JP2011213793A - Method for producing organic-inorganic composite hydrogel - Google Patents

Method for producing organic-inorganic composite hydrogel Download PDF

Info

Publication number
JP2011213793A
JP2011213793A JP2010081258A JP2010081258A JP2011213793A JP 2011213793 A JP2011213793 A JP 2011213793A JP 2010081258 A JP2010081258 A JP 2010081258A JP 2010081258 A JP2010081258 A JP 2010081258A JP 2011213793 A JP2011213793 A JP 2011213793A
Authority
JP
Japan
Prior art keywords
water
clay mineral
organic
inorganic composite
composite hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010081258A
Other languages
Japanese (ja)
Inventor
Tetsuo Takada
哲生 高田
Kazutoshi Haraguchi
和敏 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2010081258A priority Critical patent/JP2011213793A/en
Publication of JP2011213793A publication Critical patent/JP2011213793A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method by which an organic-inorganic composite hydrogel forming a three-dimensional net structure out of a clay mineral and a macromolecular polymer in a wide range of the content of the clay mineral, and exhibiting excellent mechanical properties can be produced without using an initiator.SOLUTION: The method for producing the organic-inorganic composite hydrogel includes dispersing or dissolving a water-swellable clay mineral (b) subjected to a surface treatment with plasma, and a water-soluble (meth)acrylic monomer (a) in an aqueous medium (c), and polymerizing the (meth)acrylic monomer (a) without using the polymerization initiator by heating and/or irradiation with ultraviolet rays.

Description

本発明は、(メタ)アクリル系モノマー(a)の重合体と、水膨潤性粘土鉱物(b)からなる有機無機複合ヒドロゲルの製造方法に関する。   The present invention relates to a method for producing an organic-inorganic composite hydrogel comprising a polymer of (meth) acrylic monomer (a) and a water-swellable clay mineral (b).

ポリアミド、ポリスチレン、ポリプロピレン、ポリイミド、ポリウレタンなどの有機高分子を粘土と複合させることによりナノコンポジットと呼ばれる高分子複合体が調製されている。得られた高分子複合体はアスペクト比の大きい粘土層を微細に分散させていることから、弾性率、熱変形温度、ガス透過性、および燃焼速度などが効果的に改良されることが報告されている(例えば非特許文献1参照)。   Polymer composites called nanocomposites have been prepared by combining organic polymers such as polyamide, polystyrene, polypropylene, polyimide, and polyurethane with clay. Since the resulting polymer composite has finely dispersed clay layers with a large aspect ratio, it has been reported that the elastic modulus, heat distortion temperature, gas permeability, and burning rate are effectively improved. (For example, refer nonpatent literature 1).

高分子複合体中に含まれる粘土鉱物量としては、性能強化の観点からは高い粘土鉱物含有量が望まれるが、より低い粘土鉱物量で効果的な性能強化が達成されることも重要である。これまでの研究では通常0.2〜5質量%が用いられ、0.1質量%以下の低無機含有高分子複合体や10質量%を超える高無機含有高分子複合体は用いられていない。これは無機含有率が低くなると性能向上の効果が無視されるほど小さくなり、一方、無機含有率が高くなると製造時の粘度増加が大きく、得られる複合体中での、粘土鉱物のナノスケールでの微細且つ均一な分散が達成できなかったり、或いは複合体が脆くなり力学物性(強度や伸び)が大きく低下したりするためである。   As the amount of clay mineral contained in the polymer composite, a high clay mineral content is desired from the viewpoint of performance enhancement, but it is also important to achieve effective performance enhancement with a lower amount of clay mineral. . In the studies so far, 0.2 to 5% by mass is usually used, and a low inorganic content polymer complex of 0.1% by mass or less and a high inorganic content polymer complex exceeding 10% by mass are not used. This is so small that the performance improvement effect is ignored when the inorganic content is low, while the increase in viscosity at the time of production is large when the inorganic content is high, at the nanoscale of the clay mineral in the resulting composite. This is because fine and uniform dispersion cannot be achieved, or the composite becomes brittle and mechanical properties (strength and elongation) are greatly reduced.

このような問題に対し、優れた力学物性を示すナノコンポジット材料として、広い範囲の粘土鉱物含有率において粘土鉱物が有機高分子中に均一に分散した有機無機複合ヒドロゲルが開示されており、該有機無機複合ヒドロゲルは水媒体中で水膨潤性粘土鉱物と重合開始剤の存在下にアクリルアミドやメタクリルアミドの誘導体、(メタ)アクリル酸エステルなどを重合させることにより、力学物性の良い高分子複合体を製造できることが開示されている(例えば特許文献1、特許文献2参照)。   To solve such problems, an organic-inorganic composite hydrogel in which clay mineral is uniformly dispersed in an organic polymer in a wide range of clay mineral content is disclosed as a nanocomposite material exhibiting excellent mechanical properties. Inorganic composite hydrogels form polymer composites with good mechanical properties by polymerizing acrylamide, methacrylamide derivatives, (meth) acrylates, etc. in the presence of water-swellable clay minerals and polymerization initiators in aqueous media. It is disclosed that it can be manufactured (for example, refer to Patent Document 1 and Patent Document 2).

また、乾燥状態で優れた力学物性を示すナノコンポジット材料として、水溶性(メタ)アクリル酸エステルから得られる重合体と水膨潤性粘土鉱物とが三次元網目を形成してなることを特徴とする高分子複合体が開示されており、該複合体は、水膨潤性粘土鉱物と水溶性(メタ)アクリル酸エステルと重合開始剤、更に必要に応じて触媒または/および有機架橋剤を、水または水と有機溶媒との混合溶媒中に溶解または均一に分散させた後、水溶性(メタ)アクリル酸エステルを重合させ、次いで乾燥させて溶媒を除去することにより、高分子複合体を製造できることが開示されている(例えば特許文献3参照)。   In addition, as a nanocomposite material exhibiting excellent mechanical properties in a dry state, a polymer obtained from a water-soluble (meth) acrylic acid ester and a water-swellable clay mineral form a three-dimensional network. A polymer composite is disclosed, which comprises a water-swellable clay mineral, a water-soluble (meth) acrylic acid ester, a polymerization initiator, and optionally a catalyst or / and an organic crosslinking agent, water or After dissolving or uniformly dispersing in a mixed solvent of water and an organic solvent, a polymer composite can be produced by polymerizing a water-soluble (meth) acrylic acid ester and then drying to remove the solvent. It is disclosed (see, for example, Patent Document 3).

更に、酸素の影響を受けにくく、短時間で有機無機複合ヒドロゲルを製造できる方法が開示されており、即ち、非水溶性の重合開始剤を水媒体中に分散させた反応溶液中で、水膨潤性粘土鉱物の共存下において、水溶性のアクリル系モノマーをエネルギー線の照射により反応させることにより、力学物性の優れた有機無機複合ヒドロゲルを製造できる方法である(例えば特許文献4参照)。   Furthermore, a method is disclosed in which an organic-inorganic composite hydrogel is hardly affected by oxygen and can be produced in a short time, that is, in a reaction solution in which a water-insoluble polymerization initiator is dispersed in an aqueous medium, This is a method capable of producing an organic-inorganic composite hydrogel having excellent mechanical properties by reacting a water-soluble acrylic monomer with energy rays in the presence of a functional clay mineral (see, for example, Patent Document 4).

上記の有機無機複合ヒドロゲルは、何れも反応液中にラジカルを発生させる重合開始剤を含んだもので、使用目的により、作製後のゲルより開始剤を除去する工程が必要になる。   Each of the above organic-inorganic composite hydrogels contains a polymerization initiator that generates radicals in the reaction solution, and a step of removing the initiator from the gel after preparation is required depending on the purpose of use.

一方、ポリテトラフルオルエチレンフィルム(PTFE)の表面にプラズマを照射し、空気中の水分と反応させた後、前記PTFEをアクリル酸のような水溶性モノマーの水溶液中に入れ、紫外線を照射することにより、PTFEフィルムの表面に親水性モノマーをグラフト重合させる技術が開示されている(例えば非特許文献2参照)。しかし、プラズマ処理を施した無機物(特にナノ粒子状の無機物)を架橋剤としての役割と同時に、開始剤としての役割をも果たす技術例は見当たらない。   On the other hand, after irradiating the surface of the polytetrafluoroethylene film (PTFE) with plasma and reacting with moisture in the air, the PTFE is put into an aqueous solution of a water-soluble monomer such as acrylic acid and irradiated with ultraviolet rays. Thus, a technique for graft polymerizing a hydrophilic monomer on the surface of a PTFE film is disclosed (for example, see Non-Patent Document 2). However, there is no technical example in which an inorganic substance (particularly a nanoparticulate inorganic substance) that has been subjected to plasma treatment serves not only as a crosslinking agent but also as an initiator.

特開2002−53762JP2002-53762 特開2004−143212JP-A-2004-143212 特開2005−232402JP2005-232402 特開2006−169314JP 2006-169314 A

ピナバイアおよびベアル編(T.J.Pinnavaia and G. W.Beall Eds.)「ポリマークレイナノコンポジット」(Polymer-Clay Nano Composites ),ワイリー社(wiley)、2000年出版T.J. Pinnavaia and G. W. Beall Eds. "Polymer-Clay Nano Composites", Wiley, 2000. K. L. Tanら、Macromolecules 1993, 26, 2832-2836K. L. Tan et al., Macromolecules 1993, 26, 2832-2836

したがって、本発明が解決しようとする課題は、広い範囲の粘土鉱物含有率において、粘土鉱物と高分子重合体が三次元網目構造を形成し、優れた力学物性を示す有機無機複合ヒドロゲルを、開始剤を用いずに製造できる製造方法を提供することにある。   Therefore, the problem to be solved by the present invention is to start an organic-inorganic composite hydrogel having excellent mechanical properties, in which a clay mineral and a polymer form a three-dimensional network structure in a wide range of clay mineral content. It is providing the manufacturing method which can be manufactured without using an agent.

即ち、本発明は、プラズマによる表面処理を施した水膨潤性粘土鉱物(b)と水溶性の(メタ)アクリル系モノマー(a)を水媒体(C)中に分散又は溶解させた後、重合開始剤を用いずに、前記(メタ)アクリル系モノマー(a)を加熱及び/又は紫外線の照射により重合させることを特徴とする有機無機複合ヒドロゲルの製造方法を提供するものである。   That is, in the present invention, the water-swellable clay mineral (b) subjected to the surface treatment with plasma and the water-soluble (meth) acrylic monomer (a) are dispersed or dissolved in the aqueous medium (C), and then polymerized. The present invention provides a method for producing an organic-inorganic composite hydrogel characterized by polymerizing the (meth) acrylic monomer (a) by heating and / or irradiation with ultraviolet rays without using an initiator.

本発明の製造方法によれば、有機無機複合ヒドロゲルを重合する際に重合開始剤を添加しないため、開始剤を除去するための製造工程が不要であることから簡便に低コストで有機無機複合ヒドロゲルを製造できる。   According to the production method of the present invention, since no polymerization initiator is added when the organic-inorganic composite hydrogel is polymerized, a manufacturing process for removing the initiator is not required, so that the organic-inorganic composite hydrogel can be easily and at low cost. Can be manufactured.

また、本発明により得られた有機無機複合ヒドロゲルは、広い範囲の粘土鉱物含有率において、粘土鉱物が有機高分子中に均一に分散し、優れた力学物性や柔軟性などを示すと同時に、重合も極短時間で完了できる特徴を持っており、医療や介護用具、各種工業用材料として用いられる。   In addition, the organic-inorganic composite hydrogel obtained by the present invention has a wide range of clay mineral content, the clay mineral is uniformly dispersed in the organic polymer, and exhibits excellent mechanical properties and flexibility, while being polymerized. Has the feature that it can be completed in an extremely short time, and is used as medical and nursing tools and various industrial materials.

本発明で用いる水溶性の(メタ)アクリル系モノマー(a)は、その重合体が粘土鉱物と相互作用し、重合により有機無機複合ヒドロゲルを形成できるものであれば、好適に使用できるが、中でも、(メタ)アクリルアミドおよび/またはこれらの誘導体(N−またはN,N置換(メタ)アクリルアミド)や(メタ)アクリル酸エステルが好ましく用いられ、特に好ましくは(メタ)アクリルアミド、および/またはこれらの誘導体(N−またはN,N置換(メタ)アクリルアミド)が用いられる。   The water-soluble (meth) acrylic monomer (a) used in the present invention can be suitably used as long as the polymer interacts with the clay mineral and can form an organic-inorganic composite hydrogel by polymerization. , (Meth) acrylamide and / or derivatives thereof (N- or N, N-substituted (meth) acrylamide) and (meth) acrylic acid esters are preferably used, and (meth) acrylamide and / or derivatives thereof are particularly preferable. (N- or N, N-substituted (meth) acrylamide) is used.

更に好ましくは下記式(1)〜(6)の(メタ)アクリル系モノマーが用いられる。   More preferably, (meth) acrylic monomers represented by the following formulas (1) to (6) are used.

Figure 2011213793
Figure 2011213793

Figure 2011213793
Figure 2011213793

Figure 2011213793
Figure 2011213793

Figure 2011213793
Figure 2011213793

Figure 2011213793
Figure 2011213793

Figure 2011213793
(式中、Rは水素原子またはメチル基、R及びRはそれぞれ独立に水素原子又は炭素原子数1〜3のアルキル基、Rは炭素原子数1〜2のアルキル基を表し、nは1〜9の整数である。)
Figure 2011213793
Wherein R 1 represents a hydrogen atom or a methyl group, R 2 and R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 4 represents an alkyl group having 1 to 2 carbon atoms, n is an integer of 1 to 9.)

上記のアクリル系モノマーは、要求される力学物性や化学物性などにより、一種以上を混合して使用してもよい。   One or more of the above acrylic monomers may be mixed and used depending on required mechanical properties and chemical properties.

また、有機無機複合ヒドロゲルの物性に影響を及ぼさない程度に、その他の共重合モノマーとして、例えば、スルホン基やカルボキシル基のようなアニオン基を有するアクリル系モノマー、4級アンモニウム基のようなカチオン基を有するアクリル系モノマー、4級アンモニウム基と燐酸基とを持つ両性イオン基を有するアクリル系モノマー、カルボキシル基とアミノ基とをもつアミノ酸残基を有するアクリル系モノマー、糖残基を有するアクリル系モノマー、また、水酸基を有するアクリル系モノマー、ポリエチレングリコール、ポリプロピレングリコール鎖を有するアクリル系モノマー、更にポリエチレングリコールのような親水性鎖とノニルフェニル基のような疎水基を合わせ持つ両親媒性アクリル系モノマー、ポリエチレングリコールジアクリレート、N,N’−メチレンビスアクリルアミドなどを併用することができる。   In addition, as other copolymerization monomers, for example, acrylic monomers having an anion group such as a sulfone group or a carboxyl group, cationic groups such as a quaternary ammonium group, to the extent that the physical properties of the organic-inorganic composite hydrogel are not affected. Acrylic monomer having quaternary ammonium group and phosphoric acid group, acrylic monomer having zwitterion group, acrylic monomer having amino acid residue having carboxyl group and amino group, acrylic monomer having sugar residue In addition, an acrylic monomer having a hydroxyl group, polyethylene glycol, an acrylic monomer having a polypropylene glycol chain, an amphiphilic acrylic monomer having a hydrophilic chain such as polyethylene glycol and a hydrophobic group such as a nonylphenyl group, Polyethylene glycol Diacrylate, N, may be used in combination such as N'- methylenebisacrylamide.

本発明に用いる水膨潤性粘土鉱物(b)としては、層状に剥離可能な膨潤性粘土鉱物が挙げられ、好ましくは水または水と有機溶剤との混合溶液中で膨潤し均一に分散可能な粘土鉱物、特に好ましくは水中で分子状(単一層)またはそれに近いレベルで均一分散可能な無機粘土鉱物が用いられる。具体的にはナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリライト、水膨潤性サポナイト、水膨潤性合成雲母等が挙げられる。これらの粘土鉱物を混合して用いても良い。   Examples of the water-swellable clay mineral (b) used in the present invention include swellable clay minerals that can be peeled in layers, preferably clay that can swell and uniformly disperse in water or a mixed solution of water and an organic solvent. Minerals are used, particularly preferably inorganic clay minerals that can be uniformly dispersed in water at molecular (single layer) or close to that level. Specific examples include water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorlite, water-swellable saponite, and water-swellable synthetic mica. You may mix and use these clay minerals.

本発明の有機無機複合ヒドロゲルを製造する際、水膨潤性粘土鉱物(b)と水溶性の(メタ)アクリル系モノマー(a)との重量比(b)/(a)が、0.01〜10であることが好ましく、0.03〜5がより好ましく、0.05〜3が特に好ましい。重量比(b)/(a)が0.01未満では、得られる有機無機複合ヒドロゲルの力学物性が不十分になりやすく、また10を超えると粘土鉱物の分散が困難になってくる。   When the organic-inorganic composite hydrogel of the present invention is produced, the weight ratio (b) / (a) of the water-swellable clay mineral (b) to the water-soluble (meth) acrylic monomer (a) is 0.01 to 10 is preferable, 0.03 to 5 is more preferable, and 0.05 to 3 is particularly preferable. If the weight ratio (b) / (a) is less than 0.01, the mechanical properties of the resulting organic-inorganic composite hydrogel tend to be insufficient, and if it exceeds 10, the dispersion of the clay mineral becomes difficult.

本発明に用いる水媒体(C)は、モノマー(a)や水膨潤性粘土鉱物などを含むことができ、物性のよい有機無機複合体分散液が得られれば良く、特に限定されない。例えば水、または水と混和性を有する溶剤及び/またはその他の化合物を含む水溶液であってよく、その中には更に、防腐剤や抗菌剤、着色料、香料、酵素、コラーゲン、たんぱく質、糖類、アミノ酸類、細胞、DNA類、塩類、水溶性有機溶剤類、界面活性剤、高分子化合物、無機化合物、発泡剤、レベリング剤などを含むことができる。   The aqueous medium (C) used in the present invention is not particularly limited as long as it can contain a monomer (a), a water-swellable clay mineral, and the like, and an organic-inorganic composite dispersion having good physical properties can be obtained. For example, it may be water or an aqueous solution containing a solvent miscible with water and / or other compounds, and further includes preservatives and antibacterial agents, coloring agents, fragrances, enzymes, collagen, proteins, sugars, Amino acids, cells, DNAs, salts, water-soluble organic solvents, surfactants, polymer compounds, inorganic compounds, foaming agents, leveling agents and the like can be included.

本発明におけるプラズマによる粘土鉱物の表面処理方法は、粉状の水膨潤性粘土鉱物に直接プラズマを照射する方法や、水膨潤性粘土鉱物の水分散液を支持体に塗布し、乾燥させて、水膨潤性粘土鉱物の薄層にした後、プラズマを照射する方法などがある。後者の場合、より均一なプラズマ処理ができ、処理される粘土鉱物の割合も高く、好ましい。この場合の粘土鉱物の薄層の厚みが10μm以下であることが好ましく、3μm以下が更に好ましい。水膨潤性粘土鉱物の薄層の厚みが10μm以下であれば、プラズマ照射後、ラジカルを持つ粘土鉱物が十分生成することができ、良好な有機無機複合ヒドロゲルを形成することができ、好ましい。   The surface treatment method of the clay mineral by plasma in the present invention is a method of directly irradiating the powdery water-swellable clay mineral with plasma, or applying an aqueous dispersion of the water-swellable clay mineral to the support and drying it. There is a method of irradiating with plasma after making a thin layer of water-swellable clay mineral. In the latter case, a more uniform plasma treatment can be performed, and the proportion of the clay mineral to be treated is high, which is preferable. In this case, the thickness of the clay mineral thin layer is preferably 10 μm or less, more preferably 3 μm or less. If the thickness of the water-swellable clay mineral thin layer is 10 μm or less, a clay mineral having radicals can be sufficiently formed after plasma irradiation, and a favorable organic-inorganic composite hydrogel can be formed.

また、水膨潤性粘土鉱物の水分散液を凍結乾燥することにより形成させた多孔質状の粘土鉱物にプラズマを照射することが、プラズマが多孔質の内部までとどき、より多くの粘土鉱物を表面処理でき、好ましい。   In addition, when a porous clay mineral formed by freeze-drying an aqueous dispersion of a water-swellable clay mineral is irradiated with plasma, the plasma reaches the inside of the porous structure, and more clay mineral is surfaced. It can be processed and is preferable.

プラズマ照射には、公知慣用のプラズマ照射装置を用いることができる。例えば、真空型プラズマ処理装置や、大気圧プラズマ処理装置、大気圧コロナ処理装置などが挙げられる。   A known and usual plasma irradiation apparatus can be used for the plasma irradiation. For example, a vacuum type plasma processing apparatus, an atmospheric pressure plasma processing apparatus, an atmospheric pressure corona processing apparatus, etc. are mentioned.

(メタ)アクリル系モノマー(a)を重合させる方法は、一定時間の加熱による熱重合法や、紫外線を照射する光重合方法、または紫外線照射と加熱を併用する方法を用いる。中でも、加熱せず、重合時間が短く、酸素の影響も少ない点から、紫外線による重合方法が好ましい。照射する紫外線の強度は10〜500mW/cmが好ましく、照射時間は一般に0.1秒〜200秒程度である。 As a method for polymerizing the (meth) acrylic monomer (a), a thermal polymerization method by heating for a predetermined time, a photopolymerization method in which ultraviolet rays are irradiated, or a method in which ultraviolet irradiation and heating are used in combination is used. Among them, the polymerization method using ultraviolet rays is preferable because it is not heated, the polymerization time is short, and the influence of oxygen is small. The intensity of the irradiated ultraviolet light is preferably 10 to 500 mW / cm 2 and the irradiation time is generally about 0.1 to 200 seconds.

本発明は、反応系に熱重合または光重合用の重合開始剤を一切添加せず、プラズマ照射を施した、多官能架橋剤として使用される水膨潤性粘土鉱物(b)の表面に生成したラジカルを利用して、モノマー(a)を重合させることが本発明の最大の特徴である。   The present invention was formed on the surface of a water-swellable clay mineral (b) used as a polyfunctional crosslinking agent, which was subjected to plasma irradiation without adding any polymerization initiator for thermal polymerization or photopolymerization to the reaction system. The greatest feature of the present invention is that the monomer (a) is polymerized using radicals.

本発明の製造方法は、異なる形状の鋳型や支持体、またはフォトマスクを用いることにより、任意形状(例えば、板状、シート状、薄膜状、棒状、球状、糸状、中空糸状、パターン状)の有機無機複合ヒドロゲルを製造することもできる。   The production method of the present invention can be of any shape (for example, a plate shape, a sheet shape, a thin film shape, a rod shape, a spherical shape, a thread shape, a hollow fiber shape, a pattern shape) by using a mold or a support having a different shape or a photomask. Organic-inorganic composite hydrogels can also be produced.

以下、実施例により本発明を具体的に説明するが、本発明の範囲がこれらの実施例にのみ限定されるものではない。
(実施例1)
[水膨潤性粘土鉱物のプラズマ処理]
粘土鉱物(b)としてLaponite XLG(Rockwood Additives Ltd.社製)0.5gを真空型プラズマ処理装置(PR31型、ヤマト科学(株)製)に入れ、アルゴンガス雰囲気中で、60Wの照射強度で、5分間プラズマ照射を行い、プラズマ処理粘度鉱物(B1)を調製した。
[モノマー(a)、水膨潤性粘土鉱物(b)、水媒体(C)を含む反応液の調製]
モノマー(a)としてN、N−ジメチルアクリルアミド(株式会社興人製)0.99g、前記プラズマ処理粘土鉱物(B1)0.4g、水媒体(C)として水10g、を均一に混合して反応液(E1)を調製した。
[開始剤フリー有機無機複合ヒドロゲルの作製]
上記反応溶液(E1)を内径5.5mmのガラス管に封入し、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射しN,Nージメチルアクリルアミドを重合させて、棒状の有機無機複合ヒドロゲル(1)を作製した。
[ゲルの物性]
上記作製したゲル(1)を、引っ張り試験機(AGS−H型、島津製作所製)を用いて、測定したところ、破断点応力は95KPaで、破断点歪みは1935%であった。該ゲルは、目視で無色透明で、柔軟であった。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the scope of the present invention is not limited only to these Examples.
Example 1
[Plasma treatment of water-swellable clay minerals]
As a clay mineral (b), 0.5 g of Laponite XLG (manufactured by Rockwood Additives Ltd.) is put into a vacuum type plasma processing apparatus (PR31 type, manufactured by Yamato Kagaku Co., Ltd.) with an irradiation intensity of 60 W in an argon gas atmosphere. Plasma irradiation was performed for 5 minutes to prepare a plasma-treated viscosity mineral (B1).
[Preparation of reaction liquid containing monomer (a), water-swellable clay mineral (b), and aqueous medium (C)]
N, N-dimethylacrylamide (manufactured by Kojin Co., Ltd.) 0.99 g as the monomer (a), 0.4 g of the plasma-treated clay mineral (B1), and 10 g of water as the aqueous medium (C) are uniformly mixed and reacted. A liquid (E1) was prepared.
[Preparation of initiator-free organic-inorganic composite hydrogel]
The reaction solution (E1) is sealed in a glass tube having an inner diameter of 5.5 mm, irradiated with ultraviolet light having an ultraviolet intensity of 40 mW / cm 2 at 365 nm for 180 seconds, and polymerized N, N-dimethylacrylamide to produce a rod-like organic-inorganic composite. Hydrogel (1) was prepared.
[Physical properties of gel]
When the produced gel (1) was measured using a tensile tester (AGS-H type, manufactured by Shimadzu Corporation), the stress at break was 95 KPa and the strain at break was 1935%. The gel was colorless and transparent visually, and was flexible.

(実施例2)
[水膨潤性粘土鉱物のプラズマ処理]
粘土鉱物(b)としてLaponite XLG(Rockwood Additives Ltd.社製)0.5g、水媒体(C)として水10g、を均一に混合した水分散液を、6×15cmの硝子板に、乾燥粘土鉱物の薄層の厚みが5μmになるように塗布し、80℃、1時間乾燥させ、粘土鉱物の薄層を作製した。
(Example 2)
[Plasma treatment of water-swellable clay minerals]
A clay dispersion (b) 0.5 g Laponite XLG (manufactured by Rockwood Additives Ltd.) and 10 g water (C) as an aqueous medium (C) are uniformly mixed in a 6 × 15 cm glass plate and dried clay mineral. The thin layer was applied to a thickness of 5 μm and dried at 80 ° C. for 1 hour to prepare a thin layer of clay mineral.

上記硝子板に作製した粘土鉱物の薄層を、真空型プラズマ処理装置(PR31型、ヤマト科学(株)製)に入れ、アルゴンガス雰囲気中で、60Wの照射強度で、5分間プラズマ照射を行い、プラズマ処理粘度(B2)を調製した。
[モノマー(a)、水膨潤性粘土鉱物(b)、水媒体(C)を含む反応液の調製]
モノマー(a)としてN、N−ジメチルアクリルアミド(株式会社興人製)0.99g、前記プラズマ処理粘土鉱物(B2)0.4g、水媒体(C)として水10g、を均一に混合して反応液(E2)を調製した。
[開始剤フリー有機無機複合ヒドロゲルの作製]
上記反応溶液(E2)を内径5.5mmのガラス管に封入し、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射しN,Nージメチルアクリルアミドを重合させて、棒状の有機無機複合ヒドロゲル(2)を作製した。
[ゲルの物性]
上記作製したゲル(2)を、引っ張り試験機(AGS−H型、島津製作所製)を用いて、測定したところ、破断点応力は90KPaで、破断点歪みは1900%であった。該ゲルは、目視で無色透明で、柔軟であった。
A thin layer of clay mineral produced on the glass plate is placed in a vacuum plasma processing apparatus (PR31 type, manufactured by Yamato Scientific Co., Ltd.), and irradiated with plasma at an irradiation intensity of 60 W in an argon gas atmosphere for 5 minutes. A plasma treatment viscosity (B2) was prepared.
[Preparation of reaction liquid containing monomer (a), water-swellable clay mineral (b), and aqueous medium (C)]
N, N-dimethylacrylamide (manufactured by Kojin Co., Ltd.) 0.99 g as the monomer (a), 0.4 g of the plasma-treated clay mineral (B2), and 10 g of water as the aqueous medium (C) are uniformly mixed and reacted. A liquid (E2) was prepared.
[Preparation of initiator-free organic-inorganic composite hydrogel]
The reaction solution (E2) is sealed in a glass tube having an inner diameter of 5.5 mm, irradiated with ultraviolet light having an ultraviolet intensity of 40 mW / cm 2 at 365 nm for 180 seconds, and polymerized N, N-dimethylacrylamide to produce a rod-like organic-inorganic composite. Hydrogel (2) was prepared.
[Physical properties of gel]
When the gel (2) produced above was measured using a tensile tester (AGS-H type, manufactured by Shimadzu Corporation), the stress at break was 90 KPa and the strain at break was 1900%. The gel was colorless and transparent visually, and was flexible.

(実施例3)
実施例2の粘土鉱物(b)と水を均一に混同した水分散液を、硝子板に乾燥粘土鉱物の薄層の厚みが1μmになるように塗布したこと以外は、実施例2と同様にして、棒状の有機無機複合ヒドロゲル(3)を作製した。
[ゲルの物性]
上記作製したゲル(3)を、引っ張り試験機(AGS−H型、島津製作所製)を用いて、測定したところ、破断点応力は132KPaで、破断点歪みは1650%であった。該ゲルは、目視で無色透明で、柔軟であった。
(Example 3)
Except that the water dispersion in which the clay mineral (b) of Example 2 and water were uniformly confused was applied to the glass plate so that the thickness of the dry clay mineral thin layer was 1 μm, the same as in Example 2. Thus, a rod-shaped organic-inorganic composite hydrogel (3) was produced.
[Physical properties of gel]
When the gel (3) produced above was measured using a tensile tester (AGS-H type, manufactured by Shimadzu Corporation), the stress at break was 132 KPa and the strain at break was 1650%. The gel was colorless and transparent visually, and was flexible.

(実施例4)
実施例2の粘土鉱物(b)と水を均一に混同した水分散液を、硝子板に乾燥粘土鉱物の薄層の厚みが0.5μmになるように塗布したこと以外は、実施例2と同様にして、棒状の有機無機複合ヒドロゲル(4)を作製した。
[ゲルの物性]
上記作製したゲル(4)を、引っ張り試験機(AGS−H型、島津製作所製)を用いて、測定したところ、破断点応力は188KPaで、破断点歪みは1600%であった。該ゲルは、目視で無色透明で、柔軟であった。
Example 4
Example 2 except that the clay mineral (b) of Example 2 and water dispersion uniformly mixed with water were applied on a glass plate so that the thickness of the thin layer of dry clay mineral was 0.5 μm. Similarly, a rod-shaped organic-inorganic composite hydrogel (4) was produced.
[Physical properties of gel]
When the produced gel (4) was measured using a tensile tester (AGS-H type, manufactured by Shimadzu Corporation), the stress at break was 188 KPa and the strain at break was 1600%. The gel was colorless and transparent visually, and was flexible.

以上の実施例2〜4より、プラズマ処理された粘土鉱物の薄層の厚みが薄くなると、処理された粘土鉱物の割合が増え、得られた有機無機複合ヒドロゲルの力学物性も向上することが理解できる。   From the above Examples 2 to 4, it is understood that when the thickness of the thin layer of the plasma-treated clay mineral is reduced, the proportion of the treated clay mineral is increased and the mechanical properties of the obtained organic-inorganic composite hydrogel are also improved. it can.

(実施例5)
実施例2の反応液(E2)を、真空脱気により、反応液中の酸素を十分除去した後、アルゴンガス雰囲気中で、反応液を内径5.5mmのガラス管に封入した後、60℃、15時間静置して、N,Nージメチルアクリルアミドを重合させ、棒状の有機無機複合ヒドロゲル(5)を作製した。
[ゲルの物性]
上記作製したゲル(5)を、引っ張り試験機(AGS−H型、島津製作所製)を用いて、測定したところ、破断点応力は95KPaで、破断点歪みは1900%であった。該ゲルは、目視で無色透明で、柔軟であった。
(Example 5)
The reaction solution (E2) of Example 2 was sufficiently deoxygenated by vacuum degassing, and then sealed in a glass tube having an inner diameter of 5.5 mm in an argon gas atmosphere, and then 60 ° C. The mixture was allowed to stand for 15 hours to polymerize N, N-dimethylacrylamide to produce a rod-shaped organic-inorganic composite hydrogel (5).
[Physical properties of gel]
When the gel (5) produced above was measured using a tensile tester (AGS-H type, manufactured by Shimadzu Corporation), the stress at break was 95 KPa and the strain at break was 1900%. The gel was colorless and transparent visually, and was flexible.

(実施例6)
N、N−ジメチルアクリルアミド0.99gの変わりに、N―イソプロピルアクリルアミド1.13gを用いること以外は、実施例3と同様にして、棒状の有機無機複合ヒドロゲル(6)を作製した。
[ゲルの物性]
上記作製したゲル(6)を、引っ張り試験機(AGS−H型、島津製作所製)を用いて、測定したところ、破断点応力は105KPaで、破断点歪みは1000%であった。該ゲルは、目視で無色透明で、柔軟であった。
このゲル(6)を20℃の水中に165時間浸漬したところ、ゲルが透明のまま膨潤し重量が初期の約400%になった。また、この膨潤したゲルを50℃の水に24時間浸漬したところ、ゲルが収縮し白濁になり、重量が初期の約35%になった。
(Example 6)
A rod-shaped organic-inorganic composite hydrogel (6) was prepared in the same manner as in Example 3 except that 1.13 g of N-isopropylacrylamide was used instead of 0.99 g of N, N-dimethylacrylamide.
[Physical properties of gel]
When the gel (6) produced above was measured using a tensile tester (AGS-H type, manufactured by Shimadzu Corporation), the stress at break was 105 KPa and the strain at break was 1000%. The gel was colorless and transparent visually, and was flexible.
When this gel (6) was immersed in water at 20 ° C. for 165 hours, the gel swelled while being transparent, and the weight was about 400% of the initial value. When this swollen gel was immersed in water at 50 ° C. for 24 hours, the gel contracted and became cloudy, and the weight was about 35% of the initial value.

(実施例7)
[水膨潤性粘土鉱物のプラズマ処理]
粘土鉱物(b)としてLaponite XLG(Rockwood Additives Ltd.社製)0.5g、水媒体(C)として水10g、を均一に混合した水分散液を、6×15cmの硝子板に、乾燥粘土鉱物の薄層の厚みが1μmになるように塗布し、80℃、1時間乾燥させ、粘土鉱物の薄層を作製した。
(Example 7)
[Plasma treatment of water-swellable clay minerals]
A clay dispersion (b) 0.5 g Laponite XLG (manufactured by Rockwood Additives Ltd.) and 10 g water (C) as an aqueous medium (C) are uniformly mixed in a 6 × 15 cm glass plate and dried clay mineral. The thin layer was applied so as to have a thickness of 1 μm and dried at 80 ° C. for 1 hour to prepare a thin layer of clay mineral.

上記硝子板に作製した粘土鉱物の薄層を、真空型プラズマ処理装置(PR31型、ヤマト科学(株)製)に入れ、アルゴンガス雰囲気中で、60Wの照射強度で、5分間プラズマ照射を行い、プラズマ処理粘度(B7)を調製した。
[モノマー(a)、水膨潤性粘土鉱物(b)、水媒体(C)を含む反応液の調製]
モノマー(a)として2−メトキシエチルアクリレート(東亞合成株式会社製)1.28g、前記プラズマ処理粘土鉱物(B7)0.16g、水媒体(C)として水10g、を均一に混合して反応液(E7)を調製した。
[開始剤フリー有機無機複合ヒドロゲルの作製]
上記反応溶液(E7)を内径5.5mmのガラス管に封入し、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し2−メトキシエチルアクリレートを重合させたところ、白色で棒状の有機無機複合ヒドロゲル(7)を得た。この白色のゲルを室温で乾燥させたところ、硬くて、透明な棒状の有機無機複合体となった。
[ゲルの物性]
上記作製した有機無機複合体を、引っ張り試験機(AGS−H型、島津製作所製)を用いて、測定したところ、破断点応力は2.5MPaで、破断点歪みは1600%であった。
A thin layer of clay mineral produced on the glass plate is placed in a vacuum plasma processing apparatus (PR31 type, manufactured by Yamato Scientific Co., Ltd.), and irradiated with plasma at an irradiation intensity of 60 W in an argon gas atmosphere for 5 minutes. A plasma treatment viscosity (B7) was prepared.
[Preparation of reaction liquid containing monomer (a), water-swellable clay mineral (b), and aqueous medium (C)]
1.28 g of 2-methoxyethyl acrylate (manufactured by Toagosei Co., Ltd.) as the monomer (a), 0.16 g of the plasma-treated clay mineral (B7), and 10 g of water as the aqueous medium (C) are uniformly mixed and reacted. (E7) was prepared.
[Preparation of initiator-free organic-inorganic composite hydrogel]
The reaction solution (E7) was sealed in a glass tube having an inner diameter of 5.5 mm, and irradiated with ultraviolet light having an ultraviolet intensity of 40 mW / cm 2 at 365 nm for 180 seconds to polymerize 2-methoxyethyl acrylate. Inorganic composite hydrogel (7) was obtained. When this white gel was dried at room temperature, it became a hard and transparent rod-like organic-inorganic composite.
[Physical properties of gel]
When the produced organic-inorganic composite was measured using a tensile tester (AGS-H type, manufactured by Shimadzu Corporation), the stress at break was 2.5 MPa and the strain at break was 1600%.

(実施例8)
[水膨潤性粘土鉱物のプラズマ処理]
粘土鉱物(b)としてLaponite XLG(Rockwood Additives Ltd.社製)0.5g、水媒体(C)として水10g、を均一に混合した水分散液を、6×15cmの硝子板に、厚みが100μmになるように塗布し、凍結乾燥させ、粘土鉱物の多孔質体を作製した。
(Example 8)
[Plasma treatment of water-swellable clay minerals]
An aqueous dispersion obtained by uniformly mixing 0.5 g of Laponite XLG (manufactured by Rockwood Additives Ltd.) as the clay mineral (b) and 10 g of water as the aqueous medium (C) on a 6 × 15 cm glass plate and having a thickness of 100 μm Then, the mixture was applied and freeze-dried to prepare a clay mineral porous body.

上記粘土鉱物の多孔質体を軽く潰した後、真空型プラズマ処理装置(PR31型、ヤマト科学(株)製)に入れ、アルゴンガス雰囲気中で、60Wの照射強度で、5分間プラズマ照射を行い、プラズマ処理粘度(B8)を調製した。
[モノマー(a)、水膨潤性粘土鉱物(b)、水媒体(C)を含む反応液の調製]
モノマー(a)としてN、N−ジメチルアクリルアミド(株式会社興人製)0.99g、前記プラズマ処理粘土鉱物(B8)0.4g、水媒体(C)として水10g、を均一に混合して反応液(E8)を調製した。
[開始剤フリー有機無機複合ヒドロゲルの作製]
上記反応溶液(E8)を内径5.5mmのガラス管に封入し、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射しN,Nージメチルアクリルアミドを重合させて、棒状の有機無機複合ヒドロゲル(8)を作製した。
[ゲルの物性]
上記作製したゲル(8)を、引っ張り試験機(AGS−H型、島津製作所製)を用いて、測定したところ、破断点応力は129KPaで、破断点歪みは1580%であった。該ゲルは、目視で無色透明で、柔軟であった。
After the clay mineral porous body is lightly crushed, it is put into a vacuum plasma processing apparatus (PR31 type, manufactured by Yamato Scientific Co., Ltd.), and irradiated with plasma in an argon gas atmosphere at an irradiation intensity of 60 W for 5 minutes. A plasma treatment viscosity (B8) was prepared.
[Preparation of reaction liquid containing monomer (a), water-swellable clay mineral (b), and aqueous medium (C)]
N, N-dimethylacrylamide (manufactured by Kojin Co., Ltd.) 0.99 g as the monomer (a), 0.4 g of the plasma-treated clay mineral (B8), and 10 g of water as the aqueous medium (C) are uniformly mixed and reacted. A liquid (E8) was prepared.
[Preparation of initiator-free organic-inorganic composite hydrogel]
The reaction solution (E8) is sealed in a glass tube having an inner diameter of 5.5 mm, irradiated with ultraviolet rays having an ultraviolet intensity of 40 mW / cm 2 at 365 nm for 180 seconds, and polymerized N, N-dimethylacrylamide to produce a rod-like organic-inorganic composite. Hydrogel (8) was prepared.
[Physical properties of gel]
When the gel (8) produced above was measured using a tensile tester (AGS-H type, manufactured by Shimadzu Corporation), the stress at break was 129 KPa and the strain at break was 1580%. The gel was colorless and transparent visually, and was flexible.

(比較例1)
[モノマー(a)、水膨潤性粘土鉱物(b)、水媒体(C)を含む反応液の調製]
モノマー(a)としてN、N−ジメチルアクリルアミド(株式会社興人製)0.99g、粘土鉱物(b)としてLaponite XLG(Rockwood Additives Ltd.社製)0.4g(未処理)、水媒体(C)として水10g、を均一に混合して分散液(1)を調製した。
[有機無機複合ヒドロゲルの作製]
上記分散液(1)を内径5.5mmのガラス管に封入し、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射したところ、N,Nージメチルアクリルアミドは重合せず、分散液(1)は液状のままで、有機無機複合ヒドロゲルを作製することはできなかった。
上記実施例及び比較例から、本発明の製造方法によれば重合開始剤を添加することなく、極短時間で、広い範囲の粘土鉱物含有率において、粘土鉱物が有機高分子中に均一に分散し、優れた力学物性や柔軟性及び透明性などを示す有機無機複合ヒドロゲルを製造できることが明らかであった。
(Comparative Example 1)
[Preparation of reaction liquid containing monomer (a), water-swellable clay mineral (b), and aqueous medium (C)]
N, N-dimethylacrylamide (manufactured by Kojin Co., Ltd.) 0.99 g as monomer (a), Laponite XLG (manufactured by Rockwood Additives Ltd.) 0.4 g (untreated), aqueous medium (C) as clay mineral (b) ) And 10 g of water were uniformly mixed to prepare dispersion (1).
[Preparation of organic-inorganic composite hydrogel]
When the dispersion (1) was sealed in a glass tube having an inner diameter of 5.5 mm and irradiated with ultraviolet rays having an ultraviolet intensity of 40 mW / cm 2 at 365 nm for 180 seconds, N, N-dimethylacrylamide did not polymerize and the dispersion ( 1) remained liquid, and an organic-inorganic composite hydrogel could not be prepared.
From the above examples and comparative examples, according to the production method of the present invention, the clay mineral is uniformly dispersed in the organic polymer in a wide range of clay mineral content in a very short time without adding a polymerization initiator. It was clear that an organic-inorganic composite hydrogel exhibiting excellent mechanical properties, flexibility, transparency and the like can be produced.

Claims (7)

プラズマによる表面処理を施した水膨潤性粘土鉱物(b)と水溶性の(メタ)アクリル系モノマー(a)を水媒体(C)中に分散又は溶解させた後、重合開始剤を用いずに、前記(メタ)アクリル系モノマー(a)を加熱及び/又は紫外線の照射により重合させることを特徴とする有機無機複合ヒドロゲルの製造方法。 After dispersing or dissolving the water-swellable clay mineral (b) subjected to surface treatment with plasma and the water-soluble (meth) acrylic monomer (a) in the aqueous medium (C), without using a polymerization initiator A method for producing an organic-inorganic composite hydrogel, wherein the (meth) acrylic monomer (a) is polymerized by heating and / or irradiation with ultraviolet rays. 前記表面処理の方法が、水膨潤性粘土鉱物(b)を10μm以下の薄層とした後にプラズマ照射する方法である請求項1記載の有機無機複合ヒドロゲルの製造方法。 The method for producing an organic-inorganic composite hydrogel according to claim 1, wherein the surface treatment method is a method in which the water-swellable clay mineral (b) is made into a thin layer having a thickness of 10 µm or less and then plasma irradiation. 前記表面処理の方法が、水膨潤性粘土鉱物(b)を多孔質状の成形物とした後にプラズマ照射する方法である請求項1記載の有機無機複合ヒドロゲルの製造方法。 The method for producing an organic-inorganic composite hydrogel according to claim 1, wherein the surface treatment method is a method in which the water-swellable clay mineral (b) is formed into a porous molded article and then subjected to plasma irradiation. 前記水溶性の(メタ)アクリル系モノマー(a)が、(メタ)アクリルアミド、これらの誘導体及び(メタ)アクリル酸エステルからなる群から選ばれる少なくとも一種である請求項1〜3のいずれかに記載の有機無機複合ヒドロゲルの製造方法。 The water-soluble (meth) acrylic monomer (a) is at least one selected from the group consisting of (meth) acrylamide, derivatives thereof and (meth) acrylic acid esters. A method for producing an organic-inorganic composite hydrogel. 前記水溶性の(メタ)アクリル系モノマー(a)が、下記式(1)〜(6)から選ばれる少なくとも一種である請求項1〜3のいずれかに記載の有機無機複合ヒドロゲルの製造方法。
Figure 2011213793
Figure 2011213793
Figure 2011213793
Figure 2011213793
Figure 2011213793
Figure 2011213793
(式中、Rは水素原子またはメチル基、R及びRはそれぞれ独立に水素原子又は炭素原子数1〜3のアルキル基、Rは炭素原子数1〜2のアルキル基を表し、nは1〜9の整数である。)
The method for producing an organic-inorganic composite hydrogel according to any one of claims 1 to 3, wherein the water-soluble (meth) acrylic monomer (a) is at least one selected from the following formulas (1) to (6).
Figure 2011213793
Figure 2011213793
Figure 2011213793
Figure 2011213793
Figure 2011213793
Figure 2011213793
Wherein R 1 represents a hydrogen atom or a methyl group, R 2 and R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, R 4 represents an alkyl group having 1 to 2 carbon atoms, n is an integer of 1 to 9.)
前記水膨潤性粘土鉱物(b)が、水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト及び水膨潤性合成雲母から選ばれる少なくとも一種である請求項1〜5のいずれかに記載の有機無機複合ヒドロゲルの製造方法。 6. The water-swellable clay mineral (b) is at least one selected from water-swellable hectorite, water-swellable montmorillonite, water-swellable saponite and water-swellable synthetic mica. A method for producing an organic-inorganic composite hydrogel. 前記水溶性の(メタ)アクリル系モノマー(a)と水膨潤性粘土鉱物(b)との重量比(b)/(a)が、0.01〜10の範囲にある請求項1〜6のいずれかに記載の有機無機複合ヒドロゲルの製造方法。 The weight ratio (b) / (a) between the water-soluble (meth) acrylic monomer (a) and the water-swellable clay mineral (b) is in the range of 0.01 to 10. The manufacturing method of the organic inorganic composite hydrogel in any one.
JP2010081258A 2010-03-31 2010-03-31 Method for producing organic-inorganic composite hydrogel Pending JP2011213793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010081258A JP2011213793A (en) 2010-03-31 2010-03-31 Method for producing organic-inorganic composite hydrogel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010081258A JP2011213793A (en) 2010-03-31 2010-03-31 Method for producing organic-inorganic composite hydrogel

Publications (1)

Publication Number Publication Date
JP2011213793A true JP2011213793A (en) 2011-10-27

Family

ID=44943882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010081258A Pending JP2011213793A (en) 2010-03-31 2010-03-31 Method for producing organic-inorganic composite hydrogel

Country Status (1)

Country Link
JP (1) JP2011213793A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014500366A (en) * 2010-12-15 2014-01-09 ザ プロクター アンド ギャンブル カンパニー Water-absorbing surface modified clay-bonded polymer
WO2018159942A1 (en) * 2017-03-02 2018-09-07 주식회사 엘지화학 Superabsorbent polymer and preparation method therefor
US11278639B2 (en) 2017-03-29 2022-03-22 3M Innovative Properties Company Hydrogel compositions bonded to polymeric substrates

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014500366A (en) * 2010-12-15 2014-01-09 ザ プロクター アンド ギャンブル カンパニー Water-absorbing surface modified clay-bonded polymer
WO2018159942A1 (en) * 2017-03-02 2018-09-07 주식회사 엘지화학 Superabsorbent polymer and preparation method therefor
US10843169B2 (en) 2017-03-02 2020-11-24 Lg Chem, Ltd. Super absorbent polymer and preparation method thereof
US11278639B2 (en) 2017-03-29 2022-03-22 3M Innovative Properties Company Hydrogel compositions bonded to polymeric substrates

Similar Documents

Publication Publication Date Title
Kundu et al. Silk fibroin/poly (vinyl alcohol) photocrosslinked hydrogels for delivery of macromolecular drugs
Shojaeiarani et al. A review on cellulose nanocrystals as promising biocompounds for the synthesis of nanocomposite hydrogels
Li et al. Ultrastiff, thermoresponsive nanocomposite hydrogels composed of ternary polymer–clay–silica networks
Zhao et al. Mechanically strong and thermosensitive macromolecular microsphere composite poly (N-isopropylacrylamide) hydrogels
JP5190323B2 (en) Molding method of organic / inorganic composite hydrogel
WO2006064810A1 (en) Process for production of organic-inorganic hybrid hydrogel, cell culture substrate comprising the same, and antifogging material comprising dried product thereof
US8530564B2 (en) Organic-inorganic composite dispersion, cell culture substrate manufactured using the same, and methods for preparing the same
JP4430124B2 (en) Organic-inorganic composite dispersion and method for producing the same
Conzatti et al. Surface functionalization of plasticized chitosan films through PNIPAM grafting via UV and plasma graft polymerization
Kumru et al. Tough high modulus hydrogels derived from carbon-nitride via an ethylene glycol co-solvent route
JP3914489B2 (en) Polymer composite, stretched product thereof, and method for producing polymer composite
JP3914501B2 (en) Polymer gel composite and method for producing the same
CN113272347A (en) Monodisperse hydrogel particles
JP2005232402A (en) Polymer composite, its stretched product and process for producing polymer composite
Ghazinezhad et al. A review of frontal polymerization in the chemical industry
JP5398383B2 (en) Organic-inorganic composite particles, method for producing the same, and method for producing organic-inorganic composite hydrogel particles
Zhou et al. A pH‐sensitive water‐soluble N‐carboxyethyl chitosan/poly (hydroxyethyl methacrylate) hydrogel as a potential drug sustained release matrix prepared by photopolymerization technique
JP5393581B2 (en) Method for producing organic-inorganic composite dispersion
JP2011213793A (en) Method for producing organic-inorganic composite hydrogel
Li et al. Silica-based Janus nanosheets for self-healing nanocomposite hydrogels
JP2010254800A (en) Organic/inorganic composite
Fathi et al. Synthesis of fast response crosslinked PVA-g-NIPAAm nanohydrogels by very low radiation dose in dilute aqueous solution
JP2011001482A (en) Polymer gel, polymer gel dispersion, polymer gel composite, and method for producing the same
JP5099867B2 (en) Organic-inorganic composite hydrogel and method for producing the dried product
Son et al. Tailoring Physical Properties of Dual-Network Acrylamide Hydrogel Composites by Engineering Molecular Structures of the Cross-linked Network