JP2011202191A - Method for forming conductive fluorocarbon thin film - Google Patents

Method for forming conductive fluorocarbon thin film Download PDF

Info

Publication number
JP2011202191A
JP2011202191A JP2010067653A JP2010067653A JP2011202191A JP 2011202191 A JP2011202191 A JP 2011202191A JP 2010067653 A JP2010067653 A JP 2010067653A JP 2010067653 A JP2010067653 A JP 2010067653A JP 2011202191 A JP2011202191 A JP 2011202191A
Authority
JP
Japan
Prior art keywords
thin film
carbon
film
conductive
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010067653A
Other languages
Japanese (ja)
Other versions
JP5525883B2 (en
Inventor
Katsumasa Suzuki
克昌 鈴木
Toshitada Shibata
俊格 柴田
Ryuichiro Isaki
隆一郎 伊崎
Mitsuji Itano
充司 板野
Shingo Nakamura
新吾 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Taiyo Nippon Sanso Corp
Original Assignee
Daikin Industries Ltd
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Taiyo Nippon Sanso Corp filed Critical Daikin Industries Ltd
Priority to JP2010067653A priority Critical patent/JP5525883B2/en
Publication of JP2011202191A publication Critical patent/JP2011202191A/en
Application granted granted Critical
Publication of JP5525883B2 publication Critical patent/JP5525883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a conductive fluorocarbon thin film using a raw material gas that can be easily decomposed and efficiently formed into a dense conductive fluorocarbon thin film having a high carbon ratio.SOLUTION: A conductive fluorocarbon film is deposited on a sample surface by exciting and decomposing a raw material gas in a vacuum plasma device, the raw material gas containing a compound expressed by general formula CxFyHz (wherein x represents 2 or 3, y represents an integer of 1 to 4 and z represents an integer of 1 to 5) and having a carbon-carbon double bond in the molecule. The pressure and temperature for exciting and decomposing the raw material gas are preferably controlled to the ranges from 1 to 133 Pa and from 15 to 100°C, respectively.

Description

本発明は、導電性フルオロカーボン薄膜の形成方法に関し、詳しくは、帯電防止機能を有する表面コーティングを含む表面処理などに利用することができる導電性フルオロカーボン薄膜の形成方法に関する。   The present invention relates to a method for forming a conductive fluorocarbon thin film, and more particularly to a method for forming a conductive fluorocarbon thin film that can be used for surface treatment including a surface coating having an antistatic function.

各種フッ素樹脂、プラスチック、ガラスなどは、耐熱性、耐候性、加工性が良好なことなどの観点から様々な用途で使用されているが、これらの材料の導電性の低さは、絶縁材料としての優位性と同時に、静電気を帯電しやすいという課題を有している。このため、例えば乾燥気体、特に、可燃性である乾燥気体を通気させる配管にこれらの材料を使用する際には、静電気除去処理を施す必要がある。もっとも簡便な方法としては、配管施工後に導電線を巻き付け、この導電線をアース接続する方法が挙げられるが、配管に導電線を十分に巻きつけることは困難である。   Various fluororesins, plastics, glass, etc. are used in various applications from the viewpoint of good heat resistance, weather resistance, and workability, but the low conductivity of these materials is an insulating material. At the same time, it has the problem of being easily charged with static electricity. For this reason, for example, when these materials are used in piping for passing a dry gas, in particular, a flammable dry gas, it is necessary to perform a static elimination process. As the simplest method, there is a method of winding a conductive wire after piping construction and connecting the conductive wire to ground, but it is difficult to sufficiently wind the conductive wire around the piping.

また、電気設備や電子応用設備の利用環境においては、電磁気的ノイズ妨害(Electro−Magnetic Interference;EMI)の対策が求められている。設備全体を筐体あるいは部屋の中に入れて放射ノイズ予防をすることが求められる場合には、内部を監視できるような透明性と、電磁波を防止できる導電性とを兼ね備えた壁材が必要とされ、この種の壁材として、良導電性繊維を透明基材に埋め込んだ電磁波シールド材が知られている(例えば、特許文献1、2参照。)が、板材の厚さを薄くすることが困難である。   Moreover, in the usage environment of electrical equipment and electronic application equipment, countermeasures against electromagnetic noise interference (Electro-Magnetic Interference; EMI) are required. When it is required to prevent radiation noise by placing the entire equipment in a housing or room, wall materials that have both transparency that can monitor the interior and conductivity that can prevent electromagnetic waves are required. As this type of wall material, an electromagnetic shielding material in which a highly conductive fiber is embedded in a transparent substrate is known (for example, see Patent Documents 1 and 2), but the thickness of the plate material can be reduced. Have difficulty.

この対策として、フッ素樹脂、プラスチック、ガラスなどからなる材料の表面に、導電性膜をコーティングする方法が従来から行われている。導電性膜のコーティング方法としては、塗料を使用する方法が一般的に行われている。例えば、VdF−HEPコポリマー系のフッ素ゴムにグラファイトやカーボンを配合した塗料が市販されている。同じく帯電防止の観点から、光学フィルムに帯電防止膜を塗布する方法が知られている(例えば、特許文献3、4参照。)。しかしながら、薬液を用いて導電性膜を塗布するこれらの方法は、生産性が高い一方で、微細な凹凸に対して均一な膜厚の導電性膜を形成することが困難である。   As a countermeasure, a method of coating a conductive film on the surface of a material made of fluororesin, plastic, glass or the like has been conventionally performed. As a method for coating the conductive film, a method using a paint is generally performed. For example, a paint in which graphite or carbon is blended with VdF-HEP copolymer-based fluororubber is commercially available. Similarly, from the viewpoint of antistatic, a method of applying an antistatic film to an optical film is known (see, for example, Patent Documents 3 and 4). However, these methods of applying a conductive film using a chemical solution have high productivity, but it is difficult to form a conductive film having a uniform film thickness with respect to fine irregularities.

一方、均一な膜厚の導電性膜を形成する方法として、真空プラズマ装置内に入れた材料上に、蒸着あるいは化学気相成長によって導電性薄膜を形成する方法が知られている。液晶パネルの透明電極に広く使用されているITO(酸化インジウム錫)などの金属系の膜は、原料が高価という課題がある。原料が安価で、かつ、導電性を有する薄膜としては、カーボン系薄膜を気相反応によって形成できることが知られている。しかしながら、従来の方法では原料ガスの利用効率や薄膜成長速度などが不十分で、生産性が低いという課題があった。   On the other hand, as a method of forming a conductive film having a uniform thickness, a method of forming a conductive thin film on a material put in a vacuum plasma apparatus by vapor deposition or chemical vapor deposition is known. A metal film such as ITO (indium tin oxide) widely used for transparent electrodes of liquid crystal panels has a problem that the raw material is expensive. It is known that a carbon-based thin film can be formed by a gas phase reaction as a thin film having an inexpensive raw material and conductivity. However, the conventional method has a problem that the utilization efficiency of the raw material gas and the thin film growth rate are insufficient, and the productivity is low.

なお、カーボン系薄膜を形成する場合、原料ガス化合物としてCやCのようなパーフルオロカーボンを用いると、高安定性かつ高絶縁性の膜質が出現し、フッ素樹脂ライクな膜になりやすい。同じくCH、C、C、Cのようなハイドロフルオロカーボンを用いると、SP2結合とSP3結合との両方の結合が混在した炭素結合に若干の水素が含まれたアモルファスカーボン膜が形成される。気相成長条件にもよるが、SP3結合の要素によって、電気絶縁性、高硬度、耐摩耗性、耐薬品性などに優れる膜質が出現し、DLC(Diamond Like Carbon)と呼ばれる膜になりやすい。しかし、いずれも上記課題の解決には不適切な膜質であり、SP2結合の要素が強い、グラファイトライクな構造が求められる。 When a carbon-based thin film is formed, if a perfluorocarbon such as C 4 F 8 or C 4 F 6 is used as a raw material gas compound, a highly stable and highly insulating film quality appears, and a fluororesin-like film It is easy to become. Similarly, when hydrofluorocarbons such as CH 4 , C 2 H 4 , C 2 H 2 , and C 6 H 6 were used, some hydrogen was contained in the carbon bond in which both the SP2 bond and the SP3 bond were mixed. An amorphous carbon film is formed. Although it depends on the vapor phase growth conditions, a film quality excellent in electrical insulation, high hardness, wear resistance, chemical resistance, etc. appears due to the SP3 bonding element, and a film called DLC (Diamond Like Carbon) tends to be formed. However, in any case, the film quality is inappropriate for solving the above-mentioned problems, and a graphite-like structure having a strong SP2 binding element is required.

特開平5−327274号公報JP-A-5-327274 特開平5−269912号公報Japanese Patent Laid-Open No. 5-269912 特開2006−195413号公報JP 2006-195413 A 特開2006−297914号公報JP 2006-297914 A

上述のように、フッ素樹脂、プラスチック、ガラスなどからなる絶縁性材料の表面に導電性膜をコーティングする方法がいくつか知られているが、薬液を用いて導電性膜を塗布する方法は、生産性が高い一方で、微細な凹凸に対して均一な膜厚の導電性膜を形成することが困難であるという問題があった。一方、気相反応を利用して均一な膜厚の導電成膜を形成する方法では、生産性が低いことが課題となっていた。   As described above, there are several known methods for coating a conductive film on the surface of an insulating material made of fluororesin, plastic, glass, etc., but the method for applying a conductive film using a chemical solution is On the other hand, there is a problem that it is difficult to form a conductive film having a uniform film thickness with respect to fine irregularities. On the other hand, in the method of forming a conductive film having a uniform film thickness using a gas phase reaction, the problem is that the productivity is low.

そこで本発明は、容易に分解し、かつ、緻密で高炭素比率の導電性フルオロカーボン薄膜を効率的に形成できる原料ガスを用いた導電性フルオロカーボン薄膜の形成方法を提供することを目的としている。   Therefore, an object of the present invention is to provide a method for forming a conductive fluorocarbon thin film using a raw material gas that can be easily decomposed and efficiently form a dense conductive carbon thin film having a high carbon ratio.

上記目的を達成するため、本発明の導電性フルオロカーボン薄膜の形成方法は、一般式CxFyHz(式中のxは2又は3、yは1〜4の整数、zは1〜5の整数を示す。)で示され、かつ、分子内に炭素−炭素の二重結合を有する化合物を少なくとも1つ以上含む原料ガスを真空プラズマ装置内で励起・分解することによって試料表面に導電性のフルオロカーボン膜を堆積させることを特徴としている。   In order to achieve the above object, the method for forming a conductive fluorocarbon thin film of the present invention has a general formula CxFyHz (wherein x is an integer of 2 or 3, y is an integer of 1 to 4, and z is an integer of 1 to 5. ) And a conductive fluorocarbon film is deposited on the surface of the sample by exciting and decomposing a source gas containing at least one compound having a carbon-carbon double bond in the molecule in a vacuum plasma apparatus. It is characterized by letting.

さらに、本発明の導電性フルオロカーボン薄膜の形成方法は、前記原料ガスを励起・分解する際の真空プラズマ装置内の圧力が1〜133Paの範囲であること、前記原料ガスを励起・分解する際の前記試料表面の温度が15〜100℃の範囲であること、前記一般式中のyとzとの比がy:z=1:1〜5であることを特徴としている。   Furthermore, in the method for forming a conductive fluorocarbon thin film according to the present invention, the pressure in the vacuum plasma apparatus when exciting and decomposing the source gas is in the range of 1 to 133 Pa, and when exciting and decomposing the source gas. The temperature of the sample surface is in the range of 15 to 100 ° C., and the ratio of y and z in the general formula is y: z = 1: 1 to 5.

本発明の導電性フルオロカーボン薄膜の形成方法によれば、
分子中の炭素数が2個又は3個で、炭素−炭素の二重結合(C=C)を有する化合物を含む原料ガスを用いることにより、グラファイトライク構造のネットワークを形成し易くなり、良好な導電性を有する保護膜を得ることができる。また、化合物中にフッ素と水素とを含有することにより、フッ素及び水素が容易に排出され、化合物中のカーボンが薄膜に利用される効率が高くなるため、生産性の高い保護膜形成が可能となる。さらに、反応圧力を1〜133Paの範囲とすることでガス密度を低くし、高エネルギー電子衝撃による反応を支配的とすることができる。また、反応温度を15〜100℃の範囲とすることにより、σ結合成分が増加して導電性が低下することを回避できる。
According to the method for forming a conductive fluorocarbon thin film of the present invention,
By using a raw material gas containing a compound having 2 or 3 carbon atoms in the molecule and having a carbon-carbon double bond (C = C), it becomes easy to form a graphite-like structure network. A conductive protective film can be obtained. In addition, by containing fluorine and hydrogen in the compound, fluorine and hydrogen are easily discharged, and the efficiency with which the carbon in the compound is used for the thin film increases, so that a highly productive protective film can be formed. Become. Furthermore, by setting the reaction pressure in the range of 1 to 133 Pa, the gas density can be lowered and the reaction by high energy electron impact can be dominant. Moreover, by making reaction temperature into the range of 15-100 degreeC, it can avoid that (sigma) coupling component increases and electroconductivity falls.

本発明の導電性フルオロカーボン薄膜の形成方法を実施する装置構成の一例を示す説明図である。It is explanatory drawing which shows an example of the apparatus structure which implements the formation method of the electroconductive fluorocarbon thin film of this invention. 実施例における排ガス分析結果を示す図である。It is a figure which shows the exhaust gas analysis result in an Example. 実施例及び比較例における薄膜の赤外線吸収スペクトルを示す図である。It is a figure which shows the infrared absorption spectrum of the thin film in an Example and a comparative example. 比較例における排ガス分析結果を示す図である。It is a figure which shows the exhaust gas analysis result in a comparative example. 実施例及び比較例におけるガス分解率を示す図である。It is a figure which shows the gas decomposition rate in an Example and a comparative example. 実施例及び比較例におけるデポレートの比較を示す図である。It is a figure which shows the comparison of the deposit rate in an Example and a comparative example.

本発明の導電性フルオロカーボン薄膜の形成方法では、原料ガスとして、一般式CxFyHz(式中のxは2又は3、yは1〜4の整数、zは1〜5の整数を示す。)で示され、かつ、分子内に炭素−炭素の二重結合(C=C)を有する化合物を含むガスを使用し、この原料ガスを、薄膜を形成する対象となる試料11を配置した真空プラズマ装置12内に導入し、プラズマ処理で原料ガスを励起・分解することによって試料11の表面に緻密で高炭素比率の導電性フルオロカーボン薄膜を形成する。真空プラズマ装置12の内部は、真空排気ポンプ13の作用で所定の真空状態に保たれており、図示しない温度制御手段によって所定の温度に保持されている。   In the method for forming a conductive fluorocarbon thin film of the present invention, the raw material gas is represented by the general formula CxFyHz (where x is 2 or 3, y is an integer of 1 to 4, and z is an integer of 1 to 5). And a gas containing a compound having a carbon-carbon double bond (C = C) in the molecule, and this source gas is used as a vacuum plasma apparatus 12 in which a sample 11 to be a target for forming a thin film is disposed. A dense conductive carbon thin film having a high carbon ratio is formed on the surface of the sample 11 by introducing into the substrate and exciting / decomposing the source gas by plasma treatment. The inside of the vacuum plasma apparatus 12 is maintained in a predetermined vacuum state by the action of the evacuation pump 13, and is maintained at a predetermined temperature by a temperature control means (not shown).

真空プラズマ装置12内での原料ガスの励起・分解は、真空プラズマ装置12内に1〜100MHzの高周波電力を印加することで、プラズマ中の電子エネルギーを4eV以上の成分が多い分布特性とすることができ、原料ガスを効率的に励起・分解させることが可能となる。さらに、1kHz〜1MHzの低周波電力を合成して印加することにより、試料11に印加されるバイアス電圧を調整することが可能となり、得られる膜の緻密性を向上させることができる。   Excitation / decomposition of the source gas in the vacuum plasma apparatus 12 is performed by applying a high frequency power of 1 to 100 MHz to the vacuum plasma apparatus 12 so that the electron energy in the plasma has a distribution characteristic with a large amount of components of 4 eV or more. Thus, the source gas can be efficiently excited and decomposed. Furthermore, by combining and applying low frequency power of 1 kHz to 1 MHz, the bias voltage applied to the sample 11 can be adjusted, and the density of the resulting film can be improved.

分子内にH原子とF原子とが一対以上ある上述の原料ガスを使用することで、プラズマ処理した際に、分子内から両原子が同時に脱離する反応が進行するため、試料上に効率よく炭素を供給することができる。さらに炭素数が2個以上の化合物でこの反応を進行させた場合、分子内にはカルベン(C:)、ビラジカル(・C=C・)が生成し、π電子系の高分子炭素膜、すなわち導電性カーボン膜が形成される。   By using the above-mentioned source gas having one or more H atoms and F atoms in the molecule, a reaction in which both atoms are desorbed simultaneously from the molecule proceeds during the plasma treatment. Carbon can be supplied. Furthermore, when this reaction is allowed to proceed with a compound having 2 or more carbon atoms, carbene (C :) and biradical (.C = C.) Are generated in the molecule, and a π-electron polymer carbon film, A conductive carbon film is formed.

上記反応以外に、膜内にF原子が取り込まれる反応も進行するが、F原子の添加は膜の化学的安定性を高める効果があり、導電性を阻害しない範囲で導入されることが望ましい。F原子の添加量は、原料ガスの流量や反応圧力、RF電力などにより調整することが可能であるほか、水素ガス、炭化水素ガス、フッ素含有ガスを原料ガスに混合させることで調整することもできる。   In addition to the above reaction, a reaction in which F atoms are incorporated into the film also proceeds. However, the addition of F atoms has an effect of increasing the chemical stability of the film, and is desirably introduced within a range that does not impair the conductivity. The addition amount of F atoms can be adjusted by the flow rate of the source gas, reaction pressure, RF power, etc., and can also be adjusted by mixing hydrogen gas, hydrocarbon gas, or fluorine-containing gas with the source gas. it can.

プラズマ中では、原料ガス中の分子同士の重合反応も進行するが、反応圧力を1〜133Paの範囲としてガス密度を低くすることにより、高エネルギー電子衝撃による反応を支配的とすることができる。ただし、炭素数が4以上の原料ガスを用いた場合は、結合解離エネルギーが低下するため、プラズマ中の高エネルギー電子密度が低下し、高エネルギー電子衝撃による反応を支配的にすることが困難となる。   In the plasma, the polymerization reaction between molecules in the raw material gas also proceeds. However, by reducing the gas density by setting the reaction pressure in the range of 1 to 133 Pa, the reaction by high energy electron impact can be made dominant. However, when a raw material gas having 4 or more carbon atoms is used, the bond dissociation energy is lowered, so that the high energy electron density in the plasma is lowered and it is difficult to dominate the reaction by high energy electron impact. Become.

また、膜形成時の試料11の表面温度は、15〜100℃の範囲とすることが好ましい。温度を上げることで、より緻密な膜質を形成することが可能となるが、100℃を超える温度で膜形成すると、σ結合成分が増加して導電性が低下することがある。   The surface temperature of the sample 11 during film formation is preferably in the range of 15 to 100 ° C. By increasing the temperature, it becomes possible to form a denser film quality. However, when the film is formed at a temperature exceeding 100 ° C., the σ bond component may increase and the conductivity may decrease.

前述のように、分子内に炭素−炭素の二重結合(C=C)を含む化合物を原料ガスとすることにより、グラファイトライク構造のネットワークを形成し易くなり、導電性を有する膜を形成することができる。さらに、気相反応であることから微細な凹凸にも均一な膜を形成することができる。これにより、プラスチック、ガラスなどの表面に導電性フルオロカーボン薄膜を形成し、静電気の発生などを防止することができる。   As described above, by using a compound containing a carbon-carbon double bond (C = C) in the molecule as a raw material gas, it becomes easy to form a network having a graphite-like structure, and a conductive film is formed. be able to. Furthermore, since it is a gas phase reaction, a uniform film can be formed even on fine irregularities. Thereby, a conductive fluorocarbon thin film can be formed on the surface of plastic, glass, etc., and generation | occurrence | production of static electricity etc. can be prevented.

前記一般式CxFyHzで示される具体的なハイドロフルオロカーボンとしては、CH=CHF、CH=CF、CHF=CF、CHCH=CHF、CHCF=CH、CHFCH=CH、CHCH=CF、CHCF=CHF、CHFCH=CHF、CHFCF=CH、CHFCH=CH、CHCF=CF、CHFCF=CHF、CHFCH=CHF、CHFCF=CH、CFCH=CH、CHFCF=CF、CHFCH=CF、CHFCF=CHF、CFCH=CHF、CFCF=CHなどを挙げることができる。 Specific hydrofluorocarbons represented by the general formula CxFyHz, CH 2 = CHF, CH 2 = CF 2, CHF = CF 2, CH 3 CH = CHF, CH 3 CF = CH 2, CH 2 FCH = CH 2 , CH 3 CH = CF 2, CH 3 CF = CHF, CH 2 FCH = CHF, CH 2 FCF = CH 2, CHF 2 CH = CH 2, CH 3 CF = CF 2, CH 2 FCF = CHF, CHF 2 CH = CHF, CHF 2 CF = CH 2, CF 3 CH = CH 2, CH 2 FCF = CF 2, CHF 2 CH = CF 2, CHF 2 CF = CHF, CF 3 CH = CHF, such as CF 3 CF = CH 2 Can be mentioned.

プラズマ空間内において、F原子とH原子とを選択的に反応させて排気することで、より炭素比率の高いフルオロカーボン膜を堆積するという目的においては、ハイドロカーボンとフッ素含有ガス、あるいは、フルオロカーボンと水素含有ガス、という組み合わせで供給することも可能であるが、反応制御が複雑になるという欠点がある。さらに、一般的にC−F結合エネルギー(5.0eV)がC−H結合エネルギー(4.3eV)よりも高いことからわかる通り、ハイドロカーボンのH原子の一部がF原子に置き換わったハイドロフルオロカーボンは比較的生成自由エネルギーが低く、安定なガスである。また、同様にフルオロカーボンの方が、ハイドロフルオロカーボンよりも更に安定であると考えられるが、炭素−炭素の二重結合をもつCは重合成を有する不安定なガスである。すなわち、ハイドロフルオロカーボンを原料ガスとして使用することは供給面での利便性が高いことを意味する。F原子とH原子との比率を調整する場合には、異なる複数のハイドロフルオロカーボン、あるいは、ハイドロフルオロカーボンにフッ素含有ガスあるいは水素含有ガスを添加して使用することが望ましい。 For the purpose of depositing a fluorocarbon film having a higher carbon ratio by selectively reacting F atoms and H atoms in the plasma space and exhausting them, hydrocarbon and fluorine-containing gas, or fluorocarbon and hydrogen Although it is possible to supply in a combination of contained gases, there is a drawback that reaction control becomes complicated. Furthermore, as can be seen from the fact that the C—F bond energy (5.0 eV) is generally higher than the C—H bond energy (4.3 eV), a hydrofluorocarbon in which some of the H atoms of the hydrocarbon are replaced with F atoms. Is a stable gas with relatively low free energy of formation. Similarly, fluorocarbon is considered to be more stable than hydrofluorocarbon, but C 2 F 4 having a carbon-carbon double bond is an unstable gas having polysynthesis. That is, use of hydrofluorocarbon as a raw material gas means high convenience in terms of supply. When adjusting the ratio of F atoms and H atoms, it is desirable to use a plurality of different hydrofluorocarbons, or a fluorine-containing gas or a hydrogen-containing gas added to the hydrofluorocarbon.

実施例1
化合物としてCH=CFを使用し、真空プラズマ装置内でSi基板上に薄膜形成を行った。プロセス条件は、圧力は40Pa、ガス流量は50sccm、電源周波数は13.56MHz、高周波電源出力は300Wとした。薄膜形成プロセス中の排ガスを赤外線吸収分光装置(FT−IR)及び紫外光吸収分光装置を用いて分析した結果、CH=CFの分解率は約93%であった。FT−IRで測定した赤外線吸収スペクトル及び紫外光吸収分光装置での測定結果より、副生成物はHFと僅かなCFのみであった。
Example 1
Using CH 2 ═CF 2 as a compound, a thin film was formed on a Si substrate in a vacuum plasma apparatus. The process conditions were a pressure of 40 Pa, a gas flow rate of 50 sccm, a power frequency of 13.56 MHz, and a high frequency power output of 300 W. As a result of analyzing the exhaust gas during the thin film formation process using an infrared absorption spectrometer (FT-IR) and an ultraviolet light absorption spectrometer, the decomposition rate of CH 2 ═CF 2 was about 93%. From the results of measurement with an infrared absorption spectrum and an ultraviolet absorption spectrometer measured by FT-IR, by-products were only HF and a slight amount of CF 4 .

これらの結果は、F原子及びH原子がHFとして排出されていること、薄膜形成雰囲気に過剰なF原子が存在していないこと、C原子がほとんど排出されていないことを意味しており、炭素比率の高い膜を効率よく形成できていることを示している。プラズマON状態、OFF状態における赤外線吸収スペクトルの測定結果を図2に示す。   These results indicate that F atoms and H atoms are discharged as HF, that no excessive F atoms are present in the thin film formation atmosphere, and that almost no C atoms are discharged. It shows that a film with a high ratio can be formed efficiently. The measurement results of the infrared absorption spectrum in the plasma ON state and the OFF state are shown in FIG.

また、本条件によってSi基板上に形成された薄膜に赤外光を透過させることによって赤外線吸収スペクトルを測定した。その結果を図3に示す。比較のため、C、Cを使用して形成した薄膜の赤外線吸収スペクトルを併記しているが、それぞれ縦軸方向にオフセットを加えている。CH=CFで形成した薄膜の場合、C−F伸縮に起因する1220cm−1近傍の吸収強度が他の化合物の場合よりも弱いことがわかった。これは、排ガス分析の結果が示す、薄膜形成雰囲気に過剰なF原子が存在していないことと、よく一致している。 In addition, an infrared absorption spectrum was measured by transmitting infrared light through a thin film formed on the Si substrate under these conditions. The result is shown in FIG. For comparison, an infrared absorption spectrum of a thin film formed using C 4 F 8 and C 4 F 6 is also shown, and an offset is added in the vertical axis direction. In the case of a thin film formed of CH 2 ═CF 2 , it was found that the absorption intensity in the vicinity of 1220 cm −1 due to C—F stretching was weaker than in the case of other compounds. This is in good agreement with the fact that excess F atoms do not exist in the thin film forming atmosphere, as shown by the results of exhaust gas analysis.

さらに、Cで形成した薄膜の場合には、C=CF伸縮に起因する1720cm−1近傍の吸収強度が他の化合物の場合よりも強く、CH=CFで形成した薄膜の場合には、C=CH伸縮に起因する1650cm−1近傍の吸収強度が他の化合物の場合よりも強いことがわかった。これは、炭素−炭素の二重結合を有する化合物を原料ガスとすることで、形成される薄膜中に炭素−炭素の二重結合が効率的に含まれること、適切な割合でHが含まれるCxHyFzガスを使用することでグラファイトライク構造の導電性薄膜が形成されていることを証明している。 Further, in the case of a thin film formed of C 4 F 6 , the absorption intensity in the vicinity of 1720 cm −1 due to C═CF 2 stretching is stronger than in the case of other compounds, and the thin film formed of CH 2 ═CF 2 In some cases, it was found that the absorption intensity in the vicinity of 1650 cm −1 due to C═CH 2 stretching was stronger than that of other compounds. This is because, by using a compound having a carbon-carbon double bond as a raw material gas, carbon-carbon double bonds are efficiently contained in the formed thin film, and H is contained at an appropriate ratio. It is proved that a conductive thin film having a graphite-like structure is formed by using CxHyFz gas.

比較例1
比較化合物としてCを使用し、真空プラズマ装置内でSi基板上に薄膜形成を行った。プロセス条件は、圧力は55Pa、ガス流量は40sccm、電源周波数は13.56MHz、高周波電源出力は300Wとした。実施例1と同様に、薄膜形成プロセス中の排ガスを赤外線吸収分光装置及び紫外光吸収分光装置を用いて分析した結果、Cの分解効率は78%程度であった。FT−IRで測定した赤外線吸収スペクトル及び紫外光吸収分光装置での測定結果より、副生成物はCF、C、C、Fなどであった。
Comparative Example 1
C 4 F 8 was used as a comparative compound, and a thin film was formed on a Si substrate in a vacuum plasma apparatus. The process conditions were such that the pressure was 55 Pa, the gas flow rate was 40 sccm, the power frequency was 13.56 MHz, and the high frequency power output was 300 W. As in Example 1, as a result of analyzing the exhaust gas during the thin film formation process using an infrared absorption spectrometer and an ultraviolet absorption spectrometer, the decomposition efficiency of C 4 F 8 was about 78%. From the measurement result with the infrared absorption spectrum measured with FT-IR and the ultraviolet light absorption spectrometer, the by-products were CF 4 , C 2 F 6 , C 2 F 4 , F 2 and the like.

これらの結果は、薄膜形成雰囲気に過剰なF原子が存在していること、薄膜形成に寄与せずに排出されるC原子があることを意味している。また、Cの排出は、薄膜形成雰囲気にCFが多く存在していること、すなわち、フッ素樹脂ライクな導電性を有さない薄膜が形成されていることを意味している。プラズマON状態、OFF状態における赤外線吸収スペクトルの測定結果を図4に示す。 These results mean that excess F atoms are present in the thin film forming atmosphere and that there are C atoms that are discharged without contributing to the thin film formation. Further, the discharge of C 2 F 4 means that a large amount of CF 2 is present in the thin film formation atmosphere, that is, a thin film having no conductivity like a fluororesin is formed. The measurement results of the infrared absorption spectrum in the plasma ON state and the OFF state are shown in FIG.

実施例2
化合物として、実施例1のCH=CF、比較例1のCに加え、CHF、CHF、Cを使用し、真空プラズマ装置内でSi基板上に薄膜形成をそれぞれ行った。プロセス条件は、圧力は25〜55Pa、ガス流量は30〜50sccm、電源周波数は13.56MHz、高周波電源出力は200〜400Wとした。薄膜形成プロセス中の排ガスを赤外線吸収分光装置を用いて分析し、プロセス条件範囲内における各ガスの分解率を調べた。この結果を図5に示す。
Example 2
As a compound, in addition to CH 2 = CF 2 of Example 1 and C 4 F 8 of Comparative Example 1, CHF 3 , CH 3 F, and C 4 F 6 were used, and a thin film was formed on a Si substrate in a vacuum plasma apparatus. Went to each. The process conditions were a pressure of 25 to 55 Pa, a gas flow rate of 30 to 50 sccm, a power supply frequency of 13.56 MHz, and a high frequency power supply output of 200 to 400 W. The exhaust gas during the thin film formation process was analyzed using an infrared absorption spectrometer, and the decomposition rate of each gas within the process condition range was investigated. The result is shown in FIG.

この結果から、炭素数が1のCHF及びCHFの分解率が低いことがわかる。また、炭素数が4の化合物の比較では、炭素−炭素の二重結合を持つCの方が高分解率であることがわかる。CH=CFの分解率がCの分解率と同等以上であり、炭素−炭素の二重結合を持つことが高分解率、すなわち高生産性に寄与することが示唆される。なお、Cによって得られる膜は、比較例1のCの場合と同様、フッ素樹脂ライクな膜であり、導電性を有さないことから、本開発の目的には適していない。 From this result, it is understood that the decomposition rate of CHF 3 and CH 3 F having 1 carbon is low. Further, in the comparison of the compounds having 4 carbon atoms, it can be seen that C 4 F 6 having a carbon-carbon double bond has a higher decomposition rate. The decomposition rate of CH 2 ═CF 2 is equal to or higher than the decomposition rate of C 4 F 6 , and it is suggested that having a carbon-carbon double bond contributes to a high decomposition rate, that is, high productivity. Note that the film obtained by C 4 F 6 is a fluororesin-like film as in the case of C 4 F 8 in Comparative Example 1, and is not suitable for the purpose of this development because it does not have conductivity. Absent.

実施例3
化合物として、実施例2と同様に、CH=CF、C、CHF、CHF、Cを使用し、真空プラズマ装置内でSi基板上に薄膜形成をそれぞれ行った。プロセス条件は、圧力は40Pa、ガス流量は40sccm、電源周波数は13.56MHz、高周波電源出力は300Wとした。薄膜形成プロセス後に、堆積膜厚の測定を行い、デポレートを調べた。この結果を図6に示す。なお、実験結果を示す図6の縦軸は、CH=CFのデポレートで規格化している。CHFとCHFとの比較より、H/F比を高くすることでデポレートが高くなっているが、これはH原子が過剰なF原子を除去することで、C原子の堆積効率が上がったことを示唆していると考えられる。
Example 3
As in Example 2, CH 2 ═CF 2 , C 4 F 8 , CHF 3 , CH 3 F, and C 4 F 6 were used as compounds, and a thin film was formed on a Si substrate in a vacuum plasma apparatus. It was. The process conditions were a pressure of 40 Pa, a gas flow rate of 40 sccm, a power frequency of 13.56 MHz, and a high frequency power output of 300 W. After the thin film formation process, the deposited film thickness was measured to examine the deposition. The result is shown in FIG. The vertical axis of FIG. 6 showing the experimental results are normalized by the deposition rate of CH 2 = CF 2. Compared with CHF 3 and CH 3 F, the deposition rate is increased by increasing the H / F ratio, but this increases the deposition efficiency of C atoms by removing excess F atoms from H atoms. This is thought to suggest that.

また、CとCとの比較から、化合物内のC/F比以上にデポレートの差が高くなっているが、これはCが炭素−炭素の二重結合を有していることに起因していると考えられる。すなわち、本実験結果は、H/F比の高さと炭素−炭素の二重結合の存在が、高デポレート、即ち高生産性に寄与することを示唆しているといえる。CH=CFは、H/F比が1であり、かつ、炭素−炭素の二重結合を有していることによって、Cに次ぐ高いデポレートが得られたと考えられる。なお、Cによって得られる膜は、比較例1のCの場合と同様、フッ素樹脂ライクな膜であり、導電性を有さないことから、本開発の目的には適していない。 In addition, from the comparison between C 4 F 8 and C 4 F 6 , the difference in the deposition rate is higher than the C / F ratio in the compound. This is because C 4 F 6 has a carbon-carbon double bond. It is thought to be caused by having. That is, it can be said that the result of this experiment suggests that the high H / F ratio and the presence of the carbon-carbon double bond contribute to high deposition, that is, high productivity. It is considered that CH 2 ═CF 2 has a H / F ratio of 1 and has a carbon-carbon double bond, so that the second highest deposition rate after C 4 F 6 was obtained. Note that the film obtained by C 4 F 6 is a fluororesin-like film as in the case of C 4 F 8 in Comparative Example 1, and is not suitable for the purpose of this development because it does not have conductivity. Absent.

11…試料、12…真空プラズマ装置、13…真空排気ポンプ   DESCRIPTION OF SYMBOLS 11 ... Sample, 12 ... Vacuum plasma apparatus, 13 ... Vacuum exhaust pump

Claims (4)

一般式CxFyHz(式中のxは2又は3、yは1〜4の整数、zは1〜5の整数を示す。)で示され、かつ、分子内に炭素−炭素の二重結合を有する化合物を少なくとも1つ以上含む原料ガスを真空プラズマ装置内で励起・分解することによって試料表面に導電性のフルオロカーボン膜を堆積させることを特徴とする導電性フルオロカーボン薄膜の形成方法。   It is represented by a general formula CxFyHz (wherein x is 2 or 3, y is an integer of 1 to 4, z is an integer of 1 to 5), and has a carbon-carbon double bond in the molecule. A method for forming a conductive fluorocarbon thin film, comprising depositing a conductive fluorocarbon film on a sample surface by exciting and decomposing a source gas containing at least one compound in a vacuum plasma apparatus. 前記原料ガスを励起・分解する際の真空プラズマ装置内の圧力が1〜133Paの範囲であることを特徴とする請求項1記載の導電性フルオロカーボン薄膜の形成方法。   The method for forming a conductive fluorocarbon thin film according to claim 1, wherein the pressure in the vacuum plasma apparatus when exciting and decomposing the source gas is in the range of 1 to 133 Pa. 前記原料ガスを励起・分解する際の前記試料表面の温度が15〜100℃の範囲であることを特徴とする請求項1又は2記載の導電性フルオロカーボン薄膜の形成方法。   The method for forming a conductive fluorocarbon thin film according to claim 1 or 2, wherein the temperature of the sample surface when exciting and decomposing the source gas is in the range of 15 to 100 ° C. 前記一般式中のyとzとの比がy:z=1:1〜5であることを特徴とする請求項1乃至3のいずれか1項記載の導電性フルオロカーボン薄膜の形成方法。   4. The method for forming a conductive fluorocarbon thin film according to claim 1, wherein a ratio of y to z in the general formula is y: z = 1: 1 to 5. 5.
JP2010067653A 2010-03-24 2010-03-24 Method for forming conductive fluorocarbon thin film Active JP5525883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010067653A JP5525883B2 (en) 2010-03-24 2010-03-24 Method for forming conductive fluorocarbon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010067653A JP5525883B2 (en) 2010-03-24 2010-03-24 Method for forming conductive fluorocarbon thin film

Publications (2)

Publication Number Publication Date
JP2011202191A true JP2011202191A (en) 2011-10-13
JP5525883B2 JP5525883B2 (en) 2014-06-18

Family

ID=44879139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010067653A Active JP5525883B2 (en) 2010-03-24 2010-03-24 Method for forming conductive fluorocarbon thin film

Country Status (1)

Country Link
JP (1) JP5525883B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01204056A (en) * 1988-02-10 1989-08-16 Fuji Xerox Co Ltd Manufacture of electrophotographic sensitive body
JPH06212429A (en) * 1992-07-02 1994-08-02 Sumitomo Electric Ind Ltd Hard carbon film
JPH06248458A (en) * 1993-02-23 1994-09-06 Hitachi Ltd Plasma treatment device and production of magnetic disk by using this device
JP2002220668A (en) * 2000-11-08 2002-08-09 Daikin Ind Ltd Film forming gas and plasma film-forming method
JP2007095604A (en) * 2005-09-30 2007-04-12 Univ Nagoya Method of manufacturing transparent conductive film, and transparent conductive film
JP2008540849A (en) * 2005-05-17 2008-11-20 アプライド マテリアルズ インコーポレイテッド Low temperature plasma deposition process for carbon layer deposition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01204056A (en) * 1988-02-10 1989-08-16 Fuji Xerox Co Ltd Manufacture of electrophotographic sensitive body
JPH06212429A (en) * 1992-07-02 1994-08-02 Sumitomo Electric Ind Ltd Hard carbon film
JPH06248458A (en) * 1993-02-23 1994-09-06 Hitachi Ltd Plasma treatment device and production of magnetic disk by using this device
JP2002220668A (en) * 2000-11-08 2002-08-09 Daikin Ind Ltd Film forming gas and plasma film-forming method
JP2008540849A (en) * 2005-05-17 2008-11-20 アプライド マテリアルズ インコーポレイテッド Low temperature plasma deposition process for carbon layer deposition
JP2007095604A (en) * 2005-09-30 2007-04-12 Univ Nagoya Method of manufacturing transparent conductive film, and transparent conductive film

Also Published As

Publication number Publication date
JP5525883B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
Tressaud et al. Surface modification of several carbon-based materials: comparison between CF4 rf plasma and direct F2-gas fluorination routes
JP5276979B2 (en) Method for manufacturing a flat substrate
CN1226450C (en) Processing method and apparatus for plasma
KR20090063170A (en) Method of depositing silicon nitride film
CN1644251A (en) Chamber cleaning method
KR20120049820A (en) Graphene coated steel and method for preparing thereof
JP2012149278A (en) Method for producing silicon-containing film
Denis et al. Physico‐chemical characterization of methyl isobutyrate‐based plasma polymer films
Kim et al. Characteristics of silicon nitride deposited by VHF (162 MHz)-plasma enhanced chemical vapor deposition using a multi-tile push–pull plasma source
Dimitrakellis et al. Transition between stable hydrophilization and fast etching/hydrophilization of poly (methyl) methacrylate polymer using a novel atmospheric pressure dielectric barrier discharge source
Byun et al. Characteristics of silicon nitride deposited by very high frequency (162 MHz)-plasma enhanced atomic layer deposition using bis (diethylamino) silane
Zhao et al. Surface modification of XLPE films by CF4 DBD for dielectric properties
Li et al. Impact of hydrofluorocarbon molecular structure parameters on plasma etching of ultra-low-K dielectric
WO2017068931A1 (en) Electromagnetic wave absorption shield and method for manufacturing same
JP5525883B2 (en) Method for forming conductive fluorocarbon thin film
Choi et al. Hydrogen plasma-enhanced atomic layer deposition of hydrogenated amorphous carbon thin films
Fracassi et al. Evaluation of trifluoroiodomethane as SiO 2 etchant for global warming reduction
Park et al. Effective control of CH4/H2 plasma condition to synthesize graphene nano-walls with controlled morphology and structural quality
JP5028593B2 (en) Method for producing transparent conductive film
Terriza et al. c‐C4F8 Plasmas for the Deposition of Fluorinated Carbon Films
JP2008239357A (en) Method for manufacturing carbon nanowall
Joo et al. Dry etching of ITO thin films by the addition of gases in Cl 2/BCl 3 inductivity coupled plasma
Pattyn et al. Controlled deposition of plasma‐polyaniline thin film by PECVD: Understanding the influence of aniline to argon ratio
Zhang et al. The power source effect on SiOx coating deposition by plasma enhanced chemical vapor deposition
JP2015010030A (en) Carbon fluoride, method for producing carbon fluoride and use of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

R150 Certificate of patent or registration of utility model

Ref document number: 5525883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250