JP2011204883A - Fullerene derivative, composite including the same, and organic photoelectric conversion element - Google Patents

Fullerene derivative, composite including the same, and organic photoelectric conversion element Download PDF

Info

Publication number
JP2011204883A
JP2011204883A JP2010070315A JP2010070315A JP2011204883A JP 2011204883 A JP2011204883 A JP 2011204883A JP 2010070315 A JP2010070315 A JP 2010070315A JP 2010070315 A JP2010070315 A JP 2010070315A JP 2011204883 A JP2011204883 A JP 2011204883A
Authority
JP
Japan
Prior art keywords
fullerene derivative
photoelectric conversion
conversion element
organic photoelectric
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010070315A
Other languages
Japanese (ja)
Inventor
Yuko Iwamoto
祐子 岩本
Takeshi Muto
豪志 武藤
Takeshi Kondo
健 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority to JP2010070315A priority Critical patent/JP2011204883A/en
Publication of JP2011204883A publication Critical patent/JP2011204883A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic photoelectric conversion element and a fullerene derivative used for the same, and to provide a composite including the same.SOLUTION: This invention provides a fullerene derivative expressed by the formula, the composite including the fullerene derivative and an electron-releasing compound, and a composite including the fullerene derivative and electron-releasing compound.

Description

本発明は新規なフラーレン誘導体、それを含む組成物及び有機光電変換素子に関する。   The present invention relates to a novel fullerene derivative, a composition containing the same, and an organic photoelectric conversion device.

フラーレン誘導体は有機半導体材料として優れた半導体特性を示すので、有機光電変換素子等への応用が期待されている。中でも、電子受容性化合物として、前記フラーレン誘導体を用いた有機太陽電池は、シリコンなどに代表される太陽電池に比べて製造が容易で、かつ低コスト、さらには大面積が可能であるという利点があることから広く検討がなされている。有機太陽電池としては、相分離を利用したバルクへテロ構造体が第3世代の有機太陽電池として提案されている。このタイプの有機薄膜太陽電池の中で最も一般的に用いられているのはPCBM([6,6]−フェニルC61−酪酸メチルエステル))とポリチオフェンの混合系である(非特許文献1参照)が、他の太陽電池と比較して効率が未だ低いという問題があるため、有機半導体材料を用いた有機光電変換素子の研究が全世界的に行われており、有機光電変換素子の光電変換効率向上においては、ナノスケールでの構造形成・制御技術が極めて重要であることが知られている。
ところで、フラーレン誘導体を含む有機太陽電池を製造する場合、フラーレン誘導体を有機溶媒に溶解させた溶液を塗布法により薄膜を作成する方法を用いることができるが、前記PCBMの有機溶剤への溶解性は必ずしも十分ではなく、高い溶解性フラーレン誘導体の研究が盛んに行われている。(特許文献1参照)
このような背景から、容易に合成することができ、塗布法により製造される有機光電変換素子として適用可能なフラーレン誘導体が望まれていた。
Since fullerene derivatives exhibit excellent semiconductor characteristics as organic semiconductor materials, application to organic photoelectric conversion elements and the like is expected. Among these, an organic solar battery using the fullerene derivative as an electron-accepting compound has an advantage that it is easy to manufacture and can be manufactured at a lower cost and a larger area than a solar battery typified by silicon. It has been widely studied because of it. As an organic solar cell, a bulk heterostructure using phase separation has been proposed as a third generation organic solar cell. The most commonly used organic thin-film solar cell of this type is a mixed system of PCBM ([6,6] -phenyl C61-butyric acid methyl ester)) and polythiophene (see Non-Patent Document 1). However, since there is a problem that the efficiency is still low compared with other solar cells, research on organic photoelectric conversion elements using organic semiconductor materials has been conducted worldwide, and the photoelectric conversion efficiency of organic photoelectric conversion elements For improvement, it is known that nanoscale structure formation and control technology is extremely important.
By the way, when manufacturing an organic solar cell containing a fullerene derivative, a method of forming a thin film by a coating method using a solution in which a fullerene derivative is dissolved in an organic solvent can be used, but the solubility of the PCBM in an organic solvent is However, this is not always sufficient, and researches on highly soluble fullerene derivatives have been actively conducted. (See Patent Document 1)
From such a background, a fullerene derivative that can be easily synthesized and can be applied as an organic photoelectric conversion element produced by a coating method has been desired.

特開2009−67708JP2009-67708

Advanced Materials Vol.20 (2008) 240-245pAdvanced Materials Vol.20 (2008) 240-245p

本発明は、上記の課題に鑑みてなされたものである。即ち、本発明は有機光電変換素子及びそれに用いるフラーレン誘導体並びにそれを含む組成物を提供することを目的とする。   The present invention has been made in view of the above problems. That is, an object of the present invention is to provide an organic photoelectric conversion device, a fullerene derivative used therefor, and a composition containing the same.

本発明者等は、前記目的を達成するために鋭意研究を重ねた結果、下記式(1)で表されるフラーレン誘導体を用いることにより、前記の目的を達成することを見出し、本発明を完成するに至った。
すなわち、本発明は、
1.下記式(1)で表されるフラーレン誘導体、
As a result of intensive studies to achieve the above object, the present inventors have found that the above object can be achieved by using a fullerene derivative represented by the following formula (1), thereby completing the present invention. It came to do.
That is, the present invention
1. A fullerene derivative represented by the following formula (1):

Figure 2011204883
Figure 2011204883

[式(1)中、R1、R2は、水素原子もしくは炭素数1〜4のアルキル基、R3は式(2)、(3)又は(4)で表される基を示す。またnは0〜3、mは1〜4の整数を表す。]
2.球状構造の炭素数が60のC60フラーレン誘導体である、前記1に記載のフラーレン誘導体、
3.前記1又は2に記載のフラーレン誘導体と電子供与性化合物とを含む組成物、
4.電子供与性化合物が高分子化合物である、前記3に記載の組成物、
5.前記1に記載のフラーレン誘導体を含む層を有する有機光電変換素子、
6.前記3又は4に記載の組成物を含む層を有する有機光電変換素子、
を提供するものである。
[In Formula (1), R < 1 >, R < 2 > shows a hydrogen atom or a C1-C4 alkyl group, R < 3 > shows group represented by Formula (2), (3) or (4). N represents an integer of 0 to 3, and m represents an integer of 1 to 4. ]
2. 2. The fullerene derivative according to 1 above, which is a C60 fullerene derivative having a spherical structure of 60 carbon atoms,
3. A composition comprising the fullerene derivative according to 1 or 2 and an electron donating compound,
4). 4. The composition according to 3 above, wherein the electron donating compound is a polymer compound,
5. The organic photoelectric conversion element which has a layer containing the fullerene derivative of said 1,
6). An organic photoelectric conversion element having a layer containing the composition according to 3 or 4 above,
Is to provide.

本発明のフラーレン誘導体は簡単な合成方法で得られ、そのフラーレン誘導体及びそれを含む組成物を有機光電変換素子の材料として用いることにより、容易に合成することができ、塗布法(ウェットプロセス)により製造される有機光電変換素子が得られる。   The fullerene derivative of the present invention can be obtained by a simple synthesis method, and can be easily synthesized by using the fullerene derivative and a composition containing the fullerene derivative as a material for an organic photoelectric conversion element, by a coating method (wet process). The manufactured organic photoelectric conversion element is obtained.

本発明のフラーレン誘導体は、下記式(1)で表される。

Figure 2011204883
The fullerene derivative of the present invention is represented by the following formula (1).
Figure 2011204883

式(1)中、R1、R2は、水素原子もしくは炭素数1〜4のアルキル基を示し、アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基が挙げられる。また、このアルキル基の水素原子は、フッソ原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子で置換されていても良い。
1、R2としては、水素原子が好ましい。
3は式(2)、(3)又は(4)で表される基を示す。式(2)において、nは0〜3の整数である。また、式(4)において、mは1〜4の整数である。
また、式(1)において、球状構造の炭素数が60のC60フラーレン誘導体であると好ましい。
Wherein (1), R 1, R 2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, n- butyl group , S-butyl group, isobutyl group, t-butyl group. Moreover, the hydrogen atom of this alkyl group may be substituted with a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
R 1 and R 2 are preferably hydrogen atoms.
R 3 represents a group represented by the formula (2), (3) or (4). In Formula (2), n is an integer of 0-3. Moreover, in Formula (4), m is an integer of 1-4.
In the formula (1), a C60 fullerene derivative having a spherical structure with 60 carbon atoms is preferable.

本発明の式(1)で表されるフラーレン誘導体の製造方法としては、実施例のようにして製造できるがこれに限定されるものではなく、公知の方法を用いることができる。   As a manufacturing method of the fullerene derivative represented by Formula (1) of this invention, although it can manufacture like an Example, it is not limited to this, A well-known method can be used.

次に、本発明のフラーレン誘導体を含む組成物及び有機光電変換素子について説明する。
本発明のフラーレン誘導体を用いる有機光電変換素子は、少なくとも一方が透明又は半透明である一対の電極間に本発明のフラーレン誘導体を含む層を有する。本発明のフラーレン誘導体は、電子受容体として用いることが好ましい。本発明のフラーレン誘導体のみを用いて有機光電変換素子に含まれる層を形成してもよく、本発明のフラーレン誘導体と電子供与性化合物とを含む組成物を用いて有機光電変換素子に含まれる層を形成してもよい。
本発明のフラーレン誘導体又はそれを含む組成物が含有される有機光電変換素子の層としては、活性層が好ましい。
また、このような層の形成方法としては、特に限定されないが、例えば、スピンコーティング、ディップコーティング、スプレーコーティング、ドクターブレード、バーコート等の湿式法、真空蒸着法等が挙げられる。これらの中でも、本発明の有機光電変換素子がウェットプロセスにより製造されるという観点から、スピンコーティング、ディップコーティング、スプレーコーティング、ドクターブレード、バーコート等の湿式法が好ましい。
この溶液に含まれる溶媒としては、前記フラーレン誘導体および前記電子供与性化合物を溶解するものであれば特に限定されず、例えば、クロロベンゼン、オルトジクロロベンゼン、クロロホルム、ジクロロメタン、トルエン、テトラヒドロフラン等の公知のものを用いればよい。
Next, the composition containing the fullerene derivative of the present invention and the organic photoelectric conversion device will be described.
The organic photoelectric conversion element using the fullerene derivative of the present invention has a layer containing the fullerene derivative of the present invention between a pair of electrodes, at least one of which is transparent or translucent. The fullerene derivative of the present invention is preferably used as an electron acceptor. The layer included in the organic photoelectric conversion element may be formed using only the fullerene derivative of the present invention, and the layer included in the organic photoelectric conversion element using the composition containing the fullerene derivative of the present invention and the electron donating compound. May be formed.
As the layer of the organic photoelectric conversion element containing the fullerene derivative of the present invention or the composition containing the same, an active layer is preferable.
The method for forming such a layer is not particularly limited, and examples thereof include wet methods such as spin coating, dip coating, spray coating, doctor blade, and bar coating, and vacuum deposition methods. Among these, wet methods such as spin coating, dip coating, spray coating, doctor blade, and bar coating are preferable from the viewpoint that the organic photoelectric conversion element of the present invention is produced by a wet process.
The solvent contained in this solution is not particularly limited as long as it dissolves the fullerene derivative and the electron donating compound. For example, known solvents such as chlorobenzene, orthodichlorobenzene, chloroform, dichloromethane, toluene, and tetrahydrofuran May be used.

本発明のフラーレン誘導体と共に用いられる電子供与性化合物は、特に限定されず、有機光電変換素子において用いられる公知の材料を用いれば良いが、例えば、有機半導体材料又は無機半導体材料が挙げられ、フラーレン誘導体を含む層がウェットプロセスにより簡便な方法で得られることから有機半導体材料が好ましい。このような有機半導体材料としては、ポリアルキルチオフェン及びその誘導体、ポリフェニレン及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリシラン及びその誘導体、ポリアルキルチオフェン及びその誘導体、ポルフィリン誘導体、フタロシアニン、銅フタロシアニン、亜鉛フタロシアニン、チタニルフタロシアニン等のフタロシアニン誘導体、有機金属ポリマー等が挙げられるが、ポリアルキルチオフェン及びその誘導体が好ましい。また、これらの有機半導体材料の混合物であってもよい。
ポリフェニレンビニレンの誘導体としては、ポリ[2−メトキシ,5−(2’−エチル−ヘキシロキシ)−p−フェニレン−ビニレン](MEH−PPV)等を用いることができ、ポリチオフェン系高分子材料としては、ポリ−3−ヘキシルチオフェン(P3HT)等のポリ(3−アルキルチオフェン)、ジオクチルフルオレンエン−ビチオフェン共重合体(F8T2)を用いることができる。
本発明において、電子受容体と電子供与性材料の質量比は、有機光電変換層という理由から1:0.5〜1:4.0であると好ましい。
また、本発明のフラーレン誘導体を含む層及びフラーレン誘導体を含む組成物には、本発明より得られる効果を阻害しない範囲で、必要に応じ、界面活性剤、シリカ等の無機微粒子フィラー等の添加物を配合しても良い。
The electron donating compound used together with the fullerene derivative of the present invention is not particularly limited, and a known material used in an organic photoelectric conversion element may be used. Examples thereof include an organic semiconductor material or an inorganic semiconductor material, and a fullerene derivative. An organic semiconductor material is preferable because the layer containing can be obtained by a simple method by a wet process. Examples of such organic semiconductor materials include polyalkylthiophene and derivatives thereof, polyphenylene and derivatives thereof, polyphenylene vinylene and derivatives thereof, polysilane and derivatives thereof, polyalkylthiophene and derivatives thereof, porphyrin derivatives, phthalocyanine, copper phthalocyanine, zinc phthalocyanine, Examples thereof include phthalocyanine derivatives such as titanyl phthalocyanine, organometallic polymers, and the like, and polyalkylthiophene and derivatives thereof are preferable. Moreover, the mixture of these organic-semiconductor materials may be sufficient.
As a derivative of polyphenylene vinylene, poly [2-methoxy, 5- (2′-ethyl-hexyloxy) -p-phenylene-vinylene] (MEH-PPV) or the like can be used. As a polythiophene polymer material, Poly (3-alkylthiophene) such as poly-3-hexylthiophene (P3HT) and dioctylfluorene-bithiophene copolymer (F8T2) can be used.
In the present invention, the mass ratio of the electron acceptor to the electron donating material is preferably 1: 0.5 to 1: 4.0 because of the organic photoelectric conversion layer.
In addition, the layer containing the fullerene derivative of the present invention and the composition containing the fullerene derivative may contain additives such as surfactants, inorganic fine particle fillers such as silica, and the like as long as the effects obtained from the present invention are not impaired. May be blended.

本発明の有機光電変換素子の電極材料としては、特に限定されないが、負極電極の場合電子受容体(n型半導体)のLUMOレベルに対してエネルギー障壁が小さく、仕事関数が比較的小さなものから選ばれる。例としてAg、Al、Pt,Ir、Cr、ZnO、CNT及びそれらの合金・複合体などが挙げられる。負極電極の形成方法としては、例えば、真空蒸着、スパッタリング、イオンプレーティング、等のPVD(物理気相蒸着)、もしくは原子層蓄積法(ALD)等のCVD(化学気相蒸着)等の方法で形成すればよい。
頂部電極としては電子供与性化合物(p型半導体)のHOMOレベルとエネルギー障壁が小さく、比較的仕事関数が大きなものから選ばれ、透明でなければならない。例えばITO,IrO2、In23、SnO2、IZO、ZnO(Ga、Alドープ)、MoO3等の材料から形成される。形成方法は負極電極と同様である。
また、有機光電変換素子において、(各層の接触界面に緩衝層(バッファ層)を設けることもできる。バッファ層としては、導電性の層であればよく、ポリ(3,4)−エチレンジオキシチオフェン/ポリスチレンスルフォネート(PEDOT:PSS)酸化モリブデン、フッ化リチウム、酸化チタン、金あるいはバソクプロイン等からなる導電性の層を好ましく使用することができる。なかでも、PEDOT:PSSが好ましく用いることができる。
The electrode material of the organic photoelectric conversion element of the present invention is not particularly limited. In the case of the negative electrode, it is selected from those having a small energy barrier and a relatively small work function with respect to the LUMO level of the electron acceptor (n-type semiconductor). It is. Examples include Ag, Al, Pt, Ir, Cr, ZnO, CNT, and alloys and composites thereof. As a method for forming the negative electrode, for example, PVD (physical vapor deposition) such as vacuum deposition, sputtering, ion plating, or CVD (chemical vapor deposition) such as atomic layer deposition (ALD) is used. What is necessary is just to form.
The top electrode is selected from those having an electron donating compound (p-type semiconductor) having a low HOMO level and energy barrier, a relatively large work function, and must be transparent. For example, it is made of a material such as ITO, IrO 2 , In 2 O 3 , SnO 2 , IZO, ZnO (Ga, Al doped), MoO 3 or the like. The formation method is the same as that of the negative electrode.
In the organic photoelectric conversion element, a buffer layer (buffer layer) can be provided at the contact interface of each layer. The buffer layer may be a conductive layer, and poly (3,4) -ethylenedioxy A conductive layer made of thiophene / polystyrene sulfonate (PEDOT: PSS) molybdenum oxide, lithium fluoride, titanium oxide, gold, bathocuproine, etc. can be preferably used, among which PEDOT: PSS is preferably used. it can.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されない。
実施例1(フラーレン誘導体1の製造)
(1)前駆体の合成
文献(Angew. Chem. Int. Ed. 2004, 43, 1512-1516)に準じて合成した。すなわち撹拌機、冷却管を備えた500mlの丸底フラスコに、C60;512mg、パラホルムアルデヒド;115mg、N−(p−ヒドロキシフェニル)グリシン;234mg、トルエン;500mlを取って均一に溶解し、窒素雰囲気下5時間加熱還流した。その後、溶媒をエバポレーターで濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒トルエン)で精製して、前駆体として黒褐色の下式(X)に示す誘導体238mgを得た。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded.
Example 1 (Production of fullerene derivative 1)
(1) Synthesis of precursor The compound was synthesized according to the literature (Angew. Chem. Int. Ed. 2004, 43, 1512-1516). That is, in a 500 ml round bottom flask equipped with a stirrer and a condenser tube, C60; 512 mg, paraformaldehyde; 115 mg, N- (p-hydroxyphenyl) glycine; 234 mg, toluene; The mixture was heated to reflux for 5 hours. Thereafter, the solvent was concentrated with an evaporator and purified by silica gel column chromatography (developing solvent toluene) to obtain 238 mg of a derivative represented by the following formula (X) of black brown as a precursor.

Figure 2011204883
Figure 2011204883

(2)フラーレン誘導体1の合成
得られた前駆体56.3mgをフラスコに測りとり、トルエン(脱水)を加え溶解させた。ここに1−エチルl−3−(3−ジメチルアミノプロピル)カルボキシジイミド(EDCI)32mg、DL−チオクト酸31mg、N,N−ジメチルアミノピリジン(DMAP)2mgを加え、窒素雰囲気下室温で5時間撹拌した。その後、反応液に水を加え分液漏斗で分離し、有機層に硫酸ナトリウムを加えて乾燥させ、濾過により固形を除きエバポレーターで溶媒を除去した後、シリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)で精製して下記フラーレン誘導体1(28.5mg)を得た (収率41%)。得られたフラーレン誘導体1のNMR及びFD−MS測定結果を以下に示す。これにより、フラーレン誘導体1であることが確認できた。
Rf 0.57(トルエン); 1 HNMR (500 MHz, ppm, CDCl3 , J=Hz) δ;1.63 (m, 2H), 1.82 (m, 4H), 1.97 (m, 1H), 2.64 (t, 2H, J= 7.4 Hz), 2.52 (m, 1H), 3.16 (m, 1H), 3.22 (m, 1H), 3.64 (m, 1H), 5.10 (s, 3H), 5.30 (s, 1H), 7.21 (d, 2H, J=9.0), 7.33(d, 2H, J=9.0);13 CNMR (125 MHz, ppm, CDCl3 ) δIR (neat, cm-1); FD-MS found 1043 (calcd for C76H21O2NS2 , exact mass: 1043.10).
(2) Synthesis of fullerene derivative 1 56.3 mg of the obtained precursor was weighed into a flask, and toluene (dehydrated) was added and dissolved. To this, 32 mg of 1-ethyl l-3- (3-dimethylaminopropyl) carboxydiimide (EDCI), 31 mg of DL-thioctic acid and 2 mg of N, N-dimethylaminopyridine (DMAP) were added, and at room temperature for 5 hours under a nitrogen atmosphere. Stir. Then, water is added to the reaction solution and separated with a separatory funnel. Sodium sulfate is added to the organic layer and dried. The solid is removed by filtration, the solvent is removed with an evaporator, and silica gel column chromatography (developing solvent: toluene) is used. Purification gave the following fullerene derivative 1 (28.5 mg) (yield 41%). The NMR and FD-MS measurement results of the obtained fullerene derivative 1 are shown below. This confirmed that it was fullerene derivative 1.
Rf 0.57 (toluene); 1 HNMR (500 MHz, ppm, CDCl3, J = Hz) δ; 1.63 (m, 2H), 1.82 (m, 4H), 1.97 (m, 1H), 2.64 (t, 2H, J = 7.4 Hz), 2.52 (m, 1H), 3.16 (m, 1H), 3.22 (m, 1H), 3.64 (m, 1H), 5.10 (s, 3H), 5.30 (s, 1H), 7.21 (d , 2H, J = 9.0), 7.33 (d, 2H, J = 9.0); 13 CNMR (125 MHz, ppm, CDCl 3 ) δIR (neat, cm -1 ); FD-MS found 1043 (calcd for C 76 H 21 O 2 NS 2 , exact mass: 1043.10).

Figure 2011204883
Figure 2011204883

次に、得られたフラーレン誘導体1について、以下の評価を行った。
(i)サイクリックボルタンメトリー(CV)によるフラーレン誘導体1の評価
製造したフラーレン誘導体1について、サイクリックボルタンメトリー(BAS社製)を測定した。作用電極として金電極、対電極としてPt線、参照電極としてAg線を用いた。測定時の掃引速度は100mV/sec、走査電位領域は−1.5V〜0Vであった。還元電位及び酸化電位の測定は、支持電解質としてのテトラブチルアンモニウムヘキサフルオロフォスフェート(TBAPF6)をオルトジクロロベンゼン溶媒に溶解し飽和させた液に、フラーレン誘導体1を1×10-3mol/Lの濃度に溶解させた溶液で測定した。測定の結果、フラーレン誘導体1は、−0.91V及び1.29Vにそれぞれ第一還元電位、第二還元電位を示した。これらはPCBMの値と近く、光電変換材料に適した材料と判断できる。
Next, the obtained fullerene derivative 1 was evaluated as follows.
(I) Evaluation of Fullerene Derivative 1 by Cyclic Voltammetry (CV) With respect to the produced fullerene derivative 1, cyclic voltammetry (manufactured by BAS) was measured. A gold electrode was used as the working electrode, a Pt line as the counter electrode, and an Ag line as the reference electrode. The sweep rate during measurement was 100 mV / sec, and the scanning potential region was −1.5 V to 0 V. The reduction potential and the oxidation potential were measured by dissolving fullerene derivative 1 in a solution of tetrabutylammonium hexafluorophosphate (TBAPF6) as a supporting electrolyte dissolved in orthodichlorobenzene solvent and saturated to 1 × 10 −3 mol / L. Measured with a solution dissolved in concentration. As a result of the measurement, the fullerene derivative 1 exhibited a first reduction potential and a second reduction potential at −0.91 V and 1.29 V, respectively. These are close to the value of PCBM and can be judged as materials suitable for the photoelectric conversion material.

(ii)紫外可視(UV−VIS)吸収スペクトル測定によるフラーレン誘導体1の評価
紫外可視吸収スペクトルの測定は、(UV−3600[商品名]、島津製作所)を用いて行った。フラーレン誘導体1をトルエンに9.6×10-5mol/Lの濃度で完全に溶解し、300〜1000nmの吸収スペクトルを測定したところ、725nmに吸収端が認められた。この波長からバンドギャップを見積もったところ、1.7eVであった。この値からもフラーレン誘導体1は光電変換材料に適した材料と判断できる。
(Ii) Evaluation of fullerene derivative 1 by ultraviolet-visible (UV-VIS) absorption spectrum measurement The ultraviolet-visible absorption spectrum was measured using (UV-3600 [trade name], Shimadzu Corporation). Fullerene derivative 1 was completely dissolved in toluene at a concentration of 9.6 × 10 −5 mol / L, and an absorption spectrum at 300 to 1000 nm was measured. As a result, an absorption edge was observed at 725 nm. The band gap was estimated from this wavelength and found to be 1.7 eV. Also from this value, it can be judged that the fullerene derivative 1 is a material suitable for a photoelectric conversion material.

(iii)有機薄膜太陽電池の作製、評価
窒素雰囲気下、電子供与性化合物としてレジオレギュラーポリ3−ヘキシルチオフェン(P3HT)(メルク社製 Lisicon SP001[商品名])30mgとフラーレン誘導体1(24mg)をクロロベンゼン2mLに溶解させ、50度で20時間撹拌した。ついで、孔径0.45μmのPTFEメンブレンフィルターで濾過し、塗布溶液を作製した。100nmの厚みでITO 膜を付けたガラス基板(テクノプリント株式会社)を、中性洗剤、純水、アセトン、イソプロパノールで超音波洗浄した後、オゾンUV処理して表面処理を行った。次に、ポリ(3,4)−エチレンジオキシチオフェン/ポリスチレンスルフォネート(PEDOT:PSS)水分散液(H.C.スタルク社製,Clevios P AL4083)をスピンコートし、140℃で10分間乾燥させ、膜厚40nmの膜を形成した。次に、グローブボックス中で前記塗布溶液をスピンコートにより塗布し、有機薄膜太陽電池の活性層(膜厚約100nm)を得た。その後、真空蒸着によりAlを100nmの厚さで蒸着した。蒸着のときの真空度は1〜2×10-3Paであった。その後150度で10分アニーリング処理を行った。
得られた有機薄膜太陽電池の光電変換効率は、ソーラシミュレーター(ワコム電創製、AM1.5Gフィルター[商品名]、放射照度100mW/cm2)を用いて一定の光を照射し、発生する電流と電圧を測定して求めた。電流値は0.28mA、電圧値は0.53Vであった。この結果よりフラーレン誘導体1は光電変換素子の材料として好適である。
(iii) Production and Evaluation of Organic Thin Film Solar Cell Under a nitrogen atmosphere, 30 mg of regioregular poly-3-hexylthiophene (P3HT) (Lisicon SP001 [trade name] manufactured by Merck & Co., Inc.) and fullerene derivative 1 (24 mg) were used as electron donating compounds. It was dissolved in 2 mL of chlorobenzene and stirred at 50 degrees for 20 hours. Subsequently, it filtered with the PTFE membrane filter with the hole diameter of 0.45 micrometer, and produced the coating solution. A glass substrate (Technoprint Co., Ltd.) having an ITO film with a thickness of 100 nm was ultrasonically cleaned with a neutral detergent, pure water, acetone, and isopropanol, and then surface treated by ozone UV treatment. Next, a poly (3,4) -ethylenedioxythiophene / polystyrene sulfonate (PEDOT: PSS) aqueous dispersion (manufactured by HC Starck, Clevios P AL4083) was spin-coated, and 140 ° C. for 10 minutes. It dried and formed the film | membrane with a film thickness of 40 nm. Next, the coating solution was applied by spin coating in a glove box to obtain an active layer (film thickness of about 100 nm) of the organic thin film solar cell. Thereafter, Al was deposited to a thickness of 100 nm by vacuum deposition. The degree of vacuum at the time of vapor deposition was 1-2 × 10 −3 Pa. Thereafter, an annealing treatment was performed at 150 degrees for 10 minutes.
The photoelectric conversion efficiency of the obtained organic thin-film solar cell was determined by irradiating a certain amount of light using a solar simulator (manufactured by Wacom Denso, AM1.5G filter [trade name], irradiance of 100 mW / cm 2 ). It was determined by measuring the voltage. The current value was 0.28 mA, and the voltage value was 0.53V. From this result, the fullerene derivative 1 is suitable as a material for the photoelectric conversion element.

以上詳細に説明したように、本発明のフラーレン誘導体は容易な合成方法で得られ、そのフラーレン誘導体及びそれを含む組成物を有機光電変換素子の材料として用いることにより、塗布法により製造される有機光電変換素子が得られる。このため、実用性の高い、有機光電変換素子として極めて有用である。   As described above in detail, the fullerene derivative of the present invention can be obtained by an easy synthesis method, and the fullerene derivative and a composition containing the fullerene derivative can be used as a material for an organic photoelectric conversion element, thereby producing an organic compound produced by a coating method. A photoelectric conversion element is obtained. For this reason, it is extremely useful as an organic photoelectric conversion element having high practicality.

Claims (6)

下記式(1)で表されるフラーレン誘導体。
Figure 2011204883
[式(1)中、R1、R2は、水素原子もしくは炭素数1〜4のアルキル基、R3は式(2)、(3)又は(4)で表される基を示す。またnは0〜3、mは1〜4の整数を表す。]
A fullerene derivative represented by the following formula (1).
Figure 2011204883
[In Formula (1), R < 1 >, R < 2 > shows a hydrogen atom or a C1-C4 alkyl group, R < 3 > shows group represented by Formula (2), (3) or (4). N represents an integer of 0 to 3, and m represents an integer of 1 to 4. ]
球状構造の炭素数が60のC60フラーレン誘導体である、請求項1に記載のフラーレン誘導体。   The fullerene derivative according to claim 1, which is a C60 fullerene derivative having a spherical structure having 60 carbon atoms. 請求項1又は請求項2に記載のフラーレン誘導体と電子供与性化合物とを含む組成物。   A composition comprising the fullerene derivative according to claim 1 or 2 and an electron donating compound. 電子供与性化合物が高分子化合物である、請求項3に記載の組成物。   The composition according to claim 3, wherein the electron donating compound is a polymer compound. 請求項1に記載のフラーレン誘導体を含む層を有する有機光電変換素子。   The organic photoelectric conversion element which has a layer containing the fullerene derivative of Claim 1. 請求項3又は4に記載の組成物を含む層を有する有機光電変換素子。   The organic photoelectric conversion element which has a layer containing the composition of Claim 3 or 4.
JP2010070315A 2010-03-25 2010-03-25 Fullerene derivative, composite including the same, and organic photoelectric conversion element Pending JP2011204883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010070315A JP2011204883A (en) 2010-03-25 2010-03-25 Fullerene derivative, composite including the same, and organic photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010070315A JP2011204883A (en) 2010-03-25 2010-03-25 Fullerene derivative, composite including the same, and organic photoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2011204883A true JP2011204883A (en) 2011-10-13

Family

ID=44881236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070315A Pending JP2011204883A (en) 2010-03-25 2010-03-25 Fullerene derivative, composite including the same, and organic photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2011204883A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218492A (en) * 2012-07-17 2014-11-20 株式会社リコー Fullerene derivative and method for producing the same
JP2015113301A (en) * 2013-12-11 2015-06-22 株式会社リコー Fullerene derivative and method of producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112816A (en) * 2003-10-10 2005-04-28 Mitsubishi Chemicals Corp Sugar compound, method for use thereof, fullerene derivative and its production method
JP2007335760A (en) * 2006-06-16 2007-12-27 Fujifilm Corp Photoelectric converting film, and solar battery photoelectric converting element, or imaging element including same
JP2009260324A (en) * 2008-03-25 2009-11-05 Sumitomo Chemical Co Ltd Composition, and photoelectric converting element using it
JP2010278377A (en) * 2009-06-01 2010-12-09 Konica Minolta Holdings Inc Organic photoelectric conversion element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112816A (en) * 2003-10-10 2005-04-28 Mitsubishi Chemicals Corp Sugar compound, method for use thereof, fullerene derivative and its production method
JP2007335760A (en) * 2006-06-16 2007-12-27 Fujifilm Corp Photoelectric converting film, and solar battery photoelectric converting element, or imaging element including same
JP2009260324A (en) * 2008-03-25 2009-11-05 Sumitomo Chemical Co Ltd Composition, and photoelectric converting element using it
JP2010278377A (en) * 2009-06-01 2010-12-09 Konica Minolta Holdings Inc Organic photoelectric conversion element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013051193; Maria Sierra, M. Angeles Herranz, Sheng Zhang, Luis Sanchez, Nazario Martin, and Luis Echegoyen: 'Self-Assembly of C60 d-Extended Tetrathiafulvalene (exTTF) Dyads onGold Surfaces' Langmuir Volume 22, Issue 25, 20060902, Pages 10619-10624 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014218492A (en) * 2012-07-17 2014-11-20 株式会社リコー Fullerene derivative and method for producing the same
JP2015113301A (en) * 2013-12-11 2015-06-22 株式会社リコー Fullerene derivative and method of producing the same

Similar Documents

Publication Publication Date Title
Kan et al. A chlorinated low-bandgap small-molecule acceptor for organic solar cells with 14.1% efficiency and low energy loss
Wu et al. Influence of nonfused cores on the photovoltaic performance of linear triphenylamine-based hole-transporting materials for perovskite solar cells
Li et al. Multifunctional fullerene derivative for interface engineering in perovskite solar cells
Ahmed et al. Design of new electron acceptor materials for organic photovoltaics: synthesis, electron transport, photophysics, and photovoltaic properties of oligothiophene-functionalized naphthalene diimides
Li et al. Thermally stable high performance non-fullerene polymer solar cells with low energy loss by using ladder-type small molecule acceptors
Li et al. Hybrid fullerene-based electron transport layers improving the thermal stability of perovskite solar cells
Wang et al. Bifunctional polymer nanocomposites as hole-transport layers for efficient light harvesting: application to perovskite solar cells
Liang et al. Donor–acceptor conjugates-functionalized zinc phthalocyanine: Towards broad absorption and application in organic solar cells
Xia et al. A spiro-bifluorene based 3D electron acceptor with dicyanovinylene substitution for solution-processed non-fullerene organic solar cells
Sharma et al. Side-chain engineering of diketopyrrolopyrrole-based hole-transport materials to realize high-efficiency perovskite solar cells
WO2011049531A1 (en) N-type materials and organic electronic devices
Jeanbourquin et al. Amorphous ternary charge-cascade molecules for bulk heterojunction photovoltaics
Cominetti et al. Polymer solar cells based on poly (3-hexylthiophene) and fullerene: Pyrene acceptor systems
Rao et al. Donor–acceptor–acceptor-based non-fullerene acceptors comprising terminal chromen-2-one functionality for efficient bulk-heterojunction devices
Zhao et al. High-performance all-polymer solar cells and photodetectors enabled by a high-mobility n-type polymer and optimized bulk-heterojunction morphology
WO2013123508A2 (en) Organic semiconducting compounds for use in organic electronic devices
Feng et al. A series of dithienobenzodithiophene based small molecules for highly efficient organic solar cells
Adhikari et al. Solid-state showdown: Comparing the photovoltaic performance of amorphous and crystalline small-molecule diketopyrrolopyrrole acceptors
Lim et al. Synthesis and properties of low bandgap star molecules TPA-[DTS-PyBTTh3] 3 and DMM-TPA [DTS-PyBTTh3] 3 for solution-processed bulk heterojunction organic solar cells
Park et al. Enhanced interfacial characteristics of perovskite solar cell with multi-functional organic hole-selective interlayer
Chou et al. Synthesis and characterization of new asymmetric thieno [3, 4-b] pyrazine-based D− π− A− A type small molecular donors with near-infrared absorption and their photovoltaic applications
San Juan et al. Development of low band gap molecular donors with phthalimide terminal groups for use in solution processed organic solar cells
Sathiyan et al. Synthesis and studies of carbazole-based donor polymer for organic solar cell applications
JP2011204883A (en) Fullerene derivative, composite including the same, and organic photoelectric conversion element
JP5730031B2 (en) Fullerene derivative and photoelectric conversion element using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304