JP2011208244A - Ferritic-austenitic stainless steel sheet to be press-formed causing small earring, and method for manufacturing the same - Google Patents

Ferritic-austenitic stainless steel sheet to be press-formed causing small earring, and method for manufacturing the same Download PDF

Info

Publication number
JP2011208244A
JP2011208244A JP2010078040A JP2010078040A JP2011208244A JP 2011208244 A JP2011208244 A JP 2011208244A JP 2010078040 A JP2010078040 A JP 2010078040A JP 2010078040 A JP2010078040 A JP 2010078040A JP 2011208244 A JP2011208244 A JP 2011208244A
Authority
JP
Japan
Prior art keywords
stainless steel
earring
austenitic stainless
steel sheet
ferritic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010078040A
Other languages
Japanese (ja)
Other versions
JP5656435B2 (en
Inventor
Eiichiro Ishimaru
詠一朗 石丸
Akihiko Takahashi
明彦 高橋
Shigeo Fukumoto
成雄 福元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2010078040A priority Critical patent/JP5656435B2/en
Publication of JP2011208244A publication Critical patent/JP2011208244A/en
Application granted granted Critical
Publication of JP5656435B2 publication Critical patent/JP5656435B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a ferritic-austenitic stainless steel sheet to be press-formed, in which the earring that is produced when having been press-formed is small and surface defects are few.SOLUTION: The ferritic-austenitic stainless steel sheet to be press-formed causing the small earring has a difference between 0.2% yield strengths in a direction of 0° and in a direction of 90° with respect to a rolling direction in an amount of less than 20 MPa, a surface roughness Rz on the steel sheet of 0.5-4 μm in a direction of 90° with respect to the rolling direction, and an earring rate of less than 2%; and includes, by mass%, 0.01-0.04% C, 1.0% or less Si, 4.0-6.0% Mn, 1.0-2.0% Ni, 20.0-22.0% Cr, 0.1-1.0% Cu, 0.01-0.06% Al, 0.15-0.25% N and the balance Fe with unavoidable impurities.

Description

本発明は、深絞り成形加工する際に発生するイヤリングが小さく、かつ表面性状が良好な上に、材料歩留りの向上に効果的に寄与するプレス成形用フェライト・オーステナイト系ステンレス鋼板、とくに省合金型プレス成形用フェライト・オーステナイト系ステンレス冷延鋼板およびその製造方法に関するものである。   The present invention is a ferrite-austenitic stainless steel sheet for press forming, particularly an alloy-saving type, which has a small earring generated during deep drawing and has good surface properties and contributes effectively to improvement in material yield. The present invention relates to a ferrite-austenitic stainless cold-rolled steel sheet for press forming and a method for producing the same.

ステンレス鋼を大きく分類するとオーステナイト系ステンレス鋼、フェライト系ステンレス鋼、2相(フェライト・オーステナイト)系ステンレス鋼に分けられる。オーステナイト系ステンレス鋼は、Niを7%以上含有し、成形性に優れた鋼種が多い。フェライト系ステンレス鋼はNiをほとんど含有せず、一般的に成形性はオーステナイト系ステンレス鋼に比べてかなり低い。一方、2相(フェライト・オーステナイト)系ステンレス鋼は、これまで成形性、耐食性などにおいてオーステナイト系ステンレス鋼とフェライト系ステンレス鋼の中間的な位置づけを持つ鋼種が多い。しかし近年、フェライト・オーステナイト系ステンレス鋼においても塑性加工時のオーステナイト相の加工誘起マルテンサイト変態を活用してオーステナイト系ステンレス鋼に近い成形性を有する技術が開発されている。塑性加工分野では、成形加工は(1)深絞り加工、(2)張り出し加工、(3)伸びフランジ加工、(4)曲げ加工の4つに分類される。ここで、(1)深絞り加工は供試材を金型へ流し込みながら製品形状を得る加工方法であり、製品形状を歩留まり良く得るためには変形能の指標である伸びやr値の他に、フランジ残り形状の指標であるイヤリングが小さいことが重要となる。   Stainless steel can be broadly classified into austenitic stainless steel, ferritic stainless steel, and two-phase (ferrite / austenite) stainless steel. Austenitic stainless steel contains 7% or more of Ni, and many steel types are excellent in formability. Ferritic stainless steel contains little Ni and generally has a much lower formability than austenitic stainless steel. On the other hand, two-phase (ferrite / austenite) stainless steels have so far many steel types that have an intermediate position between austenitic stainless steels and ferritic stainless steels in terms of formability and corrosion resistance. However, in recent years, a technology having formability close to that of austenitic stainless steel has also been developed in ferritic / austenitic stainless steels by utilizing the work-induced martensitic transformation of the austenitic phase during plastic working. In the plastic working field, the forming process is classified into four types: (1) deep drawing, (2) overhanging, (3) stretch flange processing, and (4) bending. Here, (1) deep drawing is a processing method for obtaining a product shape while pouring a test material into a mold. In order to obtain a product shape with a good yield, in addition to elongation and r value, which are indicators of deformability, It is important that the earring, which is an indicator of the remaining flange shape, is small.

特許文献1では主相がフェライト相であり、残留オーステナイト相を含有するステンレス鋼を用いて、TRIP現象によって引張破断伸びを高めた技術が記載されている。特許文献2ではオーステナイト相の安定性を規定し、引張伸びを高める方法が述べられている。特許文献3においてはオーステナイト相の分率ならびにオーステナイト相中のC、N量を規定し、引張試験における全伸びを高める技術が示されている。また、フェライト・オーステナイト系ステンレス鋼の中には、近年の省資源化を反映しNi量を低減し比較的安価なNやMnでそのオーステナイト相のバランスをとり、延性と省資源化の両立を図った鋼が特許文献4に記載されている。   Patent Document 1 describes a technique in which a tensile phase elongation is increased by a TRIP phenomenon using a stainless steel whose main phase is a ferrite phase and containing a retained austenite phase. Patent Document 2 describes a method of increasing the tensile elongation by defining the stability of the austenite phase. Patent Document 3 discloses a technique for increasing the total elongation in a tensile test by defining the austenite phase fraction and the amounts of C and N in the austenite phase. In addition, some ferritic / austenitic stainless steels reduce Ni content and balance the austenitic phase with relatively cheap N and Mn, reflecting the recent resource savings, and achieve both balance of ductility and resource saving. The intended steel is described in Patent Document 4.

しかし、特許文献1では、実施例に示されるように引張破断伸びが34〜42%、特許文献2においては引張破断伸びが最大46%、特許文献3では実施例で最大71%までの破断伸び、特許文献4では引張破断伸び〜46%が記載されているが、これら何れの文献においても実際の深絞り成形後のイヤリングに関する記述は一切見あたらず、イヤリングやそのイヤリングを生成する深絞り成形後の加工品形状との関係は不明確である。   However, in Patent Document 1, the tensile elongation at break is 34 to 42% as shown in Examples, the tensile elongation at break is 46% at maximum in Patent Document 2, and the elongation at break is up to 71% in Example in Patent Document 3. Patent Document 4 describes a tensile elongation at break of ˜46%. However, in any of these documents, there is no description regarding the earring after actual deep drawing, and after the deep drawing forming that produces the earring. The relationship with the processed product shape is unclear.

一方、特許文献5では冷延板の連続焼鈍温度を高温化(1150〜1250℃)することにより、その後、1回の冷間圧延だけでイヤリングの小さいオーステナイト系ステンレス鋼板を製造する方法が提案されている。この方法は、冷間加工前のオーステナイト粒径を粗粒化しイヤリングを低減する方法が提案されているが、本発明のようなフェライト・オーステナイト系ステンレス鋼では、図1に示される平衡熱力学計算結果から明らかように、高温になればなるほどオーステナイト相は減少していきオーステナイト相の粗粒化は期待できない。   On the other hand, Patent Document 5 proposes a method of manufacturing an austenitic stainless steel sheet having small earrings by only one cold rolling after increasing the continuous annealing temperature of the cold rolled sheet (1150 to 1250 ° C.). ing. In this method, a method for reducing the earrings by coarsening the austenite grain size before cold working has been proposed, but in the ferrite-austenitic stainless steel as in the present invention, the equilibrium thermodynamic calculation shown in FIG. As is clear from the results, the austenite phase decreases as the temperature increases, and coarsening of the austenite phase cannot be expected.

特開平10−219407号公報JP-A-10-219407 特開平11−71643号公報JP-A-11-71643 特開2006−169622号公報JP 2006-169622 A WO2002/27056WO2002 / 27056 特開平9−87742号公報JP-A-9-87742

従来技術では、引張試験における伸びが高くても実際の絞り成形が主であるプレス加工でイヤリグが大きく歩留まり落ちが顕著となる問題があった。一般的なプレス成形に対して、フェライト・オーステナイト系ステンレス鋼を広く活用していくためには材料設計指針や材料特性を明確化することが必要である。本発明者らは、特に二相鋼のプレス成形時に求められる材料流入挙動を均一とする方法を明確化することが重要と考えた。   In the prior art, even if the elongation in the tensile test is high, there has been a problem that the yield is large and the yield drop becomes noticeable in the press working mainly in the actual drawing. In order to widely use ferritic and austenitic stainless steels for general press forming, it is necessary to clarify material design guidelines and material characteristics. The inventors of the present invention have considered that it is important to clarify a method for making the material inflow behavior that is particularly required at the time of press forming of a duplex stainless steel.

上記のような課題に鑑み、本発明ではイヤリングの小さいプレス成形用フェライト・オーステナイト系ステンレス鋼板およびその製造方法を提供することが目的である。   In view of the above problems, an object of the present invention is to provide a press-forming ferrite-austenitic stainless steel sheet having a small earring and a method for producing the same.

本発明者らは、従来技術における上記課題を解決し、フェライト・オーステナイト系ステンレス鋼板のイヤリングを低減させるため、フェライト・オーステナイト系ステンレス鋼の成分組成に基づき、ミクロ組織、引張特性および表面性状の影響をラボ試験により鋭意検討を重ねた。その結果、イヤリングが小さくすることが可能なミクロ組織、引張特性、表面粗さ、成分の組み合わせがあることを見出し、本発明を完成した。   In order to solve the above-mentioned problems in the prior art and reduce the earrings of ferritic / austenitic stainless steel sheets, the inventors of the present invention are based on the composition of the ferritic / austenitic stainless steels, and the effects of microstructure, tensile properties and surface properties Intensively studied through lab tests. As a result, the inventors found that there is a combination of microstructure, tensile properties, surface roughness, and components that can make the earrings small, and completed the present invention.

本発明の要旨は、次の通りである。   The gist of the present invention is as follows.

(1) 圧延方向に対して0°方向と90°方向の0.2%耐力の差が20MPa未満、圧延方向と90°方向の鋼板表面の粗さRzが0.5〜4μmであり、かつ、下記(1)式で示されるイヤリング率が2%未満であることを特徴とするイヤリングの小さいプレス成形用フェライト・オーステナイト系ステンレス鋼板。
イヤリング率(%)=2×(hmax−hmin)/(hmax+hmin)×100 ・・・ (1)
上記式中でhmax:深絞りカップの底から山までの高さ、hmin:深絞りカップの底から谷までの高さを意味する。
(1) The difference in 0.2% proof stress between the 0 ° direction and the 90 ° direction with respect to the rolling direction is less than 20 MPa, the roughness Rz of the steel sheet surface in the rolling direction and the 90 ° direction is 0.5 to 4 μm, and A ferritic / austenitic stainless steel sheet for press molding with a small earring, wherein the earring rate represented by the following formula (1) is less than 2%.
Earring rate (%) = 2 × (hmax−hmin) / (hmax + hmin) × 100 (1)
In the above formula, hmax: the height from the bottom of the deep drawn cup to the mountain, hmin: the height from the bottom of the deep drawn cup to the valley.

(2) 質量%で、
C:0.01〜0.04%、
Si:1.0%以下、
Mn:4.0.〜6.0%、
P:0.05%以下、
S:0.010%以下、
Ni:1.0〜2.0%、
Cr:20.0〜22.0%、
Cu:0.1〜1.0%、
Al:0.01〜0.06%、
N:0.15〜0.25%
を含有し、残部がFeおよび不可避的不純物からなることを特徴とする上記(1)記載のイヤリングの小さいプレス成形用フェライト・オーステナイト系ステンレス鋼板。
(2) By mass%
C: 0.01-0.04%
Si: 1.0% or less,
Mn: 4.0. ~ 6.0%,
P: 0.05% or less,
S: 0.010% or less,
Ni: 1.0-2.0%,
Cr: 20.0-22.0%,
Cu: 0.1 to 1.0%
Al: 0.01 to 0.06%,
N: 0.15-0.25%
Ferrite and austenitic stainless steel sheet for press molding with a small earring according to (1) above, wherein the balance is Fe and the inevitable impurities.

(3) さらに、質量%で、
Mo:0.1〜1.0%
Nb:0.03〜0.50%、
Ti:0.03〜0.50%、
の1種または2種以上を含有することを特徴とする上記(1)または(2)記載のイヤリングの小さいプレス成形用フェライト・オーステナイト系ステンレス鋼板。
(3) Furthermore, in mass%,
Mo: 0.1 to 1.0%
Nb: 0.03-0.50%,
Ti: 0.03-0.50%,
The ferritic / austenitic stainless steel sheet for press molding with a small earring according to the above (1) or (2), characterized by containing one or more of the above.

(4) さらに、質量%で、
Ca:0.0005〜0.0030%、
Mg:0.0005〜0.0030%、
B:0.0005〜0.0030%
の1種または2種以上を含有することを特徴とする上記(1)乃至(3)の内のいずれか1項に記載のイヤリングの小さいプレス成形用フェライト・オーステナイト系ステンレス鋼板。
(4) Furthermore, in mass%,
Ca: 0.0005 to 0.0030%,
Mg: 0.0005 to 0.0030%,
B: 0.0005 to 0.0030%
The ferrite-austenitic stainless steel sheet for press molding with a small earring according to any one of the above (1) to (3), characterized by containing one or more of the above.

(5) 上記(2)乃至(4)の内のいずれか1項に記載の鋼成分を有するステンレス鋼からなる熱延板を1100〜1150℃、焼鈍時間5〜60秒で焼鈍し、次いで合計冷延率63%以上で冷間圧延し、その後、再結晶熱処理を施すことを特徴とするイヤリングの小さいプレス成形用フェライト・オーステナイト系ステンレス鋼板の製造方法。   (5) A hot-rolled sheet made of stainless steel having the steel component described in any one of (2) to (4) above is annealed at 1100 to 1150 ° C. for an annealing time of 5 to 60 seconds, and then totaled A method for producing a ferrite austenitic stainless steel sheet for press molding with a small earring, characterized by performing cold rolling at a cold rolling rate of 63% or more and then performing a recrystallization heat treatment.

以下の説明で、上記(1)〜(5)の鋼板に係わる発明をそれぞれ本発明という。また、(1)〜(5)の発明を合わせて、本発明ということがある。   In the following description, the inventions related to the steel plates (1) to (5) are referred to as the present invention. The inventions (1) to (5) may be collectively referred to as the present invention.

本発明によれば、高価かつ稀少な元素であるNiを多量に含有することなくイヤリングの小さいフェライト・オーステナイト系ステンレス鋼を製造できるため、資源保護ならびに環境保全に貢献しうるものと考えられる。   According to the present invention, ferrite and austenitic stainless steel with small earrings can be produced without containing a large amount of expensive and rare element Ni, and it is considered that it can contribute to resource protection and environmental conservation.

代表組成を用いて計算したフェライト相の比率と温度の関係を示した図である。It is the figure which showed the relationship between the ratio of the ferrite phase calculated using the representative composition, and temperature. イヤリング率算出の基本となるhmaxとhminを説明する図である。It is a figure explaining hmax and hmin used as the basis of earring rate calculation. 表面粗さRzと0.2%耐力の異方性の関係にイヤリング率を重ねた図である。なお、ここで0.2%耐力の異方性は、0°方向の0.2%耐力と90°方向の0.2%耐力との差で示す。It is the figure which piled up the earring rate on the relationship between surface roughness Rz and anisotropy of 0.2% yield strength. Here, the anisotropy of the 0.2% yield strength is indicated by the difference between the 0.2% yield strength in the 0 ° direction and the 0.2% yield strength in the 90 ° direction.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、本発明の重要な要素であるイヤリング率に及ぼす表面粗さRzと0.2%耐力の異方性の関係について説明する。   First, the relationship between the surface roughness Rz and the 0.2% proof stress anisotropy on the earring rate, which is an important element of the present invention, will be described.

[圧延方向に対して0°方向と90°方向の0.2%耐力の差が20MPa未満、圧延方向と90°方向の鋼板表面の粗さRzが0.5〜4μm、イヤリング率が2%未満]:深絞り加工時の材料流入に着目すると、材料の変形は金型Die R部の曲げ→曲げ戻し変形から開始される。すなわち、曲げ変形が、方向を問わず均一に変形していくことが重要である。0.2%耐力は弾性変形から塑性変形へ変わる指標の1つであることから、この差が顕著となれば変形し易い部分と変形し難い部分が生じる。変形し易い部分は流入量が多く、変形し難い部分は流入量が少なくなり、絞り加工でこの差が助長されるため、イヤリングを発生する原因の1つになる。一般的にはオーステナイト系ステンレス鋼のような単相鋼のイヤリング生成要因は、結晶方位の集積度やすべり系として考えられているが、フェライト・オーステナイト系ステンレス鋼では、存在する2相ですべり系は異なり、しかも、それぞれの相が分離して分布していることから、単相組織の考え方を用いてイヤリング率を低減することは不可能であることが明白である。   [The difference in 0.2% proof stress between the 0 ° direction and the 90 ° direction with respect to the rolling direction is less than 20 MPa, the roughness Rz of the steel sheet surface in the rolling direction and the 90 ° direction is 0.5 to 4 μm, and the earring rate is 2%. Less than]: Focusing on the material inflow during deep drawing, the deformation of the material is started from the bending of the die Die R portion to the bending back deformation. That is, it is important that the bending deformation is uniformly deformed regardless of the direction. Since the 0.2% proof stress is one of the indices that change from elastic deformation to plastic deformation, if this difference becomes significant, a portion that is easily deformed and a portion that is difficult to deform are generated. A portion that is easily deformed has a large inflow amount, and a portion that is difficult to deform has a small amount of inflow, and this difference is promoted by drawing, which is one of the causes of the occurrence of earrings. In general, the cause of earring formation in single-phase steels such as austenitic stainless steel is considered to be the degree of crystal orientation accumulation and the slip system, but in ferrite and austenitic stainless steel, the existing two-phase slip system is considered. However, since the phases are separated and distributed, it is apparent that it is impossible to reduce the earring rate using the concept of single-phase structure.

したがって、フェライト・オーステナイト系ステンレス鋼においては、円筒深絞り成形時の材料の流入抵抗を均一とすること、すなわち、0.2%耐力の各方向における差を小さくすることがイヤリング率を低下させることにつながるため、0.2%耐力の異方性差を調査した結果、20MPa未満でイヤリング率が2%未満となることが明確になった。好ましくは、10MPa以下である。ここで、イヤリング率は低ければ低いほど良いことが明白であるが、2%未満であれば顕著なイヤリングとは認識できないことから上限を2%未満とした。
イヤリング率は下記(1)式で表すことができる。
イヤリング率(%)=2×(hmax−hmin)/(hmax+hmin)×100 ・・・ (1)
上記式中でhmax:深絞りカップの底から山までの高さ、hmin:深絞りカップの底から谷までの高さを意味する。
Therefore, in ferrite-austenitic stainless steel, making the inflow resistance of the material uniform during deep drawing of the cylinder, that is, reducing the difference in each direction of 0.2% proof stress lowers the earring rate. As a result of investigating the anisotropy difference of 0.2% proof stress, it became clear that the earring rate was less than 2% at less than 20 MPa. Preferably, it is 10 MPa or less. Here, it is apparent that the lower the earring rate, the better. However, if it is less than 2%, it cannot be recognized as a prominent earring, so the upper limit was made less than 2%.
The earring rate can be expressed by the following equation (1).
Earring rate (%) = 2 × (hmax−hmin) / (hmax + hmin) × 100 (1)
In the above formula, hmax: the height from the bottom of the deep drawn cup to the mountain, hmin: the height from the bottom of the deep drawn cup to the valley.

すなわち、図2のイヤリング率算出の基本となるhmaxとhminを説明する図に示すように、供試材を金型へ流し込みながら製品形状を得る深絞り加工をした際に、hmaxは深絞りカップ1の底2から山3までの高さ、hminは深絞りカップ1の底2から谷4までの高さである。   That is, as shown in the figure explaining hmax and hmin which are the basis for calculating the earring rate in FIG. 2, when deep drawing processing is performed to obtain a product shape while pouring the test material into the mold, hmax is a deep drawing cup. 1 is the height from the bottom 2 to the peak 3, and hmin is the height from the bottom 2 to the valley 4 of the deep drawn cup 1.

さらに、鋼板表面の粗さにより材料流入は大きく影響される。ステンレス鋼板をプレス成形する際には、多くの場合潤滑油を用いる。これは、鋼板が金型へ焼き付き易い特性を有しているためであり、焼き付きによる製品歩留まりの低下や金型摩耗を抑制して、生産性を確保する狙いがある。したがって、潤滑油が成型過程で鋼板と金型の境界に存在していることが重要となる。   Furthermore, material inflow is greatly influenced by the roughness of the steel plate surface. When press forming a stainless steel plate, lubricating oil is often used. This is because the steel sheet has the characteristic of being easily seized onto the mold, and has an aim of ensuring productivity by suppressing the decrease in product yield and mold wear due to seizure. Therefore, it is important that the lubricating oil is present at the boundary between the steel plate and the mold during the molding process.

潤滑油が鋼板もしくは金型表面に存在していても、成形時に金型に鋼板表面が強く押し付けられ、鋼板表面を擦りながら移動していくため、同時に潤滑油の存在スペースが失われてしまう。ここで、フェライト・オーステナイト系ステンレス鋼では、二相が存在するため最終デスケール時に溶解量が異なるため、単相のフェライト系ステンレス鋼やオーステナイト系ステンレス鋼とは異なった各相に対応する表面の凹凸が発現する。また、この二相は硬さが異なるため、成形過程での変形量が異なる。すなわち、適度な表面粗さにより潤滑油が鋼板表面に存在し易い凹凸が形成され、成形過程でこの凹凸が維持されながら変形していくため、プレス過程で高い潤滑性能が発揮されプレス成形性が高くなることが明確になった。   Even if the lubricating oil is present on the surface of the steel plate or the mold, the surface of the steel plate is strongly pressed against the mold at the time of molding and moves while rubbing the surface of the steel plate. Here, since ferrite and austenitic stainless steels have two phases, the amount of dissolution differs at the time of final descaling, so surface irregularities corresponding to each phase differ from single-phase ferritic stainless steels and austenitic stainless steels. Is expressed. In addition, since the two phases have different hardnesses, the amount of deformation in the molding process differs. In other words, unevenness where lubricating oil is likely to be present on the surface of the steel sheet is formed with an appropriate surface roughness, and deformation occurs while maintaining the unevenness in the forming process, so that high lubrication performance is exhibited in the pressing process and press formability is improved. It became clear that it would be higher.

図3は表面粗さRzと均一伸びの関係に限界絞り比を重ねた図である。Rzが0.5未満では、潤滑油を捕捉する凹凸が充分ではなく、4.0μmを超えると凹凸が大きすぎるため、凹部に潤滑油が存在するのみで凸部頂上には潤滑油が殆ど存在せず、鋼板と金型が接触するため著しい成形性低下を招く。したがって、Rzを0.5〜4μmとしたが、好ましくは、Rzが1.0〜3.0μmの範囲である。   FIG. 3 is a diagram in which the limit drawing ratio is superimposed on the relationship between the surface roughness Rz and the uniform elongation. If the Rz is less than 0.5, the unevenness for capturing the lubricating oil is not sufficient, and if it exceeds 4.0 μm, the unevenness is too large. However, since the steel plate and the mold are in contact with each other, a significant decrease in formability is caused. Therefore, although Rz was set to 0.5 to 4 μm, Rz is preferably in the range of 1.0 to 3.0 μm.

以下に成分の限定理由を述べる。なお、以下に示す「%」とは質量%を表す。   The reasons for limiting the components are described below. In addition, "%" shown below represents mass%.

C:Cはオーステナイト相の安定度に大きな影響を及ぼす元素であるとともにCr炭化物の析出を促進するために粒界腐食の発生をもたらす耐食性には有害な元素である。耐食性の点からCは低くするほうが好ましいが、低減するためには精錬時のコスト増加を招く。したがって、0.01〜0.04%の範囲とした。好ましくは、0.025〜0.04%の範囲である。   C: C is an element having a great influence on the stability of the austenite phase and an element harmful to the corrosion resistance that causes the occurrence of intergranular corrosion to promote the precipitation of Cr carbide. Although it is preferable to lower C from the point of corrosion resistance, in order to reduce it, the cost at the time of refining is increased. Therefore, it was set as 0.01 to 0.04% of range. Preferably, it is 0.025 to 0.04% of range.

Si:Siは脱酸元素として使われたり、耐酸化性向上のために含有されたりする場合がある。しかし、材料の硬質化をもたらし、均一伸びが低下するため、1.0%を上限とした。またSiを極低減するためには精錬時のコスト増加を招く。好ましくは、0.05〜1.0%の範囲であり、さらに好ましくは、0.4〜1.0%の範囲である。   Si: Si may be used as a deoxidizing element or may be contained for improving oxidation resistance. However, the material is hardened and the uniform elongation is lowered, so 1.0% was made the upper limit. Moreover, in order to reduce Si extremely, the cost at the time of refining is increased. Preferably, it is in the range of 0.05 to 1.0%, and more preferably in the range of 0.4 to 1.0%.

Mn:Mnはオーステナイト相に濃化し、オーステナイト相の安定度を変化させるのに重要な役割を持つ。特に、高価なNiと類似の効果を発現できることから、下限を4.0%とした。しかし多量の含有は耐食性や熱間加工性の低下をもたらすため、上限を6.0%とした。好ましくは4.5〜5.5%とすることが望ましい。   Mn: Mn concentrates in the austenite phase and plays an important role in changing the stability of the austenite phase. In particular, an effect similar to that of expensive Ni can be exhibited, so the lower limit was made 4.0%. However, since a large amount causes a decrease in corrosion resistance and hot workability, the upper limit was made 6.0%. Preferably it is 4.5 to 5.5%.

P:Pは不可避的に混入する元素であり、またCrなどの原料に含有されているため、低減することが困難であるが、多量に含有した場合には成形性を低下させるため、上限を0.050%とした。   P: P is an element inevitably mixed in, and since it is contained in raw materials such as Cr, it is difficult to reduce it. However, if it is contained in a large amount, the formability is lowered, so the upper limit is set. 0.050%.

S:Sは不可避的に混入する元素であり、Mnと結合して介在物をつくり、発銹の基点となる場合があるため、上限を0.010%とした。低いほど耐食性からは好ましいため、0.003%以下とすることが望ましい。   S: S is an element inevitably mixed in, and may combine with Mn to form inclusions, which may serve as the starting point of the cracking, so the upper limit was made 0.010%. Since it is preferable from the viewpoint of corrosion resistance, the lower the content, the lower the content is preferably 0.003% or less.

Cr:Crは耐食性を確保するために必要であるとともにNの固溶限を上昇させる元素であるため、20.0%以上の含有が必要である。しかし、多量の含有は熱間加工割れを原因となり、精錬工程のコスト増加につながるため、上限を22.0%とした。好ましくは、20.0〜21.0%の範囲である。   Cr: Cr is an element that is necessary for ensuring the corrosion resistance and increases the solid solubility limit of N, and therefore needs to be contained in an amount of 20.0% or more. However, since a large amount causes hot working cracks and leads to an increase in the cost of the refining process, the upper limit was made 22.0%. Preferably, it is in the range of 20.0 to 21.0%.

Ni:Niはオーステナイト安定化元素であり、オーステナイト相の安定度を調整するために重要な元素である。また熱間加工割れを抑制する効果を持つため、1.0%以上含有させる。2.0%を超える含有は、原料コストの増加をもたらし、またオーステナイト、フェライトの2相組織を得ることが困難になる場合があるため、これを上限とした。好ましくは、1.2〜1.7%の範囲である。   Ni: Ni is an austenite stabilizing element and is an important element for adjusting the stability of the austenite phase. Moreover, in order to have an effect which suppresses a hot work crack, 1.0% or more is contained. If the content exceeds 2.0%, the raw material cost increases, and it may be difficult to obtain a two-phase structure of austenite and ferrite. Preferably, it is 1.2 to 1.7% of range.

N:NはC同様にオーステナイト相の安定度に大きな影響を及ぼす元素である。また固溶して存在した場合に耐食性を向上させる効果を持つため、0.15%以上含有することとする。但し、0.25%以上含有した場合は硬度の上昇が著しくなり、均一伸びが低下する場合が認められるほか、Cr窒化物が析出しやすくなって逆に耐食性の低下をもたらすため、これを上限とした。好ましくは、0.18〜0.22%の範囲である。   N: N, like C, is an element that greatly affects the stability of the austenite phase. Moreover, since it has the effect of improving corrosion resistance when it exists in solid solution, it shall contain 0.15% or more. However, when it is contained in an amount of 0.25% or more, the hardness is remarkably increased and the uniform elongation may be decreased. In addition, Cr nitride is likely to precipitate, and conversely, the corrosion resistance is decreased. It was. Preferably, it is 0.18 to 0.22% of range.

Al:Alは鋼の脱酸能力が非常に大きい元素であり、フェライト相の靱性向上の観点から必ず添加する必要がある。脱酸により酸化物系介在物を減少させ高い靱性を得るためには0.01%以上の含有が必要である。一方過剰な添加は鋼の硬質化を招き、加工性を低下させる可能性があるので0.06%以下の含有量とする。好ましくは、0.02〜0.05%の範囲である。   Al: Al is an element having a very large deoxidizing ability of steel, and must be added from the viewpoint of improving the toughness of the ferrite phase. In order to reduce oxide inclusions by deoxidation and obtain high toughness, a content of 0.01% or more is necessary. On the other hand, excessive addition leads to hardening of the steel and may deteriorate the workability, so the content is made 0.06% or less. Preferably, it is 0.02 to 0.05% of range.

Cu:CuもNi同様、オーステナイト安定化元素であり、オーステナイト相の安定度を調整するために重要な元素である。ただし、1.0%を超える含有は熱間加工時の割れを促進し、また強度を上昇させるため、これを上限とした。安定して効果を得るためには、0.1%以上が好ましい。   Cu: Cu, like Ni, is an austenite stabilizing element and is an important element for adjusting the stability of the austenite phase. However, if the content exceeds 1.0%, cracking during hot working is promoted and the strength is increased, so this was made the upper limit. In order to obtain an effect stably, 0.1% or more is preferable.

また、選択的に下記元素を含有することができる。   Moreover, the following elements can be selectively contained.

Mo:Moは耐食性を向上させる元素であるため、選択的に含有しても良い。0.1%以上の含有により、耐食性向上効果が発揮される。安定して効果を得るためには、0.5%以上が好ましい。ただし、1.0%を超えると均一伸びが低下し深絞り性を低下させるとともに、原料コストが大きく増加するため、これを上限とした。   Mo: Since Mo is an element that improves corrosion resistance, it may be selectively contained. By containing 0.1% or more, the corrosion resistance improving effect is exhibited. In order to obtain an effect stably, 0.5% or more is preferable. However, if it exceeds 1.0%, the uniform elongation is lowered, the deep drawability is lowered, and the raw material cost is greatly increased.

Nb:Nbは溶接熱影響部の粗大化を防止する効果があるが、0.50%超の含有は均一伸びを低下させるため、これを上限とした。安定して効果を得るためには、0.03%以上が望ましい。   Nb: Nb has the effect of preventing the weld heat-affected zone from becoming coarse, but the content exceeding 0.50% lowers the uniform elongation, so this was made the upper limit. In order to obtain an effect stably, 0.03% or more is desirable.

Ti:TiもNb同様、溶接熱影響部の粗大化を防止する効果を有する。さらには凝固組織を微細等軸晶化するため、0.03%以上の含有が好ましい。ただし、0.50%超の含有は均一伸びを低下させるため、これを上限とした。   Ti: Ti, as well as Nb, has the effect of preventing the weld heat affected zone from becoming coarse. Furthermore, the content is preferably 0.03% or more in order to finely equiax the solidified structure. However, the content exceeding 0.50% lowers the uniform elongation, so this was made the upper limit.

Ca:Caは脱硫、脱酸のために若干含有されることがある。但し、0.0030%超の含有によって熱間加工割れが生じやすくなり、また耐食性が低下するため、これを上限とした。安定して効果を得るためには、0.0005%以上が望ましい。   Ca: Ca may be slightly contained for desulfurization and deoxidation. However, hot work cracking tends to occur when the content exceeds 0.0030%, and the corrosion resistance decreases, so this was made the upper limit. In order to obtain the effect stably, 0.0005% or more is desirable.

Mg:Mgは、脱酸だけでなく、凝固組織を微細化する効果を持つ。これらの効果を安定して発揮するためには、0.0005%以上の含有が望ましい。また、0.0030%超の含有は製鋼工程でのコスト増加をもたらすため、これを上限とした。   Mg: Mg has not only deoxidation but also an effect of refining the solidified structure. In order to stably exhibit these effects, the content is preferably 0.0005% or more. Moreover, since content exceeding 0.0030% brings about the cost increase in a steelmaking process, this was made into the upper limit.

B:Bは粒界強度を上昇させるのに有効な元素である。このような効果を安定して発揮するためには、0.0005%以上の含有が望ましい。また、0.0030%超の含有は多量のホウ化物生成を招き、耐食性を著しく低下させる。   B: B is an element effective for increasing the grain boundary strength. In order to stably exhibit such an effect, the content is preferably 0.0005% or more. Further, if the content exceeds 0.0030%, a large amount of boride is formed, and the corrosion resistance is remarkably lowered.

次に、製造方法についての限定理由を述べる。   Next, the reasons for limiting the manufacturing method will be described.

図1は本発明鋼の代表組成(0.01%C−0.1%Si−5%Mn−1.5%Ni−21%Cr−0.5%Cu−0.2%N)を用いて、サーモカルクver.Qによって算出したフェライト・オーステナイト系ステンレス鋼の900℃〜1200℃におけるフェライト相率を示す図である。1100℃でフェライト相率57%、1200℃でフェライト相率77%と温度が上昇するに従いフェライト相率は増加している。1100℃以上の温度ではフェライト相率がオーステナイトよりも多く存在すると推定される。オーステナイト相の比率が低下することで、ファイバー状に存在するオーステナイト相を分断することが可能となる。したがって、熱処理温度は1100℃以上とした。しかし、1150℃以上の温度では、オーステナイト相が部分的に消失するためフェライト相の粒成長が著しくなり、破断強度の低下による成形性の劣化を招くことが明らかとなったため、上限を1150℃とした。次いで、熱処理時間では、高N含有である効果から組織形成はNの拡散によって律速される(特に高温では組織変化が急激に起こる)ため、焼鈍時間を60秒までとした。一方、Nの拡散にともなう組織形成が安定するためには保定時間が必要であることから、5秒以上の焼鈍時間とした。ここで、冷延板焼鈍に供する素材の冷間圧延率が低い場合には、軟質なフェライト相に冷間圧延の歪が集中して導入されるため、オーステナイト相への歪導入が少なくなるため組織変化が生じ難く、冷間圧延前に存在する粗大粒が部分的に残存してしまう。したがって、63%以上の合計冷延率が必要となる。好ましくは、板厚が1.5mm以下で70%以上の合計冷延率によって、鋼板を製造することである。冷延板への再結晶熱処理は、再結晶温度が高いオーステナイト相の温度や時間に律速されるが、熱処理温度が高すぎたり、熱処理時間が長すぎるとフェライト相の粒成長が促進されるため、1000〜1100℃で30秒以内が望ましい。   FIG. 1 uses the representative composition of the steel of the present invention (0.01% C-0.1% Si-5% Mn-1.5% Ni-21% Cr-0.5% Cu-0.2% N). Thermocalc ver. It is a figure which shows the ferrite phase rate in 900 to 1200 degreeC of the ferrite austenitic stainless steel computed by Q. The ferrite phase rate increases as the temperature rises to 57% ferrite phase rate at 1100 ° C. and 77% ferrite phase rate at 1200 ° C. It is presumed that at a temperature of 1100 ° C. or higher, the ferrite phase ratio is larger than that of austenite. By reducing the ratio of the austenite phase, it becomes possible to divide the austenite phase present in a fiber shape. Therefore, the heat treatment temperature is set to 1100 ° C. or higher. However, at a temperature of 1150 ° C. or higher, the austenite phase partially disappears, so that the grain growth of the ferrite phase becomes remarkable, and it becomes clear that the moldability is deteriorated due to the decrease in breaking strength. did. Next, in the heat treatment time, the structure formation is rate-determined by the diffusion of N due to the effect of high N content (particularly, the structure change rapidly occurs at high temperatures), so the annealing time was set to 60 seconds. On the other hand, in order to stabilize the formation of the structure accompanying the diffusion of N, a holding time is required, so an annealing time of 5 seconds or longer was set. Here, when the cold rolling rate of the material subjected to cold rolled sheet annealing is low, the strain of cold rolling is concentrated and introduced into the soft ferrite phase, so that the introduction of strain into the austenite phase is reduced. It is difficult for the structure to change, and the coarse grains existing before cold rolling partially remain. Therefore, a total cold rolling rate of 63% or more is required. Preferably, the steel sheet is manufactured with a total cold rolling rate of 70% or more when the plate thickness is 1.5 mm or less. Recrystallization heat treatment on cold-rolled plates is rate-controlled by the temperature and time of the austenite phase, which has a high recrystallization temperature, but if the heat treatment temperature is too high or the heat treatment time is too long, grain growth of the ferrite phase is promoted. , 1000-1100 ° C., preferably within 30 seconds.

表1に示す化学組成の鋼を真空高周波溶解炉により、厚さ50mm、幅160mm幅の鋳塊とし、1200℃に加熱した後に、熱間圧延により5mm厚の熱延板とした。その後、表2に示す条件で熱延板焼鈍の後、デスケール、冷間圧延の工程を経て、種々の厚さの冷延板を製造した。これら冷延板に焼鈍温度:1050℃、焼鈍時間:15秒の冷延板焼鈍を実施した。得られた冷延焼鈍板のデスケールは、アルカリソルト浴(430℃30秒保定)によるスケール改質処理の後にHF/HNO溶液を用いたデスケールにより供試材とした。ここで、HF/HNOの条件は、HF=5〜50g/L、HNO=20〜100g/Lで変化させ、溶液温度を50℃、浸漬時間を20秒で固定することで、表面粗さを変化させた。溶解量が少なければ、スケール残りや各相における溶解量の差が小さくなるため表面が平坦であり、溶解量が多すぎれば、各相の溶解量の差が大きくなるため、凹凸が顕在化し、表面粗さが著しく大きくなった。表面粗さは、各相比率の影響を受けやすいが、HF:HNOの比率を1:5〜2:5とすると表面粗さが最適範囲内に入る。 Steel having the chemical composition shown in Table 1 was made into an ingot having a thickness of 50 mm and a width of 160 mm in a vacuum high-frequency melting furnace, heated to 1200 ° C., and then hot-rolled to a thickness of 5 mm. Then, after hot-rolled sheet annealing under the conditions shown in Table 2, cold-rolled sheets with various thicknesses were manufactured through the steps of descaling and cold rolling. These cold-rolled sheets were subjected to cold-rolled sheet annealing at an annealing temperature of 1050 ° C. and an annealing time of 15 seconds. The obtained cold-rolled annealed plate was descaled as a test material by descaling using an HF / HNO 3 solution after a scale reforming treatment with an alkali salt bath (430 ° C., 30 seconds hold). Here, the conditions of HF / HNO 3 were changed at HF = 5 to 50 g / L, HNO 3 = 20 to 100 g / L, the solution temperature was fixed at 50 ° C., and the immersion time was fixed at 20 seconds. Changed. If the amount of dissolution is small, the difference in the amount of dissolution in the remaining scale and each phase is small, the surface is flat, and if the amount of dissolution is too large, the difference in the amount of dissolution of each phase becomes large, and the unevenness becomes obvious, The surface roughness was significantly increased. The surface roughness is easily affected by the ratio of each phase. However, when the ratio of HF: HNO 3 is 1: 5 to 2: 5, the surface roughness falls within the optimum range.

供試材の表面粗さ測定は、ミツヨト製SV3000CNC3次元粗さ計(触針径:2μm)を用い、JISB0601’01に準拠した条件で高さ倍率2000倍として圧延方向に対して90°方向のRzを3回実施し平均を求めた。0.2%耐力測定のための引張試験は、圧延方向に対して0°と90°方向から採取したJIS13号B試験片により、JISに準拠した条件で2回測定し平均値を求めた。イヤリング率の測定はエリクセン社製142/40型薄板成形試験機を用い、Punch径40mm、Die径43mmの金型を用い、試験片径80mm(絞り比2.0:試験片径/Punch径)の円筒深絞りを実施し、成形加工品の山高さと谷高さを測定し算出した。深絞り試験の成形条件は、クッション圧1ton、潤滑剤は#122ワックスとした。   The surface roughness of the test material was measured using a Mitutoyo SV3000 CNC three-dimensional roughness meter (stylus diameter: 2 μm), with a height magnification of 2000 times under the conditions in accordance with JISB0601'01. Rz was performed 3 times and the average was calculated. In the tensile test for measuring 0.2% proof stress, an average value was obtained by measuring twice with JIS No. 13 B specimens taken from 0 ° and 90 ° directions with respect to the rolling direction under the conditions conforming to JIS. The earring rate is measured using a 142/40 type thin plate molding tester manufactured by Eriksen, using a mold with a punch diameter of 40 mm and a die diameter of 43 mm, and a test piece diameter of 80 mm (drawing ratio 2.0: test piece diameter / Punch diameter). The cylindrical deep drawing was carried out, and the peak height and valley height of the molded product were measured and calculated. The molding conditions for the deep drawing test were 1 ton cushion pressure and # 122 wax as the lubricant.

Figure 2011208244
Figure 2011208244

熱間圧延材に施した製造条件および得られた鋼板を用いて調査した表面粗さRz、0.2%耐力およびイヤリング率を表2に示す。   Table 2 shows the manufacturing conditions applied to the hot-rolled material and the surface roughness Rz, 0.2% proof stress and earring rate investigated using the obtained steel plate.

Figure 2011208244
Figure 2011208244

表2から明らかなように成分範囲(No.1〜15)、表面粗さRzおよび製造条件が本発明範囲を満足する場合(No.2−2、3−2、6−2、9−2、10−2、15−2を除く)に、イヤリング率は2%未満となっている。No.16〜No.25は、成分が範囲外であり、本発明の製造条件を満たしていたとしてもNo.23、No.24に示されるように、0.2%耐力の異方性もしくは表面粗さが外れているため、イヤリング率が2%超となっている。No.2−2のように成分範囲は満足しているものの熱処理温度が上限を外れているため、フェライト相の著しい粒成長に起因したミクロ組織の不均一が生じた結果、0.2%耐力の異方性差が大きくなるとともにデスケール時の各相の溶解量に差が生じ、イヤリング率は2%超となっている。同様にNo.3−2のように成分範囲は満足しているものの熱処理温度が下限を外れているため、オーステナイト相の拡散消滅に不均一が生じた結果、0.2%耐力の異方性差が大きくなりイヤリング率は2%超となっている。また、No.6−2では成分範囲、製造条件は満足しているもののデスケール時の溶解量の差が大きくなったため、表面粗さが本発明範囲から外れており、イヤリング率が3.1%と2%超となっている。No.9−2は、冷延率が50%と低く熱延板組織の分断が不十分なため、0.2%耐力の異方性が大きくなりイヤリング率が2%超となっている。No.10−2は成分範囲を満しているが、熱処理時間が短時間側で外れているため、オーステナイト相の拡散消滅が充分に達成されずミクロ組織の不均一さが生じてしまい、0.2%耐力の異方性差が大きくなるとともにデスケール時の各相の溶解量に差が生じ、イヤリング率は2%超となっている。No.15−2は熱処理時間が長時間に外れており、フェライト相の粒成長が生じたためオーステナイト相の拡散減少が進み、0.2%耐力の異方性が大きくなっている。
本発明により、イヤリングの小さいプレス成形性に優れたフェライト・オーステナイト系ステンレス鋼を得ることが可能となる。
As apparent from Table 2, the component ranges (No. 1 to 15), the surface roughness Rz, and the production conditions satisfy the scope of the present invention (No. 2-2, 3-2, 6-2, 9-2). 10-2 and 15-2), the earring rate is less than 2%. No. 16-No. No. 25 is out of the range, even if the production conditions of the present invention were satisfied, No. 25. 23, no. As shown in FIG. 24, since the anisotropy or surface roughness of 0.2% proof stress is removed, the earring rate is over 2%. No. As shown in 2-2, although the component range is satisfactory, the heat treatment temperature is outside the upper limit, resulting in non-uniformity of the microstructure due to remarkable grain growth of the ferrite phase. As the difference in directionality increases, the amount of dissolution of each phase at the time of descaling varies, and the earring rate is over 2%. Similarly, no. Although the component range is satisfactory as in 3-2, the heat treatment temperature is outside the lower limit, and as a result, nonuniformity occurs in the diffusion and extinction of the austenite phase, resulting in a large 0.2% proof stress anisotropy difference. The rate is over 2%. No. In 6-2, although the component range and production conditions were satisfied, the difference in the amount of dissolution at the time of descaling was large, so the surface roughness was out of the scope of the present invention, and the earring rate was 3.1%, exceeding 2%. It has become. No. In 9-2, the cold rolling rate is as low as 50% and the hot-rolled sheet structure is not sufficiently divided, so the anisotropy of 0.2% proof stress is increased and the earring rate is over 2%. No. 10-2 satisfies the component range, but since the heat treatment time is out on the short time side, the diffusion and extinction of the austenite phase is not sufficiently achieved, resulting in non-uniform microstructure, and 0.2 The anisotropy difference in% proof stress increases and the amount of dissolution of each phase at the time of descaling varies, and the earring rate is over 2%. No. No. 15-2 has a long heat treatment time, and the ferrite phase grain growth has occurred, so that the diffusion reduction of the austenite phase has progressed, and the 0.2% yield strength anisotropy has increased.
According to the present invention, it is possible to obtain a ferritic / austenitic stainless steel having small earrings and excellent press formability.

1 深絞りカップ
2 底
3 山
4 谷
1 Deep drawn cup 2 Bottom 3 Mountain 4 Valley

Claims (5)

圧延方向に対して0°方向と90°方向の0.2%耐力の差が20MPa未満,圧延方向と90°方向の鋼板表面の粗さRzが0.5〜4μmであり、かつ、下記(1)式で示されるイヤリング率が2%未満であることを特徴とするイヤリングの小さいプレス成形用フェライト・オーステナイト系ステンレス鋼板。
イヤリング率(%)=2×(hmax−hmin)/(hmax+hmin)×100 ・・・ (1)
上記式中でhmax:深絞りカップの底から山までの高さ、hmin:深絞りカップの底から谷までの高さを意味する。
The difference in 0.2% proof stress between the 0 ° direction and the 90 ° direction with respect to the rolling direction is less than 20 MPa, the roughness Rz of the steel sheet surface in the rolling direction and the 90 ° direction is 0.5 to 4 μm, and the following ( 1) A ferrite-austenitic stainless steel plate for press molding having a small earring, wherein the earring rate represented by the formula is less than 2%.
Earring rate (%) = 2 × (hmax−hmin) / (hmax + hmin) × 100 (1)
In the above formula, hmax: the height from the bottom of the deep drawn cup to the mountain, hmin: the height from the bottom of the deep drawn cup to the valley.
質量%で、
C:0.01〜0.04%、
Si:1.0%以下、
Mn:4.0〜6.0%、
P:0.050%以下、
S:0.010%以下、
Ni:1.0〜2.0%、
Cr:20.0〜22.0%、
Cu:0.1〜1.0%、
Al:0.01〜0.06%、
N:0.15〜0.25%
を含有し、残部がFeおよび不可避的不純物からなることを特徴とする請求項1記載のイヤリングの小さいプレス成形用フェライト・オーステナイト系ステンレス鋼板。
% By mass
C: 0.01-0.04%
Si: 1.0% or less,
Mn: 4.0 to 6.0%,
P: 0.050% or less,
S: 0.010% or less,
Ni: 1.0-2.0%,
Cr: 20.0-22.0%,
Cu: 0.1 to 1.0%
Al: 0.01 to 0.06%,
N: 0.15-0.25%
The ferritic / austenite stainless steel sheet for press molding with a small earring according to claim 1, wherein the balance comprises Fe and inevitable impurities.
さらに、質量%で、
Mo:0.1〜1.0%
Nb:0.03〜0.50%、
Ti:0.03〜0.50%、
の1種または2種以上を含有することを特徴とする請求項1または2記載のイヤリングの小さいプレス成形用フェライト・オーステナイト系ステンレス鋼板。
Furthermore, in mass%,
Mo: 0.1 to 1.0%
Nb: 0.03-0.50%,
Ti: 0.03-0.50%,
The ferritic / austenitic stainless steel sheet for press molding with a small earring according to claim 1 or 2, wherein the ferritic / austenitic stainless steel sheet is small.
さらに、質量%で、
Ca:0.0005〜0.0030%、
Mg:0.0005〜0.0030%、
B:0.0005〜0.0030%
の1種または2種以上を含有することを特徴とする請求項1乃至3の内のいずれか1項に記載のイヤリングの小さいプレス成形用フェライト・オーステナイト系ステンレス鋼板。
Furthermore, in mass%,
Ca: 0.0005 to 0.0030%,
Mg: 0.0005 to 0.0030%,
B: 0.0005 to 0.0030%
The ferrite-austenitic stainless steel sheet for press molding having a small earring according to any one of claims 1 to 3, wherein the ferritic austenitic stainless steel sheet is small.
請求項2乃至4の内のいずれか1項に記載の鋼成分を有するステンレス鋼からなる熱延板を1100〜1150℃、焼鈍時間5〜60秒で焼鈍し、次いで合計冷延率63%以上で冷間圧延し、その後、再結晶熱処理を施すことを特徴とするイヤリングの小さいプレス成形用フェライト・オーステナイト系ステンレス鋼板の製造方法。   A hot-rolled sheet made of stainless steel having the steel component according to any one of claims 2 to 4 is annealed at 1100 to 1150 ° C and an annealing time of 5 to 60 seconds, and then a total cold rolling rate of 63% or more. A method for producing a ferritic / austenitic stainless steel sheet for press molding with a small earring, which is cold-rolled with a recrystallization heat treatment.
JP2010078040A 2010-03-30 2010-03-30 Ferrite-austenitic stainless steel sheet for press molding with small earrings and method for producing the same Active JP5656435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010078040A JP5656435B2 (en) 2010-03-30 2010-03-30 Ferrite-austenitic stainless steel sheet for press molding with small earrings and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010078040A JP5656435B2 (en) 2010-03-30 2010-03-30 Ferrite-austenitic stainless steel sheet for press molding with small earrings and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011208244A true JP2011208244A (en) 2011-10-20
JP5656435B2 JP5656435B2 (en) 2015-01-21

Family

ID=44939596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010078040A Active JP5656435B2 (en) 2010-03-30 2010-03-30 Ferrite-austenitic stainless steel sheet for press molding with small earrings and method for producing the same

Country Status (1)

Country Link
JP (1) JP5656435B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126992A (en) * 2010-11-25 2012-07-05 Jfe Steel Corp Austenite-ferrite duplex stainless steel for fuel tank
WO2013133259A1 (en) * 2012-03-09 2013-09-12 新日鐵住金ステンレス株式会社 Ferrite-austenite 2-phase stainless steel plate having low in-plane anisotropy and method for producing same
CN104439152A (en) * 2014-11-17 2015-03-25 哈尔滨工业大学 High-temperature alloy material for die-casting die and method and application of high-temperature alloy material
JP2017088945A (en) * 2015-11-09 2017-05-25 新日鐵住金ステンレス株式会社 Stainless steel sheet for structural member excellent in processability and manufacturing method therefor
CN108472700A (en) * 2016-01-18 2018-08-31 新日铁住金株式会社 Titanium plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183129A (en) * 2004-01-29 2006-07-13 Jfe Steel Kk Austenitic-ferritic stainless steel having excellent formability
JP2008038214A (en) * 2006-08-08 2008-02-21 Nippon Steel & Sumikin Stainless Steel Corp Duplex stainless steel
JP2008291282A (en) * 2007-05-22 2008-12-04 Nippon Steel & Sumikin Stainless Steel Corp High strength dual-phase stainless steel sheet with excellent shape fixability, and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183129A (en) * 2004-01-29 2006-07-13 Jfe Steel Kk Austenitic-ferritic stainless steel having excellent formability
JP2008038214A (en) * 2006-08-08 2008-02-21 Nippon Steel & Sumikin Stainless Steel Corp Duplex stainless steel
JP2008291282A (en) * 2007-05-22 2008-12-04 Nippon Steel & Sumikin Stainless Steel Corp High strength dual-phase stainless steel sheet with excellent shape fixability, and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012126992A (en) * 2010-11-25 2012-07-05 Jfe Steel Corp Austenite-ferrite duplex stainless steel for fuel tank
WO2013133259A1 (en) * 2012-03-09 2013-09-12 新日鐵住金ステンレス株式会社 Ferrite-austenite 2-phase stainless steel plate having low in-plane anisotropy and method for producing same
JP2013185231A (en) * 2012-03-09 2013-09-19 Nippon Steel & Sumikin Stainless Steel Corp Ferrite-austenite 2-phase stainless steel plate having low in-plane anisotropy and method for producing the same
CN104439152A (en) * 2014-11-17 2015-03-25 哈尔滨工业大学 High-temperature alloy material for die-casting die and method and application of high-temperature alloy material
CN104439152B (en) * 2014-11-17 2017-08-08 哈尔滨工业大学 A kind of high-temperature alloy material and its methods and applications for die casting
JP2017088945A (en) * 2015-11-09 2017-05-25 新日鐵住金ステンレス株式会社 Stainless steel sheet for structural member excellent in processability and manufacturing method therefor
CN108472700A (en) * 2016-01-18 2018-08-31 新日铁住金株式会社 Titanium plate
CN108472700B (en) * 2016-01-18 2020-02-21 日本制铁株式会社 Titanium plate
US10718043B2 (en) 2016-01-18 2020-07-21 Nippon Steel Corporation Titanium plate

Also Published As

Publication number Publication date
JP5656435B2 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
JP5500960B2 (en) Fine grain austenitic stainless steel sheet with excellent stress corrosion cracking resistance and workability
JP3886933B2 (en) Ferritic stainless steel sheet excellent in press formability and secondary workability and manufacturing method thereof
JP5687624B2 (en) Stainless steel, cold-rolled strip made from this steel, and method for producing steel plate products from this steel
JP2010222593A (en) Duplex stainless steel plate having excellent press moldability
JP5308726B2 (en) Austenitic stainless steel sheet for press forming having a fine grain structure and method for producing the same
JP3691341B2 (en) Austenitic stainless steel sheet with excellent precision punchability
JP5656432B2 (en) Ferritic / austenitic stainless steel sheet with excellent press formability and manufacturing method thereof
JP5656435B2 (en) Ferrite-austenitic stainless steel sheet for press molding with small earrings and method for producing the same
JP2015190025A (en) Ferritic stainless hot rolled steel sheet excellent in toughness and steel strip
KR20160105874A (en) Ferritic stainless steel and method for producing same
CN107964632B (en) Ferritic stainless steel sheet having excellent formability
JP7256792B2 (en) Austenitic stainless steel drawing products with excellent workability and resistance to age cracking
JP2007211313A (en) Ferritic stainless steel having excellent ridging resistance and its production method
JP4272394B2 (en) Ferritic stainless steel with excellent precision punchability
JP5501819B2 (en) Cold-rolled steel sheet for nitriding with excellent nitriding characteristics and anti-recrystallization softening characteristics and method for producing the same
JP5950653B2 (en) Ferritic stainless steel plate with excellent surface roughness resistance
JP2016113670A (en) Ferritic stainless steel and method for producing the same
JP5046400B2 (en) Method for producing cold-rolled steel sheet with excellent recrystallization softening resistance and cold-rolled steel sheet for automatic transmission
JP2002275595A (en) Ferritic stainless steel sheet having excellent ridging resistance and deep drawability and method of manufacturing for the same
JP5887179B2 (en) Duplex stainless steel with excellent overworkability and method for producing the same
JP2005240184A (en) Production method of austenitic stainless steel sheet excellent in fine-blanking property
KR101938588B1 (en) Manufacturing method of ferritic stainless steel having excellent ridging property
JP5921352B2 (en) Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same
JP5167314B2 (en) Method for producing ferritic stainless steel with excellent ridging resistance
JP3727646B2 (en) Manufacturing method of austenitic stainless steel sheet with excellent precision punchability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141125

R150 Certificate of patent or registration of utility model

Ref document number: 5656435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250