JP2011212567A - Composite catalyst for microwave reaction field and method of manufacturing the same, and method of manufacturing ester using the catalyst - Google Patents

Composite catalyst for microwave reaction field and method of manufacturing the same, and method of manufacturing ester using the catalyst Download PDF

Info

Publication number
JP2011212567A
JP2011212567A JP2010082227A JP2010082227A JP2011212567A JP 2011212567 A JP2011212567 A JP 2011212567A JP 2010082227 A JP2010082227 A JP 2010082227A JP 2010082227 A JP2010082227 A JP 2010082227A JP 2011212567 A JP2011212567 A JP 2011212567A
Authority
JP
Japan
Prior art keywords
composite catalyst
catalyst
manufacturing
pore
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010082227A
Other languages
Japanese (ja)
Inventor
Yasunori Tsukahara
保徳 塚原
Yuji Wada
雄二 和田
Tomohisa Yamauchi
智央 山内
Akio Baba
章夫 馬場
Makoto Yasuda
誠 安田
Takumi Kono
巧 河野
Hideaki Nomoto
英朗 野本
Kiyotaka Onishi
清高 大西
Masakazu Higuchi
雅一 樋口
Iwao Yoshino
巌 吉野
Akinori Ishizuka
章斤 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Nippon Steel Chemical and Materials Co Ltd
Microwave Chemical Co Ltd
Original Assignee
Osaka University NUC
Nippon Steel Chemical Co Ltd
Microwave Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Nippon Steel Chemical Co Ltd, Microwave Chemical Co Ltd filed Critical Osaka University NUC
Priority to JP2010082227A priority Critical patent/JP2011212567A/en
Publication of JP2011212567A publication Critical patent/JP2011212567A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Fats And Perfumes (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid acid catalyst excellent in mass productivity, and to provide a method of manufacturing an ester excellent in mass productivity using the solid acid catalyst.SOLUTION: A composite catalyst for microwave reaction field comprises a functional group and a carbon structure having a pore structure suitable for a matter transport and sorbing microwaves. The pore structure has many meso pores, and has a total pore surface area of ≥10 m/g and ≤2,000 m/g and a meso pore area of ≥10% and ≤100% to the total pore surface area.

Description

この発明は、マイクロ波反応場用複合触媒及びその製造方法、並びに同触媒を用いてエステル化合物を製造する方法に関する。このエステル化触媒は、バイオディーゼル燃料の製造に好適に用いられる。   The present invention relates to a composite catalyst for a microwave reaction field, a method for producing the same, and a method for producing an ester compound using the catalyst. This esterification catalyst is suitably used for the production of biodiesel fuel.

脂肪酸をアルコールでエステル化する方法などによって得られる脂肪酸エステルは、ディーゼル機関の燃料として期待されている。エステル化反応では原料を加熱する必要があり、加熱手段として、外部加熱に比べて反応時間を短縮できることなどからマイクロ波照射が提案されている(特許文献1)。外部加熱が,基質と反応剤に熱伝導というかたちで熱エネルギーを伝達するのに対し,マイクロ波加熱はこれらの分子に直接的にエネルギーを授受し、より短時間、低温度で反応を進行させることが可能だからである。   Fatty acid esters obtained by a method of esterifying fatty acids with alcohol are expected as fuel for diesel engines. In the esterification reaction, it is necessary to heat the raw material, and microwave irradiation has been proposed as a heating means because the reaction time can be shortened compared to external heating (Patent Document 1). While external heating transfers thermal energy to the substrate and reactant in the form of heat conduction, microwave heating directly transfers energy to these molecules, allowing the reaction to proceed at a lower temperature for a shorter time. Because it is possible.

また、触媒としては硫酸などに代表される均一系触媒が比較的高い反応性を示す一方で、反応後の中和過程や塩の除去過程を必要とするのに対し、反応後に中和過程や塩の除去過程を要せず、回収もしやすくて地球環境を害さない固体酸触媒が良いとされ、スルホン酸官能性を有するイオン交換樹脂が例示されている(特許文献1、2)。固体酸触媒としては、スルホ基が導入された無定形炭素も提案されている(特許文献3)。スルホ基が導入されたこの無定形炭素は、ナフタレンなどの芳香族有機化合物を多量の硫酸とともに15時間も加熱し、過剰の硫酸を減圧蒸留で除去することによって、製造されている。   In addition, as a catalyst, a homogeneous catalyst represented by sulfuric acid and the like shows a relatively high reactivity, while a neutralization process and a salt removal process after the reaction are required, whereas a neutralization process and a reaction after the reaction are performed. Solid acid catalysts that do not require a salt removal process, are easy to recover and do not harm the global environment are considered good, and ion exchange resins having sulfonic acid functionality are exemplified (Patent Documents 1 and 2). As a solid acid catalyst, amorphous carbon into which a sulfo group is introduced has also been proposed (Patent Document 3). This amorphous carbon into which a sulfo group has been introduced is produced by heating an aromatic organic compound such as naphthalene together with a large amount of sulfuric acid for 15 hours and removing excess sulfuric acid by distillation under reduced pressure.

特開2006−151923JP 2006-151923 A 特開2006−315991JP 2006-315991 A 国際公開2005−29508International Publication 2005-29508

しかし、スルホン酸官能性を有するイオン交換樹脂は、合成困難でコストが高いため量産に適さない。また、スルホ基が導入された無定形炭素も15時間も加熱する必要があることから、コストが高い。いずれにしても、固体酸触媒を用いた場合のエステル化率に影響を及ぼす要因について、未だ解明されていない部分が多く残されている。
それ故、この発明の課題は、量産性に優れた固体酸触媒を提供することと、固体酸触媒を用いて量産性に優れたエステル製造方法を提供することにある。
However, ion exchange resins having sulfonic acid functionality are not suitable for mass production because they are difficult to synthesize and are expensive. In addition, the amorphous carbon into which the sulfo group has been introduced needs to be heated for 15 hours, so that the cost is high. In any case, there are still many unexplained parts about factors affecting the esterification rate when a solid acid catalyst is used.
Therefore, an object of the present invention is to provide a solid acid catalyst excellent in mass productivity and to provide an ester production method excellent in mass productivity using a solid acid catalyst.

その課題を解決するために、この発明のマイクロ波反応場用複合触媒は、
官能基と、物質輸送に適した細孔構造を有し且つマイクロ波を吸収する炭素構造体とを備えることを特徴とする。
この発明の複合触媒は、細孔構造を有し且つマイクロ波を吸収する炭素構造体を備えるので、これにマイクロ波を照射すると炭素構造体が容易にマイクロ波を吸収して発熱する。このため、官能基の周囲の原料が短時間で高温に熱せられて、触媒との界面上で速く反応する。
In order to solve the problem, the composite catalyst for microwave reaction field of the present invention is:
It comprises a functional group and a carbon structure having a pore structure suitable for mass transport and absorbing microwaves.
Since the composite catalyst of the present invention includes a carbon structure having a pore structure and absorbing microwaves, when the microwave structure is irradiated to the carbon structure, the carbon structure easily absorbs the microwaves and generates heat. For this reason, the raw material around the functional group is heated to a high temperature in a short time, and reacts quickly on the interface with the catalyst.

官能基が、スルホ基またはスルホ誘導基であって前記炭素構造体に化学的に結合されているものであれば、エステル化反応後に中和過程が簡略化される。炭素構造体としては、多孔質構造、ナノチューブ構造またはグラファイト構造を有する炭素材料が挙げられる。
この複合触媒は、このような炭素構造体と硫酸及び発煙硫酸のうち一種以上との混合物を20℃以上200℃以下の温度で加熱することによって製造される。この場合の加熱手段もマイクロ波照射が利用できる。従って、減圧装置などの大がかりな設備が無くても短時間で効率よく製造することができる。
前記混合物のpHを5以下、好ましくは4以下に調整した後に前記加熱を行うと、エステル化率が特に高くなる。
If the functional group is a sulfo group or a sulfo derivative group and is chemically bonded to the carbon structure, the neutralization process is simplified after the esterification reaction. Examples of the carbon structure include a carbon material having a porous structure, a nanotube structure, or a graphite structure.
This composite catalyst is produced by heating a mixture of such a carbon structure and one or more of sulfuric acid and fuming sulfuric acid at a temperature of 20 ° C. or higher and 200 ° C. or lower. In this case, microwave irradiation can also be used as the heating means. Therefore, even if there is no extensive equipment such as a decompression device, it can be manufactured efficiently in a short time.
When the heating is carried out after adjusting the pH of the mixture to 5 or less, preferably 4 or less, the esterification rate becomes particularly high.

以上のように、この発明の複合触媒は、短時間で効率よく製造することができるので、それ自体の量産性に優れる。そして、この触媒によれば、エステル化反応後に中和過程を要しないうえ、短時間で反応系が加熱されるので、エステルの量産性にも優れる。   As described above, since the composite catalyst of the present invention can be efficiently produced in a short time, it is excellent in mass production itself. And according to this catalyst, since the neutralization process is not required after the esterification reaction and the reaction system is heated in a short time, the mass productivity of the ester is excellent.

各種炭素材料へのマイクロ波照射時間と温度上昇との関係を示すグラフである。It is a graph which shows the relationship between the microwave irradiation time to various carbon materials, and a temperature rise. 活性炭の赤外吸収スペクトルを示すグラフである。It is a graph which shows the infrared absorption spectrum of activated carbon. 二種類の活性炭の窒素吸着等温線を示すグラフである。It is a graph which shows the nitrogen adsorption isotherm of two types of activated carbon. 図3のグラフから計算したマイクロ孔分布と、メソ孔分布を示すグラフである。It is a graph which shows the micropore distribution calculated from the graph of FIG. 3, and a mesopore distribution. 複合触媒(エステル化触媒)の酸性度とエステル化率との関係を示すグラフである。It is a graph which shows the relationship between the acidity of a composite catalyst (esterification catalyst), and esterification rate. 複合触媒製造過程のおける混合物のpHとエステル化率との関係を示すグラフである。It is a graph which shows the relationship between pH of a mixture and esterification rate in a composite catalyst manufacturing process.

炭素材料としては、図1に示すように活性炭(グラファイト)も炭素ナノチューブもマイクロ波吸収能に優れるので、いずれも適用可能である。フラーレンはマイクロ波吸収能が乏しいので不適である。触媒製造のための硫酸は、濃硫酸、発煙硫酸、これらの混合物のいずれも適用可能である。前記触媒製造方法において用いられる硫酸は、これらの全てを含む広義に解される。
前記官能基は、好ましくは複合触媒全体に対して0.1〜50重量%の量で含まれている。0.1重量%に満たないと効果に乏しく、50重量%を超える量で複合触媒中に含ませるのは困難だからである。
物質輸送に適した前記細孔構造としては、孔径2nm以上50nm以下の多数のメソ孔を有するものであるか、または100m2/g以上2000m2/g以下の全細孔表面積と、全細孔表面積に対して10%以上100%以下のメソ孔面積とを有するものが好ましい。メソ孔の比率の高い程、反応基質が触媒内を移動しやすく、触媒活性に富むからである。
As the carbon material, as shown in FIG. 1, both activated carbon (graphite) and carbon nanotubes are excellent in the ability to absorb microwaves. Fullerenes are not suitable because they have poor microwave absorption. As sulfuric acid for producing the catalyst, concentrated sulfuric acid, fuming sulfuric acid, or a mixture thereof can be applied. The sulfuric acid used in the catalyst production method is understood in a broad sense including all of these.
The functional group is preferably contained in an amount of 0.1 to 50% by weight based on the entire composite catalyst. If the amount is less than 0.1% by weight, the effect is poor, and it is difficult to include it in the composite catalyst in an amount exceeding 50% by weight.
The pore structure suitable for material transport has a large number of mesopores having a pore diameter of 2 nm to 50 nm, or a total pore surface area of 100 m 2 / g to 2000 m 2 / g, Those having a mesopore area of 10% to 100% with respect to the surface area are preferred. This is because the higher the mesopore ratio, the easier the reaction substrate moves in the catalyst and the richer the catalytic activity.

[触媒のスルホン化]
活性炭(キシダ化学株式会社製48−250mesh)2gと濃硫酸140mLとを混合し、混合物に2.45GHzのマイクロ波を照射することによって、混合物の温度を7分で150℃まで上昇させ、その温度で30分間保持した。放冷後、混合物をろ過し、ろ物を炭酸水素ナトリウム水、0.1M塩酸及び水で各々洗浄し、乾燥させることによって、触媒を製造した。
[Sulfonation of catalyst]
By mixing 2 g of activated carbon (48-250 mesh manufactured by Kishida Chemical Co., Ltd.) and 140 mL of concentrated sulfuric acid and irradiating the mixture with microwaves of 2.45 GHz, the temperature of the mixture is increased to 150 ° C. in 7 minutes. For 30 minutes. After allowing to cool, the mixture was filtered, and the filtrate was washed with aqueous sodium hydrogen carbonate, 0.1 M hydrochloric acid and water, and dried to prepare a catalyst.

得られた触媒100mgを0.1M水酸化ナトリウム水溶液10mLに溶かし、0.1M塩酸で中和滴定することにより、触媒の酸性度を求めたところ、1であった。この触媒と元の活性炭の赤外吸収(IR)スペクトルを観察したところ、図2に示すように触媒のスペクトルのみ1154cm-1及び1023cm-1の波長で吸収率の増加が認められた。これらの吸収は、スルホン酸塩の吸収1175cm-1及び1055cm-1にほぼ一致することから、触媒においては活性炭がスルホン化されているといえる。 When 100 mg of the obtained catalyst was dissolved in 10 mL of a 0.1 M aqueous sodium hydroxide solution and neutralized with 0.1 M hydrochloric acid, the acidity of the catalyst was determined to be 1. When the infrared absorption (IR) spectrum of this catalyst and the original activated carbon was observed, as shown in FIG. 2, only the spectrum of the catalyst showed an increase in absorption at wavelengths of 1154 cm −1 and 1023 cm −1 . Since these absorptions substantially coincide with the absorptions of sulfonates 1175 cm −1 and 1055 cm −1 , it can be said that the activated carbon is sulfonated in the catalyst.

[触媒の調製] 細孔分布の異なる2種類の市販の活性炭a、bを重量比で約18倍の濃硫酸中に添加し、室温で1時間攪拌した後、60℃に加熱した発煙硫酸を加えた。パラフィルムで蓋をして混合物を25min攪拌した後、冷却し、蒸留水を加えて全量を1Lにした。その後混合物をろ過した。ろ液のpHを測定し、pHが中性域に入るまで蒸留水による洗浄を繰り返した。洗浄後、100℃真空中で3時間乾燥することにより固体触媒A、Bを得た。前記[触媒のスルホン化]で得られた触媒と同様にIRスペクトルで観察したところ、固体触媒A、Bもスルホン化されていた。 [Preparation of catalyst] Two types of commercially available activated carbons a and b having different pore distributions were added to concentrated sulfuric acid having a weight ratio of about 18 times, and stirred at room temperature for 1 hour, and then fuming sulfuric acid heated to 60 ° C was added. added. The mixture was covered with parafilm and the mixture was stirred for 25 minutes, then cooled, and distilled water was added to make the total volume 1 L. The mixture was then filtered. The pH of the filtrate was measured, and washing with distilled water was repeated until the pH entered the neutral range. After washing, solid catalysts A and B were obtained by drying in vacuum at 100 ° C. for 3 hours. When observed by IR spectrum in the same manner as the catalyst obtained in [Sulphonation of catalyst], the solid catalysts A and B were also sulfonated.

[細孔分布の解析]
エステル化反応に先立ち、窒素吸着法による活性炭a、bの細孔表面積・細孔分布解析を行った。図3に二種類の活性炭の窒素吸着等温線を示す。表1に図3の結果から求めた細孔全表面積とメソ孔面積を示す。なお、細孔全表面積はBET法、メソ孔面積はDH法により求めた。
[Analysis of pore distribution]
Prior to the esterification reaction, the pore surface area and pore distribution analysis of the activated carbons a and b by the nitrogen adsorption method were performed. FIG. 3 shows nitrogen adsorption isotherms of two types of activated carbon. Table 1 shows the total pore surface area and mesopore area determined from the results of FIG. The total pore surface area was determined by the BET method, and the mesopore area was determined by the DH method.

Figure 2011212567
Figure 2011212567

解析の結果、細孔の全表面積は、活性炭aと活性炭bで殆ど同じであるのに対し、メソ孔面積は大きく異なっていることがわかる。実験に供した活性炭の全表面積に占めるメソ孔比率は、活性炭bが活性炭aの約13倍であった。活性炭の細孔構造は、幾つかの要因によって決定されることがわかっているが、主に焼成温度の影響によってグラファイト層の構成単位が成長し、マイクロ孔比率が大きくなっていくことが報告されている。   As a result of the analysis, it is understood that the total surface area of the pores is almost the same between the activated carbon a and the activated carbon b, but the mesopore areas are greatly different. The mesopore ratio in the total surface area of the activated carbon used in the experiment was about 13 times that of activated carbon b for activated carbon b. The pore structure of activated carbon is known to be determined by several factors, but it has been reported that the structural unit of the graphite layer grows mainly due to the influence of the firing temperature and the micropore ratio increases. ing.

図4に図3の結果から計算したマイクロ孔分布と、メソ孔分布を示す。なお、マイクロ孔分布はMP法(R.S.Mikhail, S.Brunauer, E.E.Bondor, J.colloid Interface Sci., 26, 49(1968))、メソ孔分布はDH法(D.Dollimore, G.R.Heal, J.Colloid Interface Sci., 33, 508(1970))を使用して解析した。こちらの解析結果からも活性炭bの細孔がより大きな孔径に分布していることがわかる。   FIG. 4 shows the micropore distribution and mesopore distribution calculated from the results of FIG. In addition, micropore distribution is MP method (RSMikhail, S. Brunauer, EEBondor, J. colloid Interface Sci., 26, 49 (1968)), and mesopore distribution is DH method (D. Dollimore, GRHeal, J. Colloid Interface Sci., 33, 508 (1970)). This analysis result also shows that the pores of the activated carbon b are distributed over a larger pore size.

[エステル製造]
下記反応式に示すとおり、オレイン酸とメタノールのエステル化反応を以下の手順で行った。
[Ester production]
As shown in the following reaction formula, esterification reaction of oleic acid and methanol was performed according to the following procedure.

Figure 2011212567
Figure 2011212567

得られた触媒AまたはB1.2g、オレイン酸42.5g、メタノール5.2g(1.2当量)を反応容器に入れ、マイクロ波を照射することによって、90℃まで温度を上昇させ、マグネットスターラーで撹拌しながらその温度で10分間保持した。生成物を高速液体クロマトグラフィーで分析することにより、メチルエステル収率を求めた。マイクロ波照射前の反応物のpHは3.2であった。収率を表2に示す。   1.2 g of the obtained catalyst A or B, 42.5 g of oleic acid, and 5.2 g (1.2 equivalents) of methanol were placed in a reaction vessel, and the temperature was raised to 90 ° C. by irradiating microwaves. And kept at that temperature for 10 minutes with stirring. The methyl ester yield was determined by analyzing the product by high performance liquid chromatography. The pH of the reaction product before microwave irradiation was 3.2. The yield is shown in Table 2.

Figure 2011212567
Figure 2011212567

表2に示されるように、メソ孔比率の違う活性炭を使用した場合で収率に約10%の差が認められた。この結果に寄与する要因として、以下の3点が考えられる。
(1)活性炭bを担体に使用した系が活性炭aの系に比べ、基質の物質輸送に優れるメソ孔の寄与により、基質及びプロトンの輸送速度がより高められた。
(2)基質及び反応剤が活性炭内表面の官能基にアクセスする際、物質の輸送経路はメソ孔内部における表面拡散と細孔内拡散の二つが考えられるが、細孔内表面上を移動する表面拡散は拡散速度が温度に依存するため、マイクロ波の照射により効率的に拡散が促進された。
(3)酸性度においても活性炭bが活性炭aの約2倍の値を示したことから、スルホン基を中心とする酸性官能基が活性炭bの方がより効率的に導入された。
As shown in Table 2, a difference of about 10% was observed in the yield when activated carbon having a different mesopore ratio was used. The following three points can be considered as factors contributing to this result.
(1) Compared with the activated carbon a system in which activated carbon b was used as a carrier, the transport rate of the substrate and protons was further increased due to the contribution of mesopores excellent in substrate material transport.
(2) When the substrate and reactant access the functional group on the inner surface of the activated carbon, there are two possible transport routes of the substance: surface diffusion inside the mesopore and diffusion inside the pore, but they move on the surface inside the pore. Since the diffusion rate of surface diffusion depends on temperature, diffusion was efficiently promoted by microwave irradiation.
(3) Since the activated carbon b showed about twice the value of the activated carbon a in the acidity, the activated carbon b was more efficiently introduced with an acidic functional group centered on the sulfone group.

[エステル化条件の最適化]
触媒製造における活性炭と濃硫酸との比率、及び触媒、オレイン酸及びメタノールの投入量を種々異ならせて、触媒の酸性度、又は触媒製造過程における活性炭と硫酸との混合物のpHとエステル化率との関係を調べた結果を図5及び図6に示す。図に示すように酸性度とエステル化率との間には相関が認められなかったが、混合物のpHとエステル化率との間には認められた。尚、触媒の酸性度及び混合物のpHは、混合物10mgを2mLの水に溶かしたときの値とした。
[Optimization of esterification conditions]
The ratio of activated carbon and concentrated sulfuric acid in the catalyst production, and the input amount of the catalyst, oleic acid and methanol are varied, and the acidity of the catalyst, or the pH and esterification rate of the mixture of activated carbon and sulfuric acid in the catalyst production process, The results of examining this relationship are shown in FIGS. As shown in the figure, no correlation was observed between the acidity and the esterification rate, but it was observed between the pH of the mixture and the esterification rate. The acidity of the catalyst and the pH of the mixture were values when 10 mg of the mixture was dissolved in 2 mL of water.

Claims (11)

官能基と、物質輸送に適した細孔構造を有し且つマイクロ波を吸収する炭素構造体とを備えることを特徴とするマイクロ波反応場用複合触媒。   A composite catalyst for microwave reaction fields, comprising a functional group and a carbon structure having a pore structure suitable for mass transport and absorbing microwaves. 前記官能基が、スルホ基またはスルホ誘導基であって前記炭素構造体に化学的に結合されている請求項1に記載の複合触媒。   The composite catalyst according to claim 1, wherein the functional group is a sulfo group or a sulfo derivative group and is chemically bonded to the carbon structure. 前記官能基が、0.1〜50重量%の量で含まれている請求項1または2に記載の複合触媒。   The composite catalyst according to claim 1 or 2, wherein the functional group is contained in an amount of 0.1 to 50% by weight. 前記炭素構造体が、多孔質構造、ナノチューブ構造またはグラファイト構造を有する炭素材料である請求項1〜3のいずれかに記載の複合触媒。   The composite catalyst according to claim 1, wherein the carbon structure is a carbon material having a porous structure, a nanotube structure, or a graphite structure. 物質輸送に適した前記細孔構造が、孔径2nm以上50nm以下のメソ孔を多数有するものである請求項1〜4のいずれかに記載の複合触媒。   The composite catalyst according to any one of claims 1 to 4, wherein the pore structure suitable for mass transport has a large number of mesopores having a pore diameter of 2 nm to 50 nm. 物質輸送に適した前記細孔構造が、メソ孔を多数有するものであって、10m2/g以上2000m2/g以下の全細孔表面積と、全細孔表面積に対して10%以上100%以下のメソ孔面積とを有する請求項1〜4のいずれかに記載の複合触媒。 The pore structure suitable for mass transport has many mesopores, and has a total pore surface area of 10 m 2 / g or more and 2000 m 2 / g or less, and 10% or more and 100% of the total pore surface area. The composite catalyst according to claim 1, which has the following mesopore area. 物質輸送に適した細孔構造を有し且つマイクロ波を吸収する炭素構造体と、硫酸及び発煙硫酸のうち一種以上との混合物を20℃以上200℃以下の温度で加熱することを特徴とするマイクロ波反応場用複合触媒の製造方法。   A mixture of a carbon structure having a pore structure suitable for mass transport and absorbing microwaves and at least one of sulfuric acid and fuming sulfuric acid is heated at a temperature of 20 ° C. or higher and 200 ° C. or lower. A method for producing a composite catalyst for a microwave reaction field. 前記加熱手段が、マイクロ波照射である請求項7に記載の製造方法。   The manufacturing method according to claim 7, wherein the heating means is microwave irradiation. 請求項1〜6の複合触媒の存在下で、脂肪酸とアルコールとを含む原料にマイクロ波を照射することを特徴とするエステル化合物の製造方法。   The manufacturing method of the ester compound characterized by irradiating the raw material containing a fatty acid and alcohol with a microwave in presence of the composite catalyst of Claims 1-6. 前記混合物のpHを5以下に調整した後に前記加熱を行う請求項7に記載の製造方法。   The manufacturing method of Claim 7 which performs the said heating after adjusting pH of the said mixture to 5 or less. 前記エステル化合物がバイオディーゼル燃料である請求項9に記載の製造方法。   The production method according to claim 9, wherein the ester compound is a biodiesel fuel.
JP2010082227A 2010-03-31 2010-03-31 Composite catalyst for microwave reaction field and method of manufacturing the same, and method of manufacturing ester using the catalyst Pending JP2011212567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010082227A JP2011212567A (en) 2010-03-31 2010-03-31 Composite catalyst for microwave reaction field and method of manufacturing the same, and method of manufacturing ester using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010082227A JP2011212567A (en) 2010-03-31 2010-03-31 Composite catalyst for microwave reaction field and method of manufacturing the same, and method of manufacturing ester using the catalyst

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014065006A Division JP2014195803A (en) 2014-03-27 2014-03-27 Composite catalyst for microwave reaction field, method for producing the same, and method for producing ester using the catalyst

Publications (1)

Publication Number Publication Date
JP2011212567A true JP2011212567A (en) 2011-10-27

Family

ID=44942886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010082227A Pending JP2011212567A (en) 2010-03-31 2010-03-31 Composite catalyst for microwave reaction field and method of manufacturing the same, and method of manufacturing ester using the catalyst

Country Status (1)

Country Link
JP (1) JP2011212567A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102600893A (en) * 2012-03-02 2012-07-25 宁夏大学 Carbon-based solid acid catalyst and preparation method thereof
CN104492463A (en) * 2014-12-17 2015-04-08 宁夏大学 TiO2/ AC-SO42-solid acid photocatalyst and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985104A (en) * 1995-09-22 1997-03-31 Matsushita Electric Ind Co Ltd Production of filter for purification of exhaust gas and purifying device for exhaust gas
JP2005000873A (en) * 2003-06-13 2005-01-06 Catalysts & Chem Ind Co Ltd Method for producing hydrotreating catalyst composition of hydrocarbon
JP2007325979A (en) * 2006-06-06 2007-12-20 Osaka Univ Treatment method for volatile organic halogen compound
JP2009201405A (en) * 2008-02-27 2009-09-10 Kochi Univ Method for producing glucose, and method for producing sulfonated active carbon
WO2009110245A1 (en) * 2008-03-05 2009-09-11 マイクロ波環境化学株式会社 Microwave chemical reaction device and reaction method using said device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0985104A (en) * 1995-09-22 1997-03-31 Matsushita Electric Ind Co Ltd Production of filter for purification of exhaust gas and purifying device for exhaust gas
JP2005000873A (en) * 2003-06-13 2005-01-06 Catalysts & Chem Ind Co Ltd Method for producing hydrotreating catalyst composition of hydrocarbon
JP2007325979A (en) * 2006-06-06 2007-12-20 Osaka Univ Treatment method for volatile organic halogen compound
JP2009201405A (en) * 2008-02-27 2009-09-10 Kochi Univ Method for producing glucose, and method for producing sulfonated active carbon
WO2009110245A1 (en) * 2008-03-05 2009-09-11 マイクロ波環境化学株式会社 Microwave chemical reaction device and reaction method using said device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6014045208; YU Hao et al.: 'Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as' J Solid State Chem Vol.181,No.3, 200803, page.432-438 *
JPN6014045211; YUAN H. et al.: 'Synthesis of Biodiesel Using Microwave Absorption Catalysts' Energy & Fuels Vol.23,No.1/2, 200901, page.548-552 *
JPN6014045213; BUDARIN Vitaly L et al.: 'Versatile mesoporous carbonaceous materials for acid catalysis' Chem Commun No.6, 20070214, page.634-636 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102600893A (en) * 2012-03-02 2012-07-25 宁夏大学 Carbon-based solid acid catalyst and preparation method thereof
CN104492463A (en) * 2014-12-17 2015-04-08 宁夏大学 TiO2/ AC-SO42-solid acid photocatalyst and application thereof

Similar Documents

Publication Publication Date Title
Liu et al. Sulfonated ordered mesoporous carbon for catalytic preparation of biodiesel
Gao et al. Efficient mesoporous carbon-based solid catalyst for the esterification of oleic acid
Peng et al. Preparation of sulfonated ordered mesoporous carbon and its use for the esterification of fatty acids
Liu et al. Dilute sulfonic acid post functionalized metal organic framework as a heterogeneous acid catalyst for esterification to produce biodiesel
Kaiprommarat et al. Highly efficient sulfonic MCM-41 catalyst for furfural production: Furan-based biofuel agent
Soltani et al. Biodiesel production in the presence of sulfonated mesoporous ZnAl2O4 catalyst via esterification of palm fatty acid distillate (PFAD)
Konwar et al. Towards carbon efficient biorefining: Multifunctional mesoporous solid acids obtained from biodiesel production wastes for biomass conversion
Liu et al. Efficient biomass transformations catalyzed by graphene-like nanoporous carbons functionalized with strong acid ionic liquids and sulfonic groups
Shuit et al. Feasibility study of various sulphonation methods for transforming carbon nanotubes into catalysts for the esterification of palm fatty acid distillate
Nakajima et al. Structure and Acid Catalysis of Mesoporous Nb2O5· n H2O
JP5426776B2 (en) Tungsten carbide catalyst supported on mesoporous carbon, its preparation and application
Zhang et al. One-pot synthesis of carbonaceous monolith with surface sulfonic groups and its carbonization/activation
Tang et al. One-pot self-assembly synthesis of Ni-doped ordered mesoporous carbon for quantitative hydrogenation of furfural to furfuryl alcohol
KR20170124866A (en) MOF-808 based Metal-Organic Frameworks as Catalyst for Transfer Hydrogenation
CN102078823B (en) Carbon-based solid acid catalyst and preparation method thereof
Wu et al. A solvent-free, one-step synthesis of sulfonic acid group-functionalized mesoporous organosilica with ultra-high acid concentrations and excellent catalytic activities
Shuit et al. A facile and acid-free approach towards the preparation of sulphonated multi-walled carbon nanotubes as a strong protonic acid catalyst for biodiesel production
Kazemian et al. Biodiesel production using cesium modified mesoporous ordered silica as heterogeneous base catalyst
Feng et al. Stable poly (ionic liquid) with unique crosslinked microsphere structure as efficient catalyst for transesterification of soapberry oil to biodiesel
Xie et al. Cs 2.5 H 0.5 PW 12 O 40 encapsulated in metal–organic framework uio-66 as heterogeneous catalysts for acidolysis of soybean oil
Malaika et al. Conversion of renewable feedstock to bio-carbons dedicated for the production of green fuel additives from glycerol
Zainol et al. Synthesis and characterization of carbon cryogel microspheres from lignin–furfural mixtures for biodiesel production
Drelinkiewicz et al. Organo-sulfonic acids doped polyaniline–based solid acid catalysts for the formation of bio-esters in transesterification and esterification reactions
EP2007675A2 (en) Carbonaceous materials
CN111151285B (en) Nitrogen-doped porous carbon loaded ZnS nano composite material and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130327

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150428