JP2011207967A - Flame-retardant polylactic acid resin composition - Google Patents

Flame-retardant polylactic acid resin composition Download PDF

Info

Publication number
JP2011207967A
JP2011207967A JP2010075683A JP2010075683A JP2011207967A JP 2011207967 A JP2011207967 A JP 2011207967A JP 2010075683 A JP2010075683 A JP 2010075683A JP 2010075683 A JP2010075683 A JP 2010075683A JP 2011207967 A JP2011207967 A JP 2011207967A
Authority
JP
Japan
Prior art keywords
weight
polylactic acid
parts
flame
acid resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010075683A
Other languages
Japanese (ja)
Other versions
JP5221587B2 (en
Inventor
Takahiro Imamura
高弘 今村
Ikuo Machida
郁夫 町田
Jun Mukushiro
純 椋代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2010075683A priority Critical patent/JP5221587B2/en
Publication of JP2011207967A publication Critical patent/JP2011207967A/en
Application granted granted Critical
Publication of JP5221587B2 publication Critical patent/JP5221587B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flame-retardant polylactic acid resin composition including a polylactic acid resin with the excellent flame retardancy, heat resistance and shock resistance.SOLUTION: The flame-retardant polylactic acid resin composition includes 5 to 50 pts.wt. of (A) a polylactic acid resin, and 50 to 95 pts.wt. of (B) an aromatic polycarbonate resin. It also includes with respect to the total of 100 pts.wt. of (A) and (B) 1 to 30 pts.wt. of (C) a styrene-butadiene block copolymer, 0.1 to 10 pts.wt. of (D) a styrene or acrylic resin having a glycidyl methacrylate unit and 1 to 50 pts.wt. of (E) a phosphorus-based flame retardant.

Description

本発明は、ポリ乳酸樹脂を含む難燃性ポリ乳酸樹脂組成物に関する。この樹脂組成物からは、難燃性、耐熱性、耐衝撃性に優れた成形品が得られる。   The present invention relates to a flame retardant polylactic acid resin composition containing a polylactic acid resin. From this resin composition, a molded product excellent in flame retardancy, heat resistance and impact resistance can be obtained.

植物由来原料からなる樹脂や、天然素材から得られる材料が、所謂「カーボンニュートラル」の観点から、二酸化炭素の排出量を低減できるとして注目されている。その代表的な材料として、溶融成形可能なポリ乳酸樹脂が特に注目されている。しかし、ポリ乳酸樹脂は、耐熱性や耐衝撃性が低く単独では実用的な成形品を得ることは困難であり、その改良が望まれている。   From the viewpoint of so-called “carbon neutral”, resins made from plant-derived materials and materials obtained from natural materials are attracting attention because they can reduce carbon dioxide emissions. As a representative material, a polylactic acid resin that can be melt-molded is particularly attracting attention. However, polylactic acid resin has low heat resistance and impact resistance, and it is difficult to obtain a practical molded product by itself, and improvement thereof is desired.

また、ポリ乳酸樹脂は、それ自体燃焼し易いため、電気・電子用途など、難燃性が必要な部材には使用することができなかった。   Moreover, since polylactic acid resin itself is easily combusted, it cannot be used for members that require flame retardancy, such as electrical and electronic applications.

そこで、ポリ乳酸樹脂組成物の耐衝撃性、難燃性を改善するために、特許文献1には芳香族ポリカーボネート樹脂を混合して用いる技術が提案されている。しかしながら、この方法で得られた組成物は、UL94の難燃性でV−0レベルが得られているものの、耐衝撃性の改善が必要である。   Therefore, in order to improve the impact resistance and flame retardancy of the polylactic acid resin composition, Patent Document 1 proposes a technique in which an aromatic polycarbonate resin is mixed and used. However, although the composition obtained by this method has a V-0 level due to the flame retardancy of UL94, improvement in impact resistance is necessary.

また、特許文献2は、ポリ乳酸樹脂に、難燃剤およびポリ乳酸以外の樹脂を含有してなる樹脂組成物を開示する。この樹脂組成物においても、難燃性や耐衝撃性の改善効果が見られるが、耐熱性向上に課題を残している。さらに、特許文献3にはポリ乳酸樹脂とポリカーボネート樹脂に相溶化剤が適用された樹脂組成物が開示されているが、依然として耐衝撃性に課題があった。   Patent Document 2 discloses a resin composition comprising a polylactic acid resin containing a flame retardant and a resin other than polylactic acid. Even in this resin composition, flame retardancy and impact resistance are improved, but there remains a problem in improving heat resistance. Furthermore, Patent Document 3 discloses a resin composition in which a compatibilizing agent is applied to a polylactic acid resin and a polycarbonate resin, but there is still a problem in impact resistance.

特開2008−88226号公報JP 2008-88226 A 特開2004−190026号公報JP 2004-190026 JP 特開2007−56247号公報JP 2007-56247 A

本発明は、難燃性、耐熱性、耐衝撃性に優れたポリ乳酸樹脂を含む難燃性ポリ乳酸樹脂組成物を提供することを目的とする。   An object of this invention is to provide the flame-retardant polylactic acid resin composition containing the polylactic acid resin excellent in the flame retardance, heat resistance, and impact resistance.

本発明者らは、ポリ乳酸樹脂、芳香族ポリカーボネート樹脂、スチレン−ブタジエンブロック共重合体、メタクリル酸グリシジルユニットを有するスチレン系あるいはアクリル系樹脂およびリン系難燃剤を配合することにより本課題を達成することが可能であることを見出した。   The present inventors achieve this object by blending a polylactic acid resin, an aromatic polycarbonate resin, a styrene-butadiene block copolymer, a styrene or acrylic resin having a glycidyl methacrylate unit, and a phosphorus flame retardant. I found that it was possible.

本発明は、(A)ポリ乳酸樹脂5〜50重量部、(B)芳香族ポリカーボネート樹脂50〜95重量部、(A)と(B)の合計100重量部に対して、(C)スチレン−ブタジエンブロック共重合体1〜30重量部、(D)メタクリル酸グリシジルユニットを有するスチレン系樹脂あるいはアクリル系樹脂のいずれかひとつ、またはこれらの組み合わせからなる樹脂0.1〜10重量部および(E)リン系難燃剤1〜50重量部を配合してなる難燃性ポリ乳酸樹脂組成物である。   The present invention is based on (A) 5 to 50 parts by weight of a polylactic acid resin, (B) 50 to 95 parts by weight of an aromatic polycarbonate resin, and 100 parts by weight of (A) and (B). 1 to 30 parts by weight of a butadiene block copolymer, (D) 0.1 to 10 parts by weight of a resin comprising any one of a styrene resin or an acrylic resin having a glycidyl methacrylate unit, or a combination thereof, and (E) It is a flame retardant polylactic acid resin composition comprising 1 to 50 parts by weight of a phosphorus flame retardant.

有利には、(A)ポリ乳酸樹脂5〜50重量%、(B)芳香族ポリカーボネート樹脂50〜95重量%を含み、(A)と(B)の合計100重量部に対して、(C)スチレン−ブタジエンブロック共重合体1〜30重量部、(D)メタクリル酸グリシジルユニットを有するスチレン系樹脂あるいはアクリル系樹脂のいずれかひとつ、またはこれらの組み合わせからなる樹脂0.1〜10重量部および(E)リン系難燃剤1〜50重量部を配合してなる難燃性ポリ乳酸樹脂組成物である。   Advantageously, (A) 5 to 50% by weight of polylactic acid resin, (B) 50 to 95% by weight of aromatic polycarbonate resin, and (C) for a total of 100 parts by weight of (A) and (B) 1 to 30 parts by weight of a styrene-butadiene block copolymer, (D) 0.1 to 10 parts by weight of a resin comprising any one of a styrene resin or an acrylic resin having a glycidyl methacrylate unit, or a combination thereof; E) A flame retardant polylactic acid resin composition comprising 1 to 50 parts by weight of a phosphorus flame retardant.

ここで、(C)スチレン−ブタジエンブロック共重合体がラジアルブロック構造を有し、スチレン含有量が60〜90重量%であること、(F)フッ素系樹脂を、(A)と(B)の合計100重量部に対して、0.01〜2重量部配合してなること、または(G)無機充填材を含有し、その含有量が(A)と(B)の合計100重量部に対して、0.5〜50重量部であることのいずれか1以上を満足すると好ましい難燃性ポリ乳酸樹脂組成物を与える。   Here, (C) the styrene-butadiene block copolymer has a radial block structure, the styrene content is 60 to 90% by weight, (F) the fluorine-based resin, (A) and (B) 0.01 to 2 parts by weight based on a total of 100 parts by weight, or (G) containing an inorganic filler, and the content is 100 parts by weight in total of (A) and (B) When satisfying any one or more of 0.5 to 50 parts by weight, a preferable flame retardant polylactic acid resin composition is provided.

本発明によれば、難燃性、耐熱性、耐衝撃性に優れたポリ乳酸樹脂を含む難燃性ポリ乳酸樹脂組成物を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the flame-retardant polylactic acid resin composition containing the polylactic acid resin excellent in the flame retardance, heat resistance, and impact resistance can be obtained.

以下、本発明の難燃性ポリ乳酸樹脂組成物について詳しく説明する。本発明の難燃性ポリ乳酸樹脂組成物は、(A)成分、(B)成分、(C)成分、(D)成分および(E)成分を必須成分として含む。ここで、(A)成分はポリ乳酸樹脂、(B)成分は芳香族ポリカーボネート樹脂、(C)成分はスチレン−ブタジエンブロック共重合体、(D)成分はメタクリル酸グリシジルユニットを有するスチレン系あるいはアクリル系樹脂、(E)成分はリン系難燃剤である。そして、(A)成分〜(E)成分を、それぞれ(A)、(B)、(C)、(D)および(E)ともいう。   Hereinafter, the flame retardant polylactic acid resin composition of the present invention will be described in detail. The flame-retardant polylactic acid resin composition of the present invention contains (A) component, (B) component, (C) component, (D) component, and (E) component as essential components. Here, the component (A) is a polylactic acid resin, the component (B) is an aromatic polycarbonate resin, the component (C) is a styrene-butadiene block copolymer, and the component (D) is a styrene or acrylic resin having a glycidyl methacrylate unit. Resin and component (E) are phosphorus flame retardants. The components (A) to (E) are also referred to as (A), (B), (C), (D), and (E), respectively.

本発明の難燃性ポリ乳酸樹脂組成物は、(A)〜(E)成分を必須成分として含む。更にその用途等によっては、必要により後記する(F)成分および(G)成分等のいずれか1以上の任意成分を含むことが好ましい。以下、各成分について説明する。   The flame-retardant polylactic acid resin composition of the present invention contains components (A) to (E) as essential components. Furthermore, it is preferable to include any one or more optional components such as the component (F) and the component (G) described later depending on the application. Hereinafter, each component will be described.

本発明に使用される(A)成分のポリ乳酸樹脂とは、L−乳酸及び/又はD−乳酸を主成分とする重合体又は共重合体である。本発明においては、該組成物の耐熱性や耐衝撃性の観点からL−乳酸またはD−乳酸のいずれかの単位を90%以上含むことが好ましく、L−乳酸またはD−乳酸のいずれかの単位を95%以上含むことが更に好ましい。   The polylactic acid resin of component (A) used in the present invention is a polymer or copolymer having L-lactic acid and / or D-lactic acid as a main component. In the present invention, from the viewpoint of heat resistance and impact resistance of the composition, it is preferable to contain 90% or more of either unit of L-lactic acid or D-lactic acid, and either L-lactic acid or D-lactic acid More preferably, the unit contains 95% or more.

ポリ乳酸樹脂の製造方法としては、公知の重合方法を用いることができる。乳酸から直接脱水重縮合する方法、およびラクチドを介する開環重合法などを挙げることができる。   As a method for producing the polylactic acid resin, a known polymerization method can be used. Examples thereof include a method of directly dehydrating polycondensation from lactic acid and a ring-opening polymerization method via lactide.

ポリ乳酸樹脂の分子量については、実質的に成形加工が可能であれば特に制限されるものではないが、重量平均分子量Mwとしては、通常1万以上、好ましくは5万以上であり、更に好ましくは10万〜50万である。   The molecular weight of the polylactic acid resin is not particularly limited as long as it can be substantially molded, but the weight average molecular weight Mw is usually 10,000 or more, preferably 50,000 or more, more preferably 100,000 to 500,000.

ポリ乳酸樹脂の、190℃−2.16kgにおけるメルトフローレート(ASTM D1238)は通常0.1〜30g/10分、好ましくは0.2〜20g/10分、最適には0.5〜10g/10分である。メルトフローレートが30g/10分を超える場合は、溶融粘度が低すぎて成形体の耐衝撃性や耐熱性が劣る場合がある。   The melt flow rate (ASTM D1238) at 190 ° C.-2.16 kg of the polylactic acid resin is usually 0.1 to 30 g / 10 minutes, preferably 0.2 to 20 g / 10 minutes, optimally 0.5 to 10 g / 10 minutes. When the melt flow rate exceeds 30 g / 10 min, the melt viscosity is too low, and the impact resistance and heat resistance of the molded product may be inferior.

次に、(B)成分である芳香族ポリカーボネート樹脂について説明する。芳香族ポリカーボネート樹脂は、特に限定されるものではなく、通常、分子量調節剤の存在下又は非存在下で、二価フェノールとホスゲン又は炭酸ジエチルを溶液法又は溶融法で反応させて製造することが出来る。   Next, the aromatic polycarbonate resin as the component (B) will be described. The aromatic polycarbonate resin is not particularly limited, and can usually be produced by reacting a dihydric phenol and phosgene or diethyl carbonate by a solution method or a melt method in the presence or absence of a molecular weight regulator. I can do it.

ここで、二価フェノールとしては、様々なものが挙げられるが、特に2,2−ビス(4−ヒドロキシフェニル)プロパン(通称:ビスフェノールA)が好ましい。ビスフェノールA以外の二価フェノールとしては、ビスフェノールA以外のビス(4−ヒドロキシフェニル)アルカン、1,1−ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、4,4−ジヒドロキシジフェニル、ビス(4−ヒドロキシフェニル)シクロアルカン、ビス(4−ヒドロキシフェニル)オキシド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)エーテル、ビス(4−ヒドロキシフェニル)ケトン等が挙げられる。この他、二価フェノールとしては、ハイドロキノン等も挙げられる。これらの二価フェノールは単独で用いても、2種以上併用してもよい。   Here, various dihydric phenols are exemplified, and 2,2-bis (4-hydroxyphenyl) propane (common name: bisphenol A) is particularly preferable. Examples of dihydric phenols other than bisphenol A include bis (4-hydroxyphenyl) alkanes other than bisphenol A, 1,1-bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 4 , 4-dihydroxydiphenyl, bis (4-hydroxyphenyl) cycloalkane, bis (4-hydroxyphenyl) oxide, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) Examples thereof include sulfoxide, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) ketone and the like. In addition, examples of the dihydric phenol include hydroquinone. These dihydric phenols may be used alone or in combination of two or more.

ポリカーボネート樹脂の製造において分子量調節剤を使用する場合、使用する分子量調節剤としては、通常、ポリカーボネートの重合に用いられるものでよく、各種のものを用いることが出来る。具体的には、例えば、一価フェノールであるフェノール、p−クレゾール、p−tert−ブチルフェノール、p−tert−オクチルフェノール、p−クミルフェノール、ノニルフェノール等が挙げられる。   When a molecular weight regulator is used in the production of the polycarbonate resin, the molecular weight regulator to be used may be usually used for polymerization of polycarbonate, and various types can be used. Specific examples include monohydric phenols such as phenol, p-cresol, p-tert-butylphenol, p-tert-octylphenol, p-cumylphenol, and nonylphenol.

また、前記したポリカーボネート樹脂の製造においては、更に分岐化剤(通常は多官能性の芳香族化合物)を二価フェノールと併用してもよい。分岐化剤としては、トリメリット酸無水物、トリメリット酸、4−クロロホルミルフタル酸無水物、ピロメリット酸、フロログルシン、没食子酸、没食子酸プロピル、メリト酸、トリメシン酸及びベンゾフェノンテトラカルボン酸等が例示できる。そして、これら多官能性の芳香族化合物はカルボキシ、ヒドロキシ、カルボン酸無水物、ハロホルミル及びこれらの組合わせといったような官能基を少なくとも3個有する。   In the production of the polycarbonate resin, a branching agent (usually a polyfunctional aromatic compound) may be used in combination with a dihydric phenol. Examples of branching agents include trimellitic anhydride, trimellitic acid, 4-chloroformylphthalic anhydride, pyromellitic acid, phloroglucin, gallic acid, propyl gallate, melittic acid, trimesic acid, and benzophenonetetracarboxylic acid. It can be illustrated. These polyfunctional aromatic compounds have at least three functional groups such as carboxy, hydroxy, carboxylic anhydride, haloformyl, and combinations thereof.

本発明において用いられる芳香族ポリカーボネート樹脂の分子量は、本発明の効果を損なわない範囲であれば、何等制限されるものではない。機械的強度及び成形加工性の観点から、そのポリスチレン換算重量平均分子量が5,000〜100,000のもの、好ましくは7,000〜70000のもの、より好ましくは10,000〜50,000のものを好適に用いることができる。また、分子量が異なる2種以上の芳香族ポリカーボネート樹脂を組み合わせて使用しても良い。   The molecular weight of the aromatic polycarbonate resin used in the present invention is not limited as long as it does not impair the effects of the present invention. From the viewpoint of mechanical strength and moldability, the polystyrene-equivalent weight average molecular weight is 5,000 to 100,000, preferably 7,000 to 70,000, more preferably 10,000 to 50,000. Can be suitably used. Further, two or more aromatic polycarbonate resins having different molecular weights may be used in combination.

本発明における(A)ポリ乳酸樹脂および(B)芳香族ポリカーボネート樹脂の配合量は、(A)/(B)(重量比)=5〜50/95〜50であることが好ましく、15〜50/85〜50であることが更に好ましい。この配合量にすることにより、二酸化炭素排出削減効果と前記したポリ乳酸樹脂の改質効果が得られる。   The blending amount of (A) polylactic acid resin and (B) aromatic polycarbonate resin in the present invention is preferably (A) / (B) (weight ratio) = 5-50 / 95-50, preferably 15-50. More preferably, it is / 85-50. By using this blending amount, the carbon dioxide emission reduction effect and the modification effect of the polylactic acid resin described above can be obtained.

次に、(C)成分として使用するスチレン−ブタジエンブロック共重合体について説明する。スチレン−ブタジエンブロック共重合体としては、耐衝撃性を向上させるという観点からは、ガラス転移温度が20℃以下、好ましくは0℃以下の重合体セグメントを有するものが好ましい。このようなスチレン−ブタジエンブロック共重合体は、下記の式に示すように、スチレンを主体とする重合体ブロックAとブタジエンを主体とする重合体ブロックBから得られるものである。   Next, the styrene-butadiene block copolymer used as the component (C) will be described. As the styrene-butadiene block copolymer, those having a polymer segment having a glass transition temperature of 20 ° C. or lower, preferably 0 ° C. or lower are preferable from the viewpoint of improving impact resistance. Such a styrene-butadiene block copolymer is obtained from a polymer block A mainly composed of styrene and a polymer block B mainly composed of butadiene, as shown in the following formula.

1) A−B(ジブロック体)、
2) A−B−A(トリブロック体)、
3) −[A−B−]n−(マルチブロック体)、
4) −([A−B−]n)m−X(ラジアルブロック体)
なお、構造式中、Aはスチレンを主体とする重合体ブロック、Bはブタジエンを主体とする重合体ブロック、Xは多官能カップリング剤の中心原子、もしくは中心原子団、nは連続単位の整数を示し、mはXに結合するブロックの数を示す。
1) AB (diblock body),
2) A-B-A (triblock body),
3)-[AB-] n- (multi-block body),
4)-([AB-] n) m -X (radial block)
In the structural formula, A is a polymer block mainly composed of styrene, B is a polymer block mainly composed of butadiene, X is a central atom or central atomic group of a polyfunctional coupling agent, and n is an integer of a continuous unit. , M represents the number of blocks connected to X.

スチレン−ブタジエンブロック共重合体は、アニオンリビング重合法等によって製造することができる。製造条件は、1)ジブロック体、2)トリブロック体、3)マルチブロック体、4)ラジアルブロック体のいずれの場合についても、従来公知の如何なる条件であってもよい。このスチレン−ブタジエンブロック共重合体は、スチレン単位を60〜90重量%、好ましくは65〜85重量%、より好ましくは70〜80重量含むものである。スチレン含有量が60重量%未満であると耐熱性が悪化し、90重量%を超えると耐衝撃性が悪化するため好ましくない。   The styrene-butadiene block copolymer can be produced by an anion living polymerization method or the like. The production conditions may be any conventionally known conditions for any of 1) a diblock body, 2) a triblock body, 3) a multiblock body, and 4) a radial block body. This styrene-butadiene block copolymer contains 60 to 90% by weight, preferably 65 to 85% by weight, more preferably 70 to 80% by weight of styrene units. When the styrene content is less than 60% by weight, the heat resistance is deteriorated, and when it exceeds 90% by weight, the impact resistance is deteriorated.

スチレン−ブタジエンブロック共重合体の分子構造は、1)ジブロック体、2)トリブロック体、3)マルチブロック体、4)ラジアルブロック体、あるいはこれらの任意の組み合わせのいずれであってもよいが、耐衝撃性を発現させるためには、ブタジエン相が連続相を形成することが必要であり、該組成物において、その構造を形成し易い4)ラジアルブロック体であることが最も好ましい。   The molecular structure of the styrene-butadiene block copolymer may be any of 1) diblock body, 2) triblock body, 3) multiblock body, 4) radial block body, or any combination thereof. In order to develop impact resistance, it is necessary for the butadiene phase to form a continuous phase, and in the composition, it is most preferable to be a 4) radial block body that can easily form its structure.

また、上記の構造を有するスチレン−ブタジエンブロック共重合体のポリスチレン換算数平均分子量は特に限定されないが、数平均分子量は5000〜1000000、好ましくは1万〜50万、更に好ましくは3万〜30万の範囲である。   The number average molecular weight in terms of polystyrene of the styrene-butadiene block copolymer having the above structure is not particularly limited, but the number average molecular weight is 5,000 to 1,000,000, preferably 10,000 to 500,000, more preferably 30,000 to 300,000. Range.

本発明における(C)成分のスチレン−ブタジエンブロック共重合体の配合量は、(A)と(B)の合計100重量部に対して、1〜30重量部であり、好ましくは5〜20重量部である。(C)成分が1重量部より少ないと十分な耐衝撃性改良効果は得られず、30重量部を超えると耐熱性が悪化するため好ましくない。   The blending amount of the styrene-butadiene block copolymer of component (C) in the present invention is 1 to 30 parts by weight, preferably 5 to 20 parts by weight based on 100 parts by weight of the total of (A) and (B). Part. If the amount of component (C) is less than 1 part by weight, a sufficient impact resistance improving effect cannot be obtained, and if it exceeds 30 parts by weight, the heat resistance deteriorates, which is not preferable.

次に、(D)成分について説明する。メタクリル酸グリシジルユニットを有するスチレン系樹脂あるいはアクリル系樹脂とは、スチレン系樹脂、あるいはアクリル系樹脂とメタクリル酸グリシジルが共重合された高分子化合物である。(D)成分を配合することにより、該組成物の相溶性が改善する。   Next, the component (D) will be described. The styrene resin or acrylic resin having a glycidyl methacrylate unit is a styrene resin or a polymer compound obtained by copolymerizing an acrylic resin and glycidyl methacrylate. By blending the component (D), the compatibility of the composition is improved.

前記のメタクリル酸グリシジルユニットを有するスチレン系樹脂とは、スチレン、メチルスチレン、α−メチルスチレンなどのスチレン系モノマーの単独重合体、あるいはこれらと他の不飽和単量体とメタクリル酸グリシジルを共重合させた高分子化合物である。ここで他の不飽和単量体としては、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、無水マレイン酸などの不飽和有機酸またはその誘導体、あるいは酢酸ビニル、酪酸ビニルなどのビニルエステル、あるいはビニルトリメチルメトキシシラン、メタクリロイルオキシプロピルトリメトキシシランなどのビニルシラン、あるいはジシクロペンタジエン、4−エチリデン−2−ノルボルネンなどの非共役ジエンなどを用いることができ、共重合体の場合には、2種に限らず、複数種からなるものであってもよい。   The above-mentioned styrene resin having a glycidyl methacrylate unit is a homopolymer of a styrene monomer such as styrene, methylstyrene, α-methylstyrene, or a copolymer of these and other unsaturated monomers with glycidyl methacrylate. A polymer compound. Here, as other unsaturated monomer, unsaturated organic acid such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, methyl acrylate, ethyl acrylate, methyl methacrylate, maleic anhydride, or a derivative thereof, or Vinyl acetate such as vinyl acetate and vinyl butyrate, vinyl silane such as vinyl trimethylmethoxysilane and methacryloyloxypropyltrimethoxysilane, or non-conjugated dienes such as dicyclopentadiene and 4-ethylidene-2-norbornene can be used. In the case of a copolymer, it is not limited to two types, and may be a plurality of types.

前記のメタクリル酸グリシジルユニットを有するアクリル系樹脂とは、アクリル酸、メタクリル酸、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチルなどのアクリル系モノマーの単独重合体、あるいはこれらと他の不飽和単量体とメタクリル酸グリシジルを共重合させた高分子化合物である。ここで他の不飽和単量体としては、スチレン、メチルスチレン、α−メチルスチレンなどのスチレン系モノマー、あるいは酢酸ビニル、酪酸ビニルなどのビニルエステル、あるいはビニルトリメチルメトキシシラン、メタクリロイルオキシプロピルトリメトキシシランなどのビニルシラン、あるいはジシクロペンタジエン、4−エチリデン−2−ノルボルネンなどの非共役ジエンなどを用いることができ、共重合体の場合には、2種に限らず、複数種からなるものであってもよい。   The acrylic resin having the glycidyl methacrylate unit is a homopolymer of acrylic monomers such as acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, methyl methacrylate, or other unsaturated monomers. Is a polymer compound obtained by copolymerizing glycidyl methacrylate. Examples of other unsaturated monomers include styrene monomers such as styrene, methylstyrene, and α-methylstyrene, vinyl esters such as vinyl acetate and vinyl butyrate, vinyltrimethylmethoxysilane, and methacryloyloxypropyltrimethoxysilane. Non-conjugated dienes such as vinyl silane, or dicyclopentadiene, 4-ethylidene-2-norbornene, etc. can be used, and in the case of a copolymer, not only two types but also a plurality of types Also good.

(D)成分のメタクリル酸グリシジルに由来するエポキシ当量は100〜4000(g/eq)であることが好ましく、更に好ましくは100〜2000(g/eq)である。100(g/eq)未満では該組成物の架橋密度が上がりすぎるため、脆性が悪化し、4000(g/eq)を超えると十分な相溶性改良効果が得られないため好ましくない。   (D) It is preferable that the epoxy equivalent derived from the glycidyl methacrylate of a component is 100-4000 (g / eq), More preferably, it is 100-2000 (g / eq). If it is less than 100 (g / eq), the crosslink density of the composition is excessively increased, so that brittleness is deteriorated, and if it exceeds 4000 (g / eq), a sufficient compatibility improving effect cannot be obtained.

(D)成分の配合量は、(A)と(B)の合計100重量部に対して、0.1〜10重量部であり、好ましくは0.5〜5重量部である。0.1重量部未満では相溶性は改善せず、10重量部を超えると脆性が悪化するため好ましくない。   (D) The compounding quantity of a component is 0.1-10 weight part with respect to a total of 100 weight part of (A) and (B), Preferably it is 0.5-5 weight part. If the amount is less than 0.1 parts by weight, the compatibility is not improved. If the amount exceeds 10 parts by weight, the brittleness deteriorates, which is not preferable.

(E)成分として使用されるリン系難燃剤は、配合された樹脂が高温下に晒された時にポリリン酸化合物を生成して耐熱皮膜を形成し、また、固体酸による炭化促進機構で難燃効果を示すと考えられている。こうしたリン系難燃剤としては、公知のものを制限なく使用できるが、具体例としては、リン酸カルシウム、リン酸チタニウム等のようなリン酸塩;トリブチルホスフェート、トリフェニルホスフェート等のようなリン酸エステル;ポリリン酸;ポリリン酸カルシウムのようなポリリン酸塩;ポリ(ジフェニルリン酸)のようなポリリン酸エステル;ビスフェノールAビスジフェニルホスフェート、1,3−フェニレンビスジキシレニルホスフェート等のような縮合リン酸エステル;トリフェニルホスフィンオキサイドのようなホスフィンオキサイド;フェニルホスフォランのようなホスフォラン;ジフェニルホスホン酸のようなホスホン酸;ホスフィンスルフィドなどを挙げることができる。このうち、縮合リン酸エステルが難燃化効果が大きいために好適に使用できる。   The phosphorus-based flame retardant used as the component (E) forms a heat-resistant film by forming a polyphosphoric acid compound when the blended resin is exposed to a high temperature, and is also flame retardant by a mechanism of promoting carbonization by a solid acid. It is thought to show an effect. As such phosphorus flame retardants, known ones can be used without limitation. Specific examples thereof include phosphates such as calcium phosphate and titanium phosphate; phosphate esters such as tributyl phosphate and triphenyl phosphate; Polyphosphates; polyphosphates such as calcium polyphosphate; polyphosphates such as poly (diphenyl phosphate); condensed phosphates such as bisphenol A bisdiphenyl phosphate, 1,3-phenylene bisdixylenyl phosphate; A phosphine oxide such as triphenylphosphine oxide; a phosphorane such as phenylphosphorane; a phosphonic acid such as diphenylphosphonic acid; a phosphine sulfide. Among these, the condensed phosphate ester can be suitably used because it has a large flame retardant effect.

(E)成分の配合量は、(A)と(B)の合計100重量部に対して、1〜50重量部、好ましくは3〜30重量部である。配合量が1重量部未満では、十分な難燃効果が得られず、また50重量部%よりも多い場合には、成形性及び機械的特性が悪化するので好ましくない。   (E) The compounding quantity of a component is 1-50 weight part with respect to a total of 100 weight part of (A) and (B), Preferably it is 3-30 weight part. If the blending amount is less than 1 part by weight, a sufficient flame retardant effect cannot be obtained, and if it exceeds 50 parts by weight, the moldability and mechanical properties are deteriorated, which is not preferable.

本発明の難燃性ポリ乳酸樹脂組成物には、必要により(F)成分、(G)成分およびその他の成分を配合することができる。   If necessary, the flame retardant polylactic acid resin composition of the present invention can contain a component (F), a component (G), and other components.

(F)成分のフッ素樹脂は、樹脂燃焼時の溶融滴下防止効果を付与するものであり、樹脂中にフィブリル状に微分散させることが好ましい。本発明で用いる好ましいフッ素樹脂は、平均分子量が10,000以上の高分子量のものであり、−30℃以上、好ましくは100℃以上のガラス転移温度、65〜76重量%、好ましくは70〜76重量%のフッ素含有量、0.05〜10μm、好ましくは0.1〜5μmの平均粒径及び1.2〜2.3g/cm3の密度を有するものである。 Component (F), which is a fluororesin, imparts the effect of preventing melt dripping during resin combustion, and is preferably finely dispersed in a fibril form in the resin. The preferred fluororesin used in the present invention has a high molecular weight having an average molecular weight of 10,000 or more, a glass transition temperature of −30 ° C. or more, preferably 100 ° C. or more, 65 to 76% by weight, preferably 70 to 76%. It has a fluorine content of wt%, an average particle size of 0.05 to 10 μm, preferably 0.1 to 5 μm and a density of 1.2 to 2.3 g / cm 3 .

(F)成分の具体例としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体及びテトラフルオロエチレン/エチレン共重合体等およびこれらを水に分散させたディスパージョンがあり、これらをそれぞれ単独又は複数併用して使用してもよい。   Specific examples of the component (F) include polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene / hexafluoropropylene copolymer and tetrafluoroethylene / ethylene copolymer, and dispersions in which these are dispersed in water. These may be used alone or in combination.

(F)成分の配合量は、(A)と(B)の合計100重量部に対して、0.01〜2重量部が好ましく、好ましくは0.02〜1.5重量部、更に好ましくは0.03〜1.0重量部である。0.01重量部未満では難燃性改良効果が見られず、2重量部を超えると逆に難燃性や機械的特性が悪化する。   Component (F) is preferably blended in an amount of 0.01 to 2 parts by weight, preferably 0.02 to 1.5 parts by weight, more preferably 100 parts by weight in total of (A) and (B). 0.03 to 1.0 part by weight. If it is less than 0.01 part by weight, the effect of improving flame retardancy is not seen.

(G)成分の無機充填材は、一般的に知られている各種フィラーを使用することができるが、該組成物の耐熱性や耐衝撃性向上のためには繊維状、フレーク状のものが好ましく、また、二酸化炭素の排出量を低減の観点から、天然鉱物の粉砕物からなる無機充填材であることが更に好ましい。   As the inorganic filler of the component (G), various commonly known fillers can be used. However, in order to improve the heat resistance and impact resistance of the composition, fibrous or flake-like ones can be used. Further, from the viewpoint of reducing carbon dioxide emission, an inorganic filler made of a pulverized natural mineral is more preferable.

(G)成分の具体例としては、ワラストナイト、カオリンクレー、マイカ、タルクなどを挙げることができ、特にワラストナイト、マイカ、タルクが好ましい。(G)成分の配合量は、(A)と(B)の合計100重量部に対して、0.5〜50質量部であることが好ましく、好ましくは0.5〜30重量部、更に好ましくは0.5〜10重量部である。0.5重量部未満では添加効果は見られず、50重量部を超えると機械的特性が悪化するため好ましくない。   Specific examples of the component (G) include wollastonite, kaolin clay, mica and talc, and wollastonite, mica and talc are particularly preferable. The amount of component (G) is preferably 0.5 to 50 parts by weight, preferably 0.5 to 30 parts by weight, more preferably 100 parts by weight in total of (A) and (B). Is 0.5 to 10 parts by weight. If the amount is less than 0.5 part by weight, the effect of addition is not observed, and if it exceeds 50 parts by weight, the mechanical properties deteriorate, which is not preferable.

本発明の難燃性ポリ乳酸樹脂組成物の各成分の存在割合は、(A)成分/(B)成分=5〜50/50〜95(重量部)、好ましくは(A)成分/(B)成分=15〜50/50〜85(重量部)である。有利には、樹脂組成物中に(A)成分5〜50重量%、(B)成分50〜95重量%、好ましくは(A)成分15〜50重量%、(B)成分50〜85重量%存在させる。そして、(A)成分と(B)成分の合計100重量部に対して、(C)成分は1〜30重量部、好ましくは5〜20重量部、(D)成分は0.1〜10重量部、好ましくは0.5〜5重量部、(E)成分は1〜50重量部、好ましくは3〜30重量部、(F)は成分0.01〜2重量部、好ましくは0.03〜1.0重量部、(G)成分は0.5〜50重量部、好ましくは0.5〜10重量部である。そして、(G)成分を除いた状態での各成分の含有量は次の範囲が好ましい。(A)成分10〜40重量%、(B)成分40〜80重量%、(C)成分は5〜20重量%、(D)成分0.5〜5重量%、(E)成分3〜30重量%である。(F)成分を存在させる場合は、0.03〜1.0重量%である。   The proportion of each component in the flame-retardant polylactic acid resin composition of the present invention is (A) component / (B) component = 5-50 / 50-95 (parts by weight), preferably (A) component / (B ) Component = 15-50 / 50-85 (parts by weight). Advantageously, the resin composition contains 5 to 50% by weight of component (A), 50 to 95% by weight of component (B), preferably 15 to 50% by weight of component (A), and 50 to 85% by weight of component (B). To exist. And (C) component is 1-30 weight part with respect to a total of 100 weight part of (A) component and (B) component, Preferably it is 5-20 weight part, (D) component is 0.1-10 weight Parts, preferably 0.5-5 parts by weight, component (E) is 1-50 parts by weight, preferably 3-30 parts by weight, and (F) is component 0.01-2 parts by weight, preferably 0.03-parts. 1.0 part by weight, component (G) is 0.5 to 50 parts by weight, preferably 0.5 to 10 parts by weight. And the following ranges are preferable for content of each component in the state except (G) component. (A) Component 10-40%, (B) Component 40-80%, (C) Component 5-20%, (D) Component 0.5-5%, (E) Component 3-30 % By weight. When the component (F) is present, the content is 0.03 to 1.0% by weight.

本発明の難燃性ポリ乳酸樹脂組成物は、その用途に応じて所望の性能を付与させる目的で本来の性質を損なわない範囲の量の添加剤を配合して用いることができる。添加剤としては、外部滑剤、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、光安定剤、可塑剤、顔料、染料、着色剤等が挙げられる。   The flame-retardant polylactic acid resin composition of the present invention can be used by blending an amount of additives in a range that does not impair the original properties for the purpose of imparting desired performance depending on the application. Examples of the additive include an external lubricant, an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, a light stabilizer, a plasticizer, a pigment, a dye, and a colorant.

本発明の難燃性ポリ乳酸樹脂組成物は、前記の各成分(A)〜(E)成分、必要に応じて用いられる(F)〜(G)成分を前記割合で、更に必要に応じて用いられる各種任意添加成分を適当な割合で配合し、溶融混練することにより得られる。この時の配合及び溶融混練は、通常用いられている機器、例えばリボンブレンダー、ヘンシェルミキサー、バンバリーミキサー、ドラムタンブラー、単軸スクリュー押出機、二軸スクリュー押出機、コニーダ、多軸スクリュー押出機、等を用いる方法で行うことができる。溶融混練の際の加熱温度は、通常240〜300℃の範囲で適宜選択される。   In the flame-retardant polylactic acid resin composition of the present invention, the above components (A) to (E), and the components (F) to (G) used as necessary are in the above proportions, and further if necessary. It can be obtained by blending various optional additive components to be used in an appropriate ratio, and melt-kneading. Compounding and melt-kneading at this time are usually used equipment such as ribbon blender, Henschel mixer, Banbury mixer, drum tumbler, single screw extruder, twin screw extruder, conida, multi-screw extruder, etc. It can be performed by a method using The heating temperature at the time of melt kneading is appropriately selected in the range of usually 240 to 300 ° C.

次に実施例により本発明を説明するが、本発明はこれらにより制限されるものではない。各例において、使用した材料を以下に示す。
(A)ポリ乳酸樹脂:REVODE 101−B(商品名、Mw 15万、海正生物材料股分有限公司製)
(B)芳香族ポリカーボネート樹脂:A−1900(商品名、Mw 3.2万、出光石油化学工業(株)社製)
(C)スチレン−ブタジエンブロック共重合体
C−1:KK−38(商品名、ラジアルブロック構造、ブタジエン含有量30%、シェブロン・フィリップス社製)
C−2:KR−05E(商品名、ラジアルブロック構造、ブタジエン含有量25%、シェブロン・フィリップス社製)
C−3:アサフレックス830(商品名、トリブロック構造、ブタジエン含有量30%、旭化成ケミカルズ(株)社製)
(D)メタクリル酸グリシジルユニットを有するスチレン系樹脂あるいはアクリル系樹脂
D−1:マープルーフG−0250S(商品名、スチレン系樹脂、Mw 2万、エポキシ当量310 (g/eq)、日油(株)製)
D−2:マープルーフG−01100(商品名、アクリル系樹脂、Mw 1.2万、エポキシ当量170(g/eq)、日油(株)製)
D−3:マープルーフG−02050M(商品名、アクリル系樹脂、Mw 20万、エポキシ当量340(g/eq)、日油(株)製)
(E)リン系難燃剤:CR−741(商品名、縮合リン酸エステル、大八化学工業(株)製)
(F)フッ素系樹脂:31−JR(商品名、テトラフルオロエチレン含有ディスパージョン、三井・デュポンフロロケミカル(株)製)
(G)無機充填材:TP−A25(商品名、タルク、平均粒径4.9μm、富士タルク工業(株)製)
EXAMPLES Next, the present invention will be described with reference to examples, but the present invention is not limited thereto. In each example, the materials used are shown below.
(A) Polylactic acid resin: REVODE 101-B (trade name, Mw 150,000, manufactured by Kaisho Biological Materials Co., Ltd.)
(B) Aromatic polycarbonate resin: A-1900 (trade name, Mw 32,000, manufactured by Idemitsu Petrochemical Co., Ltd.)
(C) Styrene-butadiene block copolymer C-1: KK-38 (trade name, radial block structure, butadiene content 30%, manufactured by Chevron Phillips)
C-2: KR-05E (trade name, radial block structure, butadiene content 25%, manufactured by Chevron Phillips)
C-3: Asaflex 830 (trade name, triblock structure, butadiene content 30%, manufactured by Asahi Kasei Chemicals Corporation)
(D) Styrenic resin or acrylic resin D-1 having glycidyl methacrylate unit D-1: Marproof G-0250S (trade name, styrene resin, Mw 20,000, epoxy equivalent 310 (g / eq), NOF Corporation ) Made)
D-2: Marproof G-01100 (trade name, acrylic resin, Mw 12,000, epoxy equivalent 170 (g / eq), manufactured by NOF Corporation)
D-3: Marproof G-02050M (trade name, acrylic resin, Mw 200,000, epoxy equivalent 340 (g / eq), manufactured by NOF Corporation)
(E) Phosphorus flame retardant: CR-741 (trade name, condensed phosphate ester, manufactured by Daihachi Chemical Industry Co., Ltd.)
(F) Fluorine resin: 31-JR (trade name, tetrafluoroethylene-containing dispersion, manufactured by Mitsui DuPont Fluorochemical Co., Ltd.)
(G) Inorganic filler: TP-A25 (trade name, talc, average particle size 4.9 μm, manufactured by Fuji Talc Industry Co., Ltd.)

また、以下の実施例及び比較例の難燃性ポリ乳酸樹脂組成物の評価は下記の要領で行った。
(1)耐衝撃性:耐衝撃性評価として、ASTM D256に準拠し、厚みが6.4mm試験片でノッチ付きアイゾット衝撃強度(KJ/m2)を尺度とし、評価を行った。
Moreover, evaluation of the flame-retardant polylactic acid resin compositions of the following examples and comparative examples was performed in the following manner.
(1) Impact resistance: As an impact resistance evaluation, evaluation was performed based on ASTM D256, using a notched Izod impact strength (KJ / m 2 ) as a scale with a test piece having a thickness of 6.4 mm.

(2)耐熱性:耐熱性の評価として、ASTM D256に準拠し、1.82MPaの荷重下における荷重撓み温度(DTUL)を測定し、評価を行った。 (2) Heat resistance: As a heat resistance evaluation, load deflection temperature (DTUL) under a load of 1.82 MPa was measured and evaluated in accordance with ASTM D256.

(3)難燃性:難燃性の評価尺度として、米国UL規格のUL94垂直燃焼試験に準拠し、1.5mmの厚みの試験片を用いて評価を行った。難燃性能の高い順に、5V、V−0、V−1およびV−2にランクされ、どのランクにも該当しないものについてはNGと表示した。 (3) Flame retardance: As a flame retardancy evaluation scale, evaluation was performed using a test piece having a thickness of 1.5 mm in accordance with the UL 94 vertical combustion test of the US UL standard. In the descending order of flame retardancy, the ranks are 5V, V-0, V-1, and V-2, and those that do not correspond to any rank are indicated as NG.

実施例1〜13及び比較例1〜4
上述した原材料を表1〜4に示した組成割合(単位は重量部)でブレンドし、2軸押出機(シリンダー温度が260℃、回転数200rpm)で混練造粒した後、射出成形機(シリンダー温度230℃、金型温度50℃)を用いて各種物性測定用試験片を得た。得られた試験片を用いて、各種評価を行った結果を表1〜4に示す。
Examples 1-13 and Comparative Examples 1-4
The raw materials described above were blended at the composition ratios shown in Tables 1 to 4 (units are parts by weight), kneaded and granulated with a twin-screw extruder (cylinder temperature 260 ° C., rotation speed 200 rpm), and then an injection molding machine (cylinder). Test pieces for measuring various physical properties were obtained using a temperature of 230 ° C. and a mold temperature of 50 ° C. Tables 1 to 4 show the results of various evaluations using the obtained test pieces.

Figure 2011207967
Figure 2011207967

Figure 2011207967
Figure 2011207967

Figure 2011207967
Figure 2011207967

Figure 2011207967
Figure 2011207967

表1〜4から明らかなように、必須成分を含む実施例1〜13では、一部のみを含む比較例1〜4と比較して、耐熱性(荷重撓み温度)、耐衝撃性(アイゾット衝撃強度)、難燃性が大幅に向上することが確認された。   As is clear from Tables 1 to 4, in Examples 1 to 13 containing essential components, heat resistance (load deflection temperature) and impact resistance (Izod impact) were compared with Comparative Examples 1 to 4 including only a part. Strength) and flame retardancy were confirmed to be significantly improved.

Claims (4)

(A)ポリ乳酸樹脂5〜50重量部、(B)芳香族ポリカーボネート樹脂50〜95重量部、(A)と(B)の合計100重量部に対して、(C)スチレン−ブタジエンブロック共重合体1〜30重量部、(D)メタクリル酸グリシジルユニットを有するスチレン系樹脂あるいはアクリル系樹脂のいずれかひとつ、またはこれらの組み合わせからなる樹脂0.1〜10重量部および(E)リン系難燃剤1〜50重量部を配合してなる難燃性ポリ乳酸樹脂組成物。   (A) Polylactic acid resin 5 to 50 parts by weight, (B) Aromatic polycarbonate resin 50 to 95 parts by weight, and (C) Styrene-butadiene block copolymer weight with respect to a total of 100 parts by weight of (A) and (B) 1 to 30 parts by weight of a coalescence, (D) 0.1 to 10 parts by weight of a resin comprising any one of a styrene resin or an acrylic resin having a glycidyl methacrylate unit, or a combination thereof, and (E) a phosphorus flame retardant A flame-retardant polylactic acid resin composition comprising 1 to 50 parts by weight. (C)スチレン−ブタジエンブロック共重合体がラジアルブロック構造を有し、スチレン含有量が60〜90重量%であることを特徴とする請求項1に記載の難燃性ポリ乳酸樹脂組成物。   (C) The flame retardant polylactic acid resin composition according to claim 1, wherein the styrene-butadiene block copolymer has a radial block structure and has a styrene content of 60 to 90% by weight. (F)フッ素系樹脂を、(A)と(B)の合計100重量部に対して、0.01〜2重量部配合してなる請求項1または2に記載の難燃性ポリ乳酸樹脂組成物。   The flame-retardant polylactic acid resin composition according to claim 1 or 2, wherein (F) 0.01 to 2 parts by weight of a fluorine-based resin is blended with respect to a total of 100 parts by weight of (A) and (B). object. さらに(G)無機充填材を含有し、その含有量が(A)と(B)の合計100重量部に対して、0.5〜50重量部であることを特徴とする請求項1〜3のいずれかに記載の難燃性ポリ乳酸樹脂組成物。   Furthermore, (G) inorganic filler is contained, The content is 0.5-50 weight part with respect to a total of 100 weight part of (A) and (B), The 1-3 characterized by the above-mentioned. The flame-retardant polylactic acid resin composition according to any one of the above.
JP2010075683A 2010-03-29 2010-03-29 Flame retardant polylactic acid resin composition Expired - Fee Related JP5221587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010075683A JP5221587B2 (en) 2010-03-29 2010-03-29 Flame retardant polylactic acid resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010075683A JP5221587B2 (en) 2010-03-29 2010-03-29 Flame retardant polylactic acid resin composition

Publications (2)

Publication Number Publication Date
JP2011207967A true JP2011207967A (en) 2011-10-20
JP5221587B2 JP5221587B2 (en) 2013-06-26

Family

ID=44939366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010075683A Expired - Fee Related JP5221587B2 (en) 2010-03-29 2010-03-29 Flame retardant polylactic acid resin composition

Country Status (1)

Country Link
JP (1) JP5221587B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015067817A1 (en) * 2013-11-11 2015-05-14 Styrolution Group Gmbh Blends of styrene butadiene copolymers with poly(lactic acid)
JP2016000771A (en) * 2014-06-11 2016-01-07 富士ゼロックス株式会社 Resin composition and resin molded article
US9284414B2 (en) 2013-11-26 2016-03-15 Globalfoundries Inc. Flame retardant polymers containing renewable content
US9346922B2 (en) 2013-11-26 2016-05-24 International Business Machines Corporation Flame retardant block copolymers from renewable feeds
WO2021132692A1 (en) * 2019-12-26 2021-07-01 Psジャパン株式会社 Styrene resin composition, and molded body, sheet body and injection molded body each using same
US11905408B2 (en) 2017-11-30 2024-02-20 Lotte Chemical Corporation Resin composition and molded product manufactured therefrom

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141233A (en) * 1982-02-16 1983-08-22 Asahi Chem Ind Co Ltd Thermoplastic polymer composition
JPS62197410A (en) * 1986-02-24 1987-09-01 Asahi Chem Ind Co Ltd Block copolymer resin and composition containing same
JPH02305814A (en) * 1989-05-19 1990-12-19 Japan Synthetic Rubber Co Ltd Hydrogenated diene copolymer and its composition
JPH08253668A (en) * 1995-03-01 1996-10-01 General Electric Co <Ge> Mixture of polycarbonate and polyester-amide
JP2000226501A (en) * 1999-02-03 2000-08-15 Daicel Chem Ind Ltd Biodegradable resin composition excellent in impact resistance
JP2007056247A (en) * 2005-07-25 2007-03-08 Toray Ind Inc Flame retardant resin composition and molded article comprising the same
JP2009007520A (en) * 2007-06-29 2009-01-15 Toray Ind Inc Resin composition and molded product made therefrom
WO2009041054A1 (en) * 2007-09-27 2009-04-02 Unitika Ltd. Resin composition and molded body obtained by molding the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141233A (en) * 1982-02-16 1983-08-22 Asahi Chem Ind Co Ltd Thermoplastic polymer composition
JPS62197410A (en) * 1986-02-24 1987-09-01 Asahi Chem Ind Co Ltd Block copolymer resin and composition containing same
JPH02305814A (en) * 1989-05-19 1990-12-19 Japan Synthetic Rubber Co Ltd Hydrogenated diene copolymer and its composition
JPH08253668A (en) * 1995-03-01 1996-10-01 General Electric Co <Ge> Mixture of polycarbonate and polyester-amide
JP2000226501A (en) * 1999-02-03 2000-08-15 Daicel Chem Ind Ltd Biodegradable resin composition excellent in impact resistance
JP2007056247A (en) * 2005-07-25 2007-03-08 Toray Ind Inc Flame retardant resin composition and molded article comprising the same
JP2009007520A (en) * 2007-06-29 2009-01-15 Toray Ind Inc Resin composition and molded product made therefrom
WO2009041054A1 (en) * 2007-09-27 2009-04-02 Unitika Ltd. Resin composition and molded body obtained by molding the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015067817A1 (en) * 2013-11-11 2015-05-14 Styrolution Group Gmbh Blends of styrene butadiene copolymers with poly(lactic acid)
US9850377B2 (en) 2013-11-11 2017-12-26 Ineos Styrolution Group Gmbh Blends of styrene butadiene copolymers with poly(lactic acid)
US9284414B2 (en) 2013-11-26 2016-03-15 Globalfoundries Inc. Flame retardant polymers containing renewable content
US9346922B2 (en) 2013-11-26 2016-05-24 International Business Machines Corporation Flame retardant block copolymers from renewable feeds
US9738832B2 (en) 2013-11-26 2017-08-22 International Business Machines Corporation Flame retardant block copolymers from renewable feeds
US9994773B2 (en) 2013-11-26 2018-06-12 International Business Machines Corporation Flame retardant block copolymers from renewable feeds
JP2016000771A (en) * 2014-06-11 2016-01-07 富士ゼロックス株式会社 Resin composition and resin molded article
US11905408B2 (en) 2017-11-30 2024-02-20 Lotte Chemical Corporation Resin composition and molded product manufactured therefrom
WO2021132692A1 (en) * 2019-12-26 2021-07-01 Psジャパン株式会社 Styrene resin composition, and molded body, sheet body and injection molded body each using same
JPWO2021132692A1 (en) * 2019-12-26 2021-07-01
JP7146120B2 (en) 2019-12-26 2022-10-03 Psジャパン株式会社 Styrene-based resin composition and molding, sheet and injection molding using the same

Also Published As

Publication number Publication date
JP5221587B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5129044B2 (en) Flame retardant thermoplastic resin composition
TWI417341B (en) Impact resistant, flame retardant thermoplastic molding composition
TWI359838B (en)
KR101875867B1 (en) Flame-resistant polyester-polycarbonate compositions, methods of manufacture, and articles thereof
JP5221587B2 (en) Flame retardant polylactic acid resin composition
US7504452B2 (en) Polycarbonate resin composition and molded article
US6174943B1 (en) Flame-retardant thermoplastic resin composition
US7135509B2 (en) Flame-retardant polybutylene terephthalate resin composition and formed article
JP3662424B2 (en) Flame retardant polycarbonate resin composition and injection molded article
TWI433886B (en) Flame retardant thermoplastic molding composition
JP2007045906A (en) Flame-retardant polycarbonate resin composition
WO2001029135A1 (en) Polycarbonate resin composition
WO2006067948A1 (en) Aromatic polycarbonate resin composition and molding thereof
TWI398463B (en) An aromatic polycarbonate resin composition and a molded body using the same
TW200932828A (en) Impact resistant, flame retardant thermoplastic molding composition
JP4971544B2 (en) Polycarbonate resin composition and molded product
JP5256644B2 (en) Flame retardant aromatic polycarbonate resin composition and molded article
TWI620788B (en) Halogen free flame retarded polycarbonate
JP3616791B2 (en) Flame retardant polycarbonate resin composition and molded article
CN101616978B (en) A flame retardant, impact resistant thermoplastic molding composition
JP4384330B2 (en) Flame retardant polycarbonate resin composition
JPH11349798A (en) Flame-retardant thermoplastic resin composition
JP7093272B2 (en) Flame-retardant polycarbonate resin composition and resin molded products containing it
JP2006342271A (en) Flame-retardant thermoplastic resin composition
JP2005263909A (en) Flame-retardant polycarbonate resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees