JP2011213374A - Biodegradable multilayer container - Google Patents

Biodegradable multilayer container Download PDF

Info

Publication number
JP2011213374A
JP2011213374A JP2010082416A JP2010082416A JP2011213374A JP 2011213374 A JP2011213374 A JP 2011213374A JP 2010082416 A JP2010082416 A JP 2010082416A JP 2010082416 A JP2010082416 A JP 2010082416A JP 2011213374 A JP2011213374 A JP 2011213374A
Authority
JP
Japan
Prior art keywords
biodegradable
multilayer container
acid
biodegradable multilayer
biodegradable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010082416A
Other languages
Japanese (ja)
Other versions
JP5656001B2 (en
Inventor
Seishi Yoshikawa
成志 吉川
Tadayoshi Katayama
傳喜 片山
Masato Kogure
正人 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2010082416A priority Critical patent/JP5656001B2/en
Publication of JP2011213374A publication Critical patent/JP2011213374A/en
Application granted granted Critical
Publication of JP5656001B2 publication Critical patent/JP5656001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a biodegradable multilayer container relating to a multilayer container that is biodegradable, formed by a layer of a biodegradable resin containing a degradation promoter and biodegradable resin layers, has an excellent degradability, and is suppressed in elution of a degraded product of the degradation promoter.SOLUTION: The biodegradable multilayer container includes an intermediate layer of the biodegradable resin containing the degradation promoter, in which the degradation promoter is blended by 0.1 pts.wt. or above and below 10 pts.wt. based on 100 pts.wt. of the biodegradable resin, and inner and outer layers of biodegradable multilayers having a thickness of 5 μm or above and 40 μm or below.

Description

本発明は、生分解性可能な多層容器に関するものであり、生分解性樹脂に分解促進剤を含有した層と、生分解性樹脂層からなる生分解性多層容器に関する。   The present invention relates to a biodegradable multilayer container, and relates to a biodegradable multilayer container comprising a biodegradable resin layer containing a degradation accelerator and a biodegradable resin layer.

近年、天然資源枯渇や二酸化炭素排出の制限から分解可能な生分解性樹脂が注目されている。家庭から出されるプラスチック等の廃棄物は、処分場の不足、火災の発生による埋め立てによる処分問題、又、有害物質の発生による環境汚染等の焼却処分問題がある。そこで、環境への負荷が少ない生分解性樹脂製品が注目されている。   In recent years, biodegradable resins that can be decomposed have attracted attention due to the depletion of natural resources and the limitation of carbon dioxide emissions. Wastes such as plastic from households have disposal problems due to shortage of disposal sites, landfills due to fires, and incineration problems such as environmental pollution due to the generation of harmful substances. Therefore, biodegradable resin products that have a low environmental impact are attracting attention.

特許文献1には、ポリ乳酸系樹脂と生分解性可塑剤とを含む樹脂組成物層を中間層とする積層フィルムを、60℃以上で1分間以上加熱する工程と、この積層フィルムを微生物又は酵素の存在下におく工程を含む易分解化処理方法が提案されている。   Patent Document 1 discloses a step of heating a laminated film having a resin composition layer containing a polylactic acid-based resin and a biodegradable plasticizer as an intermediate layer at 60 ° C. or more for 1 minute or more, An easily decomposable treatment method including a step of placing in the presence of an enzyme has been proposed.

生分解性樹脂組成物は難加水分解性を有するために、水との接触のみでは分解されにくい。そこで、生分解性樹脂の分解を促進させるために添加剤を配合し酵素で分解させることが提案されている。本出願人が提案している易分解性樹脂組成物は、生分解性樹脂をマトリックス、分解促進剤をドメインからなり、易分解性樹脂組成物が水と接触するとドメインの分解促進剤が加水分解され、加水分解により亀裂が生じ、そこから酵素が侵入することで、酵素との接触表面積が増し、生分解性樹脂組成物を分解させることができることを提案している(特許文献2)。   Since the biodegradable resin composition is hardly hydrolyzable, it is difficult to be decomposed only by contact with water. Therefore, it has been proposed to add an additive and decompose it with an enzyme in order to promote the decomposition of the biodegradable resin. The easily decomposable resin composition proposed by the present applicant is composed of a biodegradable resin as a matrix and a degradation accelerator as a domain. When the readily degradable resin composition comes into contact with water, the domain degradation accelerator is hydrolyzed. In addition, it is proposed that cracks are generated by hydrolysis, and the enzyme enters from there, thereby increasing the surface area of contact with the enzyme and decomposing the biodegradable resin composition (Patent Document 2).

しかしながら、特許文献1では一度加熱しなければ、酵素分解性が低く、さらにシートの配向など成形体に関する記述はない。また上記易分解性樹脂組成物は、分解促進剤が加水分解により酸を放出するために食品等の内容物が収納された容器には不向きであった。そこで、酸の溶出を抑制する方法として、側鎖のエステル基がメチルエステル基またはアセテート基を有する高分子分解抑制剤を少量添加することで、酸の溶出を大幅に抑制することを見いだしている(特許文献3)。   However, in Patent Document 1, if it is not heated once, the enzymatic decomposability is low, and there is no description of the molded body such as the orientation of the sheet. Further, the above easily decomposable resin composition is not suitable for a container in which contents such as food are stored because the decomposition accelerator releases acid by hydrolysis. Therefore, as a method for suppressing acid elution, it has been found that by adding a small amount of a polymer degradation inhibitor whose side chain ester group has a methyl ester group or an acetate group, acid elution is greatly suppressed. (Patent Document 3).

特開2007−216541号公報JP 2007-216541 A WO2008/38648WO2008 / 38648 特願2009−152835Japanese Patent Application No. 2009-152835

酸を放出する分解促進剤を配合した生分解性樹脂は、衛生上、内容物との直接接触が避けられるため、容器最内層に使用するには不向きである。
また、多くの多層容器は熱成形で得られるため、真空、圧縮成形時に部分的に延伸配向されながら成形される。得られた成形体は結晶化が進行するため分解性が低下する。
そこで、上記問題を解決すべく、分解促進剤と内容物の接触を抑制し、且つ、分解促進剤の分解物の溶出を抑え、生分解性を維持した生分解性多層容器を提供する。
A biodegradable resin containing a decomposition accelerator that releases an acid is unsuitable for use in the innermost layer of a container because hygienic direct contact with the contents is avoided.
Further, since many multilayer containers are obtained by thermoforming, they are molded while being partially stretched and oriented during vacuum and compression molding. Since the obtained molded body proceeds with crystallization, the decomposability is lowered.
Therefore, in order to solve the above-mentioned problems, a biodegradable multilayer container that suppresses the contact between the decomposition accelerator and the content, suppresses the elution of the decomposition product of the decomposition accelerator, and maintains biodegradability is provided.

本発明によれば、生分解性樹脂100重量部に対して分解促進剤が0.1重量部以上、10重量部未満配合されている分解促進剤含有生分解性樹脂の中間層と、厚み5μm以上、40μm以下の生分解性樹脂の内外層からなる生分解性多層容器を提供する。   According to the present invention, the intermediate layer of the decomposition accelerator-containing biodegradable resin in which the decomposition accelerator is blended in an amount of 0.1 parts by weight or more and less than 10 parts by weight with respect to 100 parts by weight of the biodegradable resin, and a thickness of 5 μm. As described above, a biodegradable multilayer container comprising inner and outer layers of a biodegradable resin of 40 μm or less is provided.

本発明の生分解性多層容器は、一定の間、内容物への酸の溶出を抑制し、生分解性樹脂容器の分解時には容易に分解することができる。   The biodegradable multilayer container of the present invention suppresses elution of acid into the contents for a certain period, and can be easily decomposed when the biodegradable resin container is decomposed.

図1は、本発明の生分解性多層容器を示す。FIG. 1 shows a biodegradable multilayer container of the present invention. 図2は、単層PLAフィルムのおける分解性に関する参考例を示す。FIG. 2 shows a reference example regarding the decomposability in a single-layer PLA film. 図3は、単層PEOx5%含有のPLAフィルムにおける分解性に関する分解量を示す。FIG. 3 shows the amount of degradation related to degradability in a PLA film containing 5% of single layer PEOx. 図4は、PLA層とPEOx含有PLA層の3層積層体におけるシュウ酸溶出量を示す。FIG. 4 shows the amount of oxalic acid eluted in a three-layer laminate of a PLA layer and a PEOx-containing PLA layer. 図5は、PLA層とPEOx含有PLA層の3層積層体における分解率を示す。FIG. 5 shows the decomposition rate in a three-layer laminate of a PLA layer and a PEOx-containing PLA layer. 図6は、生分解性多層容器の断片をFT-IR(ATR法)測定しカルボニル基の吸収ピークの2次微分スペクトルが、結晶ピーク強度/非晶ピーク強度=0.4(実施例3)、0.6(実施例4)、0.7(比較例3)の分解量を示す。FIG. 6 shows that the fragment of the biodegradable multilayer container was measured by FT-IR (ATR method), and the second derivative spectrum of the absorption peak of the carbonyl group was crystal peak intensity / amorphous peak intensity = 0.4 (Example 3), 0.6. (Example 4) The decomposition amount of 0.7 (comparative example 3) is shown. 図7は、3層積層体のDSC測定のチャートを示す。FIG. 7 shows a DSC measurement chart of the three-layer laminate. 図8は、PEOx5%含有PLAシートを一軸方向に3倍延伸した延伸フィルム(1x3)をFT-IR(ATR法)測定しカルボニル基の吸収ピークの2次微分スペクトルを示したチャートで、結晶ピーク強度b、非晶ピーク強度aとしたときの結晶ピーク強度/非晶ピーク強度=0.6のチャートを示す。ポリ乳酸の結晶ピーク(1751〜1760cm-1)ポリ乳酸の非晶ピーク(1740〜1750cm-1)Fig. 8 is a chart showing the second derivative spectrum of the absorption peak of the carbonyl group as measured by FT-IR (ATR method) of a stretched film (1x3) obtained by stretching a PLA sheet containing PEOx 5% three times in the uniaxial direction. A chart of crystal peak intensity / amorphous peak intensity = 0.6 with intensity b and amorphous peak intensity a is shown. Polylactic acid crystal peak (1751-1760cm-1) Polylactic acid amorphous peak (1740-1750cm-1) 図9は、HPLC測定の際の移動溶媒の比率を示す。FIG. 9 shows the ratio of the mobile solvent in the HPLC measurement.

本発明の生分解性多層容器は、使用時において、分解促進剤から溶出される加水分解物と生分解性樹脂から溶出される分解物の容器内側への侵入を抑制することができる。使用後において、生分解性多層容器を酵素溶液と接触させることで分解可能な容器が提供される。層構成は、生分解性樹脂100重量部に対して分解促進剤が0.1重量部以上、10重量部未満配合されている分解促進剤含有生分解性樹脂の中間層と、平均厚み5〜40μm以下の生分解性樹脂の内外層からなる。   The biodegradable multilayer container of the present invention can suppress the entry of the hydrolyzate eluted from the decomposition accelerator and the decomposed substance eluted from the biodegradable resin into the container during use. After use, a degradable container is provided by contacting the biodegradable multilayer container with an enzyme solution. The layer structure is composed of an intermediate layer of a degradation accelerator-containing biodegradable resin in which a degradation accelerator is blended in an amount of 0.1 parts by weight or more and less than 10 parts by weight with respect to 100 parts by weight of the biodegradable resin, and an average thickness of 5 to 5 parts. It consists of inner and outer layers of biodegradable resin of 40 μm or less.

<生分解性樹脂>
生分解性樹脂としては、加水分解されるポリマーであればよいが、好適には、ポリ乳酸、ポリカプロラクトン、ポリブチレンサクシネート、ポリヒドロキシアルカノエート、澱粉系樹脂組成物、セルロースなどが挙げられる。これらはコポリマー、単独での使用、2種以上を組み合わせての使用でもよい。コポリマーを形成する成分としては、例えばエチレングリコール、プロピレングリコール、ブタンジオール、オクタンジオール、ドデカンジオール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ソルビタン、ビスフェノールA、ポリエチレングリコールなどの多価アルコール;コハク酸、アジピン酸、セバシン酸、グルタル酸、デカンジカルボン酸、シクロヘキヘキサンジカルボン酸、テレフタル酸、イソフタル酸、アントラセンジカルボン酸などのジカルボン酸;グリコール酸、L-乳酸、D-乳酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、マンデル酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸;グリコリド、カプロラクトン、ブチロラクトン、バレロラクトン、ポロピオラクトン、ウンデカラクトンなどのラクトン類などが挙げられる。
また、上記生分解性樹脂と、汎用化学樹脂、添加剤との混合体であってもよい。ここで添加剤としては可塑剤、熱安定剤、光安定剤、酸化防止剤、紫外線吸収剤、難燃剤、着色剤、顔料、フィラー、無機充填剤、離型剤、耐電防止剤、香料、滑剤、発泡剤、抗菌・抗カビ剤、核形成剤などが挙げられる。
生分解性樹脂としてポリ乳酸を用いる場合、L体からなるポリ乳酸とD体からなるポリ乳酸のどちらを用いてもよく、それらを混合して用いてもよい。またL乳酸とD乳酸を共重合してもよい。酵素分解速度を考えた場合、用いる酵素によってはD乳酸の割合が高いほど、酵素分解速度が増加する。
また生分解性樹脂の酸価により酵素分解速度を制御できる。酸価が高いほど酵素分解速度が増加する。
<Biodegradable resin>
The biodegradable resin may be any polymer that can be hydrolyzed, and preferred examples include polylactic acid, polycaprolactone, polybutylene succinate, polyhydroxyalkanoate, starch-based resin composition, and cellulose. These may be copolymers, used alone or in combination of two or more. Examples of the components forming the copolymer include polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, octanediol, dodecanediol, neopentyl glycol, glycerin, pentaerythritol, sorbitan, bisphenol A, and polyethylene glycol; succinic acid, adipine Acids, sebacic acid, glutaric acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, anthracene dicarboxylic acid and other dicarboxylic acids; glycolic acid, L-lactic acid, D-lactic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxy Hydroxycarboxylic acids such as valeric acid, hydroxycaproic acid, mandelic acid, hydroxybenzoic acid; glycolide, caprolactone, butyrolactone, valerolactone, polo Examples include lactones such as piolactone and undecalactone.
Moreover, the mixture of the said biodegradable resin, a general purpose chemical resin, and an additive may be sufficient. Here, plasticizers, heat stabilizers, light stabilizers, antioxidants, ultraviolet absorbers, flame retardants, colorants, pigments, fillers, inorganic fillers, mold release agents, antistatic agents, fragrances, lubricants are used as additives. , Foaming agents, antibacterial / antifungal agents, nucleating agents and the like.
When polylactic acid is used as the biodegradable resin, either L-form polylactic acid or D-form polylactic acid may be used, or a mixture thereof may be used. L lactic acid and D lactic acid may be copolymerized. When considering the enzymatic degradation rate, depending on the enzyme used, the higher the proportion of D-lactic acid, the greater the enzymatic degradation rate.
The enzymatic degradation rate can be controlled by the acid value of the biodegradable resin. The higher the acid value, the higher the enzymatic degradation rate.

<分解促進剤>
分解促進剤は、水分と混合したときにエステル分解の触媒として機能する酸或いはアルカリを放出するものであり、通常、生分解性樹脂の全体にわたって均一に分散し、分解促進剤から放出される酸或いはアルカリによっての生分解性樹脂の加水分解を迅速に促進するものが好適である。 このような分解促進剤において、アルカリ放出性のものとしては、アクリル酸ソーダ等のアクリル酸のアルカリ金属塩やアルギン酸ソーダ等、アルカリ金属またはアルカリ土類金属塩類、例えば、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸マグネシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素カルシウム、炭酸水素マグネシウム、珪酸ナトリウム、珪酸カリウム、珪酸カルシウム、珪酸マグネシウム、リン酸ナトリウム、水酸化カルシウム、水酸化マグネシウム等が挙げられる。また、ハイドロキシアパタイト、およびゼオライトなどが挙げられ、これらは単独、若しくは2種以上混合して用いてもよい。酸を放出する分解促進剤としては、水と接触すると酸を放出するポリマーであればよく、例えば、ポリオキサレート、ポリグリコール酸などが挙げられる。これらはコポリマー、単独での使用、2種以上を組み合わせての使用でもよい。コポリマーを形成する成分としては、例えばエチレングリコール、プロピレングリコール、ブタンジオール、オクタンジオール、ドデカンジオール、ネオペンチルグリコール、グリセリン、ペンタエリスリトール、ソルビタン、ビスフェノールA、ポリエチレングリコールなどの多価アルコール;コハク酸、アジピン酸、セバシン酸、グルタル酸、デカンジカルボン酸、シクロヘキヘキサンジカルボン酸、テレフタル酸、イソフタル酸、アントラセンジカルボン酸などのジカルボン酸;グリコール酸、L-乳酸、D-乳酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、マンデル酸、ヒドロキシ安息香酸などのヒドロキシカルボン酸;グリコリド、カプロラクトン、ブチロラクトン、バレロラクトン、ポロピオラクトン、ウンデカラクトンなどのラクトン類などが挙げられる。本明細書では、ホモポリマー、共重合体、ブレンド体において、少なくとも一つのモノマーとしてシュウ酸を重合したポリマーをポリオキサレートとする。分解促進剤がポリマーである場合の平均分子量としては1000〜200000程度のものが好適に使用される。分解促進剤の含有量は、生分解性樹脂100に対して、0.1重量部以上、10重量部未満、好ましくは、1〜5重量部であることが好ましい。 また分解促進剤を用いるのにあたり、酸またはアルカリを放出する分解促進剤の併用や無機充填剤や添加剤と併用してもよい。
<Decomposition accelerator>
The decomposition accelerator releases acid or alkali that functions as a catalyst for ester decomposition when mixed with moisture, and is usually an acid that is uniformly dispersed throughout the biodegradable resin and released from the decomposition accelerator. Or what accelerates | stimulates hydrolysis of the biodegradable resin by an alkali rapidly is suitable. Among such decomposition accelerators, those capable of releasing alkali include alkali metal salts of acrylic acid such as sodium acrylate and sodium alginate, alkali metal or alkaline earth metal salts such as sodium carbonate, potassium carbonate, carbonate Examples include calcium, magnesium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, calcium hydrogen carbonate, magnesium hydrogen carbonate, sodium silicate, potassium silicate, calcium silicate, magnesium silicate, sodium phosphate, calcium hydroxide, magnesium hydroxide and the like. Moreover, hydroxyapatite, zeolite, etc. are mentioned, These may be used alone or in combination of two or more. The decomposition accelerator that releases acid may be any polymer that releases acid when contacted with water. Examples thereof include polyoxalate and polyglycolic acid. These may be copolymers, used alone or in combination of two or more. Examples of the components forming the copolymer include polyhydric alcohols such as ethylene glycol, propylene glycol, butanediol, octanediol, dodecanediol, neopentyl glycol, glycerin, pentaerythritol, sorbitan, bisphenol A, and polyethylene glycol; succinic acid, adipine Acids, sebacic acid, glutaric acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, anthracene dicarboxylic acid and other dicarboxylic acids; glycolic acid, L-lactic acid, D-lactic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxy Hydroxycarboxylic acids such as valeric acid, hydroxycaproic acid, mandelic acid, hydroxybenzoic acid; glycolide, caprolactone, butyrolactone, valerolactone, polo Examples include lactones such as piolactone and undecalactone. In the present specification, a polymer obtained by polymerizing oxalic acid as at least one monomer in a homopolymer, copolymer, or blend is referred to as polyoxalate. When the decomposition accelerator is a polymer, an average molecular weight of about 1,000 to 200,000 is preferably used. The content of the decomposition accelerator is 0.1 parts by weight or more and less than 10 parts by weight, preferably 1 to 5 parts by weight with respect to the biodegradable resin 100. In using the decomposition accelerator, it may be used in combination with a decomposition accelerator that releases acid or alkali, or in combination with an inorganic filler or additive.

<層構成>
本発明の容器の層構成は、分解促進剤を含有した生分解性樹脂中間層と、5〜40μm以下の生分解性樹脂の内外層を有している。生分解性樹脂の内外層が容器の最内外層であることが好ましい。また、分解促進剤含有生分解性樹脂からなる中間層と生分解性樹脂からなる内外層の間に、他の層を有してもよいが、中間層が内外層の分解を積極的に行うので、分解促進剤含有生分解性樹脂からなる中間層と生分解性樹脂からなる内外層とは隣接していることが望ましい。両層は同種の材料を使用することが接着性の観点から望ましい。多層を構成する層は、二種以上の樹脂のブレンド体でもよく、添加剤との混合体であってもよい。
<Layer structure>
The layer structure of the container of the present invention has a biodegradable resin intermediate layer containing a decomposition accelerator and inner and outer layers of a biodegradable resin of 5 to 40 μm or less. The inner and outer layers of the biodegradable resin are preferably innermost and outer layers of the container. In addition, other layers may be provided between the intermediate layer made of the biodegradable resin containing a decomposition accelerator and the inner and outer layers made of the biodegradable resin, but the intermediate layer actively decomposes the inner and outer layers. Therefore, it is desirable that the intermediate layer made of the biodegradable resin containing a decomposition accelerator and the inner and outer layers made of the biodegradable resin are adjacent to each other. It is desirable from the viewpoint of adhesion that both layers use the same material. The layer constituting the multilayer may be a blend of two or more resins, or a mixture with an additive.

中間層の厚みは全体厚みの20〜95%であることがよい。20%以下であると分解促進剤の効果が十分に発揮されず内外層の分解性が低下し、95%以上であると中間層から収納室への分解促進剤の放出物の溶出が起こるので好ましくない。   The thickness of the intermediate layer is preferably 20 to 95% of the total thickness. If it is 20% or less, the effect of the decomposition accelerator is not sufficiently exerted, and the decomposability of the inner and outer layers is lowered, and if it is 95% or more, the release of the decomposition accelerator from the intermediate layer into the storage chamber occurs. It is not preferable.

具体的な容器形状は、延伸される箇所の延伸倍率が4倍未満であれば特に限定されるものでないが、フランジ、胴部、底部を有し加熱成形して得られる容器が挙げられる。また、容器の形態としてはトレー、カップ、ボトル、弁当容器及びその蓋材等が挙げられ、充填される内容物としては、米飯、肉、魚、惣菜、サラダ、フルーツ、アイス等が挙げられる。   Although the specific container shape will not be specifically limited if the draw ratio of the location extended | stretched is less than 4 times, the container obtained by heat-molding which has a flange, a trunk | drum, and a bottom part is mentioned. In addition, examples of the container include trays, cups, bottles, lunch boxes and lids thereof, and examples of filled contents include cooked rice, meat, fish, prepared dishes, salads, fruits, and ice.

上記生分解性多層容器は、Tダイより押出成形したシート状の中間層に内外層をラミネートしたシートや、多層押出しシート成形で作製した多層シートを加熱したのち、圧空成形、圧縮成形、真空成形等の方法で二次成形をすることでトレー、カップ等の容器を作製することができる。さらに、ダイレクトブロー、インフレーション成形、射出成形、樹脂塊(ドロップ)を金型に投入して圧縮成形などにて作製することもできる。   The above biodegradable multi-layer container is a sheet-shaped intermediate layer extruded from a T-die, heated on a sheet laminated with inner and outer layers, or a multilayer sheet produced by multi-layer extrusion sheet molding, and then compressed air molding, compression molding, vacuum molding Containers such as trays and cups can be produced by secondary molding using a method such as the above. Furthermore, direct blow, inflation molding, injection molding, and a resin lump (drop) can be put into a mold and produced by compression molding or the like.

内外層は1〜4倍未満の延伸倍率の範囲であれば、分解性を有するのに対し、中間層は、延伸倍率が4倍以上でも分解性を有する。内外層と中間層を異なる延伸倍率にすることもでき、中間層を予め延伸したフィルムに未延伸の内外層を積層し、成形加工することで中間層と内外層の延伸倍率が異なる多層容器を作製できる。生分解性多層容器の延伸倍率の一般的な測定方法としては、フランジ部の厚みと胴部の厚みを測定し、厚みの比率をもって延伸倍率を求めることができる。   The inner and outer layers have decomposability within the range of the draw ratio of 1 to less than 4 times, whereas the intermediate layer has decomposability even when the draw ratio is 4 times or more. The inner and outer layers and the intermediate layer can have different stretching ratios, and an unstretched inner and outer layer is laminated on a film obtained by stretching the intermediate layer in advance, and a multilayer container having different stretching ratios of the intermediate layer and the inner and outer layers is formed by molding. Can be made. As a general measuring method of the draw ratio of the biodegradable multilayer container, the thickness of the flange part and the thickness of the body part can be measured, and the draw ratio can be determined by the ratio of the thicknesses.

成形された容器の断片をFT-IR(ATR法)測定することで、分解の可否が分かる。カルボニル基の吸収ピークを2次微分することで、結晶ピークと非晶ピークに分離でき、具体的にはポリ乳酸の結晶ピークが1751〜1760cm-1、非晶ピークが1740〜1750cm-1にそれぞれのピークが出る。生分解性多層容器とは結晶ピーク強度/非晶ピーク強度<0.7未満となる。
上記に当てはまる容器形状として、内外層の生分解性樹脂の延伸倍率が1〜4倍未満であることがよい。延伸倍率が4倍以上であると分解性が極端に低下する。なお、分解促進剤を含有した中間層の延伸倍率は、特に制限をうけない。
The FT-IR (ATR method) measurement is performed on the molded container fragment to determine whether it can be decomposed. By differentiating the absorption peak of the carbonyl group, the crystal peak and the amorphous peak can be separated. Specifically, the polylactic acid crystal peak is 1751 to 1760 cm-1, and the amorphous peak is 1740 to 1750 cm-1. The peak appears. The biodegradable multilayer container has a crystal peak intensity / amorphous peak intensity << 0.7.
As a container shape applicable to the above, it is preferable that the stretch ratio of the biodegradable resin of the inner and outer layers is less than 1 to 4 times. When the draw ratio is 4 times or more, the decomposability is extremely lowered. The stretch ratio of the intermediate layer containing the decomposition accelerator is not particularly limited.

本発明の生分解性多層容器は、DSC測定において、未延伸部分の結晶化ピーク以下に結晶化ピークを有していることがよい。生分解性樹脂組成物は、後述の参考例からもわかるように、延伸によって非晶部分の配向結晶化が起こり、結晶化度が上昇することで分解性が低下するものと考えられる。そこで、一定範囲内の倍率で延伸することでこれを解決した。本発明の生分解性多層容器が、生分解性を有しているか否かの確認には、例えば、未延伸部(フランジ等)の結晶化温度ピークを測定し、延伸部(胴部、底部)の結晶化温度ピークが未延伸部の結晶化温度ピークより低い温度方向にあることで、生分解可能な容器か否かがわかる。結晶化ピークが消滅しているものは結晶化が進行し過ぎており、分解性が低い(図7)。   The biodegradable multilayer container of the present invention preferably has a crystallization peak below the crystallization peak of the unstretched portion in DSC measurement. The biodegradable resin composition is considered to have a degradability that is deteriorated by orientational crystallization of an amorphous part by stretching and an increase in crystallinity, as can be seen from a reference example described later. Therefore, this was solved by stretching at a magnification within a certain range. In order to confirm whether or not the biodegradable multilayer container of the present invention has biodegradability, for example, a crystallization temperature peak of an unstretched part (flange, etc.) is measured, and a stretched part (body part, bottom part) ) In the temperature direction lower than the crystallization temperature peak of the unstretched portion, it can be determined whether or not the container is biodegradable. In the case where the crystallization peak has disappeared, crystallization has progressed too much and the decomposability is low (FIG. 7).

下記実施例から判るように成形後の内外層厚みが5〜40μm以下の積層体では分解性が維持されていることがわかる(実施例1〜実施例2)。内外層の延伸倍率が4倍以上であると分解性が低下することがわかる(比較例3)。しかし、分解促進剤含有中間層では、延伸倍率は4倍以上であっても分解すことがわかる(参考例4)。そして、内外層が40μmを超えると分解性が極端に低下し(比較例1)、5μm未満だと容器の使用形態や分解促進剤及びその分解物の溶出の点で好ましくない。また内外層の厚みが異なっていても良く、食品容器を想定する場合、内層は5μm以上が好ましいが、外層はその限りではない。   As can be seen from the following examples, it can be seen that the decomposability is maintained in a laminate having an inner and outer layer thickness of 5 to 40 μm or less after molding (Examples 1 to 2). It can be seen that the decomposability decreases when the stretching ratio of the inner and outer layers is 4 times or more (Comparative Example 3). However, it can be seen that the decomposition accelerator-containing intermediate layer decomposes even when the draw ratio is 4 times or more (Reference Example 4). When the inner and outer layers exceed 40 μm, the degradability is extremely lowered (Comparative Example 1), and when it is less than 5 μm, it is not preferable in terms of the usage form of the container and the elution of the decomposition accelerator and its decomposition products. Further, the thickness of the inner and outer layers may be different. When a food container is assumed, the inner layer is preferably 5 μm or more, but the outer layer is not limited thereto.

<分解方法> 本発明の生分解性樹脂を用いて成形された容器等の成形体は、廃棄に際してそのまま分解槽に供給してもよいが、これを適宜、裁断、圧潰等、場合によって小片状にした後に分解槽に供給して分解処理される。 <Decomposition method> A molded body such as a container formed using the biodegradable resin of the present invention may be directly supplied to a decomposition tank upon disposal, but this may be appropriately cut, crushed, or the like as a small piece. After being formed, it is supplied to the decomposition tank and decomposed.

この分解処理は、適宜の溶媒中で、触媒の存在下で行われる。かかる触媒としては、含水している固体酸触媒、例えば酸性白土やベントナイトなどのスメクタイト系粘土を酸処理して得られる高比表面積の活性白土などを使用することもできるが、酵素を使用することが好適である。即ち、環境に与える影響や廃棄物処理などの観点のみならず、酵素を触媒として用いた場合には、酵素が成形体(廃棄物)の内部にまで速やかに浸透し、成形体の内部からも生分解性樹脂の分解が生じ、短時間で成形体が完全に崩壊するまで分解することができるという点で極めて有利である。 This decomposition treatment is performed in an appropriate solvent in the presence of a catalyst. As such a catalyst, a water-containing solid acid catalyst, for example, an activated clay having a high specific surface area obtained by acid treatment of smectite clay such as acid clay or bentonite can be used, but an enzyme is used. Is preferred. That is, not only from the viewpoint of environmental impact and waste treatment, but also when an enzyme is used as a catalyst, the enzyme quickly penetrates into the molded body (waste) and also from the inside of the molded body. This is extremely advantageous in that the biodegradable resin is decomposed and can be decomposed in a short time until the molded body completely disintegrates.

上記のような酵素としては、例えば、プロテアーゼ、セルラーゼ、クチナーゼ、リパーゼ等が挙げられ、これらの酵素は固定化していても固定化していなくてもよい。例えば和光純薬工業株式会社製のプロテアーゼKなどが水溶液の形で使用される。また微生物を入れ、その菌体外酵素を用いてもよく、その微生物が必要とする培地成分や栄養成分が添加されていてもよい。 Examples of such enzymes include protease, cellulase, cutinase, lipase and the like, and these enzymes may or may not be immobilized. For example, protease K manufactured by Wako Pure Chemical Industries, Ltd. is used in the form of an aqueous solution. Moreover, microorganisms may be put in and the extracellular enzyme may be used, and the culture medium component and nutrient component which the microorganism requires may be added.

上記のような分解処理において、酵素反応液のpHの変化を防止するために、例えば反応液を交換したり、反応液に緩衝液を使用することができ、このような緩衝液としてはグリシン−塩酸緩衝液、リン酸緩衝液、トリス−塩酸緩衝液、酢酸緩衝液、クエン酸緩衝液、クエン酸−リン酸緩衝液、ホウ酸緩衝液、酒石酸緩衝液、グリシン−水酸化ナトリウム緩衝液などが挙げられる。また、緩衝液の代わりに固体の中和剤を使用し、溶媒に水を用いてもよく、固体中和剤として例えば炭酸カルシウム、キトサン、脱プロトンイオン交換樹脂などが挙げられる。また必要に応じて、エタノールなどの有機溶媒や分解処理を阻害しない程度に界面活性剤を添加してもよい。 In the decomposition treatment as described above, in order to prevent a change in the pH of the enzyme reaction solution, for example, the reaction solution can be exchanged or a buffer solution can be used as the reaction solution. Hydrochloric acid buffer, phosphate buffer, Tris-hydrochloric acid buffer, acetic acid buffer, citrate buffer, citric acid-phosphate buffer, borate buffer, tartaric acid buffer, glycine-sodium hydroxide buffer, etc. Can be mentioned. Further, a solid neutralizing agent may be used in place of the buffer solution, and water may be used as the solvent. Examples of the solid neutralizing agent include calcium carbonate, chitosan, and deprotonated ion exchange resin. Further, if necessary, a surfactant may be added to such an extent that it does not inhibit an organic solvent such as ethanol or a decomposition treatment.

本発明の実施例を次の通りで説明する。   Examples of the present invention will be described as follows.

<使用材料>
PLAはnatureworks社製4032D(d乳酸2%)を用いた。
PGAはkureha社製(Mw=100000)を用いた。
PEOxは下記合成品を用いた。
<Materials used>
As PLA, 4032D (d-lactic acid 2%) manufactured by natureworks was used.
A PGA manufactured by kureha (Mw = 100000) was used.
PEOx used the following synthetic product.

<ポリエチレンオキサレート (以下「PEOx」とも略す)の合成>
マントルヒーター、攪拌装置、窒素導入管、冷却管を取り付けた1Lのセパラブルフラスコにシュウ酸ジメチル354g(3.0mol)、エチレングリコール223.5g(3.6mol)、テトラブチルチタネート0.30gを入れ窒素気流下フラスコ内温度を110&ordm;Cからメタノールを留去しながら170℃まで加熱し9時間反応させた。最終的に210mlのメタノールを留去した。その後内温150&ordm;Cで0.1-0.5mmHgの減圧下で1時間攪拌し、内温170℃〜190℃で7時間反応後、取り出した。合成物の溶液粘度(ηinh)は0.12だった。得られたPEOxの融点(m.p.)及びガラス転移温度(℃)は、m.p.172℃、Tg25℃であった。
溶液粘度(ηinh)の測定は、120℃で一晩真空乾燥させた合成したPEOxを用い、これをm-クロロフェノール/1,2,4-トリクロロベンゼン=4/1(重量比)混合溶媒に浸漬し、150℃で約10分溶解させ濃度0.4g/dlの溶液を作り、ついでウベローデ粘度計を用いて30℃で溶融粘度を測定した。(単位dl/g)
<Synthesis of polyethylene oxalate (hereinafter also abbreviated as “PEOx”)>
A 1 L separable flask equipped with a mantle heater, a stirrer, a nitrogen inlet tube, and a condenser tube was charged with 354 g (3.0 mol) of dimethyl oxalate, 223.5 g (3.6 mol) of ethylene glycol, and 0.30 g of tetrabutyl titanate under a nitrogen stream. While the methanol was distilled off from 110 &ordm; C, the internal temperature was heated to 170 ° C. and reacted for 9 hours. Finally, 210 ml of methanol was distilled off. Thereafter, the mixture was stirred at an internal temperature of 150 &ordm; C under a reduced pressure of 0.1-0.5 mmHg for 1 hour, reacted at an internal temperature of 170 ° C to 190 ° C for 7 hours, and then taken out. The solution viscosity (ηinh) of the composite was 0.12. The obtained PEOx had a melting point (mp) and a glass transition temperature (° C.) of mp 172 ° C. and Tg 25 ° C.
The solution viscosity (ηinh) was measured using a synthesized PEOx that was vacuum-dried overnight at 120 ° C., and this was mixed with m-chlorophenol / 1,2,4-trichlorobenzene = 4/1 (weight ratio) mixed solvent. It was immersed and dissolved at 150 ° C. for about 10 minutes to form a solution having a concentration of 0.4 g / dl, and then the melt viscosity was measured at 30 ° C. using an Ubbelohde viscometer. (Unit dl / g)

<分解促進剤含有PLAペレットの作製>
各種材料をドライブレンドし、二軸押出機(テクノベル社製ULT Nano05-20AG)を用いて溶融混合し、マスターペレットを作製した。分解促進剤としてPEOxを用いた場合は200℃、PGAを用いた場合は240℃で成形した。
<Production of decomposition accelerator-containing PLA pellet>
Various materials were dry blended and melt mixed using a twin screw extruder (ULT Nano05-20AG manufactured by Technobel) to prepare a master pellet. Molding was performed at 200 ° C when PEOx was used as a decomposition accelerator, and at 240 ° C when PGA was used.

<未延伸シートの作製>
各種材料をドライブレンドし、ラボプラストミル(株式会社東洋精機製作所製)を用いて、190〜270μmの単層、多層シートを製膜した。PLAシートは200℃、PEOx含有PLAシートは200℃、PGA含有PLAシートは240℃で成形した。
<Preparation of unstretched sheet>
Various materials were dry blended, and 190 to 270 μm single-layer and multi-layer sheets were formed using a lab plast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.). The PLA sheet was molded at 200 ° C., the PEOx-containing PLA sheet was molded at 200 ° C., and the PGA-containing PLA sheet was molded at 240 ° C.

<延伸フィルムの作製>
上記方法で作製したシートを東洋精機製二軸延伸機を用いて延伸フィルムを作製した。延伸は75℃で行った。
<Production of stretched film>
A stretched film was produced from the sheet produced by the above method using a biaxial stretching machine manufactured by Toyo Seiki. Stretching was performed at 75 ° C.

<FT-IRの測定>
株式会社デジラボ・ジャパン社製のFTS7000SERIESを用いて行った。シートに対して全反射測定法(ATR法)で行い、測定周波数:600cm−1〜4000cm−1とした。
<Measurement of FT-IR>
This was performed using FTS7000SERIES manufactured by Digilab Japan. Performed by the total reflection measuring method (ATR method) with respect to the seat, measurement frequency: was 600cm -1 ~4000cm -1.

<シュウ酸、グリコール酸の溶出量の測定>
上記方法で作製された未延伸シートを形状(縦:2cm横:2cm)に加工し、超純水10mlを容器内に入れて密封した状態で、40℃下で一週間放置した。一週間後残液2ml取り出し、後述のHPLCでシュウ酸溶出量を測定した。
<Measurement of elution amount of oxalic acid and glycolic acid>
The unstretched sheet produced by the above method was processed into a shape (length: 2 cm, width: 2 cm), and 10 ml of ultrapure water was placed in a container and sealed, and left at 40 ° C. for one week. One week later, 2 ml of the remaining solution was taken out, and the oxalic acid elution amount was measured by HPLC described later.

<HPLC(高速液体クロマトグラフ)>
HPLCシステムにはJASCO製GULLIVER seriesを使用し、以下の条件で分析した。カラム(Waters製Atlantis dC18 5μm、4.6×250mm)を40℃に保ったカラムオーブン内で用い、0.5%リン酸とメタノールで流速1mL/分となるように図9のとおりグラジエントをかけ、それを移動相としてサンプルを50μl注入した。検出には210nmのUV吸収を用い、標準サンプルとしてシュウ酸、グリコール酸またはL-乳酸(和光純薬工業社製)を精製したものを用いた。
<HPLC (High Performance Liquid Chromatograph)>
JASCO GULLIVER series was used for the HPLC system, and the analysis was performed under the following conditions. Using a column (Waters Atlantis dC 18 5 μm, 4.6 × 250 mm) in a column oven maintained at 40 ° C., apply a gradient with 0.5% phosphoric acid and methanol at a flow rate of 1 mL / min as shown in FIG. 50 μl of sample was injected as the mobile phase. For detection, UV absorption at 210 nm was used, and oxalic acid, glycolic acid or L-lactic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was used as a standard sample.

<分解性試験>
pH7の60mmol/lリン酸緩衝液10mlに、CLE酵素液(リパーゼ活性653U/mlを示すCryptococcus sp. S-2由来リパーゼ(独立行政法人酒類総合研究所:特開2004-73123))48μlを添加して分解液を作製した。なお、リパーゼ活性は基質としてパラニトロフェニルラウレートを用いて測定した。ここで、リパーゼ活性の1Uとは1μmol/minのパラニトロフェノールをパラニトロフェニルラウレートから遊離させた時の酵素量で定義される。
分解性が○とは分解性試験7日後の結果で、分解率が60%以上のサンプルを示す。×は60%未満のサンプルを示す。
酸溶出性が○とはシュウ酸またはグリコール酸の溶出が10ppm以下のサンプルを示す。×は10PPMを超えるサンプルを示す。
<Degradability test>
48 ml of CLE enzyme solution (Cryptococcus sp. S-2 lipase showing lipase activity of 653 U / ml (Independent Administrative Institution Liquor Research Institute: JP 2004-73123)) added to 10 ml of pH 7 60 mmol / l phosphate buffer Thus, a decomposition solution was prepared. The lipase activity was measured using paranitrophenyl laurate as a substrate. Here, 1 U of lipase activity is defined as the amount of enzyme when 1 μmol / min of paranitrophenol is released from paranitrophenyl laurate.
Degradability is a result of 7 days after the degradability test, indicating a sample having a degradation rate of 60% or more. X indicates a sample of less than 60%.
An acid elution property of ◯ indicates a sample in which elution of oxalic acid or glycolic acid is 10 ppm or less. X indicates a sample exceeding 10 PPM.

<延伸フィルムの分解率の測定>
上記方法で作製された延伸フィルムを2cm×2cmに切り出し、上記分解液10mlと延伸フィルムを25mlのバイアル瓶内に入れ、所定の温度(45℃100rpm)で7日間振とうさせた。なお、pHの極度な低下を避けるため、7日間を2日、2日、3日に分け、それぞれ分解液を交換して行った。7日後、延伸フィルムを取り出し45℃オーブンで一晩乾燥させ、重量を測定した。延伸フィルムの分解率は{(初期の延伸フィルム重量)―(7日後の延伸フィルム重量)/初期の延伸フィルム重量}×100で求めた。
<Measurement of degradation rate of stretched film>
The stretched film produced by the above method was cut into 2 cm × 2 cm, 10 ml of the decomposition solution and the stretched film were placed in a 25 ml vial, and shaken at a predetermined temperature (45 ° C., 100 rpm) for 7 days. In order to avoid an extreme decrease in pH, 7 days were divided into 2 days, 2 days, and 3 days, and the decomposition solution was changed. After 7 days, the stretched film was taken out and dried in a 45 ° C. oven overnight, and the weight was measured. The degradation rate of the stretched film was determined by {(initial stretched film weight) − (stretched film weight after 7 days) / initial stretched film weight} × 100.

<未延伸シートの分解性試験>
pH7の60mmol/lリン酸緩衝液30mlに、CLE酵素液(リパーゼ活性653U/mlを示すCryptococcus sp. S-2由来リパーゼ(独立行政法人酒類総合研究所:特開2004-73123))144μlを添加して分解液を作製した。
上記方法で作製した未延伸シートを2cmx2cmに切り出し、上記分解液30mlとシートを50mlのポリ瓶加え、延伸フィルムの分解性試験と同様に分解率を測定した。
<Decomposability test of unstretched sheet>
144 ml of CLE enzyme solution (Cryptococcus sp. S-2 lipase showing lipase activity of 653 U / ml (Independent Administrative Institution Liquor Research Institute: JP 2004-73123)) added to 30 ml of pH 7 60 mmol / l phosphate buffer Thus, a decomposition solution was prepared.
The unstretched sheet produced by the above method was cut into 2 cm × 2 cm, 30 ml of the above-described decomposition solution and the sheet were added to a 50 ml plastic bottle, and the decomposition rate was measured in the same manner as the decomposability test of the stretched film.

<参考例>
上述の方法で作製したPLA1、2、3、4倍(参考例1〜4)一軸延伸フィルムの分解性試験を行った。結果を図2に示す。PEOx5%含有のPLA1、2、3、4倍(参考例5〜8)一軸延伸フィルム、二軸方向に3×3倍(参考例9)延伸フィルムの分解性試験を行った。結果を図2、3に示す。
<Reference example>
PLA 1, 2, 3, 4 times (Reference Examples 1 to 4) uniaxially stretched films produced by the above-described method were subjected to a degradability test. The results are shown in FIG. A degradability test was performed on PLA1, 2, 3, 4 times (Reference Examples 5 to 8) uniaxially stretched film containing PEOx 5%, and 3 × 3 times (Reference Example 9) stretched film in the biaxial direction. The results are shown in FIGS.

上記の結果により、分解促進剤を含有しないPLA延伸フィルムは、延伸倍率が3倍以上になると分解性が低下し、分解促進剤を含有したPLA延伸フィルムは、延伸倍率が4倍であっても分解性を有することがわかる。   According to the above results, the PLA stretched film not containing the decomposition accelerator has a degradability deteriorated when the draw ratio becomes 3 times or more, and the PLA stretched film containing the decomposition accelerator has a draw ratio of 4 times. It can be seen that it has degradability.

<実施例1〜7、比較例1〜4>
上述の方法で未延伸シート(実施例1〜2、5、比較例1〜2)、または上述の方法で延伸フィルム(実施例3、4、6、7、比較例3〜4)を作製後、分解性試験、酸溶出量の測定をそれぞれ行った。PLAへのPEOxまたはPGAの含有量は5wt%で行った。結果を表1、図4、5、6に示す。表1からわかるように、内外層の厚みは、5μm以上、40μm以下、かつFT-IR(ATR法)測定し、カルボニル基の吸収ピークの2次微分スペクトルにおいて、結晶ピーク強度/非晶ピーク強度<0.7未満、内外層の延伸倍率が4倍未満であることで、分解性を有し、分解促進剤から放出される酸を抑制する生分解性多層容器を得ることがわかる(図7、8)。
なお、比較例4は実施例4を熱処理(120℃10分)した。
<Examples 1-7, Comparative Examples 1-4>
After producing an unstretched sheet (Examples 1-2, 5, Comparative Examples 1-2) by the above-mentioned method, or a stretched film (Examples 3, 4, 6, 7, Comparative Examples 3-4) by the above-mentioned method. Then, the degradability test and the acid elution amount were measured, respectively. The content of PEOx or PGA in PLA was 5 wt%. The results are shown in Table 1 and FIGS. As can be seen from Table 1, the thickness of the inner and outer layers is 5 μm or more and 40 μm or less, and FT-IR (ATR method) is measured. In the second derivative spectrum of the absorption peak of the carbonyl group, the crystal peak intensity / amorphous peak intensity It can be seen that when the draw ratio of the inner and outer layers is less than 0.7 and less than 4 times, a biodegradable multilayer container having degradability and suppressing acid released from the decomposition accelerator is obtained (FIGS. 7 and 8). ).
In Comparative Example 4, Example 4 was heat-treated (120 ° C. for 10 minutes).

本発明の生分解性多層容器においては、生分解性に優れると共に、生分解性多層容器から放出される成分を制御することができるため、米飯、肉、魚、惣菜、サラダ、フルーツ、アイスなどを収納する容器として好適に利用することができる。容器の形態としてはトレー、カップ、ボトル、弁当容器及びその蓋材などが挙げられ、そのまま廃棄処理可能なため、環境負荷の低い生分解性多層容器として利用される。   In the biodegradable multilayer container of the present invention, it is excellent in biodegradability and can control the components released from the biodegradable multilayer container, so that rice, meat, fish, side dish, salad, fruit, ice etc. Can be suitably used as a container for storing the. Examples of the container include trays, cups, bottles, lunch boxes and lids thereof, and can be disposed of as they are, so that they are used as biodegradable multilayer containers with low environmental impact.

1 内容物
2 胴部
3 容器
4 フランジ部
5 底部

1 Contents 2 Body 3 Container 4 Flange 5 Bottom

Claims (9)

生分解性樹脂100重量部に対して分解促進剤が0.1重量部以上、10重量部未満配合されている分解促進剤含有生分解性樹脂の中間層と、厚み5μm以上、40μm以下の生分解性樹脂の内外層からなる生分解性多層容器。 An intermediate layer of a biodegradable resin containing a degradation accelerator containing 0.1 to 10 parts by weight of a degradation accelerator with respect to 100 parts by weight of the biodegradable resin, and a biodegradable resin having a thickness of 5 μm or more and 40 μm or less. A biodegradable multilayer container consisting of inner and outer layers of degradable resin. 前記生分解性多層容器の断片をFT-IR(ATR法)測定しカルボニル基の吸収ピークの2次微分スペクトルが、結晶ピーク/非晶ピーク<0.7未満である請求項1に記載の生分解性多層容器。 The biodegradability according to claim 1, wherein a fragment of the biodegradable multilayer container is measured by FT-IR (ATR method), and the second derivative spectrum of the absorption peak of the carbonyl group is less than the crystal peak / amorphous peak <0.7. Multi-layer container. 前記内外層の延伸倍率が、1〜4倍未満の延伸倍率である請求項1又は2に記載の生分解性多層容器。 The biodegradable multilayer container according to claim 1 or 2, wherein the stretching ratio of the inner and outer layers is a stretching ratio of less than 1 to 4 times. DSC測定において、多層容器の一部が未延伸部の結晶化ピーク以下にピークを有する請求項3に記載の生分解性多層容器。 The biodegradable multilayer container according to claim 3, wherein a part of the multilayer container has a peak below the crystallization peak of the unstretched part in DSC measurement. 前記中間層の延伸倍率が内外層の延伸倍率より大きい請求項1〜3の何れかに記載の生分解性多層容器。 The biodegradable multilayer container according to any one of claims 1 to 3, wherein a stretch ratio of the intermediate layer is larger than a stretch ratio of the inner and outer layers. 前記中間層の厚みが全体厚みの20〜95%である請求項1〜5の何れかに記載の生分解性多層容器。 The biodegradable multilayer container according to any one of claims 1 to 5, wherein the thickness of the intermediate layer is 20 to 95% of the total thickness. 前記分解促進剤がポリオキサレート及び/またはポリグリコール酸である請求項1〜6の何れかに記載の生分解性多層容器。 The biodegradable multilayer container according to any one of claims 1 to 6, wherein the decomposition accelerator is polyoxalate and / or polyglycolic acid. 前記生分解性多層容器が、溶液下にて酵素と接触させて分解させるための容器である請求項1〜7の何れかに記載の生分解性多層容器。 The biodegradable multilayer container according to any one of claims 1 to 7, wherein the biodegradable multilayer container is a container for contacting and decomposing with an enzyme in a solution. 前記生分解性多層容器が、フランジ部、胴部、底部を有し、シート状の積層体を二次成形して得られる請求項1〜8の何れかに記載の生分解性多層容器。 The biodegradable multilayer container according to any one of claims 1 to 8, wherein the biodegradable multilayer container has a flange part, a body part, and a bottom part, and is obtained by secondary molding of a sheet-like laminate.
JP2010082416A 2010-03-31 2010-03-31 Biodegradable multilayer container Active JP5656001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010082416A JP5656001B2 (en) 2010-03-31 2010-03-31 Biodegradable multilayer container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010082416A JP5656001B2 (en) 2010-03-31 2010-03-31 Biodegradable multilayer container

Publications (2)

Publication Number Publication Date
JP2011213374A true JP2011213374A (en) 2011-10-27
JP5656001B2 JP5656001B2 (en) 2015-01-21

Family

ID=44943538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010082416A Active JP5656001B2 (en) 2010-03-31 2010-03-31 Biodegradable multilayer container

Country Status (1)

Country Link
JP (1) JP5656001B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110610A1 (en) * 2015-12-25 2017-06-29 株式会社クレハ Composition, composition for downhole tool, degradable rubber member for downhole tool, downhole tool, and well drilling method
WO2018079662A1 (en) * 2016-10-28 2018-05-03 学校法人立教学院 Resin composition and hydrolysis method therefor
US11059952B2 (en) 2017-05-25 2021-07-13 Kureha Corporation Rubber composition for downhole tools and member for downhole tools
WO2023167547A1 (en) * 2022-03-04 2023-09-07 씨제이제일제당(주) Polylactic acid resin vaporization promoter and composition containing same
WO2024019035A1 (en) * 2022-07-21 2024-01-25 興国インテック株式会社 Degradable rubber composition, rubber member, sealing member, and method for producing degradable rubber composition
WO2024019036A1 (en) * 2022-07-21 2024-01-25 興国インテック株式会社 Degradable rubber composition, rubber member, sealing member, and method for producing degradable rubber composition

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000085837A (en) * 1998-09-17 2000-03-28 Fujitsu Ltd Reel for electronic part packaging and production thereof
JP2000117920A (en) * 1998-08-11 2000-04-25 Dainippon Ink & Chem Inc Lactic acid type polymer laminate and molded article
JP2007070426A (en) * 2005-09-06 2007-03-22 Ube Ind Ltd Aliphatic polyester composition and molded article thereof
JP2008024851A (en) * 2006-07-21 2008-02-07 Mitsui Chemicals Inc Biodegradable composition, and molded article and use of the same
JP2008101032A (en) * 2005-02-07 2008-05-01 Ube Ind Ltd Lactic acid-oxalate block copolymer
WO2008149995A1 (en) * 2007-06-06 2008-12-11 Mitsubishi Plastics, Inc. Polylactic acid resin composition, polylactic acid film, molded articles, oriented film and heat-shrinkable labels made by using the polylactic acid film, and containers with the labels
WO2008149918A1 (en) * 2007-06-06 2008-12-11 Toyo Seikan Kaisha, Ltd. Biodegradable resin bottle and process for producing the same
WO2009022526A1 (en) * 2007-08-14 2009-02-19 Toyo Seikan Kaisha, Ltd. Biodegradable resin container having deposited film, and method for formation of deposited film
JP2009137139A (en) * 2007-12-06 2009-06-25 Toray Ind Inc Plastic case
WO2009084518A1 (en) * 2007-12-28 2009-07-09 Toray Industries, Inc. Laminated film and packaging material composed of the same
JP2009179400A (en) * 2009-03-06 2009-08-13 Mitsubishi Plastics Inc Biodegradable blister pack

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117920A (en) * 1998-08-11 2000-04-25 Dainippon Ink & Chem Inc Lactic acid type polymer laminate and molded article
JP2000085837A (en) * 1998-09-17 2000-03-28 Fujitsu Ltd Reel for electronic part packaging and production thereof
JP2008101032A (en) * 2005-02-07 2008-05-01 Ube Ind Ltd Lactic acid-oxalate block copolymer
JP2007070426A (en) * 2005-09-06 2007-03-22 Ube Ind Ltd Aliphatic polyester composition and molded article thereof
JP2008024851A (en) * 2006-07-21 2008-02-07 Mitsui Chemicals Inc Biodegradable composition, and molded article and use of the same
WO2008149995A1 (en) * 2007-06-06 2008-12-11 Mitsubishi Plastics, Inc. Polylactic acid resin composition, polylactic acid film, molded articles, oriented film and heat-shrinkable labels made by using the polylactic acid film, and containers with the labels
WO2008149918A1 (en) * 2007-06-06 2008-12-11 Toyo Seikan Kaisha, Ltd. Biodegradable resin bottle and process for producing the same
WO2009022526A1 (en) * 2007-08-14 2009-02-19 Toyo Seikan Kaisha, Ltd. Biodegradable resin container having deposited film, and method for formation of deposited film
JP2009137139A (en) * 2007-12-06 2009-06-25 Toray Ind Inc Plastic case
WO2009084518A1 (en) * 2007-12-28 2009-07-09 Toray Industries, Inc. Laminated film and packaging material composed of the same
JP2009179400A (en) * 2009-03-06 2009-08-13 Mitsubishi Plastics Inc Biodegradable blister pack

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110610A1 (en) * 2015-12-25 2017-06-29 株式会社クレハ Composition, composition for downhole tool, degradable rubber member for downhole tool, downhole tool, and well drilling method
US10829614B2 (en) 2015-12-25 2020-11-10 Kureha Corporation Composition, composition for downhole tools, degradable rubber member for downhole, downhole tool, and method for well drilling
WO2018079662A1 (en) * 2016-10-28 2018-05-03 学校法人立教学院 Resin composition and hydrolysis method therefor
US11059952B2 (en) 2017-05-25 2021-07-13 Kureha Corporation Rubber composition for downhole tools and member for downhole tools
WO2023167547A1 (en) * 2022-03-04 2023-09-07 씨제이제일제당(주) Polylactic acid resin vaporization promoter and composition containing same
WO2024019035A1 (en) * 2022-07-21 2024-01-25 興国インテック株式会社 Degradable rubber composition, rubber member, sealing member, and method for producing degradable rubber composition
WO2024019036A1 (en) * 2022-07-21 2024-01-25 興国インテック株式会社 Degradable rubber composition, rubber member, sealing member, and method for producing degradable rubber composition

Also Published As

Publication number Publication date
JP5656001B2 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
US9284432B2 (en) Method for degrading a readily-degradable resin composition
Kumar et al. Mechanical, chemical, and bio-recycling of biodegradable plastics: A review
JP5651932B2 (en) Biodegradable resin composition
JP7322463B2 (en) biodegradable laminate
US8222316B2 (en) Chemical additives to make polymeric materials biodegradable
US8513329B2 (en) Chemical additives to make polymeric materials biodegradable
JP5656001B2 (en) Biodegradable multilayer container
WO2010055903A1 (en) Biodegradable resin composition
JP5630597B2 (en) Method for treating organic waste containing biodegradable resin moldings
US20110200771A1 (en) Polymer additives
JP2012077245A (en) Biodegradable resin composition
JP5510892B2 (en) Biodegradable laminate and biodegradable container using the same
JP2021523957A (en) Addition of additives that impart biodegradability to plastic materials
JP5582445B2 (en) Polyoxalate and biodegradable resin composition containing the same
JP5633291B2 (en) Biodegradable resin composition
JP5445756B2 (en) Method for decomposing easily decomposable resin composition
JP5088699B2 (en) Method for decomposing easily decomposable resin composition
JP2010138390A (en) Solution and method for degrading easily degradable resin composition
JP2008094882A (en) Method for preserving biodegradable resin
JP2010132886A (en) Method for producing oligomer and/or monomer by degrading biodegradable resin
JP2009046688A (en) Method for producing thermoformed product
JP2005289069A (en) Biodegradable thermoforming sheet-shaped material and container
JP2008106096A (en) Resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141111

R150 Certificate of patent or registration of utility model

Ref document number: 5656001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150