JP2011212563A - Method for producing solidified body from paper sludge incineration ash - Google Patents

Method for producing solidified body from paper sludge incineration ash Download PDF

Info

Publication number
JP2011212563A
JP2011212563A JP2010082205A JP2010082205A JP2011212563A JP 2011212563 A JP2011212563 A JP 2011212563A JP 2010082205 A JP2010082205 A JP 2010082205A JP 2010082205 A JP2010082205 A JP 2010082205A JP 2011212563 A JP2011212563 A JP 2011212563A
Authority
JP
Japan
Prior art keywords
ash
paper sludge
gypsum
incineration ash
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010082205A
Other languages
Japanese (ja)
Other versions
JP5440329B2 (en
Inventor
Yasutaro Ito
康太郎 伊藤
Yuji Ono
裕司 小野
Hirobumi Sato
博文 佐藤
Masato Suzuki
政人 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP2010082205A priority Critical patent/JP5440329B2/en
Publication of JP2011212563A publication Critical patent/JP2011212563A/en
Application granted granted Critical
Publication of JP5440329B2 publication Critical patent/JP5440329B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a solidified body by using paper sludge incineration ash as a main raw material, the solidified body suitable for an extender material for a roadbed material which is high in strength and restrains a hazardous substance from eluting.SOLUTION: Coal ash, gypsum dihydrate, and water and/or warmed water are added to incineration ash which is generated when paper sludge is subjected to incineration processing, and the resultant mixture is kneaded and then cured. As this gypsum dihydrate, gypsum dihydrate which is a byproduct in flue-gas desulfurization, gypsum dihydrate which is derived from a waste gypsum board, and coal ash which is treated as waste can also be used to solve the issue of the reduction of waste.

Description

本発明は、パルプ製造工程、紙製造工程、古紙処理工程等から発生するペーパースラッジを焼却処理した際に発生する焼却灰から、有害成分の溶出を抑制した、高強度、かつ、長期的に安定な路盤材の増量材に適した固化体を製造する方法に関するものである。ペーパースラッジとは、一般的には、古紙を再生するときに生ずる産業廃棄物をいうが、ここでは、パルプ製造工程、紙製造工程、古紙処理工程等から発生するものを含む。   The present invention suppresses the elution of harmful components from incineration ash generated when incineration of paper sludge generated from pulp manufacturing process, paper manufacturing process, waste paper processing process, etc., is stable with high strength and long-term The present invention relates to a method for producing a solidified body suitable for a bulking material for roadbed materials. Paper sludge generally refers to industrial waste generated when recycling used paper, but here includes waste generated from a pulp manufacturing process, a paper manufacturing process, a used paper processing process, and the like.

ペーパースラッジ焼却灰は嵩高であることにより輸送賃がかかることと、灰の形状が不均一であることにより、フライアッシュのようにセメント原料としての用途がない。   Paper sludge incineration ash is bulky and has a transportation cost, and the ash shape is not uniform, so it does not have a use as a cement raw material like fly ash.

また、ペーパースラッジ焼却灰には、重金属類の有害物質が含まれており、直接埋立処分ができず、埋立を行う場合は、管理型処分場といわれる遮水シート等で外部への浸透水流出を防止した処分場で埋立処分をしなければならないように義務づけられている。   In addition, paper sludge incineration ash contains hazardous substances such as heavy metals, and direct landfill disposal is not possible. When landfilling is carried out, osmotic water discharges to the outside with a water shielding sheet called a managed disposal site. It is obliged that landfill disposal must be done at the disposal site that prevents this.

もしくは埋立処分とする場合、有害物質の溶出を抑制する中間処理が必要である。中間処理として薬剤(キレート)処理や溶融固化処理があるが、高価なキレート剤が処理すべき灰に対して数%程度必要であり、溶融固化処理では設備費及び多くのエネルギーが必要となり、これらの中間処理方法は焼却灰処理費用を増大させる要因となる。   Or in the case of landfill disposal, an intermediate treatment to suppress the elution of harmful substances is necessary. There are chemical (chelate) treatment and melt solidification treatment as intermediate treatment, but expensive chelating agents require several percent of the ash to be treated, and melt solidification treatment requires equipment costs and a lot of energy. This intermediate treatment method increases the cost of incineration ash treatment.

また、埋立処分場を確保すること自体が、近年ますます困難になってきている。   In addition, securing a landfill site itself has become increasingly difficult in recent years.

特許文献1では、平均粒径が1000μm未満の製紙スラッジ焼却灰に、石灰及び/又は石膏の粉体を加え、更に水を加えて混練し、所定の固化手段にて固化させた後、破砕
することにより得られ、その最大粒径は50mm未満である粒状体を製造する方法が開示されている。しかし、これは製紙スラッジ焼却灰を分級する必要があり、コスト高となる。
In Patent Document 1, lime and / or gypsum powder is added to papermaking sludge incinerated ash having an average particle size of less than 1000 μm, water is further added, and the mixture is kneaded, solidified by a predetermined solidification means, and then crushed. A method for producing a granule having a maximum particle size of less than 50 mm is disclosed. However, this requires classification of papermaking sludge incineration ash, which increases costs.

特開2006−122726号公報JP 2006-122726 A

本発明の課題は、ペーパースラッジ焼却灰を主原料とし、高強度で有害成分の溶出を抑制した路盤材の増量材に適した固化体の製造方法を提供することにある。 The subject of this invention is providing the manufacturing method of the solidified body suitable for the extender of the roadbed material which made paper sludge incineration ash the main raw material, and suppressed elution of the harmful | toxic component with high intensity | strength.

上記の目的を達成するために、本発明のペーパースラッジ焼却灰固化体の製造方法は、(a)ペーパースラッジを焼却処理した際に発生する焼却灰に、(b)水及び/又は温水を加えて、(c)更に二水石膏と、(d)石炭灰を加え、混練機に供給し、(e)常温〜98℃、望ましくは60〜95℃で1〜10分間混練する工程を行い、(f)その後混練物を3〜30日間養生することにより、ペーパースラッジ焼却灰に対して、重金属類の有害物質の溶出を抑制した、高強度、かつ、長期的に安定な固化体を製造する。   In order to achieve the above object, the method for producing a paper sludge incinerated ash solidified body according to the present invention comprises: (b) adding water and / or warm water to (a) incinerated ash generated when paper sludge is incinerated. And (c) further adding dihydrate gypsum and (d) coal ash and supplying to a kneader, (e) performing a step of kneading at room temperature to 98 ° C, preferably 60 to 95 ° C for 1 to 10 minutes, (F) Thereafter, the kneaded product is cured for 3 to 30 days to produce a solidified material having high strength and long-term stability, which suppresses elution of harmful substances of heavy metals with respect to paper sludge incineration ash. .

本発明は上記のように構成されているので、つぎのような効果を奏する。
(1)ペーパースラッジ焼却灰の場合、適度な大きさを有する木質系有機物(微細繊維、柔細胞、紙で使われる有機顔料・填料等)とから成り生石灰(CaO)を多く含んでいる。石炭中にはアルミン酸カルシウム(CaO・Al2O3)が多く含まれている。従って、ペーパースラッジ焼却灰に石炭灰、二水石膏(CaSO4・2H2O)、水を添加して混練・養生すると、エトリンガイト(3CaO・Al2O3・3CaSO4・32H2O)が生成し、フッ素(F)・ホウ素(B)・六価クロム(Cr6+)・鉛(Pb)等の有害成分の溶出量を環境省告示18号の土壌環境基準以下に抑制した高強度、かつ、長期的に安定な高品質の固化体を製造することができる。
(2)二水石膏として、排煙脱硫の副産物である二水石膏や廃石膏ボード由来の二水石膏も使用することができるため、特許文献1のようなコスト高でなく、コスト削減の課題を達成している。また本来、廃棄物として処理される石炭灰を原料として使用しているため、廃棄物削減の課題をも達成している。
Since this invention is comprised as mentioned above, there exist the following effects.
(1) In the case of paper sludge incineration ash, it consists of woody organic matter (fine fibers, soft cells, organic pigments and fillers used in paper, etc.) having an appropriate size and contains a large amount of quicklime (CaO). Coal is rich in calcium aluminate (CaO · Al 2 O 3 ). Therefore, when coal ash, dihydrate gypsum (CaSO 4 · 2H 2 O) and water are added to paper sludge incineration ash and kneaded and cured, ettringite (3CaO · Al 2 O 3 · 3CaSO 4 · 32H 2 O) is produced. High-strength and long-term control of the release of harmful components such as fluorine (F), boron (B), hexavalent chromium (Cr6 +), and lead (Pb) below the soil environmental standards of Ministry of the Environment Notification No. 18 Stable high quality solidified body can be produced.
(2) Since dihydrate gypsum, which is a byproduct of flue gas desulfurization, and dihydrate gypsum derived from waste gypsum board can be used as dihydrate gypsum, the cost is not high as in Patent Document 1, but the problem of cost reduction Has achieved. Moreover, since coal ash that is treated as waste is used as a raw material, the problem of waste reduction is also achieved.

以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することができるものである。
[ペーパースラッジ焼却灰]
ペーパースラッジ焼却灰は、パルプ製造工程、紙製造工程、古紙処理工程等から発生するペーパースラッジをボイラーで焼却処理した焼却灰のことである。ボイラーには流動層ボイラーやストーカ焼却炉等種々あるが、この場合、形式は限定されるものではない。また、助燃用とする程度であれば重油や石炭をペーパースラッジと共に、ボイラーで混焼しても構わない。
さらに、ペーパースラッジ焼却灰の本来の性状である細孔性や多孔性を損なわない程度であれば、RDF(ごみ固形燃料)、RPF(産業系廃プラスチック・古紙類固形燃料)、その他一般可燃物もペーパースラッジと共に、ボイラーでの混焼は構わない。
助燃用に石炭を使用した場合の、ペーパースラッジ焼却灰は微量ながらも重金属類(六価クロム、砒素、セレン、フッ素、ホウ素等)を含んでいるのが、一般的である。
[水及び/又は温水]
ペーパースラッジ焼却灰に加える水及び/又は温水は、焼却灰100重量部に対して、60〜100重量部、望ましくは75〜95重量部である。
水及び/又は温水の添加量は、混練条件や混練後の強度に影響する。
焼却灰に対して、水及び/又は温水の添加量が多くなると、混練時間は短くなる。これは、水及び/又は温水が速く焼却灰に浸透することで、混練も速く進むと考えられる。但し、混練後の強度は低くなる傾向にある。一方、焼却灰に対して、水及び/又は温水の添加量が少なくなると、混練時間は長くなるが、混練後の強度は高くなる傾向である。
このことから、混練後の強度も高く、製造効率も高い望ましい範囲を追究したところ、上記記載の、ペーパースラッジ焼却灰に加える水及び/又は温水は、焼却灰100重量部に対して、60〜100重量部、望ましくは75〜95重量部であることが得られた。
[二水石膏]
ペーパースラッジ焼却灰に加える二水石膏は、ペーパースラッジ焼却灰に含有される生石灰分量にもよるが、焼却灰100重量部に対して、1〜20重量部の範囲が望ましい。石膏としては半水石膏や無水石膏を使用することもできるが、ペーパースラッジ焼却灰に石膏類と石炭灰と水を添加して混練する実験を行い、エトリンガイト生成の反応速度を検討したところ、無水石膏や半水石膏はまず水と反応し、二水石膏に変化した後に、パーパースラッジ焼却灰の生石灰や石炭灰のアルミン酸カルシウムと反応してエトリンガイトを生成することがわかった。従って、所定の混練時間の中では、石膏類の中で二水石膏を使用した場合に、有害成分溶出量の抑制と強度の発現が最もすぐれている。
一方、硫黄酸化物による大気汚染防止の有力手段として、電力業界を始め多くの産業において排煙脱硫装置の導入が積極的に進められ、なかでも硫黄酸化物を石灰スラリーと結合させ二水石膏で回収する石灰−石膏法が多く採用されている。本発明は、この排煙脱硫の副産物である二水石膏を使用することができる。また、廃石膏ボード由来の二水石膏も使用することができる。
[石炭灰]
ペーパースラッジ焼却灰に加える石炭灰は、石炭灰に含有するアルミン酸カルシウム(CaO・Al2O3)が、ペーパースラッジ焼却灰に元々含有している生石灰(CaO)と、二水石膏(CaSO4・2H2O)と水と反応し、エトリンガイトを生成し、有害成分をエトリンガイトの針状結晶中にとりみ、有害成分の溶出を抑制する。石炭灰配合率と有害成分溶出量の関係を調査したところ、石炭灰配合率が多くなると溶出pHが低下し、全Crの溶出量が多くなり、特にpH12付近で、この傾向が顕著であることを見出した。従って、石炭灰の配合は、
ペーパースラッジ焼却灰100重量部に対して、1〜50重量部が望ましく、望ましくは10〜30重量部が望ましい。石炭灰の配合部数が50重量部を越すと溶出pHが11.9以下になり全Crの溶出量が多くなる。また、1%以下の場合には、有害性の溶出抑制と強度発現が十分ではない。
[硬化促進剤、分散剤]
必要により添加される硬化促進剤、分散剤は、ペーパースラッジ焼却灰、水及び/又は温水、二水石膏、石炭灰との混合物において、水和作用を促進して早期に強度を発現させる役割があり、養生時間を短くする効果がある。硬化促進剤、分散剤には、塩化カルシウム、塩化第二鉄、塩化アルミニウム、塩化マグネシウム、炭酸ソーダ、炭酸カリ、珪弗化亜鉛、珪弗化マグネシウム、珪弗化ソーダ等がある。
[混合工程及び造粒工程]
ペーパースラッジ焼却灰、水及び/又は温水、二水石膏、石炭灰、必要により硬化促進剤、分散剤を加え、混合工程及び造粒工程を行う。
混練工程の温度は、常温〜98℃、望ましくは60〜95℃を保持することが強度向上のためには必要である。
混練時間は先述したように、水及び/又は温水の添加量に影響され、また、混合装置(撹拌子の回転数や大きさ等)にも影響されるが、5〜10分間が望ましい。
なお、ペーパースラッジ焼却灰、水及び/又は温水、二水石膏、石炭灰は混練機に別々に供給してもよく、予め混合した状態で供給してもよい。
路盤材の増量材として使用する場合には、路盤材の原料の砕石に対して1〜30%添加し、好ましくは3〜10%添加される。砕石に焼却灰混練物をショベルカーで破砕した粒子を添加すると砕石同士の締りが良くなり、路盤材として使用するのに重要な指標である95%修正CBRが高くなる。
[混練機]
混練機には、ペーパースラッジ焼却灰・二水石膏・石炭灰・水を効率よく混合するために、転動混練機がもっとも好適である。例えば、ELBAミキサー(クリハラ)、インテンシブミキサー(アイリッヒ)、ペレガイヤ(北川鉄工所)等が挙げられる。
[養生]
混練工程後、混練品を養生する必要がある。養生を行うことにより混練品の強度が増する。養生方法には、大きく分けて自然養生と強制養生がある。自然養生とは、特に手を加えることなく、時間をかけることによる養生方法である。強制養生とは、高温状態に保持して、短時間で効率的な養生方法である。本発明においては、どちらの養生方法でも構わない。養生期間としては3〜30日間が好ましく、特に5〜10日が好ましい。3日以内であると十分な有害成分の溶出抑制効果と強度発現が得られず、30日以上養生しても有害成分の溶出抑制効果と強度発現の改善効果は見られない。
[メカニズム]
二水石膏とPS灰や石炭灰中のアルミン酸カルシウムと水が反応し、エトリンガイトが生成されることにより有害成分の溶出を抑制するとともに強度が向上する。無水石膏は二水石膏になってからアルミン酸カルシウムと反応するので、二水石膏の方が効果は高い。
Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications.
[Paper sludge incineration ash]
Paper sludge incineration ash is incineration ash obtained by incinerating paper sludge generated from a pulp manufacturing process, paper manufacturing process, waste paper processing process, and the like with a boiler. There are various types of boilers such as a fluidized bed boiler and a stoker incinerator, but in this case, the type is not limited. Further, heavy oil or coal may be co-fired in a boiler together with paper sludge as long as it is used for auxiliary combustion.
Furthermore, RDF (solid waste fuel), RPF (industrial waste plastics and waste paper solid fuel), and other general combustible materials, as long as the original properties of paper sludge incineration ash are not impaired. As well as paper sludge, co-firing with a boiler is acceptable.
When coal is used for auxiliary combustion, the paper sludge incineration ash generally contains heavy metals (hexavalent chromium, arsenic, selenium, fluorine, boron, etc.) even though the amount is small.
[Water and / or hot water]
The water and / or warm water added to the paper sludge incineration ash is 60 to 100 parts by weight, preferably 75 to 95 parts by weight with respect to 100 parts by weight of the incineration ash.
The addition amount of water and / or warm water affects the kneading conditions and the strength after kneading.
As the amount of water and / or warm water added to the incinerated ash increases, the kneading time decreases. This is thought to be that kneading progresses faster as water and / or hot water quickly penetrates the incinerated ash. However, the strength after kneading tends to be low. On the other hand, if the amount of water and / or warm water added to the incinerated ash is reduced, the kneading time becomes longer, but the strength after kneading tends to increase.
From this, after pursuing a desirable range of high strength after kneading and high production efficiency, the water and / or warm water added to the paper sludge incineration ash described above is 60 to 100 parts by weight of the incineration ash. The result was 100 parts by weight, desirably 75 to 95 parts by weight.
[Dihydrate gypsum]
The dihydrate gypsum added to the paper sludge incinerated ash is preferably in the range of 1 to 20 parts by weight with respect to 100 parts by weight of the incinerated ash, although it depends on the amount of quicklime contained in the paper sludge incinerated ash. Although hemihydrate gypsum and anhydrous gypsum can be used as the gypsum, an experiment was conducted in which gypsum, coal ash and water were added to the paper sludge incinerated ash and kneaded to examine the reaction rate of ettringite formation. It was found that gypsum and hemihydrate gypsum first reacted with water and changed to dihydrate gypsum, and then reacted with quick lime in the persludge incineration ash and calcium aluminate in coal ash to produce ettringite. Therefore, in the predetermined kneading time, when dihydrate gypsum is used in the gypsum, the suppression of harmful component elution amount and the development of strength are the best.
On the other hand, the introduction of flue gas desulfurization equipment has been actively promoted in the electric power industry and many other industries as an effective means of preventing air pollution due to sulfur oxides. Many recovered lime-gypsum methods are employed. In the present invention, dihydrate gypsum which is a by-product of the flue gas desulfurization can be used. Dihydrate gypsum derived from waste gypsum board can also be used.
[Coal ash]
The coal ash added to the paper sludge incineration ash is composed of calcium aluminate (CaO · Al 2 O 3 ) contained in the coal ash, quick lime (CaO) originally contained in the paper sludge incineration ash, and dihydrate gypsum (CaSO 4・ Reacts with 2H 2 O) and water to produce ettringite, taking harmful components into the needle crystals of ettringite and suppressing the release of harmful components. As a result of investigating the relationship between the coal ash content and the leaching amount of harmful components, the elution pH decreases as the coal ash content increases, and the total Cr content increases, especially in the vicinity of pH 12. I found. Therefore, the blend of coal ash is
1 to 50 parts by weight is desirable with respect to 100 parts by weight of paper sludge incineration ash, and desirably 10 to 30 parts by weight. When the blended amount of coal ash exceeds 50 parts by weight, the leaching pH becomes 11.9 or less and the leaching amount of all Cr increases. On the other hand, if it is 1% or less, harmful elution suppression and strength development are not sufficient.
[Curing accelerator, dispersant]
Hardening accelerators and dispersants added as necessary have a role of promoting hydration and developing strength early in a mixture with paper sludge incineration ash, water and / or warm water, dihydrate gypsum, and coal ash. There is an effect to shorten the curing time. Examples of the hardening accelerator and dispersant include calcium chloride, ferric chloride, aluminum chloride, magnesium chloride, sodium carbonate, potassium carbonate, zinc silicofluoride, magnesium silicofluoride, and sodium silicofluoride.
[Mixing process and granulation process]
Paper sludge incineration ash, water and / or warm water, dihydrate gypsum, coal ash, if necessary, a hardening accelerator and a dispersing agent are added, and a mixing process and a granulation process are performed.
In order to improve the strength, it is necessary to maintain the temperature in the kneading step at room temperature to 98 ° C, preferably 60 to 95 ° C.
As described above, the kneading time is affected by the amount of water and / or warm water added, and is also affected by the mixing device (rotation speed and size of the stirrer), but is preferably 5 to 10 minutes.
In addition, paper sludge incineration ash, water and / or warm water, dihydrate gypsum, and coal ash may be supplied separately to the kneader, or may be supplied in a premixed state.
When used as an extender for roadbed materials, it is added in an amount of 1 to 30%, preferably 3 to 10%, based on the crushed stone of the raw material for roadbed materials. Adding particles obtained by crushing incinerated ash kneaded material with a shovel car to crushed stones will improve the tightness between the crushed stones and increase the 95% modified CBR, which is an important index for use as roadbed material.
[Kneading machine]
The kneading machine is most preferably a rolling kneader in order to efficiently mix paper sludge incineration ash, dihydrate gypsum, coal ash, and water. For example, ELBA mixer (Kurihara), intensive mixer (Eirich), Pelegaiya (Kitakawa Iron Works), etc. are mentioned.
[Healing]
After the kneading step, the kneaded product needs to be cured. Curing increases the strength of the kneaded product. There are two types of curing methods: natural curing and forced curing. Natural curing is a curing method that takes time without any particular changes. Forced curing is an efficient curing method in a short time while maintaining a high temperature state. In the present invention, either curing method may be used. The curing period is preferably 3 to 30 days, particularly preferably 5 to 10 days. If it is within 3 days, sufficient elution suppression effect and strength expression of harmful components cannot be obtained, and even if it is cured for 30 days or more, elution suppression effect of harmful components and improvement effect of strength expression are not seen.
[mechanism]
Dihydrate gypsum and calcium aluminate in PS ash and coal ash react with water to produce ettringite, thereby suppressing elution of harmful components and improving strength. Since anhydrous gypsum becomes dihydrate gypsum and reacts with calcium aluminate, dihydrate gypsum is more effective.

石炭灰にはアルミン酸カルシウムが多いので配合比率を上げるとエトリンガイト量が多くなり強度が向上する働きがあるが、pHが低くなるためCrの溶出量が増加する傾向にあるため、配合量として、ペーパースラッジを焼却処理した際に発生する焼却灰76〜99部に、石炭灰24〜1部が好ましい。
Since coal ash has a large amount of calcium aluminate, increasing the blending ratio increases the amount of ettringite and improves strength, but since the pH is lowered and the amount of Cr elution tends to increase, 24 to 1 part of coal ash is preferable to 76 to 99 parts of incineration ash generated when the paper sludge is incinerated.

以下に実施例及び比較例を示し、本発明の特徴とするところをより一層明確にする。   Examples and Comparative Examples are shown below to further clarify the features of the present invention.

溶出試験は環境省告示第18号に準拠し、フッ素はイオンクロマトグラフィーにて、ホウ素・全クロム・鉛はICP発光分光分析にて測定した。   The dissolution test was in accordance with Ministry of the Environment Notification No. 18, fluorine was measured by ion chromatography, and boron, total chromium, and lead were measured by ICP emission spectroscopic analysis.

溶出pHは地盤工学会基準 JGS 0211-2000「土懸濁液の pH 試験方法」に従って測定した。   The elution pH was measured in accordance with JGS 0211-2000 “Soil suspension pH test method”.

圧縮破壊荷重はテンシロンの圧縮セルを用いて2mm/秒(要確認)の速度で、直径約1cmの焼却灰固化剤粒子を圧縮して破壊したときの荷重とした。
[実施例1]
石炭灰17部をエルバミキサーにて28rpmの混合速度で攪拌しながら、ペーパースラッジ焼却灰83重量部を105秒かけて添加し、その後、水85.2部を20秒かけて添加し、固化材として二水石膏13.6部を20秒かけて添加して、更に70秒間混練した後にヤードに払い出して4日間の自然養生を行なった。
[実施例2]
固化剤の二水石膏を11.6部にした以外は実施例1と同様に行なった。
[実施例3]
固化剤の二水石膏を9.5部にした以外は実施例1と同様に行なった。
[実施例4]
石炭灰を20部、PS灰を80部にした以外は実施例1と同様に行なった。
[比較例1]
石炭灰を25部、PS灰を75部にした以外は実施例1と同様に行なった。
[比較例2]
固化剤を無水石膏にした以外は実施例1と同様に行なった。
[比較例3]
固化剤を無水石膏にした以外は実施例2と同様に行なった。
[比較例4]
固化剤を無水石膏にした以外は実施例3と同様に行なった。
[比較例5]
固化剤をアムスエンジニアリング社のエコハーモニーにした以外は実施例1と同様に行なった。
[比較例6]
固化剤をアムスエンジニアリング社のエコハーモニーにした以外は実施例2と同様に行なった。
[比較例7]
固化剤をアムスエンジニアリング社のエコハーモニーにした以外は実施例3と同様に行なった。
[比較例8]
固化剤を使用しなかったこと以外は実施例1と同様に行なった。
[比較例9]
石炭灰17部とペーパースラッジ灰83部を混合したものを使用した。
[比較例10]
石炭灰を用いずに、ペーパースラッジ灰100部で行なった以外は実施例1と同様に行なった。
The compression fracture load was the load when the incinerated ash solidifying agent particles having a diameter of about 1 cm were compressed and broken using a Tensilon compression cell at a speed of 2 mm / second (need confirmation).
[Example 1]
While stirring 17 parts of coal ash with an Elba mixer at a mixing speed of 28 rpm, 83 parts by weight of paper sludge incineration ash was added over 105 seconds, and then 85.2 parts of water was added over 20 seconds. After adding 13.6 parts of water gypsum over 20 seconds and kneading for 70 seconds, it was discharged to the yard and subjected to natural curing for 4 days.
[Example 2]
The same procedure as in Example 1 was performed except that 11.6 parts of dihydric gypsum as a solidifying agent was used.
[Example 3]
The same procedure as in Example 1 was carried out except that the solidifying agent dihydrate gypsum was changed to 9.5 parts.
[Example 4]
The same operation as in Example 1 was conducted except that 20 parts of coal ash and 80 parts of PS ash were used.
[Comparative Example 1]
The same operation as in Example 1 was conducted except that 25 parts of coal ash and 75 parts of PS ash were used.
[Comparative Example 2]
The same procedure as in Example 1 was conducted except that anhydrous gypsum was used as the solidifying agent.
[Comparative Example 3]
The same operation as in Example 2 was performed except that anhydrous gypsum was used as the solidifying agent.
[Comparative Example 4]
The same procedure as in Example 3 was performed except that anhydrous gypsum was used as the solidifying agent.
[Comparative Example 5]
The same procedure as in Example 1 was performed except that the solidifying agent was Eco Harmony manufactured by AMS Engineering.
[Comparative Example 6]
The same procedure as in Example 2 was performed except that the solidifying agent was Eco Harmony manufactured by AMS Engineering.
[Comparative Example 7]
The same procedure as in Example 3 was performed except that the solidifying agent was Eco Harmony manufactured by AMS Engineering.
[Comparative Example 8]
The same procedure as in Example 1 was carried out except that no solidifying agent was used.
[Comparative Example 9]
A mixture of 17 parts of coal ash and 83 parts of paper sludge ash was used.
[Comparative Example 10]
The same procedure as in Example 1 was performed except that the coal ash was used and 100 parts of paper sludge ash was used.

Figure 2011212563
Figure 2011212563

実施例1〜4の数値の高いものでも、ふっ素(F)が0.40ppm以下、ほう素(B)が0.07ppm以下、全クロム(Cr)が0.039ppm以下、鉛(Pb)が0.01ppm以下であり、土壌環境基準を満たしている。   Even in the high numerical values of Examples 1 to 4, fluorine (F) is 0.40 ppm or less, boron (B) is 0.07 ppm or less, total chromium (Cr) is 0.039 ppm or less, and lead (Pb) is 0.01 ppm or less. Yes, it meets the soil environmental standards.

比較例1〜4,8,9は、全クロム(Cr)が土壌環境基準を満たしていない。   In Comparative Examples 1 to 4, 8 and 9, the total chromium (Cr) does not satisfy the soil environment standard.

比較例6,7は、鉛(Pb)が土壌環境基準を満たしていない。   In Comparative Examples 6 and 7, lead (Pb) does not satisfy the soil environment standard.

また、固化体の圧縮破壊荷重は200(N)以上必要であるが、比較例5は176(N)と低く、満たしていない。   Moreover, although the compressive fracture load of a solidified body needs 200 (N) or more, the comparative example 5 is as low as 176 (N) and is not satisfy | filling.

Claims (3)

ペーパースラッジを焼却処理した際に発生する焼却灰76〜99部に、
石炭灰24〜1部、二水石膏を1〜20部、水及び/又は温水を70〜100部を、
加えて混練して養生することで固化体を製造する方法。
76-99 parts of incineration ash generated when paper sludge is incinerated,
24 to 1 part of coal ash, 1 to 20 parts of dihydrate gypsum, 70 to 100 parts of water and / or warm water,
In addition, a method of producing a solidified body by kneading and curing.
前記二水石膏が排煙脱硫の副産物であることを特徴とする請求項1に記載の固化体を製造する方法。 The method for producing a solidified body according to claim 1, wherein the dihydrate gypsum is a by-product of flue gas desulfurization. 前記二水石膏が廃石膏ボード由来であることを特徴とする請求項1に記載の固化体を製造する方法。 The method for producing a solidified body according to claim 1, wherein the dihydrate gypsum is derived from waste gypsum board.
JP2010082205A 2010-03-31 2010-03-31 Method for producing solidified product from paper sludge incineration ash Active JP5440329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010082205A JP5440329B2 (en) 2010-03-31 2010-03-31 Method for producing solidified product from paper sludge incineration ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010082205A JP5440329B2 (en) 2010-03-31 2010-03-31 Method for producing solidified product from paper sludge incineration ash

Publications (2)

Publication Number Publication Date
JP2011212563A true JP2011212563A (en) 2011-10-27
JP5440329B2 JP5440329B2 (en) 2014-03-12

Family

ID=44942882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010082205A Active JP5440329B2 (en) 2010-03-31 2010-03-31 Method for producing solidified product from paper sludge incineration ash

Country Status (1)

Country Link
JP (1) JP5440329B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202477A (en) * 2012-03-28 2013-10-07 Nippon Paper Industries Co Ltd Method for treating paper sludge combustion ash
CN103406332A (en) * 2013-08-09 2013-11-27 金东纸业(江苏)股份有限公司 Method for recycling waste residues generated in papermaking and object obtained with the method
CN105060828A (en) * 2015-07-16 2015-11-18 浙江大学宁波理工学院 Dechlorinated alkali residue solidified soil for road engineering
JP6209649B1 (en) * 2016-06-10 2017-10-04 南国興産株式会社 Filler for rubber compound
JP2018024767A (en) * 2016-08-10 2018-02-15 株式会社ダイセキ環境ソリューション Waste composition for soil modification and ground improving material using the same
JP2018034134A (en) * 2016-09-02 2018-03-08 三菱製紙株式会社 Ash-granulated solidified body, grass-preventing material and blowing sand prevention material
CN110563427A (en) * 2019-10-31 2019-12-13 天津中晨科技有限公司 gypsum-based building material prepared from industrial solid waste and preparation method thereof
EP3619177A4 (en) * 2017-05-04 2021-03-17 Fatec Oy Method for the handling of ash classified as waste, a product formed with said method and use of said product
CN113020197A (en) * 2021-02-26 2021-06-25 吉安创成环保科技有限责任公司 Landfill treatment mode for treating wastes with wastes
CN116396035A (en) * 2023-06-09 2023-07-07 北京慕湖外加剂有限公司 Concrete for drain pipe and drain pipe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156955A (en) * 1983-02-28 1984-09-06 株式会社ノダ Manufacture of inorganic construction material from incineration ash
JPH06144898A (en) * 1992-11-10 1994-05-24 Koji Mitsuo Mixed hydraulic substance, hardened material and burnt material
JP2004154727A (en) * 2002-11-08 2004-06-03 Kawasaki Heavy Ind Ltd Method of manufacturing granular solid body using combustion ash as raw material
JP2006061751A (en) * 2004-08-24 2006-03-09 Hosokawa Micron Corp Production method of solidified matter containing combustion ash
JP2006122726A (en) * 2004-10-26 2006-05-18 Kawasaki Heavy Ind Ltd Particulate using paper manufacture sludge incineration ash as raw material, its manufacturing method and its manufacturing apparatus
JP2008526678A (en) * 2005-01-07 2008-07-24 ウォン パーク、ジョング Method for producing recycled hardened body using waste gypsum
JP2009233646A (en) * 2008-03-06 2009-10-15 Kobe Steel Ltd Method for treating toxic component by solidifying waste

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59156955A (en) * 1983-02-28 1984-09-06 株式会社ノダ Manufacture of inorganic construction material from incineration ash
JPH06144898A (en) * 1992-11-10 1994-05-24 Koji Mitsuo Mixed hydraulic substance, hardened material and burnt material
JP2004154727A (en) * 2002-11-08 2004-06-03 Kawasaki Heavy Ind Ltd Method of manufacturing granular solid body using combustion ash as raw material
JP2006061751A (en) * 2004-08-24 2006-03-09 Hosokawa Micron Corp Production method of solidified matter containing combustion ash
JP2006122726A (en) * 2004-10-26 2006-05-18 Kawasaki Heavy Ind Ltd Particulate using paper manufacture sludge incineration ash as raw material, its manufacturing method and its manufacturing apparatus
JP2008526678A (en) * 2005-01-07 2008-07-24 ウォン パーク、ジョング Method for producing recycled hardened body using waste gypsum
JP2009233646A (en) * 2008-03-06 2009-10-15 Kobe Steel Ltd Method for treating toxic component by solidifying waste

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202477A (en) * 2012-03-28 2013-10-07 Nippon Paper Industries Co Ltd Method for treating paper sludge combustion ash
CN103406332A (en) * 2013-08-09 2013-11-27 金东纸业(江苏)股份有限公司 Method for recycling waste residues generated in papermaking and object obtained with the method
CN103406332B (en) * 2013-08-09 2015-04-01 金东纸业(江苏)股份有限公司 Method for recycling waste residues generated in papermaking and object obtained with the method
CN105060828A (en) * 2015-07-16 2015-11-18 浙江大学宁波理工学院 Dechlorinated alkali residue solidified soil for road engineering
JP6209649B1 (en) * 2016-06-10 2017-10-04 南国興産株式会社 Filler for rubber compound
JP2017218549A (en) * 2016-06-10 2017-12-14 南国興産株式会社 Filler for rubber compound
JP2018024767A (en) * 2016-08-10 2018-02-15 株式会社ダイセキ環境ソリューション Waste composition for soil modification and ground improving material using the same
JP2018034134A (en) * 2016-09-02 2018-03-08 三菱製紙株式会社 Ash-granulated solidified body, grass-preventing material and blowing sand prevention material
EP3619177A4 (en) * 2017-05-04 2021-03-17 Fatec Oy Method for the handling of ash classified as waste, a product formed with said method and use of said product
CN110563427A (en) * 2019-10-31 2019-12-13 天津中晨科技有限公司 gypsum-based building material prepared from industrial solid waste and preparation method thereof
CN113020197A (en) * 2021-02-26 2021-06-25 吉安创成环保科技有限责任公司 Landfill treatment mode for treating wastes with wastes
CN116396035A (en) * 2023-06-09 2023-07-07 北京慕湖外加剂有限公司 Concrete for drain pipe and drain pipe
CN116396035B (en) * 2023-06-09 2023-08-08 北京慕湖外加剂有限公司 Concrete for drain pipe and drain pipe

Also Published As

Publication number Publication date
JP5440329B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5440329B2 (en) Method for producing solidified product from paper sludge incineration ash
Clavier et al. Opportunities and challenges associated with using municipal waste incineration ash as a raw ingredient in cement production–a review
JP5697334B2 (en) Heavy metal insolubilizer and method for insolubilizing heavy metal
KR101002547B1 (en) The greener clay brick recycling the dredged soils and sludge & manufacturing method thereof
JP4835359B2 (en) Coal ash granulated sand and method for producing coal ash granulated sand
JPWO2009001719A1 (en) Hazardous substance insolubilizer and method of insolubilizing hazardous substances
JP2012076009A (en) Method of producing granulated and solidified body from biomass incineration ash
JP2005146275A (en) Agent for improving, solidifying, and stabilizing soil and its quality
JP2013202550A (en) Method of producing solidified material from biomass incineration ash
Pang et al. Review on the use of sludge in cement kilns: Mechanism, technical, and environmental evaluation
JP2006289306A (en) Method of suppressing elution of fluorine and heavy metal from waste and stabilizing agent
KR100790373B1 (en) Solidifying agent for improvement of soil
KR101120058B1 (en) Manufacturing method of soil cement composition for landfill facility cover soil using sludge of sewage and waste water
JP4694434B2 (en) By-product processing method
JP2023181518A (en) Cement manufacturing method
JP2008137826A (en) Cement clinker, cement using the same and solidifying material
JP2004323599A (en) Soil-solidifying agent and method for solidifying soil
JP4209224B2 (en) Method for producing calcium sulfide heavy metal fixing agent
JP2008094901A (en) Mud solidifying material
JP2007136393A (en) Treatment method of elution component-containing substance, stabilization material, and its manufacturing method
JP4238995B2 (en) Paper sludge treatment method
Barros MSW ash
JP2005270783A (en) Sludge treatment method using gypsum waste
JP5280405B2 (en) Method for insolubilizing and detoxifying hexavalent chromium
JP6289407B2 (en) Ash granulated solidified body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5440329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150