present invention, among the fragrances, limonene as a hydrocarbon-based fragrance and geraniol as an alcohol-based fragrance , Linalool, phenylethyl alcohol, citronellol, cis-3-hexenol, l-menthol, trimethylhexanol, aldehyde fragrances, citral, lyial, vanillin, ethyl vanillin, helional, ketone fragrances, ISO E Super , Δ-damascone, ester-based fragrances such as tert-butylcyclohexyl acetate, linalyl acetate, ethyltricyclo [5.2.1.0 2.6 ] decane-2-carboxylate, and amine-based fragrances such as methyl anthranilate. Etc. are suitable Limonene, ethyl vanillin, helional, δ-damascone, ethyltricyclo [5.2.1.0 2.6 ] decane-2-carboxylate, and methyl anthranilate are more preferable.

[香料の含浸]
香料の保持は、例えば、メソポーラスシリカ粒子原料及び/又は本発明における非イオン性メソポーラシスシリカ粒子に香料を含浸させることにより行うことができる。以下、中空シリカ粒子(A−1)に香料を含浸させる場合を例にして説明する。
[Fragrance impregnation]
The perfume can be retained, for example, by impregnating the perfume into the mesoporous silica particle raw material and / or the nonionic mesoporous silica particles in the present invention. Hereinafter, the case where a hollow silica particle (A-1) is impregnated with a fragrance will be described as an example.

香料の含浸処理は、香料が前記メソポーラスシリカ粒子に含浸できる方法であれば特に制限はなく、公知の真空含浸法等を採用することができる。例えば、容器内で香料と中空シリカ粒子(A−1)とを混合し、該容器内を該香料の蒸気圧より高く、用いる中空シリカ粒子(A−1)のメソ細孔中における窒素の蒸気圧より小さい条件で含浸することが好ましい。この場合のメソ細孔中における窒素の蒸気圧は窒素の吸着等温線から求められる。この条件で中空シリカ粒子(A−1)の細孔内を脱気して香料を強制含浸せしめ、例えば1分間〜10時間、好ましくは1分間〜1時間静置した後に容器内の圧力を一旦大気圧に戻し、さらに1分間〜10時間、好ましくは1時間〜10時間静置することで、香料を前記メソポーラスシリカ粒子のメソ細孔内を通して中空内部に導入する方法が挙げられる。なお含浸の程度は、前記メソポーラスシリカ粒子の粒子(中空部、メソ細孔)内全てに香料が包含されるまで行うことが好ましい。常温常圧下で固体である香料の場合、香料の融点以上の温度で加熱融解し液体状態にして含浸させる方法が好ましい。また、固体香料を溶媒に溶解した溶液を含浸させても良い。   The impregnation treatment of the fragrance is not particularly limited as long as the fragrance can impregnate the mesoporous silica particles, and a known vacuum impregnation method or the like can be adopted. For example, the fragrance and the hollow silica particles (A-1) are mixed in a container, and the vapor pressure of nitrogen in the mesopores of the hollow silica particles (A-1) used is higher than the vapor pressure of the fragrance in the container. It is preferable to impregnate under a condition smaller than the pressure. In this case, the vapor pressure of nitrogen in the mesopores is obtained from the nitrogen adsorption isotherm. Under these conditions, the pores of the hollow silica particles (A-1) are degassed and impregnated with a fragrance. For example, after standing for 1 minute to 10 hours, preferably 1 minute to 1 hour, the pressure in the container is temporarily increased. A method of introducing the fragrance into the hollow interior through the mesopores of the mesoporous silica particles by returning to atmospheric pressure and allowing to stand for 1 minute to 10 hours, preferably 1 hour to 10 hours, is further mentioned. The degree of impregnation is preferably carried out until the fragrance is included in all of the mesoporous silica particles (hollow portions, mesopores). In the case of a fragrance that is solid at normal temperature and pressure, a method in which it is impregnated in a liquid state by heating and melting at a temperature equal to or higher than the melting point of the fragrance is preferred. Moreover, you may impregnate the solution which melt | dissolved the solid fragrance | flavor in the solvent.

本発明における複合粒子中の機能性物質の含有量は、特に限定されないが、機能性物質の機能を持続させる観点から、本発明における複合粒子中の組成として、好ましくは10〜90質量%、より好ましくは10〜80質量%、さらに好ましくは20〜50質量%である。なお、本発明における複合粒子中の機能性物質の含有量は、熱重量分析、ガスクロマトグラフィー、液体クロマトグラフィー等の常法により求めることができる。本発明における複合粒子においては、まず該複合粒子の外表面付近に保持されている機能性物質の揮散が始まり、その後、中空部及びメソ細孔に保持された機能性物質が、長時間、安定した速度で揮散するため、揮散制御が容易である。これらの機能性物質の中で、酸やアルカリ、ゼオライト等の触媒活性を持つ無機粉体に不安定なエステル類やアセタール類であっても、メソポーラスシリカ粒子の内部に保持させれば、安定に保持され、徐放性、経時残香性(香料の場合)に優れた複合粒子とすることができる。例えば、複数の香料等を併用し、それぞれを異なるメソポーラスシリカ粒子に保持させれば、広範なかつ効果的な調香等を行うことができる。   The content of the functional substance in the composite particle in the present invention is not particularly limited, but from the viewpoint of maintaining the function of the functional substance, the composition in the composite particle in the present invention is preferably 10 to 90% by mass, more Preferably it is 10-80 mass%, More preferably, it is 20-50 mass%. In addition, the content of the functional substance in the composite particles in the present invention can be determined by conventional methods such as thermogravimetric analysis, gas chromatography, liquid chromatography and the like. In the composite particle in the present invention, first, the volatilization of the functional substance held near the outer surface of the composite particle starts, and then the functional substance held in the hollow part and the mesopore is stable for a long time. Volatilization control is easy because it volatilizes at a reduced speed. Among these functional substances, even if the inorganic powders having catalytic activity such as acids, alkalis, zeolites, etc., are unstable esters and acetals, they are stable if they are kept inside the mesoporous silica particles. It is possible to obtain composite particles that are retained and have excellent sustained release properties and residual fragrance characteristics (in the case of a fragrance). For example, if a plurality of fragrances are used in combination, and each is held in different mesoporous silica particles, a wide and effective fragrance can be performed.

[界面活性剤]
本発明の繊維処理剤は、分散安定性等の観点から、本発明の効果を阻害しない範囲で、界面活性剤を含有してもよい。界面活性剤としては、陰イオン性、非イオン性、陽イオン性、両性の界面活性剤を用いることができる。より具体的には、直鎖アルキルベンゼンスルホン酸塩(アルカリ金属塩等、以下同じ)、α−オレフィンスルホン酸塩、スルホ脂肪酸メチルエステル塩、長鎖アルキル硫酸エステル塩、オキシアルキレン付加型ノニオン界面活性剤、アミン塩酸塩等が挙げられる。
[Surfactant]
The fiber treatment agent of the present invention may contain a surfactant as long as the effects of the present invention are not inhibited from the viewpoint of dispersion stability and the like. As the surfactant, anionic, nonionic, cationic or amphoteric surfactants can be used. More specifically, linear alkylbenzene sulfonate (alkali metal salt, etc., the same shall apply hereinafter), α-olefin sulfonate, sulfo fatty acid methyl ester salt, long-chain alkyl sulfate ester salt, oxyalkylene addition type nonionic surfactant And amine hydrochloride.

[その他の成分]
さらに、本発明の効果を阻害しない範囲で、繊維処理剤に通常配合される、水溶性無機塩、酸化防止剤、キレート剤、紫外線吸収剤、溶剤、色素等の添加剤を常用量配合して使用することができる。水溶性無機塩としては、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、塩化カリウム等が挙げられ、酸化防止剤としては、亜硫酸ナトリウム、ジブチルヒドロキシトルエン等が挙げられ、キレート剤としては、エチレンジアミン四酢酸塩、クエン酸等が挙げられる。
[Other ingredients]
Furthermore, additives that are usually blended in fiber treatment agents, such as water-soluble inorganic salts, antioxidants, chelating agents, ultraviolet absorbers, solvents, and pigments, are blended at normal doses as long as the effects of the present invention are not impaired. Can be used. Examples of water-soluble inorganic salts include sodium chloride, calcium chloride, magnesium chloride, and potassium chloride. Examples of antioxidants include sodium sulfite and dibutylhydroxytoluene. Examples of chelating agents include ethylenediaminetetraacetate, Citric acid and the like can be mentioned.

[繊維処理剤]
本発明の繊維処理剤の剤型は特に制限されず、液状、粉末状等の各種形態で使用することができるが、使いやすさの観点から、水中油型(O/W型)乳化物とすることが好ましい。本発明の繊維処理剤の使用に際しては、それらを水性液に分散させ、その液中に処理する被処理繊維品を浸漬及び/又は撹拌し、或いは、被処理繊維品を含む洗濯水や濯ぎ水に本発明の繊維処理剤を適当量添加することによって、繊維処理剤中の複合粒子を繊維製品の表面又は内部に効率的に付着、吸着させ、残香性などの機能を付与することができる。また、柔軟剤、洗剤、のり剤等に配合して使用することもできるが、柔軟剤として使用するのが好ましい。柔軟剤としては、洗濯後の衣料のしなやかさを保たせるものであれば、特に制限されない。例えば、長鎖炭化水素基を有するカチオン性界面活性剤等が挙げられる。処理対象である繊維品は特に制限されず、天然繊維製品、合成繊維製品、半合成繊維製品のいずれの処理にも好適に利用することができる。
[Fiber treatment agent]
The dosage form of the fiber treatment agent of the present invention is not particularly limited, and can be used in various forms such as liquid and powder. From the viewpoint of ease of use, an oil-in-water (O / W type) emulsion and It is preferable to do. When using the fiber treatment agent of the present invention, they are dispersed in an aqueous liquid, and the fiber product to be treated is immersed and / or stirred in the liquid, or washing water or rinsing water containing the fiber product to be treated is used. By adding an appropriate amount of the fiber treatment agent of the present invention, the composite particles in the fiber treatment agent can be efficiently attached and adsorbed on the surface or inside of the fiber product, and functions such as residual fragrance can be imparted. Moreover, although it can also be mix | blended and used for a softener, a detergent, a glue, etc., it is preferable to use as a softener. The softening agent is not particularly limited as long as it keeps the suppleness of the clothes after washing. Examples thereof include a cationic surfactant having a long chain hydrocarbon group. The fiber product to be treated is not particularly limited, and can be suitably used for any treatment of natural fiber products, synthetic fiber products, and semi-synthetic fiber products.

下記製造例1〜5で作製した中空メソポーラスシリカ粒子を用いて実施例1〜3及び比較例1〜2の繊維処理剤を作製し、香料残存率、シリカ付着率、及び残香性について評価した。なお、各種測定及び評価は、以下の方法により行った。   Using the hollow mesoporous silica particles produced in the following Production Examples 1 to 5, fiber treatment agents of Examples 1 to 3 and Comparative Examples 1 to 2 were produced, and the perfume residual rate, the silica adhesion rate, and the residual fragrance property were evaluated. Various measurements and evaluations were performed by the following methods.

(1)メソポーラスシリカ粒子の粉末X線回折(XRD)パターンの測定
粉末X線回折装置(理学電機工業社製、商品名:RINT2500VPC)を用いて、X線源:Cu−kα、管電圧:40mA、管電流:40kV、サンプリング幅:0.02°、発散スリット:1/2°、発散スリット縦:1.2mm、散乱スリット:1/2°、及び受光スリット:0.15mmの条件で粉末X線回折測定を行った。走査範囲を回折角(2θ)1〜20°、走査速度を4.0°/分とした連続スキャン法を用いた。なお、測定は、粉砕した試料をアルミニウム板に詰めて行った。
(1) Measurement of powder X-ray diffraction (XRD) pattern of mesoporous silica particles X-ray source: Cu-kα, tube voltage: 40 mA using a powder X-ray diffractometer (manufactured by Rigaku Corporation, trade name: RINT2500VPC) , Tube current: 40 kV, sampling width: 0.02 °, divergence slit: 1/2 °, divergence slit length: 1.2 mm, scattering slit: 1/2 °, and light receiving slit: 0.15 mm Line diffraction measurement was performed. A continuous scanning method with a scanning range of diffraction angle (2θ) of 1 to 20 ° and a scanning speed of 4.0 ° / min was used. The measurement was performed by packing the pulverized sample in an aluminum plate.

(2)メソポーラスシリカ粒子の粒子形状の観察
電解放射型高分解能走査型電子顕微鏡(日立製作所社製、商品名:FE−SEM S−4000)を用いて粒子形状の観察を行った。
(2) Observation of particle shape of mesoporous silica particles The particle shape was observed using an electrolytic emission type high resolution scanning electron microscope (manufactured by Hitachi, Ltd., trade name: FE-SEM S-4000).

(3)メソポーラスシリカ粒子の平均一次粒子径、平均中空部径、及び平均外殻部厚みの測定
透過型電子顕微鏡(TEM)(日本電子社製、商品名:JEM−2100)を用いて加速電圧160kVで粒子の観察を行った。20〜30個の粒子が含まれる5視野中の全粒子の直径、中空部径、及び外殻部厚みを写真上で実測し、平均一次粒子径、平均中空部径、及び平均外殻部厚みを求めた。なお、観察は、高分解能用カーボン支持膜付きCuメッシュ(応研商事社製、200−Aメッシュ)に付着させ、余分な試料をブローで除去したものを用いて行った。
(3) Measurement of average primary particle diameter, average hollow part diameter, and average outer shell part thickness of mesoporous silica particles Acceleration voltage using a transmission electron microscope (TEM) (trade name: JEM-2100, manufactured by JEOL Ltd.) The particles were observed at 160 kV. The diameter, hollow diameter, and outer shell thickness of all particles in five fields of view containing 20-30 particles were measured on a photograph, and the average primary particle diameter, average hollow diameter, and average outer shell thickness were measured. Asked. In addition, observation was performed using what attached to Cu mesh (200-A mesh by Oken Shoji Co., Ltd.) with the carbon support film for high resolution, and removed the excess sample by the blow.

(4)メソポーラスシリカ粒子のBET比表面積、及び平均細孔径の測定
比表面積・細孔分布測定装置(社島津製作所製、商品名:ASAP2020)を用いて、液体窒素を用いた多点法でBET比表面積を測定し、パラメータCが正になる範囲で値を導出した。BET比表面積の導出にはBJH法を採用し、そのピークトップを平均細孔径とした。試料には250℃で5時間の前処理を施した。
(4) Measurement of BET specific surface area and average pore diameter of mesoporous silica particles Using a specific surface area / pore distribution measuring device (manufactured by Shimadzu Corporation, trade name: ASAP2020), BET is a multipoint method using liquid nitrogen. The specific surface area was measured, and the value was derived within the range where parameter C was positive. The BJH method was adopted for deriving the BET specific surface area, and the peak top was defined as the average pore diameter. The sample was pretreated at 250 ° C. for 5 hours.

(5)メソポーラスシリカ粒子の平均凝集粒子径の測定
レーザー散乱粒度分布計(堀場製作所社製、商品名:LA−920)を用いて、相対屈折率1.06、超音波強度7、超音波照射時間1分、循環速度4、分散媒をエタノールとした条件で室温にて測定し、体積基準換算のメジアン径を平均凝集粒子径とした。
(5) Measurement of average aggregate particle diameter of mesoporous silica particles Using a laser scattering particle size distribution meter (manufactured by Horiba, Ltd., trade name: LA-920), a relative refractive index of 1.06, an ultrasonic intensity of 7, and ultrasonic irradiation Measurement was performed at room temperature under conditions of 1 minute at time, circulation rate 4 and ethanol as a dispersion medium, and the median diameter in terms of volume was defined as the average aggregated particle diameter.

(6)非イオン性有機基を有するメソポーラスシリカ粒子の非イオン性有機基の定量分析
理学電機工業社製、差動型示差熱天秤(TG−DTA)Thermo plus TG8120を用いて、エアーフロー(300mL/min)下、室温から700℃まで10℃/分の速度で昇温した。700℃で残存した質量をシリカ(SiO2)、150〜700℃までの減量を非イオン性有機基由来とした。非イオン性有機基由来の質量%とシリカ由来の質量%から炭素原子とケイ素原子の比率(C/Si原子比)を求めた。
(6) Quantitative analysis of nonionic organic groups of mesoporous silica particles having nonionic organic groups Using a differential type differential thermal balance (TG-DTA) Thermo plus TG8120 manufactured by Rigaku Denki Kogyo Co., Ltd., air flow (300 mL) / Min) from room temperature to 700 ° C. at a rate of 10 ° C./min. The mass remaining at 700 ° C. was derived from silica (SiO 2 ), and the weight loss from 150 to 700 ° C. was derived from nonionic organic groups. The ratio of carbon atoms to silicon atoms (C / Si atomic ratio) was determined from mass% derived from nonionic organic groups and mass% derived from silica.

(7)香料複合粒子の全香料量の測定
理学電機工業社製、差動型示差熱天秤(TG−DTA)Thermo plus TG8120を用いて、エアーフロー(300mL/min)下、室温から100℃まで10℃/分の速度で昇温後、100℃で5時間保持、さらに700℃まで10℃/分の速度で昇温した。700℃までの減量を香料と非イオン性有機基の総量、700℃で残存した質量をシリカの質量とした。また前記(6)の測定方法から求められる香料担持前のメソポーラスシリカ粒子のシリカ重量に対する非イオン性有機基の比率を用いて、複合粒子の非イオン性有機基の質量を算出し、非イオン性有機基とシリカ以外を全香料とした。これら結果からSiO2、有機基及び全香料からなる香料複合粒子組成を求めた。
(7) Measurement of total perfume amount of perfume composite particles From Rigaku Denki Kogyo Co., Ltd., differential type differential thermal balance (TG-DTA) Thermo plus TG8120, from room temperature to 100 ° C. under air flow (300 mL / min) The temperature was raised at a rate of 10 ° C./min, then held at 100 ° C. for 5 hours, and further heated to 700 ° C. at a rate of 10 ° C./min. The weight loss up to 700 ° C. was defined as the total amount of the fragrance and the nonionic organic group, and the mass remaining at 700 ° C. was defined as the mass of silica. Further, the mass of the nonionic organic group of the composite particle is calculated using the ratio of the nonionic organic group to the silica weight of the mesoporous silica particle before carrying the fragrance obtained from the measurement method of (6), and the nonionic property is obtained. All fragrances other than organic groups and silica were used. From these results, a fragrance composite particle composition composed of SiO 2 , an organic group and a total fragrance was determined.

(8)香料複合粒子の香料残存率の評価
エチルトリシクロ[5.2.1.02.6]デカン−2−カルボキシレート香料複合粒子に関して、繊維処理工程における分散前と分散後の香料複合粒子の香料担持量の違いから、繊維処理工程後の香料複合粒子の香料残存率を求めた。繊維処理工程における分散前と分散後の香料複合粒子の香料担持量は、以下のように求めた。香料複合粒子0.03gを5mLのヘキサンに分散させ、1時間撹拌し、粒子内の香料を抽出した。撹拌終了後、内部標準としてデカン0.01gを加え、メンブレンフィルター(ADVANTEC社製、材質:セルロールアセテート、孔径:0.2μm)でろ過した。ろ液中のエチルトリシクロ[5.2.1.02.6]デカン−2−カルボキシレート香料量をアジレント・テクノロジー社製、ガスクロマトグラフィー、HP6890を用いて算出し、香料複合粒子の香料担持量とした。
(8) Evaluation of Perfume Residual Ratio of Perfume Composite Particles Regarding ethyltricyclo [5.2.1.0 2.6 ] decane-2-carboxylate perfume composite particles, the perfume composite particles before and after dispersion in the fiber treatment step From the difference in the amount of fragrance carried, the fragrance residual ratio of the fragrance composite particles after the fiber treatment step was determined. The amount of fragrance carried by the fragrance composite particles before and after dispersion in the fiber treatment step was determined as follows. The fragrance | flavor composite particle 0.03g was disperse | distributed to 5 mL hexane, and it stirred for 1 hour, and extracted the fragrance | flavor in particle | grains. After the stirring, 0.01 g of decane was added as an internal standard, and the mixture was filtered with a membrane filter (manufactured by ADVANTEC, material: cellulose acetate, pore size: 0.2 μm). The amount of ethyl tricyclo [5.2.1.0 2.6 ] decane-2-carboxylate fragrance in the filtrate was calculated using Agilent Technologies, gas chromatography, HP6890, and the amount of fragrance carried by the fragrance composite particles. It was.

香料複合粒子の残存率は次のようにして求めた。まず内径13cmの2Lビーカー中、水2000gにエチルトリシクロ[5.2.1.02.6]デカン−2−カルボキシレート香料複合粒子を含有する繊維処理剤0.67gを添加し、室温で6分磁気撹拌することで分散処理した。なおスターラーピースは、長さ3.5cmの十字型のものを用い、攪拌速度は攪拌時の水の高さの下から1/3の位置に渦巻きの頂点が来るように設定された。攪拌終了後すぐにメンブレンフィルター(ADVANTEC社製、材質:セルロールアセテート、孔径:0.2μm)で約10分間ろ過した。 The residual rate of the fragrance composite particles was determined as follows. First, 0.67 g of a fiber treatment agent containing ethyltricyclo [5.2.1.0 2.6 ] decane-2-carboxylate fragrance composite particles was added to 2000 g of water in a 2 L beaker having an inner diameter of 13 cm, and the mixture was stirred for 6 minutes at room temperature. Dispersion treatment was performed by magnetic stirring. The stirrer piece used was a cross of 3.5 cm in length, and the stirring speed was set so that the top of the swirl came to 1/3 from the bottom of the water level during stirring. Immediately after the stirring, the mixture was filtered for about 10 minutes with a membrane filter (manufactured by ADVANTEC, material: cellulose acetate, pore size: 0.2 μm).

ろ過後すぐにガスクロマトグラフィー測定を行い、分散後のメソポーラスシリカ粒子内に担持された香料を定量した。分散前に対する分散後の香料担持量の比率を残存率とした。   Immediately after filtration, gas chromatographic measurement was performed to quantify the fragrance carried on the dispersed mesoporous silica particles. The ratio of the amount of the fragrance carried after dispersion to the dispersion before dispersion was defined as the residual rate.

(9)タオルへのシリカ付着率の評価
電気バケツ(パナソニック社製、N−BK2)中、水5.7Lに香料複合粒子を含有する繊維処理剤1.9gを添加し、すぐに市販タオル3枚(約285g)を入れ、6分洗浄後、洗濯機で3分脱水した。室内で24時間平干しによりタオルを乾燥させることにより、処理タオルを作製した。処理タオルを灰化、溶解した水溶液中のSi濃度をICPにより定量した。
(9) Evaluation of silica adhesion rate on towel In an electric bucket (Panasonic Corporation, N-BK2), 1.9 g of a fiber treatment agent containing fragrance composite particles was added to 5.7 L of water, and immediately a commercially available towel 3 A sheet (about 285 g) was added, washed for 6 minutes, and dehydrated for 3 minutes in a washing machine. The towel was dried by flat drying in the room for 24 hours to prepare a treated towel. The Si concentration in the aqueous solution in which the treated towel was ashed and dissolved was quantified by ICP.

香料複合粒子を含有しない(香料のみ)繊維処理剤においても、同様に処理タオルを作製し、Si濃度の定量を行った。香料複合粒子を含有する繊維処理剤で処理したタオル中のSi量と、香料複合粒子を含有しない繊維処理剤で処理したタオル中のSi量との差をタオルに付着したシリカ由来のSi量とした。繊維処理剤に配合したSi量に対するタオルに付着したSi量の比率をシリカ付着率とした。   In the case of a fiber treatment agent containing no fragrance composite particles (only fragrance), a treated towel was prepared in the same manner, and the Si concentration was quantified. The difference between the Si amount in the towel treated with the fiber treatment agent containing the fragrance composite particles and the Si amount in the towel treated with the fiber treatment agent not containing the fragrance composite particles is the amount of Si derived from silica adhered to the towel. did. The ratio of the amount of Si attached to the towel to the amount of Si blended in the fiber treatment agent was defined as the silica adhesion rate.

(10)処理タオルへの残香性評価
前処理として、電気洗濯乾燥機(パナソニック社製、NA−FV8000)にてタオル20枚を市販の液体アタック(花王社製)で洗浄した(洗剤25g、水道水38L、水温20℃、洗い9分、注水すすぎ2回、脱水7分)。次に、電気バケツ(パナソニック社製、N−BK2)中、水5.7Lに、前処理したタオル3枚(約285g)を入れ、すぐに、香料複合粒子含有繊維処理剤1.9g添加し、6分洗浄後、電気洗濯乾燥機で3分脱水した。室内で24時間平干しによりタオルを乾燥させた。
(10) Evaluation of residual fragrance on treated towel As a pretreatment, 20 towels were washed with a commercially available liquid attack (manufactured by Kao Corporation) in an electric washer-dryer (manufactured by Panasonic, NA-FV8000) (25 g of detergent, tap water) 38 L of water, water temperature 20 ° C., washing 9 minutes, rinsing 2 times, dehydration 7 minutes). Next, three pretreated towels (about 285 g) were placed in 5.7 L of water in an electric bucket (Panasonic Corporation, N-BK2), and 1.9 g of the fiber treatment agent containing fragrance composite particles was immediately added. After washing for 6 minutes, it was dehydrated for 3 minutes with an electric washing dryer. Towels were dried by flat-drying indoors for 24 hours.

乾燥させたタオルの香り、さらにタオルをこすった後の香りについて専門パネラー11人にて官能評価を行い、以下の基準で評価した。
〔評価基準〕
◎:香料複合粒子を含有しない(香料のみの)場合に比べて、強く香りを感じたパネラーが11人中9人以上
○:香料複合粒子を含有しない(香料のみの)場合に比べて、強く香りを感じたパネラーが11人中6人以上9人未満
×:香料複合粒子を含有しない(香料のみの)場合に比べて、強く香りを感じたパネラーが11人中6人未満
The sensory evaluation was performed by 11 expert panelists on the scent of the dried towel and the scent after the towel was rubbed, and evaluated according to the following criteria.
〔Evaluation criteria〕
◎: More than 9 out of 11 panelists who felt a strong scent compared to the case containing no fragrance composite particles (only fragrance only) ○: Stronger than the case containing no fragrance composite particles (only fragrance only) Panelists who felt the scent 6 or more but less than 9 out of 11 ×: Panelists who felt the scent strongly less than 6 out of 11 compared to the case where no fragrance composite particles were contained (only the fragrance)

[中空メソポーラスシリカ粒子の製造]
製造例1〔中空メソポーラスシリカ粒子の製造〕
(1)1L−セパラフルフラスコに、イオン交換水600g、メタクリル酸メチル(和光純薬株式会社製)99.5g、塩化メタクロイルオキシエチルトリメチルアンモニウム(三菱レイヨン株式会社製)0.5gを入れ、内温70℃まで昇温させた。
[Production of hollow mesoporous silica particles]
Production Example 1 (Production of hollow mesoporous silica particles)
(1) In a 1 L-separafull flask, 600 g of ion-exchanged water, 99.5 g of methyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.), 0.5 g of methacryloyloxyethyltrimethylammonium chloride (manufactured by Mitsubishi Rayon Co., Ltd.) are placed. The internal temperature was raised to 70 ° C.

次いで、これに、水溶性重合開始剤として2,2’−アゾビス(2−アミジノプロパン)二塩酸塩(和光純薬社製、商品名:V−50)0.5gをイオン交換水5gに溶かした溶液を添加し、3時間加熱撹拌を行った。その後、さらに75℃で3時間加熱撹拌を行って冷却した後、得られた混合液から凝集物を200メッシュろ過(目開き約75μm)し、カチオン性ポリマー粒子の懸濁液(固形分(有効分)含有量14質量%、平均一次粒子径250nm)を得た。   Next, 0.5 g of 2,2′-azobis (2-amidinopropane) dihydrochloride (manufactured by Wako Pure Chemical Industries, Ltd., trade name: V-50) is dissolved in 5 g of ion-exchanged water as a water-soluble polymerization initiator. The solution was added and stirred with heating for 3 hours. Thereafter, the mixture is further cooled by heating and stirring at 75 ° C. for 3 hours, and then the aggregate is filtered through a 200-mesh filter (mesh size: about 75 μm) to obtain a suspension of cationic polymer particles (solid content (effective Min) content 14% by mass, average primary particle diameter 250 nm).

(2)次に、300L反応釜にイオン交換水192kg、メタノール64kg、1M水酸化ナトリウム水溶液(和光純薬株式会社製)1.44kg、ドデシルトリメチルアンモニウムブロミド(東京化成工業株式会社製)0.96kg、及び上記で得られたカチオン性ポリマー粒子の懸濁液1.04kgを入れて撹拌し、その水溶液にテトラメトキシシラン(東京化成工業株式会社製)1.09kgを30秒で添加し、室温にて70rpmで5時間攪拌した。攪拌速度を25rpmに減速し、さらに18時間攪拌した。次いで、得られた白色沈殿物を、孔径0.2μmのメンブランフィルターでろ過した後、10Lの水で洗浄し、100℃の温度条件で5時間乾燥した。   (2) Next, 192 kg of ion-exchanged water, 64 kg of methanol, 1.44 kg of 1M sodium hydroxide aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) 1.44 kg, 0.96 kg of dodecyltrimethylammonium bromide (manufactured by Tokyo Chemical Industry Co., Ltd.) Then, 1.04 kg of the suspension of the cationic polymer particles obtained above was added and stirred, and 1.09 kg of tetramethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to the aqueous solution in 30 seconds, and the mixture was brought to room temperature. And stirred at 70 rpm for 5 hours. The stirring speed was reduced to 25 rpm and stirring was continued for 18 hours. Next, the obtained white precipitate was filtered through a membrane filter having a pore size of 0.2 μm, washed with 10 L of water, and dried at a temperature of 100 ° C. for 5 hours.

得られた乾燥粉末を、焼成炉(モトヤマ社製、商品名:スーパーバーン)を用いて、エアーフロー(3L/min)しながら1℃/分の速度で600℃まで昇温し、600℃で2時間焼成することにより有機成分を除去した。   The obtained dry powder was heated to 600 ° C. at a rate of 1 ° C./min with an air flow (3 L / min) using a baking furnace (product name: Superburn), and at 600 ° C. The organic component was removed by baking for 2 hours.

得られた粉末を、ロータースピードミル(FRITSCH社製、商品名:pulverisettel4)を用いて、乾式解砕(20000rpm)、乾式分級(孔径0.2mmスクリーンをパス)することにより、中空メソポーラスシリカ粒子の粉末を得た。   The obtained powder was subjected to dry crushing (20000 rpm) and dry classification (passing through a 0.2 mm pore size screen) using a rotor speed mill (manufactured by FRITSCH, trade name: pulverisetel 4), thereby forming hollow mesoporous silica particles. A powder was obtained.

(3)なお、この中空シリカ粒子は、粉末X線回折(XRD)のパターンにおいて、d=2〜12nmの範囲に相当する回折角度に1本以上のピークを有していた。また、SEM観察により、この中空メソポーラスシリカ粒子原料の粒子形状が球状であることを確認した。   (3) The hollow silica particles had one or more peaks at a diffraction angle corresponding to a range of d = 2 to 12 nm in a powder X-ray diffraction (XRD) pattern. Moreover, it was confirmed by SEM observation that the particle shape of the hollow mesoporous silica particle raw material was spherical.

さらに、TEM観察より、この中空メソポーラスシリカ粒子原料が中空構造を有し、平均一次粒子径が410nm、平均中空部径が250nm、平均外殻部厚みが80nmであり、外殻部がヘキサゴナル配列を示す均一なメソ細孔を有し、そのメソ細孔が粒子中心から外殻部の外側に向かって放射状に貫通していることを確認した。全ての一次粒子が平均一次粒子径±30%以内の一次粒子径を有していた。   Furthermore, from TEM observation, this hollow mesoporous silica particle raw material has a hollow structure, the average primary particle diameter is 410 nm, the average hollow part diameter is 250 nm, the average outer shell part thickness is 80 nm, and the outer shell part has a hexagonal arrangement. It was confirmed that the uniform mesopores shown in the figure were formed, and the mesopores penetrated radially from the center of the particle toward the outside of the outer shell. All primary particles had a primary particle size within an average primary particle size of ± 30%.

また、この中空メソポーラスシリカ粒子原料粉末は、BET比表面積が1188m2/g、平均細孔径が1.6nm、平均凝集粒子径が0.7μmであった。結果を表1に示す。 The hollow mesoporous silica particle raw material powder had a BET specific surface area of 1188 m 2 / g, an average pore diameter of 1.6 nm, and an average aggregated particle diameter of 0.7 μm. The results are shown in Table 1.

製造例2〔非イオン性有機基を有する中空メソポーラスシリカ粒子(C18)の製造〕
(1)室温、攪拌下、トルエン50gにオクタデシルトリメトキシシラン(東京化成工業社製)0.6gを溶解後、製造例1で得られた中空メソポーラスシリカ粒子粉末2gを分散させ、120℃で24時間処理した。処理液を孔径0.2μmのフィルターでろ過、エタノールで洗浄後、100℃で24時間乾燥させることにより、オクタデシルトリメトキシシラン処理した中空メソポーラスシリカ粒子(C18)粉末を得た。
Production Example 2 [Production of hollow mesoporous silica particles (C18) having nonionic organic groups]
(1) Under stirring at room temperature, 0.6 g of octadecyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) is dissolved in 50 g of toluene, and then 2 g of the hollow mesoporous silica particle powder obtained in Production Example 1 is dispersed at 24 ° C. at 24 ° C. Time processed. The treatment liquid was filtered with a filter having a pore size of 0.2 μm, washed with ethanol, and dried at 100 ° C. for 24 hours to obtain hollow mesoporous silica particles (C18) powder treated with octadecyltrimethoxysilane.

(2)このアルキルシラン処理した中空メソポーラスシリカ粒子(C18)粉末は、粉末X線回折(XRD)のパターンにおいて、d=2〜12nmの範囲に相当する回折角度に1本以上のピークを有していた。また、SEM観察により、この中空メソポーラスシリカ粒子原料の粒子形状が球状であることを確認した。   (2) This alkylsilane-treated hollow mesoporous silica particle (C18) powder has one or more peaks at a diffraction angle corresponding to a range of d = 2 to 12 nm in a powder X-ray diffraction (XRD) pattern. It was. Moreover, it was confirmed by SEM observation that the particle shape of the hollow mesoporous silica particle raw material was spherical.

さらに、TEM観察より、この中空メソポーラスシリカ粒子(C18)が中空構造を有し、平均一次粒子径が410nm、平均中空部径が250nm、平均外殻部厚みが80nmであり、外殻部がヘキサゴナル配列を示す均一なメソ細孔を有し、そのメソ細孔が粒子中心から外殻部の外側に向かって放射状に貫通していることを確認した。全ての一次粒子が平均一次粒子径±30%以内の一次粒子径を有していた。   Further, from TEM observation, the hollow mesoporous silica particles (C18) have a hollow structure, the average primary particle diameter is 410 nm, the average hollow part diameter is 250 nm, the average outer shell part thickness is 80 nm, and the outer shell part is hexagonal. It was confirmed that they had uniform mesopores indicating the arrangement, and the mesopores penetrated radially from the particle center toward the outside of the outer shell. All primary particles had a primary particle size within an average primary particle size of ± 30%.

また、この中空メソポーラスシリカ粒子(C18)粉末は、BET比表面積が521m2/g、平均細孔径が1.3nmであった。さらに、中空メソポーラスシリカ粒子(C18)粉末のTG−DTA測定した結果、SiO2は87質量%、非イオン性有機基は14質量%であり、非イオン性有機基量C/Si原子比は0.75であった。結果を表1に示す。 The hollow mesoporous silica particles (C18) powder had a BET specific surface area of 521 m2 / g and an average pore diameter of 1.3 nm. Furthermore, as a result of TG-DTA measurement of the hollow mesoporous silica particles (C18) powder, SiO 2 was 87% by mass, nonionic organic group was 14% by mass, and the nonionic organic group amount C / Si atomic ratio was 0. .75. The results are shown in Table 1.

製造例3〔非イオン性有機基を有する中空メソポーラスシリカ粒子(C12)の製造〕
製造例2(1)において、オクタデシルトリメトキシシラン(東京化成工業社製)0.6gの代わりに、ドデシルトリメトキシシラン(東京化成工業社製)1.2gを用いた以外は、製造例2と同様にして、ドデシルトリメトキシシラン処理した中空メソポーラスシリカ粒子(C12)粉末を得た。
Production Example 3 [Production of Hollow Mesoporous Silica Particles (C12) Having Nonionic Organic Groups]
In Production Example 2 (1), Production Example 2 and Except that 1.2 g of dodecyltrimethoxysilane (Tokyo Chemical Industry Co., Ltd.) was used instead of 0.6 g of octadecyltrimethoxysilane (Tokyo Chemical Industry Co., Ltd.) Similarly, hollow mesoporous silica particles (C12) powder treated with dodecyltrimethoxysilane was obtained.

この中空メソポーラスシリカ粒子(C12)粉末について、粉末X線回折(XRD)測定及びTEM観察を行った結果、製造例2と同様の結果が得られた。また、この中空メソポーラスシリカ粒子(C12)粉末は、BET比表面積が808m2/g、平均細孔径が1.4nmであった。また、中空メソポーラスシリカ粒子(C12)粉末のTG−DTA測定した結果、SiO2は87質量%、非イオン性有機基は11質量%であり、非イオン性有機基量C/Si原子比は0.49であった。結果を表1に示す。 As a result of powder X-ray diffraction (XRD) measurement and TEM observation of the hollow mesoporous silica particles (C12) powder, the same results as in Production Example 2 were obtained. The hollow mesoporous silica particles (C12) powder had a BET specific surface area of 808 m 2 / g and an average pore diameter of 1.4 nm. Further, as a result of TG-DTA measurement of the hollow mesoporous silica particles (C12) powder, SiO 2 was 87% by mass, nonionic organic group was 11% by mass, and the nonionic organic group amount C / Si atomic ratio was 0. .49. The results are shown in Table 1.

製造例4〔非イオン性有機基を有する中空メソポーラスシリカ粒子(C10)の製造〕
製造例2(1)において、オクタデシルトリメトキシシラン(東京化成工業社製)0.6gの代わりに、デシルトリメトキシシラン(信越化学社製)0.4gを用いた以外は、製造例2と同様にして、デシルトリメトキシシラン処理した中空メソポーラスシリカ粒子(C10)粉末を得た。
Production Example 4 [Production of hollow mesoporous silica particles (C10) having nonionic organic groups]
In Production Example 2 (1), the same as Production Example 2 except that 0.4 g of decyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) was used instead of 0.6 g of octadecyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.). Thus, hollow mesoporous silica particles (C10) powder treated with decyltrimethoxysilane was obtained.

この中空メソポーラスシリカ粒子(C10)粉末について、粉末X線回折(XRD)測定及びTEM観察を行った結果、製造例2と同様の結果が得られた。また、この中空メソポーラスシリカ粒子(C10)粉末は、BET比表面積が679m2/g、平均細孔径が1.3nmであった。また、中空メソポーラスシリカ粒子(C10)粉末のTG−DTA測定した結果、SiO2は83質量%、非イオン性有機基は10質量%であり、非イオン性有機基量C/Si原子比は0.60であった。結果を表1に示す。 As a result of powder X-ray diffraction (XRD) measurement and TEM observation of the hollow mesoporous silica particles (C10) powder, the same results as in Production Example 2 were obtained. The hollow mesoporous silica particles (C10) powder had a BET specific surface area of 679 m 2 / g and an average pore diameter of 1.3 nm. As a result of TG-DTA measurement of the hollow mesoporous silica particle (C10) powder, SiO 2 was 83% by mass, nonionic organic group was 10% by mass, and the nonionic organic group amount C / Si atomic ratio was 0. .60. The results are shown in Table 1.

製造例5〔非イオン性有機基を有する中空メソポーラスシリカ粒子(C1)の製造〕
製造例1で得られた中空メソポーラスシリカ粒子粉末1gとヘキサメチルジシラザン(和光純薬工業社製)0.1gを1Lテトラーバッグに入れ、密封し、電気乾燥機中に80℃で2日間放置することにより、ジシラザン処理した中空メソポーラスシリカ粒子(C1)粉末を得た。
Production Example 5 [Production of hollow mesoporous silica particles (C1) having nonionic organic groups]
1 g of hollow mesoporous silica particle powder obtained in Production Example 1 and 0.1 g of hexamethyldisilazane (manufactured by Wako Pure Chemical Industries, Ltd.) are placed in a 1 L tetrabag, sealed, and left in an electric dryer at 80 ° C. for 2 days. As a result, a disilazane-treated hollow mesoporous silica particle (C1) powder was obtained.

この中空メソポーラスシリカ粒子(C1)粉末について、粉末X線回折(XRD)測定及びTEM観察を行った結果、製造例2と同様の結果が得られた。また、この中空メソポーラスシリカ粒子(C1)粉末は、BET比表面積が1026m2/g、平均細孔径が1.3nmであった。また、中空メソポーラスシリカ粒子(C1)粉末のTG−DTA測定した結果、SiO2は92質量%、非イオン性有機基は3質量%であり、非イオン性有機基量C/Si原子比は0.12であった。結果を表1に示す。 As a result of powder X-ray diffraction (XRD) measurement and TEM observation of the hollow mesoporous silica particles (C1) powder, the same results as in Production Example 2 were obtained. The hollow mesoporous silica particles (C1) powder had a BET specific surface area of 1026 m 2 / g and an average pore diameter of 1.3 nm. As a result of TG-DTA measurement of the hollow mesoporous silica particles (C1) powder, the SiO 2 content was 92 mass%, the nonionic organic group content was 3 mass%, and the nonionic organic group content C / Si atomic ratio was 0. .12. The results are shown in Table 1.

Figure 2011219872
Figure 2011219872

[香料複合粒子の製造]
製造例1〜5で得られた中空メソポーラスシリカ粒子粉末、各0.5gを20mLのサンプル瓶へ入れ、その上にエチルトリシクロ[5.2.1.02.6]デカン−2−カルボキシレート香料6.0gを注いだ。その容器をガラス製デシケータ中に移し、ロータリーポンプを用い3分間減圧した後、窒素ガスを充填し内圧を常圧に戻した。この操作を3度繰り返した後、サンプルを一晩静置した。翌日、メンブレンフィルター(ADVANTEC社製、材質:ポリテトラフルオロエチレン、孔径:0.2μm)によりろ別し、香料複合粒子を得た。
[Production of perfume composite particles]
The hollow mesoporous silica particle powders obtained in Production Examples 1 to 5, 0.5 g each were put into a 20 mL sample bottle, and ethyl tricyclo [5.2.1.0 2.6 ] decane-2-carboxylate fragrance was added thereon. 6.0 g was poured. The container was transferred into a glass desiccator and decompressed for 3 minutes using a rotary pump, and then filled with nitrogen gas to return the internal pressure to normal pressure. After repeating this operation three times, the sample was allowed to stand overnight. The next day, the mixture was filtered with a membrane filter (manufactured by ADVANTEC, material: polytetrafluoroethylene, pore size: 0.2 μm) to obtain fragrance composite particles.

実施例1〔香料複合粒子(C18)を含有する繊維処理剤の調製及び評価〕
(1)繊維処理剤ベース液の調製
300mLビーカーに、イオン交換水144gを入れ、ウォーターバスで60℃に昇温した。1つの羽根の長さが2cm、幅0.8cmの撹拌羽根で撹拌しながら(200r/min)、非イオン性界面活性剤(炭素数12の直鎖第1級アルコールにエチレンオキサイドを平均20モル付加させたもの)6gを添加し、次に加熱溶解させた陽イオン性界面活性剤(N−(3−アルカノイルアミノプロピル)−N−(2−アルカノイルヒドロキシエチル)−N−メチルアミン塩酸塩のエタノール溶液(エタノール含有量10%。但し、アルカノイル基は、硬化牛脂由来脂肪酸残基とする。)34gを添加した。次に塩化カルシウム(最終濃度0.05質量%)を入れ5分間撹拌後、10%塩酸水溶液と10%水酸化ナトリウム水溶液でpH2.4に調整した。次に60℃のイオン交換水16gを添加した。その後、5℃の水を入れたウォーターバスにビーカーを移し、撹拌しながら(80r/min)、室温(25℃)まで冷却した。
(2)香料複合粒子を含有する繊維処理剤の調製
前記(1)で得られた繊維処理剤ベース液に、エチルトリシクロ[5.2.1.02.6]デカン−2−カルボキシレート香料の濃度が2質量%となるように、香料複合粒子(C18)を配合し香料複合粒子を含有する繊維処理剤を得た。結果を表2に示す。
(3)香料複合粒子を含有する繊維処理剤による繊維処理
前記(2)で得られた繊維処理剤のシリカ付着率及び残香性を評価した。結果を表2に示す。
Example 1 [Preparation and Evaluation of Fiber Treatment Agent Containing Fragrance Composite Particles (C18)]
(1) Preparation of fiber treatment agent base solution In a 300 mL beaker, 144 g of ion-exchanged water was added, and the temperature was raised to 60 ° C. in a water bath. While stirring with a stirring blade having a length of 2 cm and a width of 0.8 cm (200 r / min), a nonionic surfactant (average of 20 moles of ethylene oxide in a linear primary alcohol having 12 carbon atoms) Of the cationic surfactant (N- (3-alkanoylaminopropyl) -N- (2-alkanoylhydroxyethyl) -N-methylamine hydrochloride) 34 g of an ethanol solution (ethanol content 10%, where the alkanoyl group is a fatty acid residue derived from hard beef tallow) was added, then calcium chloride (final concentration 0.05 mass%) was added and stirred for 5 minutes, The pH was adjusted to 2.4 with 10% aqueous hydrochloric acid and 10% aqueous sodium hydroxide, and then 16 g of ion exchange water at 60 ° C. was added. Transfer the beaker Tabasu, with stirring (80 r / min), and cooled to room temperature (25 ° C.).
(2) Preparation of Fiber Treatment Agent Containing Fragrance Composite Particles Into the fiber treatment agent base solution obtained in (1) above, ethyl tricyclo [5.2.1.0 2.6 ] decane-2-carboxylate fragrance was added. The fiber treatment agent which contains a fragrance | flavor composite particle by mix | blending the fragrance | flavor composite particle (C18) so that a density | concentration might be 2 mass% was obtained. The results are shown in Table 2.
(3) Fiber treatment with fiber treatment agent containing fragrance composite particles The silica adhesion rate and residual fragrance property of the fiber treatment agent obtained in the above (2) were evaluated. The results are shown in Table 2.

実施例2〜3及び比較例1〜2〔香料複合粒子を含有する繊維処理剤の調製と評価〕
実施例1(1)で得られた繊維処理剤ベース液に、エチルトリシクロ[5.2.1.02.6]デカン−2−カルボキシレート香料の濃度が2質量%となるように、表2に示す香料複合粒子を配合しそれぞれの香料複合粒子を含有する繊維処理剤を得た。実施例1と同様にしてこれら繊維処理剤の評価を行った。結果を表2に示す。
Examples 2-3 and Comparative Examples 1-2 [Preparation and Evaluation of Fiber Treatment Agent Containing Fragrance Composite Particles]
Table 2 was prepared so that the concentration of ethyltricyclo [5.2.1.0 2.6 ] decane-2-carboxylate perfume was 2% by mass in the fiber treatment agent base solution obtained in Example 1 (1). The fiber processing agent which mix | blended the fragrance | flavor composite particle shown in FIG. The fiber treatment agents were evaluated in the same manner as in Example 1. The results are shown in Table 2.

Figure 2011219872
Figure 2011219872

上記表2に示すとおり、実施例1〜3の繊維処理剤は比較例1及び2の繊維処理剤と比べてと比べてシリカ付着性及び残香性にすぐれていることが確認された。   As shown in Table 2 above, it was confirmed that the fiber treatment agents of Examples 1 to 3 were superior in silica adhesion and residual fragrance compared to the fiber treatment agents of Comparative Examples 1 and 2.

本発明は、例えば、繊維処理剤の分野で有用である。   The present invention is useful, for example, in the field of fiber treatment agents.

Claims (7)

複合粒子を含有する繊維処理剤であって、
前記複合粒子は、粒子表面に炭素数2以上の非イオン性有機基を有するメソポーラスシリカ粒子と機能性物質とを含む、繊維処理剤。
A fiber treatment agent containing composite particles,
The composite particle is a fiber treatment agent comprising mesoporous silica particles having a nonionic organic group having 2 or more carbon atoms on the particle surface and a functional substance.
前記メソポーラスシリカ粒子が、中空メソポーラスシリカ粒子である、請求項1記載の繊維処理剤。 The fiber treatment agent according to claim 1, wherein the mesoporous silica particles are hollow mesoporous silica particles. 前記非イオン性有機基が、アルキル基である、請求項1又は2に記載の繊維処理剤。 The fiber treatment agent according to claim 1 or 2, wherein the nonionic organic group is an alkyl group. 前記粒子表面に炭素数2以上の非イオン性有機基を有するメソポーラスシリカ粒子が、炭素数2以上のアルキル基を有するアルコキシシランでメソポーラスシリカ粒子を処理して得られるものである、請求項1から3のいずれか一項に記載の繊維処理剤。 The mesoporous silica particles having a nonionic organic group having 2 or more carbon atoms on the particle surface are obtained by treating mesoporous silica particles with an alkoxysilane having an alkyl group having 2 or more carbon atoms. 4. The fiber treatment agent according to any one of 3. 前記非イオン性有機基が、炭素数10以上のアルキル基である、請求項1から4のいずれかに記載の繊維処理剤。 The fiber treatment agent according to any one of claims 1 to 4, wherein the nonionic organic group is an alkyl group having 10 or more carbon atoms. 複合粒子に対する機能性物質の含有量が、10〜90重量%である、請求項1から5のいずれかに記載の繊維処理剤。 The fiber treatment agent according to any one of claims 1 to 5, wherein the content of the functional substance with respect to the composite particles is 10 to 90% by weight. 前記機能性物質が、香料である、請求項1から6のいずれかに記載の繊維処理剤。 The fiber treatment agent according to any one of claims 1 to 6, wherein the functional substance is a fragrance.
JP2010086373A 2010-04-02 2010-04-02 Textile treatment agent Active JP5460429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010086373A JP5460429B2 (en) 2010-04-02 2010-04-02 Textile treatment agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010086373A JP5460429B2 (en) 2010-04-02 2010-04-02 Textile treatment agent

Publications (2)

Publication Number Publication Date
JP2011219872A true JP2011219872A (en) 2011-11-04
JP5460429B2 JP5460429B2 (en) 2014-04-02

Family

ID=45037197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010086373A Active JP5460429B2 (en) 2010-04-02 2010-04-02 Textile treatment agent

Country Status (1)

Country Link
JP (1) JP5460429B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015506816A (en) * 2011-12-01 2015-03-05 レ イノベーションズ マタレアムLes Innovations Materium Silica microcapsules, their manufacturing process and their use
EP3074406A1 (en) * 2013-11-27 2016-10-05 Wacker Chemie AG Silanized highly hydrophobic silicic acids
JP2017171509A (en) * 2016-03-18 2017-09-28 株式会社豊田中央研究所 Method for producing mesoporous silica nanoparticle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105256536B (en) * 2015-11-16 2017-12-19 广西中烟工业有限责任公司 A kind of preparation method of the cotton-shaped filler fiber of modified electronic cigarette

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088307A (en) * 2000-09-13 2002-03-27 Wacker Asahikasei Silicone Co Ltd Coating composition for fibrous base material
JP2003082580A (en) * 2001-09-06 2003-03-19 Toray Ind Inc Functional fiber structure
JP2009155400A (en) * 2007-12-25 2009-07-16 Kao Corp Compound meso-porous silica particle
JP2009203116A (en) * 2008-02-28 2009-09-10 Kao Corp Hollow silica particle
JP2009263171A (en) * 2008-04-25 2009-11-12 Kao Corp Mesoporous silica particle of core-shell structure
JP2010133048A (en) * 2008-12-03 2010-06-17 Kao Corp Fiber-treating agent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088307A (en) * 2000-09-13 2002-03-27 Wacker Asahikasei Silicone Co Ltd Coating composition for fibrous base material
JP2003082580A (en) * 2001-09-06 2003-03-19 Toray Ind Inc Functional fiber structure
JP2009155400A (en) * 2007-12-25 2009-07-16 Kao Corp Compound meso-porous silica particle
JP2009203116A (en) * 2008-02-28 2009-09-10 Kao Corp Hollow silica particle
JP2009263171A (en) * 2008-04-25 2009-11-12 Kao Corp Mesoporous silica particle of core-shell structure
JP2010133048A (en) * 2008-12-03 2010-06-17 Kao Corp Fiber-treating agent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015506816A (en) * 2011-12-01 2015-03-05 レ イノベーションズ マタレアムLes Innovations Materium Silica microcapsules, their manufacturing process and their use
EP3074406A1 (en) * 2013-11-27 2016-10-05 Wacker Chemie AG Silanized highly hydrophobic silicic acids
JP2017171509A (en) * 2016-03-18 2017-09-28 株式会社豊田中央研究所 Method for producing mesoporous silica nanoparticle

Also Published As

Publication number Publication date
JP5460429B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5342774B2 (en) Composite mesoporous silica particles
EP2038391B1 (en) Washing, cleaning and care products
EP1920042B1 (en) Particles containing perfume having improved fragranced properties
JP5460429B2 (en) Textile treatment agent
JP5364277B2 (en) Hollow silica particles
JPH05209188A (en) Perfume particle
JP5118328B2 (en) Hollow silica particles
JPH05209189A (en) Perfume particle
CN1925879A (en) Composite materials comprising metal-loaded nanoparticles
Li et al. Assessment of 2, 2, 6, 6-tetramethyl-4-piperidinol-based amine N-halamine-labeled silica nanoparticles as potent antibiotics for deactivating bacteria
CN106745007B (en) A kind of multi-stage porous mesoporous organosilicon ball and preparation method thereof
DE102007019373A1 (en) Liquid washing or cleaning agent with yield point
JP5657284B2 (en) Textile treatment composition
JP2008174435A (en) Mesoporous silica particle
Qiu et al. Facile synthesis of N-halamine-labeled silica–polyacrylamide multilayer core–shell nanoparticles for antibacterial ability
JP5486164B2 (en) Method for producing mesoporous silica particles
CN112739454B (en) Improvements in or relating to organic compounds
JP2010133048A (en) Fiber-treating agent
JP5364305B2 (en) Aroma-sustaining microcapsule
JP2023536823A (en) improvements in or relating to organic compounds
JP5512989B2 (en) Cleaning composition
JP5592644B2 (en) Composite silica particles
JP5613436B2 (en) Composite mesoporous silica particles and method of volatilization of substances using the same
DE102007042862A1 (en) Modified titanium dioxide
TW200844293A (en) Fiber treating agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R151 Written notification of patent or utility model registration

Ref document number: 5460429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250