JP2011206685A - Reaction control method - Google Patents

Reaction control method Download PDF

Info

Publication number
JP2011206685A
JP2011206685A JP2010077088A JP2010077088A JP2011206685A JP 2011206685 A JP2011206685 A JP 2011206685A JP 2010077088 A JP2010077088 A JP 2010077088A JP 2010077088 A JP2010077088 A JP 2010077088A JP 2011206685 A JP2011206685 A JP 2011206685A
Authority
JP
Japan
Prior art keywords
pressure
pressure vessel
reaction
valve
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010077088A
Other languages
Japanese (ja)
Other versions
JP5567880B2 (en
Inventor
Katsumi Matsui
克己 松井
Kazuhiko Tsuneyoda
和彦 常世田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2010077088A priority Critical patent/JP5567880B2/en
Publication of JP2011206685A publication Critical patent/JP2011206685A/en
Application granted granted Critical
Publication of JP5567880B2 publication Critical patent/JP5567880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reaction control method which can allow a reaction apparatus having a pressure vessel to be manufactured at low cost since it is not necessary to design the pressure vessel having high withstanding pressure and which can improve the packing ratio of a raw material in the pressure vessel and flexibly cope with reaction conditions.SOLUTION: The reaction control method, in which the reaction apparatus 100 having a back pressure valve V2 on a gas discharge line 111 of the pressure vessel 110 is used, includes the steps of: presetting a set value of the back pressure valve V2 to the pressure to be kept in the pressure vessel 110 when a reaction is advanced; supplying the raw material to the pressure vessel 110; actuating the back pressure valve V2 and advancing the reaction while keeping the pressure in the pressure vessel equal to or lower than the preset set value. As a result, the reaction apparatus can be manufactured at low cost since it is not necessary to design the pressure vessel 110 having high withstanding pressure, the packing ratio of the raw material in the pressure vessel can be improved since the pressure is kept constant, and the reaction control method can flexibly cope with reaction conditions since the back pressure valve V2 is arranged on the side of the gas discharge line separately from the pressure vessel 110 and the pressure vessel 110 having the strength corresponding to the reaction conditions is used.

Description

本発明は、圧力容器のガス排出路に背圧弁を有する反応装置を用いた反応制御方法に関する。   The present invention relates to a reaction control method using a reaction apparatus having a back pressure valve in a gas discharge path of a pressure vessel.

従来、反応ガスが発生する反応をさせる場合に圧力容器を用いて、閉ざされた空間で反応させる方法が知られている(たとえば特許文献1参照)。特許文献1記載の水素ガス発生方法は、簡単な設備(圧力容器)と容易に入手可能な材料(金属及びアルカリ)とにより効率的に高圧の水素ガスを発生させている。このような方法では、圧力容器に許容限度を超えて負担をかけないように発生するガスや溶媒の蒸気圧等分圧を考慮して原材料の投入量を決定している。   Conventionally, a method of reacting in a closed space using a pressure vessel when a reaction in which a reaction gas is generated is known (for example, see Patent Document 1). The hydrogen gas generation method described in Patent Document 1 efficiently generates high-pressure hydrogen gas using simple equipment (pressure vessel) and easily available materials (metal and alkali). In such a method, the input amount of the raw material is determined in consideration of the partial pressure equal to the vapor pressure of the gas or solvent generated so as not to put a burden on the pressure vessel beyond the allowable limit.

一方、反応容器の中には、そのガス排出路に背圧弁を有するものが知られている(たとえば特許文献2参照)。特許文献2記載の金属フッ化物の製造方法は、無水フッ化水素酸および無水金属を反応容器に導入し、金属フッ化物生成物を得ている。そして反応後に、発生したガス状生成物を、自動調節ガス背圧弁を介して排出している。   On the other hand, some reaction vessels have a back pressure valve in the gas discharge path (see, for example, Patent Document 2). In the method for producing metal fluoride described in Patent Document 2, anhydrous hydrofluoric acid and anhydrous metal are introduced into a reaction vessel to obtain a metal fluoride product. And after reaction, the generated gaseous product is discharged | emitted via the automatic control gas back pressure valve.

特開2004−210591号公報Japanese Patent Laid-Open No. 2004-210591 特表2006−504617号公報JP-T-2006-504617

しかしながら、上記の特許文献1や特許文献2記載のような方法では、圧力と温度が圧力容器のスペックを決める大きな要因となっており、不必要に圧力容器を強靱に製作する必要が生じる。このように過大な圧力と反応温度を想定する必要が生じると、圧力容器の肉厚等を厚く見積もることで、コストが高くなる。   However, in the methods as described in Patent Document 1 and Patent Document 2 described above, pressure and temperature are major factors that determine the specifications of the pressure vessel, and it becomes unnecessary to manufacture the pressure vessel unnecessarily. When it is necessary to assume an excessive pressure and reaction temperature in this way, the cost increases by estimating the thickness of the pressure vessel to be thick.

本発明は、このような事情に鑑みてなされたものであり、圧力容器の耐圧力を高く設計する必要を無くし、低コスト化でき、充填率を向上するとともに、反応の条件に柔軟に対応できる反応制御方法を提供することを目的とする。   The present invention has been made in view of such circumstances, eliminates the need to design a pressure vessel with a high pressure resistance, reduces costs, improves the filling rate, and can flexibly respond to reaction conditions. It is an object to provide a reaction control method.

(1)上記の目的を達成するため、本発明の反応制御方法は、圧力容器のガス排出路に背圧弁を有する反応装置を用いた反応制御方法であって、背圧弁の設定値を反応時に圧力容器内で維持したい圧力に設定する工程と、前記圧力容器に原料を供給する工程と、前記背圧弁により、前記圧力容器内の圧力を設定値以下に維持しつつ、反応を進行させる工程とを含むことを特徴としている。   (1) In order to achieve the above object, the reaction control method of the present invention is a reaction control method using a reaction device having a back pressure valve in the gas discharge passage of the pressure vessel, and the set value of the back pressure valve is changed during the reaction. A step of setting the pressure to be maintained in the pressure vessel; a step of supplying a raw material to the pressure vessel; and a step of causing the reaction to proceed while maintaining the pressure in the pressure vessel below a set value by the back pressure valve. It is characterized by including.

これにより、圧力容器内の圧力が一定以下に維持され、圧力容器の耐圧力を高く設計する必要を無くし、反応装置を低コスト化できる。また、圧力が一定に決まることから、圧力容器内の原料の充填率を向上できる。   As a result, the pressure in the pressure vessel is maintained below a certain level, and it is not necessary to design the pressure vessel with a high pressure resistance, thereby reducing the cost of the reaction apparatus. Further, since the pressure is determined to be constant, the filling rate of the raw material in the pressure vessel can be improved.

(2)また、本発明の圧力制御方法は、前記背圧弁の設定値を前記圧力容器の耐圧力に応じて決まる値に設定することを特徴としている。これにより、圧力容器の耐圧力に応じて背圧弁で維持しようとする値を設定し、効率的に反応を進行させることができる。   (2) Further, the pressure control method of the present invention is characterized in that the set value of the back pressure valve is set to a value determined according to the pressure resistance of the pressure vessel. Thereby, the value which it is going to maintain with a back pressure valve according to the pressure resistance of a pressure vessel can be set, and reaction can be advanced efficiently.

(3)また、本発明の圧力制御方法は、前記背圧弁の設定値を、8MPa以上に設定し、前記圧力容器に、原料としてアンモニアおよび金属カルシウムを供給し、100℃付近の温度で反応を進行させることを特徴としている。このように設定することで、アンモニアを溶媒として用いた金属カルシウムとの反応において、十分な速度で効率的に反応を進行させることができる。   (3) Further, in the pressure control method of the present invention, the set value of the back pressure valve is set to 8 MPa or more, ammonia and metallic calcium are supplied as raw materials to the pressure vessel, and the reaction is performed at a temperature around 100 ° C. It is characterized by progress. By setting in this way, in the reaction with metallic calcium using ammonia as a solvent, the reaction can be efficiently advanced at a sufficient rate.

本発明によれば、圧力容器の耐圧力を高く設計する必要を無くし、低コスト化でき、充填率を向上できるとともに、反応の条件に柔軟に対応できる。   According to the present invention, it is not necessary to design the pressure resistance of the pressure vessel to be high, the cost can be reduced, the filling rate can be improved, and the reaction conditions can be flexibly dealt with.

本発明に用いられる反応装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the reaction apparatus used for this invention.

次に、本発明の実施の形態について、図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を付し、重複する説明は省略する。   Next, embodiments of the present invention will be described with reference to the drawings. In order to facilitate understanding of the description, the same reference numerals are given to the same components in the respective drawings, and duplicate descriptions are omitted.

(反応装置)
図1は、反応装置100の構成を示す模式図である。反応装置100は、ガスの発生を伴う反応を進行させる際に用いられる。図1に示すように、反応装置100は、圧力容器110、導入弁V1、ガス排出路111、背圧弁V2、バイパス112、バイパス弁V3、除害部150により構成されている。
(Reactor)
FIG. 1 is a schematic diagram showing the configuration of the reaction apparatus 100. The reactor 100 is used when a reaction involving the generation of gas proceeds. As shown in FIG. 1, the reaction apparatus 100 includes a pressure vessel 110, an introduction valve V 1, a gas discharge path 111, a back pressure valve V 2, a bypass 112, a bypass valve V 3, and an abatement part 150.

圧力容器110は、内部を密閉可能な容器であり、内部の温度と圧力を制御し、ガスの発生を伴う反応を進行させる。導入弁V1の開閉により、圧力容器110には原料を導入可能となっている。ガスの発生を伴う反応には、たとえばアンモニアを溶媒として用いた金属カルシウムとの反応が挙げられる。この場合には、水素とアンモニアの混合ガスが発生する。   The pressure vessel 110 is a vessel whose inside can be sealed, controls the temperature and pressure inside, and advances the reaction accompanied by the generation of gas. The raw material can be introduced into the pressure vessel 110 by opening and closing the introduction valve V1. Examples of the reaction accompanied by gas generation include a reaction with metallic calcium using ammonia as a solvent. In this case, a mixed gas of hydrogen and ammonia is generated.

ガス排出路111は、圧力容器110に接続し、圧力容器110内で反応により発生したガスを排出する。背圧弁V2は、圧力容器110のガス排出路111に設けられ、用いる圧力容器110に応じて背圧弁V2で維持しようとする値を設定できる。たとえば圧力容器110側の圧力を8MPa等の設定値に維持可能である。   The gas discharge path 111 is connected to the pressure vessel 110 and discharges the gas generated by the reaction in the pressure vessel 110. The back pressure valve V2 is provided in the gas discharge path 111 of the pressure vessel 110, and a value to be maintained by the back pressure valve V2 can be set according to the pressure vessel 110 to be used. For example, the pressure on the pressure vessel 110 side can be maintained at a set value such as 8 MPa.

アンモニアと金属カルシウムとの反応の場合、アンモニアは約100℃、8MPaで溶媒(液体)として存在でき、発生するガスの分圧分、圧力容器110の耐圧力を高く設計する必要が無くなる。このように、背圧弁V2により、圧力容器110内部の圧力が常に一定以下となるため、圧力容器110への原料充填量を容器容量いっぱいに取ることができる。その結果、圧力容器110のスペックを下げ、原料の充填率を最大にすることができる。   In the case of a reaction between ammonia and metallic calcium, ammonia can exist as a solvent (liquid) at about 100 ° C. and 8 MPa, eliminating the need to design the partial pressure of the generated gas and the pressure resistance of the pressure vessel 110 high. In this way, the pressure inside the pressure vessel 110 is always below a certain level by the back pressure valve V2, so that the amount of raw material charged into the pressure vessel 110 can be made full. As a result, the specifications of the pressure vessel 110 can be lowered, and the raw material filling rate can be maximized.

その場合、反応ガスにより8MPaを超えた排ガスは、ガス排出路111、背圧弁V2を通って除害部150へ流入する。バイパス112は、背圧弁V2を機能させている間はバイパス弁V3を閉じて用いられず、圧力容器110に残ったガスを排出する際に用いられる。排出されたガスは、除害部150へ流入する。   In that case, the exhaust gas exceeding 8 MPa due to the reaction gas flows into the abatement part 150 through the gas discharge path 111 and the back pressure valve V2. The bypass 112 is not used while the bypass valve V3 is closed while the back pressure valve V2 is functioning, and is used when the gas remaining in the pressure vessel 110 is discharged. The exhausted gas flows into the abatement part 150.

除害部150は、背圧弁V2のガス排出側に設けられ、発生したガスを除害処理する。なお、除害部150は有害なガスを処理するものであり、有害なガスが発生しない場合には必要ない。そのような場合には、そのままガスを外部に放出してもよい。   The abatement part 150 is provided on the gas discharge side of the back pressure valve V2, and performs the abatement process on the generated gas. The abatement part 150 is for treating harmful gas and is not necessary when no harmful gas is generated. In such a case, the gas may be discharged to the outside as it is.

(反応制御方法)
次に、反応装置100を用いた反応制御方法の一例として、アンモニアと金属カルシウムとの反応に反応装置100を用いた場合を説明する。まず、背圧弁V2の設定値を反応時に圧力容器110内で維持したい圧力に設定する。背圧弁V2について、圧力容器110の内部の圧力の設定値は、8MPaに限定されないが、設定値は8MPa以上に設定されていることが好ましい。このように設定することで、アンモニアを溶媒として用いた金属カルシウムとの反応において、100℃付近の温度で十分な速度で反応を進行させることができる。
(Reaction control method)
Next, as an example of a reaction control method using the reaction apparatus 100, a case where the reaction apparatus 100 is used for the reaction between ammonia and metallic calcium will be described. First, the set value of the back pressure valve V2 is set to a pressure desired to be maintained in the pressure vessel 110 during the reaction. Regarding the back pressure valve V2, the set value of the pressure inside the pressure vessel 110 is not limited to 8 MPa, but the set value is preferably set to 8 MPa or more. By setting in this way, in the reaction with calcium metal using ammonia as a solvent, the reaction can be allowed to proceed at a sufficient rate at a temperature near 100 ° C.

次に、金属カルシウムを圧力容器110内に供給し、導入弁V1を開けて原料のアンモニアを圧力容器110に導入する。このとき、バイパス弁V3は閉じておく。そして、圧力容器110において、アンモニアを溶媒として用い、金属カルシウムと反応させる。その結果として水素とアンモニアの混合ガスが発生する。   Next, metallic calcium is supplied into the pressure vessel 110, and the introduction valve V <b> 1 is opened to introduce the raw material ammonia into the pressure vessel 110. At this time, the bypass valve V3 is closed. Then, in the pressure vessel 110, ammonia is used as a solvent and reacted with metallic calcium. As a result, a mixed gas of hydrogen and ammonia is generated.

反応時には、背圧弁V2は、圧力容器110内の圧力を設定値以下に維持する。なお、圧力容器110の耐圧力に応じて背圧弁V2で維持しようとする値に設定し、効率的に反応を進行させることができる。反応終了後、残った残ガスは除害部150へ送る。なお、原料は、導入弁V1を介さずに圧力容器110の蓋を開けて投入してもよい。   During the reaction, the back pressure valve V2 maintains the pressure in the pressure vessel 110 below a set value. In addition, it can set to the value which it is going to maintain with the back pressure valve V2 according to the pressure resistance of the pressure vessel 110, and reaction can be advanced efficiently. After the reaction is completed, the remaining gas is sent to the abatement part 150. The raw material may be introduced by opening the lid of the pressure vessel 110 without going through the introduction valve V1.

(実施例)
上記のような反応装置100を用いて実験を行った。まず、背圧弁V2を閉じた状態(機能させない状態)で、圧力容器110の内部に金属カルシウムを設置し、アンモニアを導入した。そして、100℃、2時間でアンモニアと金属カルシウムとを反応させた。このとき、圧力容器110内の圧力を測定したところ、12MPaまで上昇した。したがって、背圧弁V2を機能させない場合には、高い耐圧力を有する圧力容器110が必要になることが分かった。
(Example)
Experiments were performed using the reactor 100 as described above. First, in a state where the back pressure valve V2 was closed (a state in which the back pressure valve V2 was not functioned), metallic calcium was installed inside the pressure vessel 110, and ammonia was introduced. Then, ammonia and metallic calcium were reacted at 100 ° C. for 2 hours. At this time, when the pressure in the pressure vessel 110 was measured, it increased to 12 MPa. Therefore, it was found that when the back pressure valve V2 is not functioned, the pressure vessel 110 having a high pressure resistance is required.

また、背圧弁V2を8MPaに設定し、上記と同様の条件で圧力容器110の内部に金属カルシウムを設置し、アンモニアを導入した。そして、100℃でアンモニアと金属カルシウムとを反応させた。その際、背圧弁V2を用いて圧力容器110内の圧力を8MPa以下に維持し2時間運転した。発生した水素とアンモニアとの混合ガスは除害部150に流入させて処理した。この実験の結果、8MPaを超える程度の耐圧力を有する圧力容器110を用いれば十分であることが実証された。   Further, the back pressure valve V2 was set to 8 MPa, metallic calcium was installed inside the pressure vessel 110 under the same conditions as described above, and ammonia was introduced. And ammonia and metal calcium were made to react at 100 degreeC. At that time, using the back pressure valve V2, the pressure in the pressure vessel 110 was maintained at 8 MPa or less and operated for 2 hours. The generated mixed gas of hydrogen and ammonia was flowed into the abatement part 150 for treatment. As a result of this experiment, it was proved that it was sufficient to use the pressure vessel 110 having a pressure resistance exceeding 8 MPa.

100 反応装置
110 圧力容器
111 ガス排出路
112 バイパス
150 除害部
V1 導入弁
V2 背圧弁
V3 バイパス弁
100 reactor 110 pressure vessel 111 gas discharge path 112 bypass 150 abatement part V1 introduction valve V2 back pressure valve V3 bypass valve

Claims (3)

圧力容器のガス排出路に背圧弁を有する反応装置を用いた反応制御方法であって、
背圧弁の設定値を反応時に圧力容器内で維持したい圧力に設定する工程と、
前記圧力容器に原料を供給する工程と、
前記背圧弁により、前記圧力容器内の圧力を設定値以下に維持しつつ、反応を進行させる工程とを含むことを特徴とする反応制御方法。
A reaction control method using a reactor having a back pressure valve in a gas discharge path of a pressure vessel,
A step of setting the back pressure valve set value to a pressure to be maintained in the pressure vessel during the reaction;
Supplying raw materials to the pressure vessel;
And a step of causing the reaction to proceed while maintaining the pressure in the pressure vessel below a set value by the back pressure valve.
前記背圧弁の設定値を前記圧力容器の耐圧力に応じて決まる値に設定することを特徴とする請求項1記載の反応制御方法。   The reaction control method according to claim 1, wherein a set value of the back pressure valve is set to a value determined according to a pressure resistance of the pressure vessel. 前記背圧弁の設定値を、8MPa以上に設定し、
前記圧力容器に、原料としてアンモニアおよび金属カルシウムを供給し、
100℃付近の温度で反応を進行させることを特徴とする請求項1記載の反応制御方法。
The set value of the back pressure valve is set to 8 MPa or more,
Ammonia and metallic calcium are supplied as raw materials to the pressure vessel,
The reaction control method according to claim 1, wherein the reaction is allowed to proceed at a temperature around 100 ° C.
JP2010077088A 2010-03-30 2010-03-30 Reaction control method Active JP5567880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010077088A JP5567880B2 (en) 2010-03-30 2010-03-30 Reaction control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010077088A JP5567880B2 (en) 2010-03-30 2010-03-30 Reaction control method

Publications (2)

Publication Number Publication Date
JP2011206685A true JP2011206685A (en) 2011-10-20
JP5567880B2 JP5567880B2 (en) 2014-08-06

Family

ID=44938387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010077088A Active JP5567880B2 (en) 2010-03-30 2010-03-30 Reaction control method

Country Status (1)

Country Link
JP (1) JP5567880B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962057A (en) * 2014-05-23 2014-08-06 攀钢集团攀枝花钢铁研究院有限公司 Pressure response system and constant feeding device and feeding method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113019260B (en) * 2021-05-25 2021-09-10 上海集熠节能环保技术有限公司 Constant pressure reaction device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145400A (en) * 1978-05-08 1979-11-13 Ube Ind Ltd Production of metal nitride powder
JPS6245A (en) * 1985-03-13 1987-01-06 Nippon Shokubai Kagaku Kogyo Co Ltd Production of 2,3,4,5-tetrafluorobenzoic acid
JP2001213609A (en) * 2000-01-28 2001-08-07 Sugino Mach Ltd Process of producing hydrogen and apparatus therefor
JP2005131139A (en) * 2003-10-30 2005-05-26 Shimadzu Corp Method for continuously treating liquid substance
JP2006008440A (en) * 2004-06-24 2006-01-12 Taiheiyo Cement Corp Metal amide compound and manufacturing method therefor
WO2007116734A1 (en) * 2006-03-28 2007-10-18 Mitsubishi Heavy Industries, Ltd. Energy supply system and hydrogen-generating substance
JP2012066991A (en) * 2010-02-08 2012-04-05 Taiheiyo Cement Corp Method for producing alkaline earth metal nitride

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145400A (en) * 1978-05-08 1979-11-13 Ube Ind Ltd Production of metal nitride powder
JPS6245A (en) * 1985-03-13 1987-01-06 Nippon Shokubai Kagaku Kogyo Co Ltd Production of 2,3,4,5-tetrafluorobenzoic acid
JP2001213609A (en) * 2000-01-28 2001-08-07 Sugino Mach Ltd Process of producing hydrogen and apparatus therefor
JP2005131139A (en) * 2003-10-30 2005-05-26 Shimadzu Corp Method for continuously treating liquid substance
JP2006008440A (en) * 2004-06-24 2006-01-12 Taiheiyo Cement Corp Metal amide compound and manufacturing method therefor
WO2007116734A1 (en) * 2006-03-28 2007-10-18 Mitsubishi Heavy Industries, Ltd. Energy supply system and hydrogen-generating substance
JP2012066991A (en) * 2010-02-08 2012-04-05 Taiheiyo Cement Corp Method for producing alkaline earth metal nitride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962057A (en) * 2014-05-23 2014-08-06 攀钢集团攀枝花钢铁研究院有限公司 Pressure response system and constant feeding device and feeding method thereof

Also Published As

Publication number Publication date
JP5567880B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
RU2683744C1 (en) Method for preparation of ammonia gas and co2 for urea synthesis
US9770712B2 (en) In-situ catalyst sulfiding, passivating and coking systems and methods
JP6224859B1 (en) Impurity removing device and recycle gas recovery and purification system equipped with the impurity removing device
JP5567880B2 (en) Reaction control method
EA037660B1 (en) Method and apparatus for sulfur recovery
JP2001213609A (en) Process of producing hydrogen and apparatus therefor
JP5101540B2 (en) Argon purification method and argon purification apparatus
WO2016011122A1 (en) Methods and systems for producing direct reduced iron and steel mill fuel gas
JP5687755B1 (en) Soldering apparatus and method for manufacturing joining member
KR102180637B1 (en) Method for concentrating ozone gas, and apparatus for concentrating ozone gas
CN103191682B (en) It is the separate type reacting furnace of the noncontact solid phase inorganic reaction of medium for gas
UA95308C2 (en) METHOD FOR treatment of contaminated metallic residues
KR101373441B1 (en) The hydrogen charging system and the operation control method thereof
EP3326716A1 (en) In-situ catalyst sulfiding, passivating and coking methods and systems
US1921856A (en) Production of gaseous mixtures containing hydrogen and nitrogen from methane
CN110879579A (en) Reduction furnace sequence control method based on DCS (distributed control System) of polycrystalline silicon production device
KR102180199B1 (en) Method for concentrating ozone gas, and apparatus for concentrating ozone gas
WO2011121929A1 (en) Gas generator
JP7112446B2 (en) How to operate a gas purifier
JP2016109171A (en) High-pressure gas container cleaning method and high-pressure gas container
JP2015182925A (en) Method of producing high-purity hydrogen
WO2023008250A1 (en) Method for producing lithium sulfide
KR20130073768A (en) Method for reducing zirconium chloride
CN116948683B (en) Slurry bed reaction on-line switching method using cycloalkyl residual oil and ethylene cracking tar as raw materials
JP2008247929A (en) Manufacturing method of fuel storable in liquefied state from by-produced gas from iron mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140620

R150 Certificate of patent or registration of utility model

Ref document number: 5567880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250