JP2011200035A - Vehicle overcurrent detector - Google Patents

Vehicle overcurrent detector Download PDF

Info

Publication number
JP2011200035A
JP2011200035A JP2010064587A JP2010064587A JP2011200035A JP 2011200035 A JP2011200035 A JP 2011200035A JP 2010064587 A JP2010064587 A JP 2010064587A JP 2010064587 A JP2010064587 A JP 2010064587A JP 2011200035 A JP2011200035 A JP 2011200035A
Authority
JP
Japan
Prior art keywords
potential difference
detection circuit
bare chip
electrode
difference detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010064587A
Other languages
Japanese (ja)
Inventor
Yohei Sugiyama
洋平 杉山
Morio Sakai
守雄 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2010064587A priority Critical patent/JP2011200035A/en
Publication of JP2011200035A publication Critical patent/JP2011200035A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive vehicle overcurrent detector with a small and easily manufactured constitution.SOLUTION: The vehicle overcurrent detector includes a substrate 10, an FET bare chip 20 which is placed on the substrate 10 and is arranged on a power supply line of an on-vehicle device OBU, a potential difference detection circuit 32 having two input electrodes 35 and 36 and detecting a potential difference of currents flowing in and out of the FET bare chip, a current value calculating circuit 33 converting the potential difference detected by the potential difference detecting circuit into a current value, a first bonding wire 41 connecting a drain electrode 21 of the FET bare chip and one input electrode 35 of the potential difference detecting circuit, and a second bonding wire 42 connecting one input electrode 35 of the potential difference detection circuit and the other input electrode 36 of the potential difference detection circuit.

Description

本発明は、車載装置の電源供給線に介在するベアチップを含む回路に発生する過電流を検出する車両用過電流検出装置に関する。   The present invention relates to a vehicle overcurrent detection device that detects an overcurrent generated in a circuit including a bare chip interposed in a power supply line of an in-vehicle device.

電気アクチュエータ等の車載装置を駆動するために用いられる電流制御用素子を過電流から保護するため、種々の車両用過電流検出装置や保護回路が使用されている。   In order to protect a current control element used for driving an in-vehicle device such as an electric actuator from an overcurrent, various vehicle overcurrent detection devices and protection circuits are used.

このような車両用過電流検出装置として、電気アクチュエータの電源供給線における正極側に直列接続される正極側シャント抵抗と、電源供給線における負極側に直列接続される負極側シャント抵抗と、正極側シャント抵抗に流れる過電流を検出する正極側過電流検出回路と、負極側シャント抵抗に流れる過電流を検出する負極側過電流検出回路と、正極側過電流検出回路と負極側過電流検出回路とから出力される検出信号を入力し、検出信号データを時間的に平均化処理して過電流の発生を判定する過電流判定手段と、を備えた技術が開示されている(例えば、特許文献1参照。)。   As such a vehicle overcurrent detection device, a positive shunt resistor connected in series to the positive electrode side of the power supply line of the electric actuator, a negative shunt resistor connected in series to the negative electrode side of the power supply line, and the positive electrode side A positive-side overcurrent detection circuit for detecting an overcurrent flowing through the shunt resistor, a negative-side overcurrent detection circuit for detecting an overcurrent flowing through the negative-side shunt resistor, a positive-side overcurrent detection circuit, and a negative-side overcurrent detection circuit; (See, for example, Patent Document 1). The technology includes an overcurrent determination unit that inputs a detection signal output from a signal and averages the detection signal data temporally to determine the occurrence of overcurrent. reference.).

また、電気負荷に対する給電を開始するとき、計時動作を開始して、予め設定されているマスク期間が経過したとき、マスク期間終了信号を生成するマスク部と、電気負荷に対する給電を開始したとき、電気負荷に対する過電流検出を中止し、マスク部からマスク期間終了信号が出力された時点で、電気負荷に対する過電流検出動作を開始する過電流検出部と、を備えた技術が開示されている(例えば、特許文献2参照。)。   Also, when starting the power supply to the electrical load, start the timing operation, when the preset mask period has elapsed, when the mask unit that generates the mask period end signal, and when the power supply to the electrical load is started, A technique is disclosed that includes an overcurrent detection unit that stops overcurrent detection for an electrical load and starts an overcurrent detection operation for the electrical load when a mask period end signal is output from the mask unit ( For example, see Patent Document 2.)

特開平5−333063号公報JP-A-5-333063 特開平11−301340号公報Japanese Patent Laid-Open No. 11-301340

特許文献1および特許文献2に記載の過電流検出回路にはシャント抵抗等の抵抗器が用いられている。このような抵抗器には、アクチュエータの駆動電流やワイヤーハーネス等からの過電流に耐えうるよう十分な大きさの定格電力が求められる。しかしながら、定格電流の大きな抵抗器は実装面積が大きく且つコストが高いため、過電流検出装置の大型化およびコスト上昇を招来する問題がある。また、はんだ付け等の基板に実装する工程を要するが、製造にかかる手間を削減する要望がある。   Resistors such as shunt resistors are used in the overcurrent detection circuits described in Patent Document 1 and Patent Document 2. Such a resistor is required to have a rated power large enough to withstand an overcurrent from an actuator drive current or a wire harness. However, a resistor having a large rated current has a large mounting area and a high cost, and thus there is a problem in that the overcurrent detection device is increased in size and cost. Moreover, although the process of mounting on board | substrates, such as soldering, is required, there exists a request which reduces the effort concerning manufacture.

本発明は、上記問題点に鑑みてなされたものであり、小型かつ製造容易な構成で低コストの車両用過電流検出装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a low-cost vehicle overcurrent detection device with a small and easy-to-manufacture configuration.

上記課題を解決する第1の課題解決手段は、基板と、前記基板上に載置され、車載装置の電源供給線に介在するベアチップと、2つの入力電極を備え、前記ベアチップに流入または流出する電流の電位差を検出する電位差検出回路と、前記電位差検出回路により検出された電位差を電流値に変換する電流値算出回路と、前記ベアチップの電極と前記電位差検出回路の第一入力電極とを接続する第一ボンディングワイヤと、前記電位差検出回路の第一入力電極と前記電位差検出回路の第二入力電極とを接続する第二ボンディングワイヤと、を備える、ことである。   A first problem-solving means for solving the above-described problem includes a substrate, a bare chip placed on the substrate and interposed in a power supply line of the in-vehicle device, and two input electrodes, and flows into or out of the bare chip. A potential difference detection circuit that detects a potential difference of a current, a current value calculation circuit that converts a potential difference detected by the potential difference detection circuit into a current value, and an electrode of the bare chip and a first input electrode of the potential difference detection circuit are connected. A first bonding wire; and a second bonding wire that connects the first input electrode of the potential difference detection circuit and the second input electrode of the potential difference detection circuit.

また、第2の課題解決手段は、前記ベアチップは、ドレイン電極とソース電極とゲート電極とを有するFETベアチップであり、前記第一ボンディングワイヤは、前記FETベアチップのソース電極と前記電位差検出回路の前記第一入力電極とを接続し、前記電位差検出回路の前記第二入力電極は、グラウンドに接続される、ことである。   The second problem solving means is that the bare chip is a FET bare chip having a drain electrode, a source electrode, and a gate electrode, and the first bonding wire is a source electrode of the FET bare chip and the potential difference detection circuit. The first input electrode is connected, and the second input electrode of the potential difference detection circuit is connected to the ground.

また、第3の課題解決手段は、前記電位差検出回路は増幅回路を備える、ことである。   A third problem solving means is that the potential difference detection circuit includes an amplifier circuit.

本発明によれば、ベアチップと電位差検出回路との接続にボンディングワイヤが使用されるため、ボンディングワイヤによるベアチップと基板上の回路との接続工程において、ベアチップと電位差検出回路との接続をスムーズに行える。例えば、まずベアチップの電極と電位差検出回路の第一入力電極とを第一ボンディングワイヤで接続し、次に電位差検出回路の第一入力電極と電位差検出回路の第二入力電極とを第二ボンディングワイヤで接続することにより、基板上のベアチップと電位差検出回路との接続が完了する。そのため、従来の車両用過電流検出装置のようにシャント抵抗等の抵抗器を基板に取り付けるためのはんだ付け等の工程が不要となり、車両用過電流検出装置の製造におけるはんだ付不良が低減し、製造容易となる。また、大きな定格電流を必要とする抵抗器が不要となるため、小型かつ低コストに車両用過電流検出装置を構成できる。また、車載装置の電源供給線に介在するベアチップに車両用過電流検出装置が取り付けられるため、小型化による車載性の向上と軽量化を達成できる。   According to the present invention, since the bonding wire is used for the connection between the bare chip and the potential difference detection circuit, the connection between the bare chip and the potential difference detection circuit can be smoothly performed in the connection process between the bare chip and the circuit on the substrate using the bonding wire. . For example, first, the bare chip electrode and the first input electrode of the potential difference detection circuit are connected by a first bonding wire, and then the first input electrode of the potential difference detection circuit and the second input electrode of the potential difference detection circuit are connected by the second bonding wire. The connection between the bare chip on the substrate and the potential difference detection circuit is completed. Therefore, a process such as soldering for attaching a resistor such as a shunt resistor to a substrate is not required as in a conventional vehicle overcurrent detection device, and soldering defects in manufacturing a vehicle overcurrent detection device are reduced. Easy to manufacture. In addition, since a resistor requiring a large rated current is not required, a vehicle overcurrent detection device can be configured in a small size and at a low cost. In addition, since the vehicle overcurrent detection device is attached to the bare chip interposed in the power supply line of the in-vehicle device, it is possible to improve the in-vehicle property and reduce the weight by downsizing.

第2の課題解決手段によれば、FETベアチップのソース電極側にあるグラウンドに接続された第二入力電極と第一入力電極との間に介在する第二ボンディングワイヤの両端間の電位差が電位差検出回路により検出されるため、FETベアチップのドレイン電極側に電位差検出回路を設けた場合と比較して電位が安定する。そのため、電位差検出回路により検出される電位差をより正確に測定でき、誤動作を低減できる。   According to the second problem solving means, the potential difference between both ends of the second bonding wire interposed between the second input electrode connected to the ground on the source electrode side of the FET bare chip and the first input electrode is detected as a potential difference. Since it is detected by the circuit, the potential is stabilized as compared with the case where the potential difference detection circuit is provided on the drain electrode side of the FET bare chip. Therefore, the potential difference detected by the potential difference detection circuit can be measured more accurately, and malfunctions can be reduced.

第3の課題解決手段によれば、電位差検出回路が増幅回路を備えるため、抵抗値の小さいボンディングワイヤを使用して第二ボンディングワイヤの両端間の電位差が微小となっても電位差の計測誤差を抑制できる。   According to the third problem solving means, since the potential difference detection circuit includes an amplifier circuit, even if the potential difference between both ends of the second bonding wire becomes small by using a bonding wire having a small resistance value, the potential difference measurement error is reduced. Can be suppressed.

本発明の一実施形態を示す構成図である。It is a block diagram which shows one Embodiment of this invention.

以下、本発明の実施形態について図面を参照して説明する。ただし、図面は模式的なものであり、各寸法の比率等は現実のものとは異なる。なお、互いに同一または類似の部分には共通の符号を付し、重複説明は省略される。   Embodiments of the present invention will be described below with reference to the drawings. However, the drawings are schematic and ratios of dimensions and the like are different from actual ones. In addition, the same code | symbol is attached | subjected to the mutually same or similar part, and duplication description is abbreviate | omitted.

図1は、本発明にかかる過電流検出装置の一実施形態を示す構成図である。本実施例の車両用過電流検出装置1は、例えば車両に搭載されるサンルーフ開閉機構やドア開閉機構等の車載装置OBUに備えられるブラシモータ等の電気アクチュエータの電源供給線に介在しており、車載装置OBUの電気アクチュエータの駆動状態を制御するものである。   FIG. 1 is a configuration diagram showing an embodiment of an overcurrent detection device according to the present invention. The vehicle overcurrent detection device 1 according to the present embodiment is interposed in a power supply line of an electric actuator such as a brush motor provided in an in-vehicle device OBU such as a sunroof opening / closing mechanism and a door opening / closing mechanism mounted on the vehicle, It controls the drive state of the electric actuator of the in-vehicle device OBU.

車両用過電流検出装置1は、基板10に組み込まれた電気回路を形成する。この基板10上に、FETベアチップ(ベアチップ)20と中央演算処理装置(CPU)30とが載置される。   The vehicle overcurrent detection device 1 forms an electric circuit incorporated in the substrate 10. On this substrate 10, an FET bare chip (bare chip) 20 and a central processing unit (CPU) 30 are placed.

FETベアチップ20は、電界効果トランジスタ(FET)のチップであり、基板上に直接載置され、ワイヤボンディングによりチップ上の電極と基板上の電極とを結線するものである。本実施例におけるFETベアチップ20は、ソース電極21とゲート電極22とドレイン電極23とを備える。このうちゲート電極22とドレイン電極23は、それぞれ基板電極11,12にボンディングワイヤ43,44により接続される。   The FET bare chip 20 is a field effect transistor (FET) chip, and is placed directly on the substrate, and connects the electrode on the chip and the electrode on the substrate by wire bonding. The FET bare chip 20 in this embodiment includes a source electrode 21, a gate electrode 22, and a drain electrode 23. Among these, the gate electrode 22 and the drain electrode 23 are connected to the substrate electrodes 11 and 12 by bonding wires 43 and 44, respectively.

中央演算処理装置30は、車載装置OBUの電気アクチュエータの駆動状態を制御するためにFETベアチップ20に供給されるゲート電圧を制御する制御装置であり、さらに、FETベアチップ20に供給されるソース電流に所定の電流値を超える電流(過電流)が流れ込むのを検知したときにゲート電圧を0ボルトにしてドレイン電流を遮断する過電流保護機構を備える。過電流保護機構は、中央演算処理装置30に内蔵された増幅回路31と電位差検出回路32と電流値算出回路33とゲート電圧制御回路34とにより構成される。   The central processing unit 30 is a control device that controls the gate voltage supplied to the FET bare chip 20 in order to control the driving state of the electric actuator of the in-vehicle device OBU, and further, to the source current supplied to the FET bare chip 20 An overcurrent protection mechanism is provided that shuts down the drain current by setting the gate voltage to 0 volts when it is detected that a current (overcurrent) exceeding a predetermined current value flows. The overcurrent protection mechanism includes an amplifier circuit 31, a potential difference detection circuit 32, a current value calculation circuit 33, and a gate voltage control circuit 34 built in the central processing unit 30.

また、中央演算処理装置30は、複数の電極35,36,37を備える。電極(第一入力電極)35は、ボンディングワイヤ(第一ボンディングワイヤ)41を介してFETベアチップ20のソース電極21に接続される。電極(第二入力電極)36は、ボンディングワイヤ(第二ボンディングワイヤ)42を介して電極35に接続されるとともに、グラウンドGに接続される。電極(ゲート出力電極)37は、基板10上の配線を介して基板電極11に接続される。尚、本実施例のように中央演算処理装置30を構成する各回路要素は1つの集積素子としたものでなくてもよく、個別の素子として基板19上に配置されてもよい。   The central processing unit 30 includes a plurality of electrodes 35, 36, and 37. The electrode (first input electrode) 35 is connected to the source electrode 21 of the FET bare chip 20 via a bonding wire (first bonding wire) 41. The electrode (second input electrode) 36 is connected to the electrode 35 via a bonding wire (second bonding wire) 42 and also connected to the ground G. The electrode (gate output electrode) 37 is connected to the substrate electrode 11 via a wiring on the substrate 10. In addition, each circuit element which comprises the central processing unit 30 like a present Example does not need to be made into one integrated element, and may be arrange | positioned on the board | substrate 19 as an individual element.

増幅回路31は、本実施例では電位差検出回路32に備えられており、2つの入力電極35,36の間の電位差を増幅する差動増幅回路が使用される。本実施例では2つの入力電極35,36の間をボンディングワイヤ42により接続しているため、ボンディングワイヤ42の抵抗値が小さい場合には2つの入力電極35,36の間の電位差が微小となってしまう。増幅回路31は、電位差検出回路32により精度良く検出できるレベルになるように電位差を増幅する。   In this embodiment, the amplifier circuit 31 is provided in the potential difference detection circuit 32, and a differential amplifier circuit that amplifies the potential difference between the two input electrodes 35 and 36 is used. In this embodiment, since the two input electrodes 35 and 36 are connected by the bonding wire 42, when the resistance value of the bonding wire 42 is small, the potential difference between the two input electrodes 35 and 36 becomes minute. End up. The amplifier circuit 31 amplifies the potential difference so that the potential difference can be accurately detected by the potential difference detection circuit 32.

電位差検出回路32は、2つの入力電極35,36の間の電位差を検出して電流値算出回路33に値を送る。電流値算出回路33は、電位差検出回路32により検出された電位差に基づいて電流値を算出し、ゲート電圧制御回路34に値を送る。使用するボンディングワイヤ42の抵抗値によって電位差と電流の関係が変化するため、電流値算出回路33は、ボンディングワイヤ42の抵抗値を記憶する記憶部(図示なし)を備える。さらに記憶部にはボンディングワイヤ42の抵抗値に応じて電位差と電流との対応を示す変換テーブルを記憶させてもよい。また、ボンディングワイヤ42が記憶部に記憶された所定の抵抗値となるように、ボンディングワイヤ42の材質、線径、長さを設定してもよいし、ボンディングワイヤ42で2つの入力電極35,36の間を接続してから抵抗値を実測して記憶部に記憶させてもよい。   The potential difference detection circuit 32 detects a potential difference between the two input electrodes 35 and 36 and sends a value to the current value calculation circuit 33. The current value calculation circuit 33 calculates a current value based on the potential difference detected by the potential difference detection circuit 32 and sends the value to the gate voltage control circuit 34. Since the relationship between the potential difference and the current varies depending on the resistance value of the bonding wire 42 to be used, the current value calculation circuit 33 includes a storage unit (not shown) that stores the resistance value of the bonding wire 42. Further, the storage unit may store a conversion table indicating the correspondence between the potential difference and the current according to the resistance value of the bonding wire 42. In addition, the material, wire diameter, and length of the bonding wire 42 may be set so that the bonding wire 42 has a predetermined resistance value stored in the storage unit, or the two input electrodes 35, The resistance value may be measured after connecting between 36 and stored in the storage unit.

ゲート電圧制御回路34は、FETベアチップ20に供給されるソース電流に所定の電流値を超える電流(過電流)が流れ込むのを検知したときに、ゲート電圧を0ボルトにしてドレイン電流を遮断する。   When the gate voltage control circuit 34 detects that a current (overcurrent) exceeding a predetermined current value flows into the source current supplied to the FET bare chip 20, the gate voltage is set to 0 volts and the drain current is cut off.

上記構成により本実施例の車両用過電流検出装置1は、ワイヤボンディングによりFETベアチップ20と電位差検出回路32とを接続する、という工程を経て製造される。例えば、まずFETベアチップ20のソース電極21と電位差検出回路32の第一入力電極35とをボンディングワイヤ41で接続し、次に電位差検出回路32の第一入力電極35と電位差検出回路32の第二入力電極36とをボンディングワイヤ42で接続することにより、スムーズに基板10上のFETベアチップ20と電位差検出回路32との接続が完了する。そのため、従来の車両用過電流検出装置のようにシャント抵抗等の抵抗器を基板に取り付けるためのはんだ付け等の工程が不要となり、車両用過電流検出装置の製造におけるはんだ付不良が低減し、製造容易となる。また、大きな定格電流を必要とする抵抗器が不要となるため、小型かつ低コストに車両用過電流検出装置1を構成できる。また、車載装置OBUの電源供給線に介在するFETベアチップ20に車両用過電流検出装置1が取り付けられるため、小型化による車載性の向上と軽量化を達成できる。   With the above configuration, the vehicle overcurrent detection device 1 of this embodiment is manufactured through a process of connecting the FET bare chip 20 and the potential difference detection circuit 32 by wire bonding. For example, first, the source electrode 21 of the FET bare chip 20 and the first input electrode 35 of the potential difference detection circuit 32 are connected by the bonding wire 41, and then the first input electrode 35 of the potential difference detection circuit 32 and the second of the potential difference detection circuit 32. By connecting the input electrode 36 with the bonding wire 42, the connection between the FET bare chip 20 on the substrate 10 and the potential difference detection circuit 32 is completed smoothly. Therefore, a process such as soldering for attaching a resistor such as a shunt resistor to a substrate is not required as in a conventional vehicle overcurrent detection device, and soldering defects in manufacturing a vehicle overcurrent detection device are reduced. Easy to manufacture. Further, since a resistor requiring a large rated current is not required, the vehicle overcurrent detection device 1 can be configured in a small size and at a low cost. In addition, since the vehicle overcurrent detection device 1 is attached to the FET bare chip 20 interposed in the power supply line of the in-vehicle device OBU, improvement in in-vehicle performance and weight reduction can be achieved by downsizing.

さらに、FETベアチップ20のソース電極21側にあるグラウンドGに接続された電極36と電極35との間に介在するボンディングワイヤ42の両端間の電位差が電位差検出回路32により検出されるため、FETベアチップ20のドレイン電極23側に電位差検出回路を設けた場合と比較して電位が安定する。そのため、電位差検出回路により検出される電位差をより正確に測定でき、誤動作を抑制できる。   Further, since the potential difference between both ends of the bonding wire 42 interposed between the electrode 36 connected to the ground G on the source electrode 21 side of the FET bare chip 20 and the electrode 35 is detected by the potential difference detection circuit 32, the FET bare chip is detected. Compared with the case where a potential difference detection circuit is provided on the drain electrode 23 side of 20, the potential is stabilized. Therefore, the potential difference detected by the potential difference detection circuit can be measured more accurately, and malfunctions can be suppressed.

さらに、電位差検出回路32が増幅回路31を備えるため、抵抗値の小さいボンディングワイヤを使用してボンディングワイヤの両端間の電位差が微小となっても電位差の計測誤差を低減できる。   Furthermore, since the potential difference detection circuit 32 includes the amplifier circuit 31, even if the potential difference between both ends of the bonding wire becomes small by using a bonding wire having a small resistance value, the potential difference measurement error can be reduced.

尚、本発明は上述の実施形態に限定されるものではなく、本発明の目的が達成される限りにおける種々の変形、改良等の態様も含む。   The present invention is not limited to the above-described embodiment, and includes various modifications and improvements as long as the object of the present invention is achieved.

例えば、ボンディングワイヤ41,42,43,44によるFETベアチップ20と基板10上の各部との接続工程は、ワイヤボンディング装置を使用して連続的に行える。ボンディングワイヤ41,42,43,44を接続する順番は、基板10上の配置に基づいて適宜設定できる。   For example, the process of connecting the FET bare chip 20 and each part on the substrate 10 by the bonding wires 41, 42, 43, and 44 can be continuously performed using a wire bonding apparatus. The order of connecting the bonding wires 41, 42, 43, 44 can be appropriately set based on the arrangement on the substrate 10.

ボンディングワイヤ41,42,43,44の材質、線径、長さは、電位差検出回路32および電流値算出回路33により電流値を算出する際の要求に基づいて決定され、例えば、線径0.4mmのアルミニウム線が使用可能である。また、全てのボンディングワイヤを同じ材質、線径、長さにすれば、ワイヤボンディング装置を使用して連続的に接続できる。   The material, wire diameter, and length of the bonding wires 41, 42, 43, 44 are determined based on a request when the current value is calculated by the potential difference detection circuit 32 and the current value calculation circuit 33. A 4 mm aluminum wire can be used. Moreover, if all the bonding wires are made of the same material, wire diameter, and length, they can be continuously connected using a wire bonding apparatus.

基板10の材料および形状は特に限定されない。また、FETベアチップ20と中央演算処理装置30とを熱的に分離された2つの基板に載置する構成でもよい。この場合、FETベアチップ20の放熱性を考慮した配置をとることが容易となり設計自由度が向上する。また、車載装置OBUの作動時にFETベアチップ20で発生する熱が中央演算処理装置30に直接伝熱しなくなるため、中央演算処理装置30の動作が安定する。   The material and shape of the substrate 10 are not particularly limited. Further, the FET bare chip 20 and the central processing unit 30 may be mounted on two thermally separated substrates. In this case, it is easy to take an arrangement in consideration of the heat dissipation of the FET bare chip 20, and the degree of freedom in design is improved. In addition, since the heat generated in the FET bare chip 20 during operation of the in-vehicle device OBU is not directly transferred to the central processing unit 30, the operation of the central processing unit 30 is stabilized.

1 車両用過電流検出装置
10 基板
20 FETベアチップ
32 電位差検出回路
33 電流値算出回路
35,36 入力電極
41,42 ボンディングワイヤ
OBU 車載装置
DESCRIPTION OF SYMBOLS 1 Vehicle overcurrent detection apparatus 10 Board | substrate 20 FET bare chip 32 Potential difference detection circuit 33 Current value calculation circuit 35, 36 Input electrode 41, 42 Bonding wire OBU Vehicle-mounted apparatus

Claims (3)

基板と、
前記基板上に載置され、車載装置の電源供給線に介在するベアチップと、
2つの入力電極を備え、前記ベアチップに流入または流出する電流の電位差を検出する電位差検出回路と、
前記電位差検出回路により検出された電位差を電流値に変換する電流値算出回路と、
前記ベアチップの電極と前記電位差検出回路の一方の入力電極とを接続する第一のボンディングワイヤと、
前記電位差検出回路の一方の入力電極と前記電位差検出回路の他方の入力電極とを接続する第二のボンディングワイヤと、
を備えることを特徴とする車両用過電流検出装置。
A substrate,
A bare chip placed on the substrate and interposed in the power supply line of the in-vehicle device; and
A potential difference detection circuit that includes two input electrodes and detects a potential difference between currents flowing into or out of the bare chip;
A current value calculation circuit for converting the potential difference detected by the potential difference detection circuit into a current value;
A first bonding wire connecting the bare chip electrode and one input electrode of the potential difference detection circuit;
A second bonding wire that connects one input electrode of the potential difference detection circuit and the other input electrode of the potential difference detection circuit;
An overcurrent detection device for a vehicle, comprising:
前記ベアチップは、ドレイン電極とソース電極とゲート電極とを有するFETベアチップであり、
前記第一のボンディングワイヤは、前記FETベアチップのソース電極と前記電位差検出回路の前記一方の入力電極とを接続し、
前記電位差検出回路の前記他方の入力電極は、グラウンドに接続されることを特徴とする請求項1に記載の車両用過電流検出装置。
The bare chip is an FET bare chip having a drain electrode, a source electrode, and a gate electrode,
The first bonding wire connects the source electrode of the FET bare chip and the one input electrode of the potential difference detection circuit,
The vehicle overcurrent detection device according to claim 1, wherein the other input electrode of the potential difference detection circuit is connected to a ground.
前記電位差検出回路は増幅回路を備えることを特徴とする請求項1または2に記載の車両用過電流検出装置。   The vehicle overcurrent detection device according to claim 1, wherein the potential difference detection circuit includes an amplification circuit.
JP2010064587A 2010-03-19 2010-03-19 Vehicle overcurrent detector Pending JP2011200035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010064587A JP2011200035A (en) 2010-03-19 2010-03-19 Vehicle overcurrent detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010064587A JP2011200035A (en) 2010-03-19 2010-03-19 Vehicle overcurrent detector

Publications (1)

Publication Number Publication Date
JP2011200035A true JP2011200035A (en) 2011-10-06

Family

ID=44877546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010064587A Pending JP2011200035A (en) 2010-03-19 2010-03-19 Vehicle overcurrent detector

Country Status (1)

Country Link
JP (1) JP2011200035A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017077128A (en) * 2015-10-16 2017-04-20 アンリツ株式会社 Overcurrent detection circuit and overcurrent protection circuit and overcurrent detection method and overcurrent protection method of measuring instrument

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216307A (en) * 1993-01-13 1994-08-05 Mitsubishi Electric Corp Semiconductor device sealed with resin
JPH11121683A (en) * 1997-10-08 1999-04-30 Nissan Motor Co Ltd Semiconductor integrated circuit
JP2005033965A (en) * 2003-07-11 2005-02-03 Mitsubishi Electric Corp Main circuit current instrumentation system which measures main circuit current value of semiconductor power module and this module
JP2006109665A (en) * 2004-10-08 2006-04-20 Denso Corp Integrated circuit device having overcurrent detecting function
JP2008236528A (en) * 2007-03-22 2008-10-02 Nec Electronics Corp Overcurrent detecting circuit and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216307A (en) * 1993-01-13 1994-08-05 Mitsubishi Electric Corp Semiconductor device sealed with resin
JPH11121683A (en) * 1997-10-08 1999-04-30 Nissan Motor Co Ltd Semiconductor integrated circuit
JP2005033965A (en) * 2003-07-11 2005-02-03 Mitsubishi Electric Corp Main circuit current instrumentation system which measures main circuit current value of semiconductor power module and this module
JP2006109665A (en) * 2004-10-08 2006-04-20 Denso Corp Integrated circuit device having overcurrent detecting function
JP2008236528A (en) * 2007-03-22 2008-10-02 Nec Electronics Corp Overcurrent detecting circuit and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017077128A (en) * 2015-10-16 2017-04-20 アンリツ株式会社 Overcurrent detection circuit and overcurrent protection circuit and overcurrent detection method and overcurrent protection method of measuring instrument

Similar Documents

Publication Publication Date Title
JP4736668B2 (en) Signal detection device for load driving device
US9006883B2 (en) Semiconductor module with switching elements
JP5189929B2 (en) Semiconductor switch control device
JP6522232B2 (en) Overheat protection control device and power circuit device for vehicle
JP2008151530A (en) Semiconductor integrated circuit for detecting magnetic field
JP2014509747A (en) Current sensor
US9835658B2 (en) Semiconductor integrated circuit device and electronic device for driving a power semiconductor device
JP2014509747A5 (en)
ATE539356T1 (en) BATTERY CURRENT SENSOR FOR A MOTOR VEHICLE
US20110291741A1 (en) Current Control Using Thermally Matched Resistors
JP2011033632A (en) Stator of rotary electric machine
JP5531611B2 (en) Power converter
JP2009202668A (en) Battery state detection sensor device
JP2011200035A (en) Vehicle overcurrent detector
JP4263193B2 (en) Field winding type rotating electrical machine
JP2016003916A (en) Current detection circuit
JP2015082926A (en) Current detection circuit and motor control device
JP2005188931A (en) Voltage-drop type current measuring device
JP2014119315A (en) Current sensor and current sensor unit
JP5325437B2 (en) Integrated circuit
KR20170006008A (en) Busbar with shunt resistance for inverter driving motor
JP6417756B2 (en) Current detector
JP2011133420A (en) Temperature detection method for switching element
JP2005278296A (en) Capacitor device and power supply system having the same
US11002768B2 (en) Method and apparatus for detecting current using operational amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140520