JP2011200051A - Vibration type actuator and method for manufacturing the same - Google Patents

Vibration type actuator and method for manufacturing the same Download PDF

Info

Publication number
JP2011200051A
JP2011200051A JP2010065587A JP2010065587A JP2011200051A JP 2011200051 A JP2011200051 A JP 2011200051A JP 2010065587 A JP2010065587 A JP 2010065587A JP 2010065587 A JP2010065587 A JP 2010065587A JP 2011200051 A JP2011200051 A JP 2011200051A
Authority
JP
Japan
Prior art keywords
conversion element
energy conversion
protrusion
vibration
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010065587A
Other languages
Japanese (ja)
Other versions
JP5627258B2 (en
JP2011200051A5 (en
Inventor
Yuki Oda
悠貴 小田
Shinji Yamamoto
新治 山本
Akio Atsuta
暁生 熱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010065587A priority Critical patent/JP5627258B2/en
Priority to US13/052,989 priority patent/US8633632B2/en
Publication of JP2011200051A publication Critical patent/JP2011200051A/en
Publication of JP2011200051A5 publication Critical patent/JP2011200051A5/ja
Priority to US14/132,668 priority patent/US10580963B2/en
Application granted granted Critical
Publication of JP5627258B2 publication Critical patent/JP5627258B2/en
Priority to US15/842,709 priority patent/US11063205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/002Electrostatic motors
    • H02N1/006Electrostatic motors of the gap-closing type
    • H02N1/008Laterally driven motors, e.g. of the comb-drive type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/005Mechanical details, e.g. housings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/005Mechanical details, e.g. housings
    • H02N2/0055Supports for driving or driven bodies; Means for pressing driving body against driven body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/005Mechanical details, e.g. housings
    • H02N2/0055Supports for driving or driven bodies; Means for pressing driving body against driven body
    • H02N2/006Elastic elements, e.g. springs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/005Mechanical details, e.g. housings
    • H02N2/0065Friction interface
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/12Constructional details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/22Methods relating to manufacturing, e.g. assembling, calibration
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/071Mounting of piezoelectric or electrostrictive parts together with semiconductor elements, or other circuit elements, on a common substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vibration type actuator which can stabilize spring rigidity and be easily manufactured, and to provide a method for manufacturing the actuator.SOLUTION: The vibration type actuator includes a vibration body having an elastic body having one or more protruding portions formed thereon, and an electromechanical energy conversion element. The actuator drives an drive object contacting a contacting portion of the protruding portion by using an elliptic movement generated on front ends of the protruding portions by a combination of two vibration modes in the vibration body due to the application of an AC drive voltage. The elastic body and the protruding portions are integrally formed, including a joining portion between the protruding portions and the electromechanical energy conversion element, and a space is formed between the contacting portions and the electromechanical energy conversion element to join to the protruding portion. The protruding portions each have a joining portion between the protruding portions and the electromechanical energy conversion element, and a spring portion for imparting a spring property to the protruding portion when the contacting portion is pressed due to a contact with the drive object, which is formed between the protruding portion and the contacting portion.

Description

本発明は、振動型アクチュエータおよびその製造方法に関するものである。
特に、振動子が略矩形の平板状に形成されており、平板状の一面に摩擦部材である突起が形成されている振動型アクチュエータおよびその製造方法に関するものである。
The present invention relates to a vibration type actuator and a manufacturing method thereof.
In particular, the present invention relates to a vibration type actuator in which a vibrator is formed in a substantially rectangular flat plate shape, and a protrusion as a friction member is formed on one surface of the flat plate shape, and a method for manufacturing the same.

被駆動部を直線状に駆動する振動型アクチュエータとして、従来から様々な提案が行われており、例えば、特許文献1のような振動型駆動装置が提案されている。
その駆動原理について、図11、図12を用いて説明する。
図11に示されるように、振動子は電気−機械エネルギ変換素子107を振動子106に貼り付けた構成を備えている。
図12は、該圧電振動子の二つの曲げ振動モードを表した図である。
図12(a)に示される振動モードは、二つの曲げ振動モードのうちの一方の曲げ振動モード(Aモードとする)を表している。
このAモードは、矩形の振動子106の長辺方向(矢印X方向)における二次の屈曲運動であり、短辺方向(矢印Y方向)と平行な3本の節を有している。
ここで、突起部108はAモードの振動で節となる位置の近傍に配置されており、Aモードの振動により矢印X方向に往復運動を行う。
また、図12(b)に示される振動モードは、二つの曲げ振動モードのうちの他方の曲げ振動モード(Bモードとする)を表している。
このBモードは、矩形の振動子106の短辺方向(矢印Y方向)における一次の屈曲振動であり、長辺方向(矢印X方向)と平行な2本の節を有している。
Various proposals have heretofore been made as vibration-type actuators that drive the driven parts in a straight line. For example, a vibration-type drive device as disclosed in Patent Document 1 has been proposed.
The driving principle will be described with reference to FIGS.
As shown in FIG. 11, the vibrator has a configuration in which an electromechanical energy conversion element 107 is attached to the vibrator 106.
FIG. 12 is a diagram showing two bending vibration modes of the piezoelectric vibrator.
The vibration mode shown in FIG. 12A represents one bending vibration mode (referred to as A mode) of the two bending vibration modes.
This A mode is a secondary bending motion in the long side direction (arrow X direction) of the rectangular vibrator 106 and has three nodes parallel to the short side direction (arrow Y direction).
Here, the protrusion 108 is disposed in the vicinity of a position that becomes a node by the vibration of the A mode, and reciprocates in the direction of the arrow X by the vibration of the A mode.
Further, the vibration mode shown in FIG. 12B represents the other bending vibration mode (referred to as B mode) of the two bending vibration modes.
This B mode is a primary bending vibration in the short-side direction (arrow Y direction) of the rectangular vibrator 106, and has two nodes parallel to the long-side direction (arrow X direction).

ここで、Aモードにおける節とBモードにおける節は、XY平面内において略直交するようになっている。
また、突起部108はBモードの振動で腹となる位置の近傍に配置されており、Bモードの振動により矢印Z方向に往復運動を行う。
上記したAモードとBモードの振動を所定の位相差で発生させることにより、突起部108の先端に楕円運動を発生させることができる。
突起部108の先端には図11に示すように、被駆動部であるスライダ116が加圧接触するようになっており、スライダ116は突起部108の楕円運動によって矢印L方向に移動することができる。
Here, the nodes in the A mode and the nodes in the B mode are substantially orthogonal in the XY plane.
Further, the protrusion 108 is disposed in the vicinity of a position that becomes antinode by B-mode vibration, and reciprocates in the arrow Z direction by B-mode vibration.
By generating the vibrations of the A mode and the B mode with a predetermined phase difference, an elliptical motion can be generated at the tip of the protrusion 108.
As shown in FIG. 11, a slider 116 that is a driven portion is in pressure contact with the tip of the protrusion 108, and the slider 116 can move in the direction of arrow L due to the elliptical motion of the protrusion 108. it can.

この超音波モータは、振動を発生する振動子に被駆動部を加圧接触させることで、振動を受けて被駆動部が相対運動を行う構成となっている。
そのため、振動子が発生する振動を受けた被駆動部が跳ねることによる異音の発生や、相対移動が不安定になるなどの現象が発生することがある。
これらの問題に対処するために、振動子から受ける振動を効果的に受ける弾性変形部を設ける必要があり、例えば、特許文献2では図13に示すように、突起部と対向する面に空間を配置した振動波駆動装置が提案されている。
この装置は、図13に示されるように、振動型アクチュエータ207は、振動子206及びスライダ204を備え、振動子206は電気−機械変換素子203と、弾性部材201と、弾性部材に接合される突起部202とで構成されている。更に、弾性部材201の電気−機械変換素子203と接合する面には、突起部202が接合される面の接合位置と対向する面に空間205が設けられている。
空間205の面積が、突起部202が接合する面積よりも大きいため、空間205が設けられている面がダイヤフラムのような働きをして弾性的に変化することにより、バネとして機能するように構成されている。
This ultrasonic motor has a configuration in which a driven part is subjected to relative movement by receiving a vibration by bringing a driven part into pressure contact with a vibrator that generates vibration.
For this reason, phenomena such as the generation of abnormal noise due to the driven part that has received the vibration generated by the vibrator bouncing and the relative movement becoming unstable may occur.
In order to cope with these problems, it is necessary to provide an elastically deforming portion that effectively receives vibration received from the vibrator. For example, in Patent Document 2, as shown in FIG. Arranged vibration wave driving devices have been proposed.
As shown in FIG. 13, the vibration type actuator 207 includes a vibrator 206 and a slider 204, and the vibrator 206 is joined to the electro-mechanical conversion element 203, the elastic member 201, and the elastic member. It is comprised by the projection part 202. FIG. Furthermore, a space 205 is provided on the surface of the elastic member 201 that is to be bonded to the electromechanical conversion element 203, on the surface that faces the bonding position of the surface to which the protrusion 202 is bonded.
Since the area of the space 205 is larger than the area where the protrusions 202 are joined, the surface on which the space 205 is provided functions as a diaphragm and changes elastically to function as a spring. Has been.

特開2004−320846号公報JP 2004-320846 A 特開2006−174549号公報JP 2006-174549 A

上記した特許文献2では、振動子からの振動を受ける弾性変形部を形成することで、異音の発生を抑制し、相対移動の安定を図ることができるが、つぎのような課題を有している。
すなわち、突起部が別部品で形成され、平板状の弾性体と結合する構成が採られていることから、突起位置の微小なズレによってバネ剛性が所望の値にならなかったり、アクチュエータが所望の性能を発揮できなくなったりする恐れがあった。
また、加工工程が増えるため、コスト高となる課題も有していた。
In the above-mentioned Patent Document 2, it is possible to suppress the generation of abnormal noise and stabilize relative movement by forming an elastically deforming portion that receives vibration from the vibrator. However, the following problems are encountered. ing.
That is, since the protrusion is formed as a separate part and coupled to a flat elastic body, the spring rigidity does not reach a desired value due to a slight deviation of the protrusion position, or the actuator is There was a risk that performance could not be demonstrated.
Further, since the number of processing steps is increased, there is a problem that the cost is increased.

本発明は、これらの課題に鑑み、バネ剛性の安定化、製造の簡易化を図ることが可能となる振動型アクチュエータおよびその製造方法の提供を目的とするものである。   SUMMARY OF THE INVENTION In view of these problems, an object of the present invention is to provide a vibration actuator and a method for manufacturing the same that can stabilize spring rigidity and simplify manufacturing.

本発明の振動型アクチュエータは、一つ以上の突起部が形成された弾性体と、電気−機械エネルギ変換素子とを有する振動体と、を備え、
電気−機械エネルギ変換素子への交流駆動電圧の印加により振動体に発生する二つの振動モードの組合せにより前記突起部先端に発生する楕円運動によって、前記突起部の接触部と接触する被駆動体を駆動する振動型アクチュエータであって、
前記弾性体と前記突起部は、該突起部と前記電気−機械エネルギ変換素子との接合部を含め一体で構成され、
前記接触部と、前記突起部と接合される前記電気−機械エネルギ変換素子との間には、空間部が形成されており、
前記突起部には、前記突起部と前記電気−機械エネルギ変換素子との接合部と、前記接触部との間に、前記接触部が前記被駆動体との接触で加圧された際、前記突起部にバネ性をもたせるためのバネ部が形成されていることを特徴とする。
また、本発明の振動型アクチュエータの製造方法は、一つ以上の突起部が形成された弾性体と、電気−機械エネルギ変換素子とを有する振動体を備え、
電気−機械エネルギ変換素子への交流駆動電圧の印加により振動体に発生する二つの振動モードの組合せにより前記突起部先端に発生する楕円運動によって、前記突起部の接触部と接触する被駆動体を駆動する振動型アクチュエータの製造方法であって、
前記接触部と、前記突起部と接合される前記電気−機械エネルギ変換素子との間に空間部を設け、前記弾性体と前記突起部とを、該突起部と前記電気−機械エネルギ変換素子との接合部を含め、プレス加工によって一体的に形成する際に、
前記突起部における、前記突起部と前記電気−機械エネルギ変換素子との接合部と、前記接触部との間に、前記突起部にバネ性をもたせるバネ部を形成するため、
前記接触部と前記バネ部との間をつなぐ立ち上げ部を形成すると共に、前記接触部、前記立ち上げ部、前記電気−機械エネルギ変換素子との接合部よりも前記バネ部を薄い厚みで形成する工程、
または、前記突起部と前記電気−機械エネルギ変換素子との接合部と、前記接触部との間に、これらの間をつなぐ立ち上げ部を形成すると共に、該立ち上げ部に一つ以上の穴を形成する工程、を有することを特徴とする。
The vibration type actuator of the present invention includes an elastic body on which one or more protrusions are formed, and a vibration body having an electro-mechanical energy conversion element,
A driven body that comes into contact with the contact portion of the projection portion by an elliptical motion generated at the tip of the projection portion by a combination of two vibration modes generated in the vibration body by application of an AC drive voltage to the electro-mechanical energy conversion element. A vibration type actuator for driving,
The elastic body and the protrusion are integrally formed including a joint between the protrusion and the electro-mechanical energy conversion element,
A space is formed between the contact portion and the electro-mechanical energy conversion element joined to the protrusion.
When the contact portion is pressed by contact with the driven body between the contact portion and the joint portion between the protrusion portion and the electro-mechanical energy conversion element, A spring part for providing the projecting part with a spring property is formed.
The method for manufacturing a vibration type actuator of the present invention includes a vibrating body having an elastic body having one or more protrusions and an electro-mechanical energy conversion element,
A driven body that comes into contact with the contact portion of the projection portion by an elliptical motion generated at the tip of the projection portion by a combination of two vibration modes generated in the vibration body by application of an AC drive voltage to the electro-mechanical energy conversion element. A method of manufacturing a vibration type actuator to be driven,
A space is provided between the contact portion and the electro-mechanical energy conversion element joined to the protrusion, and the elastic body and the protrusion are connected to the protrusion and the electro-mechanical energy conversion element. When integrally forming by pressing, including the joints of
In order to form a spring portion that imparts spring properties to the protruding portion between the protruding portion and the contact portion between the protruding portion and the electromechanical energy conversion element,
A rising portion that connects between the contact portion and the spring portion is formed, and the spring portion is formed to be thinner than the contact portion, the rising portion, and the joint portion of the electromechanical energy conversion element. The process of
Alternatively, a rising portion is formed between the protruding portion and the contact portion between the electromechanical energy conversion element and the contact portion, and one or more holes are formed in the rising portion. Forming the step.

本発明によれば、バネ剛性の安定化、製造の簡易化を図ることが可能となる振動型アクチュエータおよびその製造方法を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the vibration-type actuator which can aim at stabilization of spring rigidity and simplification of manufacture, and its manufacturing method are realizable.

本発明の実施例1における振動型アクチュエータの構成を説明する図である。It is a figure explaining the structure of the vibration type actuator in Example 1 of this invention. 本発明の実施例1における突起部のバネの動きを示す図である。It is a figure which shows the motion of the spring of the projection part in Example 1 of this invention. 本発明の実施例1の振動型アクチュエータのその他の構成例である。It is the other structural example of the vibration type actuator of Example 1 of this invention. 本発明の実施例2における振動型アクチュエータの構成を説明する図である。It is a figure explaining the structure of the vibration type actuator in Example 2 of this invention. 本発明の実施例2における突起部のバネの動きを示す図である。It is a figure which shows the motion of the spring of the projection part in Example 2 of this invention. 本発明の実施例3における振動型アクチュエータの構成を説明する図である。It is a figure explaining the structure of the vibration type actuator in Example 3 of this invention. 本発明の実施例3における余肉の移動の様子を示す図である。It is a figure which shows the mode of the movement of the surplus in Example 3 of this invention. 本発明の実施例3の振動型アクチュエータのその他の構成例である。It is the other structural example of the vibration type actuator of Example 3 of this invention. 本発明の実施例4における振動型アクチュエータの構成を説明する図である。It is a figure explaining the structure of the vibration type actuator in Example 4 of this invention. 本発明の実施例4における多自由度駆動の一例を示す図である。It is a figure which shows an example of the multi-degree-of-freedom drive in Example 4 of this invention. 従来例の振動型アクチュエータの構成を示す図である。It is a figure which shows the structure of the vibration type actuator of a prior art example. 振動型アクチュエータの曲げモードを説明する図である。It is a figure explaining the bending mode of a vibration type actuator. 従来例の突起部対面に空間を持つ振動型アクチュエータの構成を示す図である。It is a figure which shows the structure of the vibration type actuator which has space in the protrusion part facing surface of a prior art example.

本発明の実施形態における、一つ以上の突起部が形成された弾性体と、電気−機械エネルギ変換素子とを有する振動体を備え、交流駆動電圧の印加により振動体に発生する二つの振動モードの組合せにより突起部先端に発生する楕円運動により、突起部の接触部と接触する被駆動体を駆動する構成例について説明する。本実施形態の振動型アクチュエータは、弾性体と突起部とは、突起部と電気−機械エネルギ変換素子との接合部を含め、プレス加工によって一体で形成される。そのため、個体差によるバラツキがなく、安定した性能が得られ、加工工程を減らせることができることから製造が容易となり、コストダウンを実現することが可能となる。
また、接触部と、突起部と接合される前記電気−機械エネルギ変換素子との間には、空間部が形成されている。
そして突起部には、突起部と電気−機械エネルギ変換素子との接合部と、接触部との間に、接触部が前記被駆動体との接触で加圧された際、突起部にバネ性をもたせるためのバネ部が形成される。
その際、このようなバネ部として、接触部とバネ部との間をつなぐ立ち上げ部を形成し、接触部、立ち上げ部、電気−機械エネルギ変換素子との接合部よりも、バネ部を薄い厚みで形成する。
あるいは、突起部と電気−機械エネルギ変換素子との接合部と、接触部との間に、これらの間をつなぐ立ち上げ部を形成し、立ち上げ部に一つ以上の穴を形成する。
これらにより、接触部が前記被駆動体との接触で加圧された際、弾性変形してバネ性を有する構造とすることが可能となる。
In the embodiment of the present invention, there are two vibration modes generated in the vibrating body by applying an AC driving voltage, including a vibrating body having an elastic body having one or more protrusions and an electro-mechanical energy conversion element. A configuration example will be described in which the driven body that comes into contact with the contact portion of the protrusion is driven by the elliptical motion generated at the tip of the protrusion due to the combination. In the vibration type actuator according to the present embodiment, the elastic body and the protrusion are integrally formed by pressing, including a joint between the protrusion and the electromechanical energy conversion element. Therefore, there is no variation due to individual differences, stable performance can be obtained, and the number of processing steps can be reduced, so that manufacturing is facilitated and cost reduction can be realized.
A space is formed between the contact portion and the electromechanical energy conversion element joined to the protrusion.
When the contact portion is pressed by contact with the driven body between the joint portion between the protrusion portion and the electromechanical energy conversion element and the contact portion, the protrusion portion has a spring property. A spring portion is formed for providing
At this time, as such a spring portion, a rising portion that connects between the contact portion and the spring portion is formed, and the spring portion is more than the contact portion, the rising portion, and the joint portion with the electromechanical energy conversion element. Form with a thin thickness.
Alternatively, a rising portion that connects between the protruding portion and the contact portion between the electromechanical energy conversion element and the contact portion is formed, and one or more holes are formed in the rising portion.
Accordingly, when the contact portion is pressurized by contact with the driven body, it is possible to obtain a structure having elastic properties by being elastically deformed.

[実施例1]
実施例1として、本発明を適用した振動型アクチュエータの構成を、図1を用いて説明する。
図1(a)は本実施例における振動型アクチュエータの斜視図であり、図1(b)は一つの突起の断面図である。
図1(a)に示されるように、本実施例の振動型アクチュエータは、突起部5、弾性体6からなる振動体と、被駆動部8から構成される。
また、図1(b)に示されるように、突起部5は、弾性体6と被駆動部8との接触部1、振動体の加圧される方向に振動の剛性を下げるバネ部3、前記接触部1と前記バネ部3とをつなぐ立ち上げ部2とで構成されている。
前記突起部5と電気−機械エネルギ変換素子との接合部4とをあわせて弾性体6を構成している。
[Example 1]
As Example 1, the configuration of a vibration type actuator to which the present invention is applied will be described with reference to FIG.
FIG. 1A is a perspective view of the vibration type actuator in this embodiment, and FIG. 1B is a cross-sectional view of one protrusion.
As shown in FIG. 1A, the vibration type actuator according to the present embodiment includes a vibrating body including a protrusion 5 and an elastic body 6, and a driven portion 8.
Further, as shown in FIG. 1B, the protrusion 5 includes a contact portion 1 between the elastic body 6 and the driven portion 8, a spring portion 3 that reduces the rigidity of vibration in the direction in which the vibration body is pressed, It is comprised by the raising part 2 which connects the said contact part 1 and the said spring part 3. FIG.
The protrusion 5 and the joint 4 of the electromechanical energy conversion element are combined to constitute an elastic body 6.

前記弾性体6と前記突起部5は一体で構成され、電気−機械エネルギ変換素子7と前記接触部1との間に空間9を設け、前記バネ部3の厚みを前述の接触部1、立ち上げ部2、電気−機械エネルギ変換素子との接合部4よりも薄くなるようにしている。
本実施例においては、前記弾性体6をプレス加工で成型するときに、前述の接触部1、立ち上げ部2、電気−機械エネルギ変換素子との接合部4の形状と同時に前記バネ部3を成型しても良い。
または、弾性体と前記突起部とを、突起部と電気−機械エネルギ変換素子との接合部を含め、プレス加工によって一体的に形成した後に、バネ部を形成するようにしても良い。
すなわち、前述の接触部1、立ち上げ部2、電気−機械エネルギ変換素子との接合部4とをプレス加工で予め成型する。その後に、放電加工等で前述の接触部1、立ち上げ部2、電気−機械エネルギ変換素子との接合部4より薄くなるように前記バネ部3を追加工しても良い。
また、本実施例では放電加工で追加工しているが、エッチング加工や切削加工などで成型しても良い。
The elastic body 6 and the protruding portion 5 are integrally formed, and a space 9 is provided between the electromechanical energy conversion element 7 and the contact portion 1, and the thickness of the spring portion 3 is set to the height of the contact portion 1. It is made thinner than the raising part 2 and the junction part 4 with the electromechanical energy conversion element.
In this embodiment, when the elastic body 6 is formed by press working, the spring portion 3 is simultaneously formed with the shape of the contact portion 1, the rising portion 2, and the joint portion 4 with the electromechanical energy conversion element. It may be molded.
Or you may make it form a spring part, after forming an elastic body and the said projection part integrally by press work including the junction part of a projection part and an electromechanical energy conversion element.
That is, the contact part 1, the rising part 2, and the joint part 4 with the electromechanical energy conversion element are formed in advance by press working. Thereafter, the spring portion 3 may be additionally processed so as to be thinner than the contact portion 1, the rising portion 2, and the joint portion 4 with the electromechanical energy conversion element by electric discharge machining or the like.
In this embodiment, additional machining is performed by electric discharge machining, but it may be formed by etching or cutting.

このように構成することで、図2に示すように前記接触部1に力が加わると、前述の接触部1、立ち上げ部2、電気−機械エネルギ変換素子との接合部4よりも薄くなっている前記バネ部3がダイヤフラムとして機能し、弾性変形しバネ性を有する突起部の構成が可能となる。また、図3に示すように突起部を2段構成としても良い。このようにすると、バネ部3と電気−機械変換素子7との間の距離が開くため、振動体6と前記電気−機械変換素子7とを接着する際に用いられる接着剤がバネ部3に付着しにくくなる。   With this configuration, when a force is applied to the contact portion 1 as shown in FIG. 2, the contact portion 1, the rising portion 2, and the joint portion 4 with the electromechanical energy conversion element are thinner. The above-mentioned spring part 3 functions as a diaphragm, and it is possible to form a projecting part that is elastically deformed and has a spring property. Moreover, as shown in FIG. 3, it is good also as a 2 steps | paragraph structure of a projection part. In this way, the distance between the spring part 3 and the electromechanical conversion element 7 is increased, so that an adhesive used for bonding the vibrating body 6 and the electromechanical conversion element 7 is applied to the spring part 3. It becomes difficult to adhere.

[実施例2]
実施例2として、本発明を適用した振動型アクチュエータの構成を、図4を用いて説明する。
図4(a)は本実施例における振動型アクチュエータの斜視図であり、図4(b)は一つの突起の断面図である。
図4(a)に示されるように、本実施例の振動型アクチュエータは、突起部5、弾性体6、前記弾性体6に設けられた複数の穴10とからなる振動体と、被駆動部8から構成される。
また、図4(b)に示されるように、突起部5は、弾性体6と被駆動部8との接触部1、前記接触部1と電気−機械エネルギ変換素子4とをつなぐ立ち上げ部2、前記立ち上げ部2に設けられた複数の穴10とで構成されている。
本実施例では4つの丸穴を開けているが、穴の個数は一つ以上であればいくつにしても良い。
穴形状については丸穴のほか、長丸穴や突起形状に沿って円弧形状に長穴を開けても良い。前記突起部5と前記電気−機械エネルギ変換素子との接合部4とをあわせて弾性体6を構成している。
[Example 2]
As Example 2, the configuration of a vibration type actuator to which the present invention is applied will be described with reference to FIG.
FIG. 4A is a perspective view of the vibration type actuator in this embodiment, and FIG. 4B is a cross-sectional view of one protrusion.
As shown in FIG. 4A, the vibration type actuator according to the present embodiment includes a vibrating body including a protrusion 5, an elastic body 6, and a plurality of holes 10 provided in the elastic body 6, and a driven part. 8 is composed.
Further, as shown in FIG. 4B, the protrusion 5 includes a contact portion 1 between the elastic body 6 and the driven portion 8, and a rising portion that connects the contact portion 1 and the electromechanical energy conversion element 4. 2 and a plurality of holes 10 provided in the rising portion 2.
In this embodiment, four round holes are formed, but any number of holes may be used as long as the number is one or more.
As for the hole shape, in addition to a round hole, an elongated hole may be formed in an arc shape along an elongated round hole or a protrusion shape. The protrusion 5 and the joint 4 of the electromechanical energy conversion element are combined to constitute an elastic body 6.

本実施例においては、弾性体6をプレス加工で成型するときに、前述の接触部1、立ち上げ部2、電気−機械エネルギ変換素子との接合部4の形状と同時に前記穴部10を設けても良い。
また、前述の接触部1、立ち上げ部2、電気−機械エネルギ変換素子との接合部4とをプレス加工で予め成型した後に放電加工等で前記穴部10を設けても良い。本実施例では放電加工で追加工しているが、エッチング加工や切削加工などで成型しても良い。
このように構成にすることで、図5に示すように前記接触部1に力が加わると、前述の接触部1、立ち上げ部2、電気−機械エネルギ変換素子との接合部4よりも穴部10付近の剛性が下がっているため、前記穴部10付近で弾性的に変形しバネとなる。
In this embodiment, when the elastic body 6 is formed by press working, the hole 10 is provided simultaneously with the shape of the contact portion 1, the rising portion 2, and the joint portion 4 with the electromechanical energy conversion element. May be.
Alternatively, the hole 10 may be provided by electrical discharge machining or the like after the contact portion 1, the rising portion 2, and the joint portion 4 with the electromechanical energy conversion element are previously formed by press working. In this embodiment, additional machining is performed by electric discharge machining, but molding may be performed by etching or cutting.
With this configuration, when a force is applied to the contact portion 1 as shown in FIG. 5, the contact portion 1, the rising portion 2, and the joint portion 4 with the electro-mechanical energy conversion element are more holes. Since the rigidity in the vicinity of the portion 10 is lowered, the spring is elastically deformed in the vicinity of the hole portion 10 and becomes a spring.

[実施例3]
実施例3として、本発明を適用した振動型アクチュエータの構成を、図6を用いて説明する。
図6(a)は本実施例における振動型アクチュエータの斜視図であり、図6(b)は一つの突起の断面図である。
図6(a)は突起部5、弾性体6からなり、突起部5の周囲にプレス加工のときに生じる余肉の逃げ部となる長穴11を設けた振動体と、被駆動部8とから構成されている振動型アクチュエータである。
図6(a)に示されるように、本実施例の振動型アクチュエータは、前記突起部5は、弾性体6と被駆動部8との接触部1、振動体の加圧される方向に振動の剛性を下げるバネ部3、前記接触部1と前記バネ部3とをつなぐ立ち上げ部2とで構成されている。
前記突起部5と電気−機械エネルギ変換素子との接合部4とをあわせて弾性体6を構成している。
また、前記弾性体6と前記突起部5は一体で構成され、電気−機械エネルギ変換素子7と前記接触部1との間に空間部9を設け、前記バネ部3の厚みを前述の接触部1、立ち上げ部2、電気−機械エネルギ変換素子との接合部4よりも薄くなるようにしている。
[Example 3]
As Example 3, the configuration of a vibration type actuator to which the present invention is applied will be described with reference to FIG.
FIG. 6A is a perspective view of the vibration type actuator in this embodiment, and FIG. 6B is a cross-sectional view of one protrusion.
FIG. 6A shows a vibrating body including a protruding portion 5 and an elastic body 6, and a vibrating body provided with a long hole 11 serving as an escape portion for surplus material generated during press working around the protruding portion 5, and a driven portion 8. It is a vibration type actuator comprised from these.
As shown in FIG. 6A, in the vibration type actuator of this embodiment, the protrusion 5 vibrates in the contact portion 1 between the elastic body 6 and the driven portion 8 and in the direction in which the vibration body is pressurized. The spring portion 3 lowers the rigidity of the contact portion 1 and the rising portion 2 connecting the contact portion 1 and the spring portion 3.
The protrusion 5 and the joint 4 of the electromechanical energy conversion element are combined to constitute an elastic body 6.
The elastic body 6 and the protrusion 5 are integrally formed, and a space portion 9 is provided between the electromechanical energy conversion element 7 and the contact portion 1, and the thickness of the spring portion 3 is set to the contact portion described above. 1. It is made thinner than the joining part 4 with the starting part 2, the electromechanical energy conversion element.

突起部の周囲に突起部を形成する前に前記長丸穴11を設けておくことで、図7に示すように前記突起部5をプレス加工で成型するときに生じる余肉が前記長丸穴部11に移動する。
このため、前記バネ部3の厚みが前記長丸穴11が無い時よりも薄くなるように、プレス加工で前述の接触部1、立ち上げ部2、バネ部3、電気−機械変換素子との接合部4を一体成型することが可能となる。
また、前記接触部1に力が加わると前記バネ部3が前述の接触部1、立ち上げ部2、電気−機械エネルギ変換素子との接合部4よりも薄くなっているためダイヤフラムとして機能し、弾性的に変形しバネとなる。
また、図8に示すように突起部を2段構成としても良い。このようにすることによりバネ部3と電気−機械変換素子7との間の距離が開くため、振動体6と前記電気−機械変換素子7とを接着する際に用いられる接着剤がバネ部3に付着しにくくなる。
By providing the oblong hole 11 before forming the protrusion around the protrusion, an extra space generated when the protrusion 5 is formed by pressing as shown in FIG. Move to section 11.
For this reason, the contact portion 1, the rising portion 2, the spring portion 3, and the electromechanical conversion element are formed by pressing so that the thickness of the spring portion 3 is thinner than when the oblong hole 11 is not provided. The joint portion 4 can be integrally molded.
Further, when a force is applied to the contact portion 1, the spring portion 3 functions as a diaphragm because it is thinner than the contact portion 1, the rising portion 2, and the joint portion 4 with the electromechanical energy conversion element, Elastically deforms to become a spring.
Moreover, as shown in FIG. 8, it is good also considering a projection part as a 2 step | paragraph structure. By doing so, the distance between the spring portion 3 and the electro-mechanical conversion element 7 is increased, so that the adhesive used when bonding the vibrating body 6 and the electro-mechanical conversion element 7 is the spring portion 3. It becomes difficult to adhere to.

[実施例4]
実施例4として、本発明を適用した振動型アクチュエータの構成を、図9を用いて説明する。
図9に示されるように本実施例の振動型アクチュエータは、突起部5、弾性体6からなる振動体と被駆動部8とで構成される。
バネの機構は実施例1と同等であり、突起部を一つとした構成である。突起が1点であるため、突起構成に必要な面積が小さくなり、振動型アクチュエータの小型化が可能となる。
また、突起部5を1点とすることで、例えば図10に示す構成の多自由度駆動機構を実現することが可能となる。
[Example 4]
As Example 4, the configuration of a vibration type actuator to which the present invention is applied will be described with reference to FIG.
As shown in FIG. 9, the vibration type actuator of the present embodiment includes a vibrating body including a protrusion 5 and an elastic body 6 and a driven portion 8.
The spring mechanism is the same as that of the first embodiment, and has a configuration with one protrusion. Since the number of protrusions is one, the area required for the protrusion structure is reduced, and the vibration type actuator can be downsized.
Further, by setting the protrusion 5 to one point, it is possible to realize a multi-degree-of-freedom drive mechanism having a configuration shown in FIG. 10, for example.

図10に示す多自由度駆動装置は、CCD等の被駆動体15を保持する移動体14をX方向およびY方向に駆動する一対の本実施例における振動型アクチュエータ12、13を備える。
振動型アクチュエータ12、13は、それぞれの突起部が移動体14の角隅部を同一位置で厚さ方向に挟み込むように加圧接触して配置されている。
振動型アクチュエータ12が移動体14に対してX方向の駆動力を付与し、振動型アクチュエータ13が移動体14に対してY方向の駆動力を付与する。
また、移動体14は、不図示のX方向ガイド機構によってX方向に案内され、不図示のY方向ガイド機構によってY方向に案内されるようになっている。
The multi-degree-of-freedom driving device shown in FIG. 10 includes a pair of vibration actuators 12 and 13 in this embodiment that drive a moving body 14 that holds a driven body 15 such as a CCD in the X direction and the Y direction.
The vibration type actuators 12 and 13 are arranged in pressure contact so that the respective protrusions sandwich the corners of the movable body 14 at the same position in the thickness direction.
The vibration type actuator 12 applies a driving force in the X direction to the moving body 14, and the vibration type actuator 13 applies a driving force in the Y direction to the moving body 14.
The moving body 14 is guided in the X direction by an unillustrated X direction guide mechanism, and is guided in the Y direction by an unillustrated Y direction guide mechanism.

1:接触部
2:立ち上げ部
3:バネ部
4:電気−機械エネルギ変換素子接合部
5:突起部
6:弾性体
7:電気−機械エネルギ変換素子
8:被駆動部
9:空間部
1: Contact portion 2: Rising portion 3: Spring portion 4: Electro-mechanical energy conversion element joint portion 5: Projection portion 6: Elastic body 7: Electro-mechanical energy conversion element 8: Driven portion 9: Space portion

Claims (7)

一つ以上の突起部が形成された弾性体と、電気−機械エネルギ変換素子とを有する振動体と、を備え、
電気−機械エネルギ変換素子への交流駆動電圧の印加により振動体に発生する二つの振動モードの組合せにより前記突起部先端に発生する楕円運動によって、前記突起部の接触部と接触する被駆動体を駆動する振動型アクチュエータであって、
前記弾性体と前記突起部は、該突起部と前記電気−機械エネルギ変換素子との接合部を含め一体で構成され、
前記接触部と、前記突起部と接合される前記電気−機械エネルギ変換素子との間には、空間部が形成されており、
前記突起部には、前記突起部と前記電気−機械エネルギ変換素子との接合部と、前記接触部との間に、前記接触部が前記被駆動体との接触で加圧された際、前記突起部にバネ性をもたせるためのバネ部が形成されていることを特徴とする振動型アクチュエータ。
An elastic body having one or more protrusions, and a vibrating body having an electro-mechanical energy conversion element,
A driven body that comes into contact with the contact portion of the projection portion by an elliptical motion generated at the tip of the projection portion by a combination of two vibration modes generated in the vibration body by application of an AC drive voltage to the electro-mechanical energy conversion element. A vibration type actuator for driving,
The elastic body and the protrusion are integrally formed including a joint between the protrusion and the electro-mechanical energy conversion element,
A space is formed between the contact portion and the electro-mechanical energy conversion element joined to the protrusion.
When the contact portion is pressed by contact with the driven body between the contact portion and the joint portion between the protrusion portion and the electro-mechanical energy conversion element, A vibration type actuator characterized in that a spring part is formed to give a spring property to the protrusion part.
前記突起部は、前記接触部と前記バネ部との間をつなぐ立ち上げ部を備え、
前記バネ部が、前記接触部、前記立ち上げ部、前記電気−機械エネルギ変換素子との接合部よりも薄い厚みで形成されることにより、
弾性変形してバネ性を有する構造とされていることを特徴とする請求項1に記載の振動型アクチュエータ。
The protrusion includes a rising portion that connects between the contact portion and the spring portion,
By forming the spring portion with a thickness thinner than the contact portion, the rising portion, and the joint portion with the electromechanical energy conversion element,
2. The vibration actuator according to claim 1, wherein the vibration actuator is elastically deformed and has a spring property.
前記突起部は、前記突起部と前記電気−機械エネルギ変換素子との接合部と、前記接触部との間に、これらの間をつなぐ立ち上げ部を備え、
前記バネ部が、前記立ち上げ部に一つ以上の穴が形成されることにより、
弾性変形してバネ性を有する構造とされていることを特徴とする請求項1に記載の振動型アクチュエータ。
The protrusion includes a rising portion that connects between the protrusion and the contact portion between the protrusion and the electromechanical energy conversion element, and the contact portion.
The spring part is formed with one or more holes in the rising part,
2. The vibration actuator according to claim 1, wherein the vibration actuator is elastically deformed and has a spring property.
前記弾性体と前記突起部は、該突起部と前記電気−機械エネルギ変換素子との接合部を含め、プレス加工によって一体的に形成されていることを特徴とする請求項1から3のいずれか1項に記載の振動型アクチュエータ。   4. The elastic body and the protruding portion are integrally formed by pressing, including a joint portion between the protruding portion and the electromechanical energy conversion element. 2. The vibration type actuator according to item 1. 一つ以上の突起部が形成された弾性体と、電気−機械エネルギ変換素子とを有する振動体を備え、
電気−機械エネルギ変換素子への交流駆動電圧の印加により振動体に発生する二つの振動モードの組合せにより前記突起部先端に発生する楕円運動によって、前記突起部の接触部と接触する被駆動体を駆動する振動型アクチュエータの製造方法であって、
前記接触部と、前記突起部と接合される前記電気−機械エネルギ変換素子との間に空間部を設け、前記弾性体と前記突起部とを、該突起部と前記電気−機械エネルギ変換素子との接合部を含め、プレス加工によって一体的に形成する際に、
前記突起部における、前記突起部と前記電気−機械エネルギ変換素子との接合部と、前記接触部との間に、バネ性をもたせるバネ部を形成するため、
前記接触部と前記バネ部との間をつなぐ立ち上げ部を形成すると共に、前記接触部、前記立ち上げ部、前記電気−機械エネルギ変換素子との接合部よりも前記バネ部を薄い厚みで形成する工程、
または、前記突起部と前記電気−機械エネルギ変換素子との接合部と、前記接触部との間に、これらの間をつなぐ立ち上げ部を形成すると共に、該立ち上げ部に一つ以上の穴を形成する工程、
を有することを特徴とする振動型アクチュエータの製造方法。
Comprising a vibrating body having an elastic body on which one or more protrusions are formed, and an electro-mechanical energy conversion element;
A driven body that comes into contact with the contact portion of the projection portion by an elliptical motion generated at the tip of the projection portion by a combination of two vibration modes generated in the vibration body by application of an AC drive voltage to the electro-mechanical energy conversion element. A method of manufacturing a vibration type actuator to be driven,
A space is provided between the contact portion and the electro-mechanical energy conversion element joined to the protrusion, and the elastic body and the protrusion are connected to the protrusion and the electro-mechanical energy conversion element. When integrally forming by pressing, including the joints of
In order to form a spring part having a spring property between the joint part of the projecting part and the electromechanical energy conversion element in the projecting part, and the contact part,
A rising portion that connects between the contact portion and the spring portion is formed, and the spring portion is formed to be thinner than the contact portion, the rising portion, and the joint portion of the electromechanical energy conversion element. The process of
Alternatively, a rising portion is formed between the protruding portion and the contact portion between the electromechanical energy conversion element and the contact portion, and one or more holes are formed in the rising portion. Forming a process,
A manufacturing method of a vibration type actuator characterized by comprising:
前記弾性体と前記突起部とを、該突起部と前記電気−機械エネルギ変換素子との接合部を含め、プレス加工によって一体的に形成する工程の後に、
前記バネ部を薄い厚みで形成する工程、または、立ち上げ部に一つ以上の穴を形成する工程を有することを特徴とする請求項5に記載の振動型アクチュエータの製造方法。
After the step of integrally forming the elastic body and the protrusion, including the joint between the protrusion and the electro-mechanical energy conversion element, by pressing.
6. The method of manufacturing a vibration type actuator according to claim 5, further comprising a step of forming the spring portion with a small thickness or a step of forming one or more holes in the rising portion.
前記バネ部を薄い厚みで形成する工程、または、立ち上げ部に一つ以上の穴を形成する工程を行う前に、前記プレス加工の際に生じる余肉を移動させる穴を、前記突起部の周囲に設ける工程を有することを特徴とする請求項5または請求項6に記載の振動型アクチュエータの製造方法。   Before performing the step of forming the spring portion with a small thickness or the step of forming one or more holes in the rising portion, a hole for moving surplus material generated during the pressing is formed on the protrusion portion. The method for manufacturing a vibration type actuator according to claim 5, further comprising a step of providing the periphery.
JP2010065587A 2010-03-23 2010-03-23 Vibration type actuator and manufacturing method thereof Active JP5627258B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010065587A JP5627258B2 (en) 2010-03-23 2010-03-23 Vibration type actuator and manufacturing method thereof
US13/052,989 US8633632B2 (en) 2010-03-23 2011-03-21 Vibration actuator and method for manufacturing the same
US14/132,668 US10580963B2 (en) 2010-03-23 2013-12-18 Method for manufacturing a vibration actuator
US15/842,709 US11063205B2 (en) 2010-03-23 2017-12-14 Vibration actuator and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010065587A JP5627258B2 (en) 2010-03-23 2010-03-23 Vibration type actuator and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014204249A Division JP5847906B2 (en) 2014-10-02 2014-10-02 Vibrator

Publications (3)

Publication Number Publication Date
JP2011200051A true JP2011200051A (en) 2011-10-06
JP2011200051A5 JP2011200051A5 (en) 2013-05-09
JP5627258B2 JP5627258B2 (en) 2014-11-19

Family

ID=44655560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010065587A Active JP5627258B2 (en) 2010-03-23 2010-03-23 Vibration type actuator and manufacturing method thereof

Country Status (2)

Country Link
US (3) US8633632B2 (en)
JP (1) JP5627258B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203529A1 (en) * 2013-06-20 2014-12-24 Canon Kabushiki Kaisha Vibration-type actuator, interchangeable lens, image pickup apparatus, and automatic stage
JP2015080329A (en) * 2013-10-16 2015-04-23 キヤノン株式会社 Vibrator for vibration type drive device, vibration type drive device, interchangeable lens, imaging device, and automatic stage
WO2021210366A1 (en) * 2020-04-13 2021-10-21 キヤノン株式会社 Vibration wave motor and electronic devcie equipped with same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010190706A (en) * 2009-02-18 2010-09-02 Panasonic Corp Inertial force sensor
JP5627258B2 (en) 2010-03-23 2014-11-19 キヤノン株式会社 Vibration type actuator and manufacturing method thereof
JP5930595B2 (en) * 2010-04-06 2016-06-08 キヤノン株式会社 Vibrating actuator, vibrator and vibrator manufacturing method
FR3042660B1 (en) * 2015-10-16 2018-04-06 Airbus Helicopters ELECTROMECHANICAL ACTUATOR FOR ELECTRICAL FLIGHT CONTROL OF AN AIRCRAFT
US20180295513A1 (en) * 2017-04-06 2018-10-11 Walmart Apollo, Llc Authentication system using nfc tags
JP7321688B2 (en) * 2017-09-29 2023-08-07 キヤノン株式会社 Oscillating wave actuator and imaging device and stage device using the same
CN108110133B (en) * 2017-11-22 2021-03-16 浙江农林大学 Layered two-dimensional nanosheet/carbonized fiber composite material and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11308883A (en) * 1998-04-20 1999-11-05 Nikon Corp Oscillating actuator
JPH11346487A (en) * 1998-06-03 1999-12-14 Canon Inc Oscillation wave unit and oscillation wave driver
JP2000116158A (en) * 1998-09-30 2000-04-21 Kyocera Corp Ultrasonic motor
JP2003284364A (en) * 2002-03-22 2003-10-03 Korea Advanced Inst Of Sci Technol Piezoelectric linear ultrasonic motor
JP2003331942A (en) * 2002-05-08 2003-11-21 Yonezawa Densen Kk Joint connector for grounding
JP2006174549A (en) * 2004-12-14 2006-06-29 Canon Inc Oscillatory wave drive unit
JP2007185056A (en) * 2006-01-10 2007-07-19 Sony Corp Exciting method of elastic vibration body, and vibration drive device
JP2008125147A (en) * 2006-11-08 2008-05-29 Canon Inc Vibration-type actuator

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099166A (en) * 1987-01-12 1992-03-24 Canon Kabushiki Kaisha Vibration wave driven motor
JP2542528Y2 (en) 1991-07-18 1997-07-30 株式会社ケンウッド Vibration structure of ultrasonic motor
JPH0624395U (en) 1992-08-24 1994-03-29 株式会社ケンウッド Vibration structure of ultrasonic motor
JP3450524B2 (en) 1994-08-04 2003-09-29 キヤノン株式会社 Vibration actuator
US5949178A (en) * 1995-04-26 1999-09-07 Canon Kabushiki Kaisha Vibration wave driving apparatus and a vibration member, and manufacturing method of the apparatus and the member
US6404104B1 (en) 1997-11-27 2002-06-11 Canon Kabushiki Kaisha Vibration type actuator and vibration type driving apparatus
US6198201B1 (en) 1998-06-03 2001-03-06 Canon Kabushiki Kaisha Vibration wave apparatus
JP2000140759A (en) * 1998-11-09 2000-05-23 Matsushita Electric Ind Co Ltd Piezoelectric actuator and piezoelectric vibrator
US7187104B2 (en) * 2003-03-28 2007-03-06 Canon Kabushiki Kaisha Vibration-type driving device, control apparatus for controlling the driving of the vibration-type driving device, and electronic equipment having the vibration-type driving device and the control apparatus
JP4697929B2 (en) 2003-11-13 2011-06-08 キヤノン株式会社 Multilayer piezoelectric element and vibration wave drive device
JP4086023B2 (en) 2003-12-04 2008-05-14 セイコーエプソン株式会社 Micromechanical electrostatic vibrator
US7053527B2 (en) * 2003-12-18 2006-05-30 Piezomotor Uppsala Ab Electromechanical motor and assembling method therefore
US7242131B2 (en) * 2004-05-12 2007-07-10 Olympus Corporation Ultrasonic motor
JP4576214B2 (en) 2004-11-26 2010-11-04 オリンパスイメージング株式会社 Ultrasonic motor and lens barrel
JP4290168B2 (en) * 2005-03-31 2009-07-01 キヤノン株式会社 Vibration wave drive
JP5184811B2 (en) * 2007-05-07 2013-04-17 パナソニック株式会社 Vibration type actuator
JP4954814B2 (en) * 2007-07-11 2012-06-20 パナソニック株式会社 Vibrating actuator and drive device including the same
US8310128B2 (en) * 2008-05-07 2012-11-13 The Board Of Trustees Of The University Of Illinois High precision silicon-on-insulator MEMS parallel kinematic stages
JP5979817B2 (en) 2010-03-16 2016-08-31 キヤノン株式会社 Vibration wave drive
US8987972B2 (en) 2010-03-16 2015-03-24 Canon Kabushiki Kaisha Vibrator in vibration type driving apparatus and manufacturing method thereof
JP5627258B2 (en) 2010-03-23 2014-11-19 キヤノン株式会社 Vibration type actuator and manufacturing method thereof
JP5930595B2 (en) * 2010-04-06 2016-06-08 キヤノン株式会社 Vibrating actuator, vibrator and vibrator manufacturing method
US8643252B2 (en) * 2010-05-11 2014-02-04 Canon Kabushiki Kaisha Vibration wave actuator
JP5929138B2 (en) * 2011-12-06 2016-06-01 セイコーエプソン株式会社 Piezoelectric motors and robots

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11308883A (en) * 1998-04-20 1999-11-05 Nikon Corp Oscillating actuator
JPH11346487A (en) * 1998-06-03 1999-12-14 Canon Inc Oscillation wave unit and oscillation wave driver
JP2000116158A (en) * 1998-09-30 2000-04-21 Kyocera Corp Ultrasonic motor
JP2003284364A (en) * 2002-03-22 2003-10-03 Korea Advanced Inst Of Sci Technol Piezoelectric linear ultrasonic motor
JP2003331942A (en) * 2002-05-08 2003-11-21 Yonezawa Densen Kk Joint connector for grounding
JP2006174549A (en) * 2004-12-14 2006-06-29 Canon Inc Oscillatory wave drive unit
JP2007185056A (en) * 2006-01-10 2007-07-19 Sony Corp Exciting method of elastic vibration body, and vibration drive device
JP2008125147A (en) * 2006-11-08 2008-05-29 Canon Inc Vibration-type actuator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203529A1 (en) * 2013-06-20 2014-12-24 Canon Kabushiki Kaisha Vibration-type actuator, interchangeable lens, image pickup apparatus, and automatic stage
JP2015006047A (en) * 2013-06-20 2015-01-08 キヤノン株式会社 Vibration type actuator, interchangeable lens, imaging device, and automatic stage
US20160127623A1 (en) * 2013-06-20 2016-05-05 Canon Kabushiki Kaisha Vibration-type actuator, interchangeable lens, image pickup apparatus, and automatic stage
US9813596B2 (en) 2013-06-20 2017-11-07 Canon Kabushiki Kaisha Vibration-type actuator, interchangeable lens, image pickup apparatus, and automatic stage
JP2015080329A (en) * 2013-10-16 2015-04-23 キヤノン株式会社 Vibrator for vibration type drive device, vibration type drive device, interchangeable lens, imaging device, and automatic stage
US9507119B2 (en) 2013-10-16 2016-11-29 Canon Kabushiki Kaisha Vibrator of vibratory drive unit, vibratory drive unit, interchangeable lens, imaging device, and automatic stage
US10488616B2 (en) 2013-10-16 2019-11-26 Canon Kabushiki Kaisha Vibrator of vibratory drive unit, vibratory drive unit, interchangeable lens, imaging device, and automatic stage
WO2021210366A1 (en) * 2020-04-13 2021-10-21 キヤノン株式会社 Vibration wave motor and electronic devcie equipped with same

Also Published As

Publication number Publication date
US10580963B2 (en) 2020-03-03
JP5627258B2 (en) 2014-11-19
US20110234042A1 (en) 2011-09-29
US20180108830A1 (en) 2018-04-19
US11063205B2 (en) 2021-07-13
US8633632B2 (en) 2014-01-21
US20140101905A1 (en) 2014-04-17

Similar Documents

Publication Publication Date Title
JP5627258B2 (en) Vibration type actuator and manufacturing method thereof
US10770991B2 (en) Vibrator manufacturing method
JP6448310B2 (en) Vibrator and ultrasonic motor
JP2012213271A (en) Vibration type drive device
JP2014018027A (en) Vibration type actuator, imaging apparatus, and stage
JP6214232B2 (en) Vibration actuator, replacement lens, imaging device, and automatic stage
JP2011217595A (en) Vibration wave driving apparatus and method for manufacturing vibrating body thereof
JP2011200051A5 (en)
US8987972B2 (en) Vibrator in vibration type driving apparatus and manufacturing method thereof
US9455394B2 (en) Displacement member, driving member, actuator, and driving device
US8525388B2 (en) Vibration wave driving apparatus and manufacturing method of vibration body
JP5847906B2 (en) Vibrator
US11785391B2 (en) Micrometric loudspeaker
JP5701020B2 (en) Vibrating body and manufacturing method thereof in vibration type driving device, vibration type driving device and vibrator thereof
JP6273137B2 (en) Motor and device with motor
JP3607714B2 (en) Manufacturing method of ultrasonic vibrator
JP5990013B2 (en) Vibration wave actuator and manufacturing method thereof
JP6525640B2 (en) Vibration type actuator, ultrasonic motor and lens barrel
JP2019080490A (en) Vibration type actuator, lens barrel, camera, and control method
JPH0998590A (en) Oscillation actuator
CN115298950A (en) Actuator and optical reflection element
JP2012143155A (en) Oscillatory wave driving apparatus
WO2014021212A1 (en) Manufacturing method for actuator device, and actuator device
JPH0919173A (en) Vibrating actuator
JP2009033791A (en) Ultrasonic motor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130321

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20131212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140930

R151 Written notification of patent or utility model registration

Ref document number: 5627258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151