JP2011193643A - Method for controlling power supply system and power supply system - Google Patents

Method for controlling power supply system and power supply system Download PDF

Info

Publication number
JP2011193643A
JP2011193643A JP2010058040A JP2010058040A JP2011193643A JP 2011193643 A JP2011193643 A JP 2011193643A JP 2010058040 A JP2010058040 A JP 2010058040A JP 2010058040 A JP2010058040 A JP 2010058040A JP 2011193643 A JP2011193643 A JP 2011193643A
Authority
JP
Japan
Prior art keywords
frequency
output
fluctuation
machine
distributed power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010058040A
Other languages
Japanese (ja)
Other versions
JP5295155B2 (en
Inventor
Akihiro Ogawa
明宏 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2010058040A priority Critical patent/JP5295155B2/en
Publication of JP2011193643A publication Critical patent/JP2011193643A/en
Application granted granted Critical
Publication of JP5295155B2 publication Critical patent/JP5295155B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To properly autonomously control demand and supply in a power system connected to distributed power supplies. <P>SOLUTION: Each of the distributed power supplies 3 (measurement command device 10) measures output and frequency thereof, receives frequencies and outputs of the other devices transmitted from the other distributed power supplies 3, applies a minute variation to the output thereof, obtains a frequency variation thereof with respect to the minute vibration, obtains a frequency variation of the other devices with respect to the minute vibration, and compares the frequency variation thereof with the frequency variation of the other devices, thereby determining a connection state between the other distributed power supplies 3 and the power system 2. Each of the distributed power supplies 3 (measurement command device 10) compares the frequency variation thereof with the frequency variation of the other devices, and compares the minute variation with the variation in the output of the other devices, thereby determining a connection state between the other distributed devices 3 and the power system 2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電力供給システムの制御方法、及び電力供給システムに関し、とくに分散型電源が接続する電力系統における自律的な需給制御を適切に行うための技術に関する。   The present invention relates to a power supply system control method and a power supply system, and more particularly to a technique for appropriately performing autonomous supply and demand control in a power system connected to a distributed power source.

特許文献1には、マイクログリッド等における多数の分散型電源の需給制御方法として、各分散型電源が系統の周波数と自身の現在出力とを計測し、その計測値と通信回線を通じて取得した他の分散型電源の現在出力とに基づき地域要求量(AR)を求め、求めた地域要求量(AR)を所定の配分方法に従って各分散型電源に配分し、各分散型電源が自身の出力を計算することにより、電力系統の自律的な制御を行う構成が開示されている。   In Patent Document 1, as a supply and demand control method for a large number of distributed power sources in a microgrid or the like, each distributed power source measures the frequency of the system and its current output, The regional demand (AR) is calculated based on the current output of the distributed power source, the obtained regional demand (AR) is distributed to each distributed power source according to a predetermined distribution method, and each distributed power source calculates its own output. By doing so, the structure which performs autonomous control of an electric power grid | system is disclosed.

特開2009−278834号公報JP 2009-278834 A

上記のような自律制御が行われるマイクログリッド等の電力系統において、例えば、分散型電源の起動や停止、停電作業や運用変更等による系統の構成変更、各分散型電源における出力調整しろの変更等により電力系統に接続する分散型電源の接続状態に変化が生じた場合に、電力系統における自律的な需給制御を継続するためには、変化後の状態に合わせて分散型電源の出力を適切に制御する必要がある。   In power systems such as microgrids where autonomous control is performed as described above, for example, start and stop of distributed power supply, change of system configuration due to power outage work or operation change, change of output adjustment margin for each distributed power supply, etc. In order to continue autonomous supply and demand control in the power system when a change occurs in the connection state of the distributed power source connected to the power system, the output of the distributed power source is appropriately adjusted according to the changed state. Need to control.

本発明はこのような背景に鑑みてなされたもので、分散型電源が接続する電力系統における自律的な需給制御を適切に行うことが可能な電力供給システムの制御方法、及び電力供給システムを提供することを目的とする。   The present invention has been made in view of such a background, and provides a power supply system control method and a power supply system capable of appropriately performing autonomous supply and demand control in an electric power system to which a distributed power source is connected. The purpose is to do.

上記目的を達成するための本発明の一つは、電力系統に接続する互いに通信可能に接続された複数の分散型電源を含んで構成される電力供給システムの制御方法であって、前記分散型電源の夫々が、自機の出力である自機出力、及び前記電力系統の周波数である自機周波数を計測し、他の前記分散型電源から送られてくる、前記電力系統の周波数である他機周波数、及び他の前記分散型電源の出力である他機出力を受信し、前記自機出力に微小変動を与え、前記微小変動に対する前記自機周波数の変動である自機周波数変動を取得し、前記微小変動に対する前記他機周波数の変動である他機周波数変動を取得し、前記自機周波数変動と前記他機周波数変動とを比較することにより、他の前記分散型電源の前記電力系統への接続状態を判断することとする。   In order to achieve the above object, one aspect of the present invention is a control method of a power supply system configured to include a plurality of distributed power sources connected to an electric power system so as to communicate with each other. Each of the power supplies measures its own output, which is its own output, and its own frequency, which is the frequency of the power system, and is the frequency of the power system sent from the other distributed power source. Receiving the machine frequency and the other machine output which is the output of the other distributed power source, giving a minute fluctuation to the own machine output, and obtaining the own machine frequency fluctuation which is a fluctuation of the own machine frequency with respect to the minute fluctuation. The other machine frequency fluctuation that is the fluctuation of the other machine frequency with respect to the minute fluctuation is obtained, and the own machine frequency fluctuation is compared with the other machine frequency fluctuation to the power system of the other distributed power source. The connection status of And the.

本発明によれば、分散型電源の起動や停止、停電作業や運用変更等による系統の構成変更、各分散型電源における出力調整しろの変更等により電力系統に接続する分散型電源の接続状態に変化が生じても、分散型電源の夫々において、他の分散型電源の接続状態を判断することができ、分散型電源の接続状態に応じて自律的な需給制御を適切に行うことができる。   According to the present invention, the connection state of the distributed power source connected to the power system is changed by starting or stopping the distributed power source, changing the configuration of the system due to a power failure operation or operation change, or changing the output adjustment margin in each distributed power source. Even if a change occurs, the connection state of other distributed power sources can be determined in each of the distributed power sources, and autonomous supply and demand control can be appropriately performed according to the connection state of the distributed power sources.

上記目的を達成するための本発明の他の一つでは、前記制御方法において、前記分散型電源の夫々が、前記微小変動に対する前記他機出力の変動である他機出力変動を取得し、前記自機周波数変動と前記他機周波数変動とを比較するとともに、前記微小変動と前記他機出力変動とを比較することにより、他の前記分散型電源の前記電力系統への接続状態を判断することとする。   In another aspect of the present invention for achieving the above object, in the control method, each of the distributed power sources obtains other device output fluctuations which are fluctuations of the other machine output with respect to the minute fluctuations, and Judging the connection state of the other distributed power source to the power system by comparing the frequency fluctuation of the own machine with the frequency fluctuation of the other machine and comparing the minute fluctuation and the output fluctuation of the other machine. And

本発明によれば、分散型電源の夫々は、自機周波数変動と他機周波数変動とを比較するとともに、微小変動と他機出力変動とを比較することにより他の分散型電源の電力系統への接続状態を判断するので、他の分散型電源の接続状態をより確実に判断することができる。   According to the present invention, each of the distributed power sources compares the own device frequency variation with the other device frequency variation, and compares the minute variation with the other device output variation to the power system of another distributed power source. Therefore, it is possible to more reliably determine the connection state of another distributed power source.

上記目的を達成するための本発明の他の一つでは、前記制御方法において、前記分散型電源の夫々は、前記自機出力と、前記判断により前記電力系統に接続していると判断した全ての前記他の分散型電源の前記他機出力とを合計することにより、前記電力系統における現在の発電機出力の合計である発電量合計を求め、前記自機周波数と前記電力系統について設定されている基準周波数とに基づき、前記電力系統の周波数偏差を求め、前記周波数偏差に系統周波数特性定数を乗算した値と前記発電量合計とを乗算することにより地域要求量を求め、求めた前記地域要求量を所定の配分条件に従い前記分散型電源の夫々に配分し、配分した前記地域要求量に基づき前記分散型電源の夫々の出力を制御するための指令値を生成することとする。   According to another aspect of the present invention for achieving the above object, in the control method, each of the distributed power sources is determined to be connected to the power system by the own device output and the determination. By summing up the other machine outputs of the other distributed type power supplies, a total amount of power generation that is the sum of the current generator outputs in the power system is obtained, and the self-machine frequency and the power system are set. A frequency deviation of the power system is obtained based on a reference frequency, and a regional requirement amount is obtained by multiplying the frequency deviation by a value obtained by multiplying the frequency deviation by a system frequency characteristic constant and the total power generation amount, and the obtained regional requirement An amount is distributed to each of the distributed power sources according to a predetermined distribution condition, and a command value for controlling each output of the distributed power source is generated based on the allocated regional request amount.

本発明によれば、電力系統に接続していると判断した全ての他の分散型電源の他機出力とを合計することにより、電力系統における現在の発電機出力の合計である発電量合計を求め、求めた発電量合計を用いて分散型電源の夫々の出力を制御するための指令値を生成するので、分散型電源の接続状態に応じて自律的な需給制御を適切に行うことができる。   According to the present invention, the total power generation amount that is the sum of the current generator outputs in the power system is obtained by summing up the other machine outputs of all other distributed power sources that are determined to be connected to the power system. Since the command value for controlling each output of the distributed power source is generated using the obtained total power generation amount, autonomous supply and demand control can be appropriately performed according to the connection state of the distributed power source. .

上記目的を達成するための本発明の他の一つでは、前記制御方法において、前記分散型電源の夫々は、他の前記分散型電源から送られてくる当該他の分散型電源の出力可変域を示す情報を受信し、前記他の前記分散型電源の前記出力が当該他の前記分散型電源の出力可変域の範囲内になるように前記指令値を生成することとする。また前記出力可変域を示す情報は、出力上限値又は出力下限値のうちの少なくともいずれかを含むこととする。   According to another aspect of the present invention for achieving the above object, in the control method, each of the distributed power sources is an output variable region of the other distributed power source sent from the other distributed power source. Is received, and the command value is generated so that the output of the other distributed power source falls within the output variable range of the other distributed power source. The information indicating the output variable range includes at least one of an output upper limit value and an output lower limit value.

本発明によれば、分散型電源の夫々は、他の分散型電源の出力が当該他の分散型電源の出力可変域の範囲内になるように指令値を生成するので、各分散型電源の特性に応じて適切な指令値を生成することができ、自律的な需給制御を適切に行うことができる。   According to the present invention, each of the distributed power supplies generates a command value so that the output of the other distributed power supply is within the range of the output variable range of the other distributed power supply. An appropriate command value can be generated according to the characteristics, and autonomous supply and demand control can be appropriately performed.

上記目的を達成するための本発明の他の一つでは、前記制御方法において、前記配分条件は、前記地域要求量を前記分散型電源の夫々に均等に配分するという条件、前記地域要求量を前記分散型電源の夫々の出力の変化速度に応じて配分するという条件、及び前記地域要求量を前記分散型電源の夫々の経済性に応じて配分するという条件のうちのいずれかであることとする。   In another one of the present invention for achieving the above object, in the control method, the distribution condition is a condition that the regional requirement amount is evenly distributed to each of the distributed power sources, and the regional requirement amount is Any one of a condition of allocating according to a change speed of each output of the distributed power supply and a condition of allocating the regional requirement amount according to the economic efficiency of each of the distributed power supplies; To do.

このように配分条件は、ユーザニーズや分散型電源の運用形態に応じて柔軟に設定することができる。   As described above, the distribution condition can be flexibly set according to the user needs and the operation mode of the distributed power source.

その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄、及び図面により明らかにされる。   In addition, the subject which this application discloses, and its solution method are clarified by the column of the form for inventing, and drawing.

本発明によれば、分散型電源が接続する電力系統における自律的な需給制御を適切に行うことができる。   ADVANTAGE OF THE INVENTION According to this invention, the autonomous supply-and-demand control in the electric power system which a distributed power supply connects can be performed appropriately.

電力供給システム1の概略的な構成を示す図である。1 is a diagram illustrating a schematic configuration of a power supply system 1. FIG. 計測指令装置10の構成を示す図である。1 is a diagram illustrating a configuration of a measurement command device 10. FIG. 演算装置11のハードウエア構成を示す図である。2 is a diagram illustrating a hardware configuration of an arithmetic device 11. FIG. 計測装置12のハードウエア構成を示す図である。2 is a diagram illustrating a hardware configuration of a measuring device 12. FIG. 制御装置13のハードウエア構成を示す図である。2 is a diagram illustrating a hardware configuration of a control device 13. FIG. 演算装置11の機能を示す図である。3 is a diagram illustrating functions of the arithmetic device 11. FIG. 計測値データベース421に格納されるデータのレコード構成である。It is a record configuration of data stored in the measurement value database 421. 接続状態管理データベース422に格納されるデータのレコード構成である。It is a record configuration of data stored in the connection state management database 422. 自機指令値生成処理S700の概要を説明する図である。It is a figure explaining the outline | summary of the own apparatus command value production | generation process S700. 自機指令値生成処理S700を説明するフローチャートである。It is a flowchart explaining self-machine command value generation processing S700. 微小変動ΔP、自機周波数変動ΔF、他機周波数変動Fiの関係を示す模式図である。It is a schematic diagram which shows the relationship of the micro fluctuation | variation (DELTA) P, the own apparatus frequency fluctuation | variation (DELTA) F, and the other apparatus frequency fluctuation | variation Fi. ロックインアンプ1241の構成を示すブロック図である。3 is a block diagram showing a configuration of a lock-in amplifier 1241. FIG. 接続状態判断処理S1000を説明するフローチャートである。It is a flowchart explaining connection state judgment processing S1000.

以下、実施形態につき図面を参照しつつ詳細に説明する。   Hereinafter, embodiments will be described in detail with reference to the drawings.

図1に実施形態として説明する電力供給システム1の概略的な構成を示している。同図に示すように、電力供給システム1は、マイクログリッドなどの小規模な電力系統2に存在する複数の分散型電源3(G1,G2,G3・・・)、分散型電源3の夫々に付設される計測指令装置10、及び電力系統2に接続する一つ以上の負荷4を含んで構成されている。   FIG. 1 shows a schematic configuration of a power supply system 1 described as an embodiment. As shown in the figure, the power supply system 1 includes a plurality of distributed power sources 3 (G1, G2, G3...) And a distributed power source 3 existing in a small power system 2 such as a microgrid. It is configured to include an attached measurement command device 10 and one or more loads 4 connected to the power system 2.

分散型電源3は、例えばコージェネレーション発電機(ディーゼル発電機、ガスタービン発電機、ガスエンジン発電機等)、自然エネルギーや未利用エネルギーを利用した発電機(風力発電機、太陽光発電機、小型水力発電機、廃棄物発電機、バイオマス発電機等)等である。尚、以下の説明において、複数の分散型電源3のうち注目している一の分散型電源3のことを自機と称し、自機以外の他の分散型電源3のことを他機と称する。   The distributed power source 3 is, for example, a cogeneration generator (diesel generator, gas turbine generator, gas engine generator, etc.), a generator using natural energy or unused energy (wind generator, solar generator, small size generator). Hydroelectric generators, waste generators, biomass generators, etc.). In the following description, one of the plurality of distributed power sources 3 to which attention is paid is one distributed power source 3 and is referred to as the own device, and another distributed power source 3 other than the own device is referred to as the other device. .

各計測指令装置10は、通信ネットワーク50を介して互いに通信可能に接続している。通信ネットワーク50は、例えばインターネットや専用線(電力系統制御用情報伝送システム(CDT:Cyclic Digital data Transmission equipment)、メタル線、光ファイバ等)等である。   Each measurement command device 10 is connected to be communicable with each other via a communication network 50. The communication network 50 is, for example, the Internet or a dedicated line (power transmission system control information transmission system (CDT: Cyclic Digital data Transmission equipment), metal line, optical fiber, etc.).

図2に計測指令装置10の構成を示している。同図に示すように、各計測指令装置10は、演算装置11、計測装置12、及び制御装置13を備える。このうち計測装置12は、電力系統2の現在の周波数及び分散型電源3の現在の出力(以下、発電機出力と称する。)を取得し、取得した周波数及び発電機出力を演算装置11に入力する。   FIG. 2 shows the configuration of the measurement command device 10. As shown in FIG. 1, each measurement command device 10 includes a calculation device 11, a measurement device 12, and a control device 13. Among these, the measuring device 12 acquires the current frequency of the power system 2 and the current output of the distributed power source 3 (hereinafter referred to as “generator output”), and inputs the acquired frequency and generator output to the arithmetic device 11. To do.

演算装置11は、計測装置12から入力される周波数及び発電機出力と、通信ネットワーク50を介して取得される他の分散型電源3の発電機出力とに基づき分散型電源3の出力を制御するための指令値を生成し、生成した指令値を制御装置13に入力する。   The arithmetic device 11 controls the output of the distributed power source 3 based on the frequency and generator output input from the measuring device 12 and the generator output of another distributed power source 3 acquired via the communication network 50. The command value for generating is generated, and the generated command value is input to the control device 13.

制御装置13は、演算装置11から入力される指令値に従って分散型電源3の出力を制御する。   The control device 13 controls the output of the distributed power source 3 according to the command value input from the arithmetic device 11.

図3Aに演算装置11のハードウエア構成(ブロック図)を示している。同図に示すように、演算装置11は、CPU111と、RAM・ROM等のメモリ112と、ハードディスク等の記憶装置113と、キーボードやマウス等の入力装置114と、液晶ディスプレイ等の表示装置115と、通信ネットワーク50を介して他の計測指令装置10との間で通信を行うとともに、計測装置12及び制御装置13との間で通信を行う通信装置116と、RTC(Real Time Clock)等を用いて構成され、現在日時等の日時情報(タイムスタンプ)を生成する計時装置117(電波時計等)とを備えている。   FIG. 3A shows a hardware configuration (block diagram) of the arithmetic unit 11. As shown in the figure, the arithmetic device 11 includes a CPU 111, a memory 112 such as a RAM / ROM, a storage device 113 such as a hard disk, an input device 114 such as a keyboard and a mouse, and a display device 115 such as a liquid crystal display. The communication device 116 communicates with another measurement command device 10 via the communication network 50, and communicates with the measurement device 12 and the control device 13, and an RTC (Real Time Clock) or the like. And a time measuring device 117 (radio timepiece or the like) that generates date and time information (time stamp) such as the current date and time.

図3Bに計測装置12のハードウエア構成(ブロック図)を示している。同図に示すように、計測装置12は、CPU121と、メモリ122と、演算装置11と通信するための通信装置123と、電力系統2の周波数及び分散型電源3の出力を取得する計測回路124とを備えている。また同図に示すように、計測回路124はロックインアンプ1241を備えている。   FIG. 3B shows a hardware configuration (block diagram) of the measuring device 12. As shown in the figure, the measurement device 12 includes a CPU 121, a memory 122, a communication device 123 for communicating with the arithmetic device 11, and a measurement circuit 124 that acquires the frequency of the power system 2 and the output of the distributed power source 3. And. As shown in the figure, the measurement circuit 124 includes a lock-in amplifier 1241.

図3Cに制御装置13のハードウエア構成(ブロック図)を示している。同図に示すように、制御装置13は、CPU131と、メモリ132と、演算装置11との間で通信を行う通信装置133と、演算装置11から入力される指令値に従って分散型電源3の出力を制御する制御回路134とを備えている。   FIG. 3C shows a hardware configuration (block diagram) of the control device 13. As shown in the figure, the control device 13 includes a CPU 131, a memory 132, a communication device 133 that communicates with the arithmetic device 11, and an output of the distributed power source 3 according to a command value input from the arithmetic device 11. And a control circuit 134 for controlling.

図4に演算装置11が備える機能を示している。同図に示すように、演算装置11は、自機計測部411、自機情報送信部412、他機情報取得部413、接続状態取得部414、発電機出力合計部415、地域要求量算出部416、フィルタ処理部417、配分処理部418、及び指令値生成部419の各機能を備える。尚、これらの機能は、演算装置11のハードウエアによって、もしくは、CPU111がメモリ112や記憶装置113に格納されているプログラムを実行することにより実現される。   FIG. 4 shows functions included in the arithmetic device 11. As shown in the figure, the computing device 11 includes an own device measuring unit 411, an own device information transmitting unit 412, an other device information acquiring unit 413, a connection state acquiring unit 414, a generator output totaling unit 415, an area requirement amount calculating unit. 416, a filter processing unit 417, a distribution processing unit 418, and a command value generation unit 419 are provided. Note that these functions are realized by the hardware of the arithmetic device 11 or by the CPU 111 executing a program stored in the memory 112 or the storage device 113.

また同図に示すように、演算装置11は、計測値データベース421、及び接続状態管理データベース422を備える。尚、計測値データベース421、及び接続状態管理データベース422は、例えば演算装置11において動作するDBMS(Data Base Management System)によって管理される。   As shown in the figure, the arithmetic device 11 includes a measurement value database 421 and a connection state management database 422. Note that the measurement value database 421 and the connection state management database 422 are managed by, for example, a DBMS (Data Base Management System) operating in the arithmetic device 11.

図4に示す機能のうち、自機計測部411は、計測装置12から随時入力される電力系統2の周波数(以下、自機周波数と称する。)を取得し、取得した自機周波数を取得日時(タイムスタンプ)に対応づけて計測値データベース421に格納する。   Among the functions shown in FIG. 4, the own device measuring unit 411 acquires the frequency of the power system 2 (hereinafter referred to as “own device frequency”) that is input from the measuring device 12 as needed, and acquires the acquired own device frequency. It is stored in the measured value database 421 in association with (time stamp).

また自機計測部411は、計測装置12から随時入力される、当該計測指令装置10の計測装置12が担当する分散型電源3(自機)の現在の発電機出力(以下、自機出力と称する。)を、計測時刻(タイムスタンプ)に対応づけて計測値データベース421に格納する。   In addition, the own device measuring unit 411 receives the current generator output (hereinafter referred to as the own device output) of the distributed power source 3 (own device), which is input from the measuring device 12 at any time and is in charge of the measuring device 12 of the measurement command device 10. Is stored in the measurement value database 421 in association with the measurement time (time stamp).

自機情報送信部412は、自機計測部411によって取得された自機周波数及び自機出力を、他の分散型電源3(他機)の全ての計測指令装置10に随時送信(ブロードキャスト)する。尚、送信する情報には、自機の識別子及び自機の制約条件(後述)が付帯する。   The own device information transmission unit 412 transmits (broadcasts) the own device frequency and the own device output acquired by the own device measurement unit 411 to all the measurement command devices 10 of other distributed power sources 3 (other devices) as needed. . The information to be transmitted is accompanied by an identifier of the own device and a restriction condition (described later) of the own device.

他機情報取得部413は、通信ネットワーク50を介して他の計測指令装置10から随時送られてくる、他の計測指令装置10が取得した電力系統2の周波数(以下、他機周波数と称する。)、及び他の計測指令装置10が担当する分散型電源3の発電機出力(以下、他機出力と称する。)を、その分散型電源3の識別子及び制約条件とともに受信し、受信した他機発電機出力を、上記識別子、上記制約条件、及び当該発電機出力の計測時刻(タイムスタンプ)と対応づけて、計測値データベース421に格納する。   The other device information acquisition unit 413 is transmitted from the other measurement command device 10 through the communication network 50 as needed, and the frequency of the power system 2 acquired by the other measurement command device 10 (hereinafter referred to as “other device frequency”). ), And the generator output of the distributed power source 3 (hereinafter referred to as “other device output”) in charge of the other measurement commanding device 10, together with the identifier and constraint conditions of the distributed power source 3, and the received other device The generator output is stored in the measurement value database 421 in association with the identifier, the constraint condition, and the measurement time (time stamp) of the generator output.

接続状態取得部414は、他機の電力系統2への接続状態を判断し、判断の結果を後述する接続状態管理データベース422に登録する。接続状態取得部414の詳細については後述する。   The connection state acquisition unit 414 determines the connection state of the other device to the power system 2 and registers the determination result in the connection state management database 422 described later. Details of the connection state acquisition unit 414 will be described later.

発電機出力合計部415は、自機計測部411によって計測された自機出力と、電力系統2に接続していると判断される全ての他の分散型電源3の他機出力とを合計し、電力系統2に注入される電力の合計(以下、発電量合計と称する。)を求める。尚、他機が電力系統2に接続しているか否かは、接続状態管理テータベース422を参照して判断する。   The generator output totaling unit 415 sums the own device output measured by the own device measuring unit 411 and the other device outputs of all other distributed power sources 3 that are determined to be connected to the power system 2. The total amount of power injected into the power system 2 (hereinafter referred to as the total amount of power generation) is obtained. Whether or not another device is connected to the power system 2 is determined with reference to the connection state management data base 422.

地域要求量算出部416は、自機計測部411によって取得された自機周波数(以下、現在周波数と称する。)と、発電機出力合計部415によって算出された発電量合計とに基づき、地域要求量AR(Area Requirement)を求める。尚、地域要求量ARは、電力系統2の需給差(需要と供給のアンバランス)を表す量である。本実施形態では現在周波数と基準周波数(例えば50Hz(関東)や60Hz(関西))との差(以下、周波数偏差ΔFと称する。)に系統周波数特性定数Kを乗算した値に、さらに発電量合計を乗算した値を地域要求量ARとしている。   The regional requirement amount calculation unit 416 determines the regional request based on the own device frequency acquired by the own device measurement unit 411 (hereinafter referred to as the current frequency) and the total power generation amount calculated by the generator output summation unit 415. The quantity AR (Area Requirement) is obtained. The regional requirement amount AR is an amount that represents the supply-demand difference (demand and supply imbalance) of the power system 2. In this embodiment, a value obtained by multiplying the difference between the current frequency and a reference frequency (for example, 50 Hz (Kanto) or 60 Hz (Kansai)) (hereinafter referred to as a frequency deviation ΔF) by a system frequency characteristic constant K is further added to the total amount of power generation. The value obtained by multiplying by is the regional requirement amount AR.

フィルタ処理部417は、地域要求量算出部416によって求められた地域要求量ARについて、地域要求量ARに含まれる極短周期成分を除去する平滑化処理、並びに微動成分を除去する不感帯処理を行う。   The filter processing unit 417 performs a smoothing process for removing an extremely short period component included in the area request quantity AR and a dead band process for removing a fine movement component for the area request quantity AR obtained by the area request quantity calculation unit 416. .

配分処理部418は、地域要求量算出部416によって求められた地域要求量ARを、所定の配分条件に従い電力系統2に接続している各分散型電源3に配分する。配分条件としては、例えば、各分散型電源3に地域要求量ARを均等に配分、即ち、地域要求量ARに、1/(電力系統2に接続している運転中の分散型電源3の台数合計)を乗算した値を各分散型電源3に配分するという条件(以下、第1条件と称する。)、各分散型電源3の発電機出力の変化速度に応じて地域要求量ARを各分散型電源3に配分、即ち、地域要求量ARに、(その分散型電源3の変化速度)/(電力系統2に接続している運転中の分散型電源3の変化速度の合計)を乗算した値を各分散型電源3に配分するという条件(以下、第2条件と称する。)、各分散型電源3の経済性(コスト的な有利さ)に応じて地域要求量ARを各分散型電源3に配分、即ち、地域要求量ARに、(その分散型電源3の経済係数)/(電力系統2に接続している運転中の分散型電源3の経済係数の合計))を乗算した値を各分散型電源3に配分するという条件(以下、第3条件と称する。)等がある。   The distribution processing unit 418 distributes the regional request amount AR obtained by the regional request amount calculation unit 416 to each distributed power source 3 connected to the power system 2 according to a predetermined distribution condition. As an allocation condition, for example, the regional requirement amount AR is equally distributed to each distributed power source 3, that is, 1 / (the number of operating distributed power sources 3 connected to the power system 2 is distributed to the regional requirement amount AR. The regional demand AR is distributed according to the condition (hereinafter referred to as the first condition) that the value obtained by multiplying the total) is distributed to each distributed power source 3 (hereinafter referred to as the first condition) and the change rate of the generator output of each distributed power source 3. Allocation to the type power source 3, that is, the regional requirement amount AR is multiplied by (the rate of change of the distributed type power source 3) / (total rate of change of the distributed type power source 3 in operation connected to the power system 2). Depending on the condition that the value is distributed to each distributed power source 3 (hereinafter referred to as the second condition) and the economic efficiency (cost advantage) of each distributed power source 3, the regional demand AR is changed to each distributed power source. 3, that is, regional demand AR, (the economic factor of the distributed power source 3) / (electric power system Condition that the value obtained by multiplying the total)) of economic factors in distributed power 3 in operation connected to the 2 allocated to each distributed power source 3 (hereinafter, referred to as a third condition.), And the like.

指令値生成部419は、配分処理部418によって自身が担当する分散型電源3に配分された地域要求量ARに応じた指令値(例えばPID演算(Proportional Integral Differential)によって求められるLFC制御量(LFC:Load Frequency Control(負荷周波数制御))を生成し、生成した指令値を制御装置13に入力する。   The command value generation unit 419 has a command value (for example, an LFC control amount (LFC) calculated by a PID calculation (Proportional Integral Differential)) according to the regional request amount AR distributed to the distributed power source 3 that the distribution processing unit 418 is responsible for. : Load Frequency Control), and the generated command value is input to the control device 13.

図5Aに計測値データベース421に格納されるデータのレコードの構成を示している。同図に示すように、このレコードは、計測値種別4211、識別子4212、計測値4213、取得日時4214、及び制約条件4215の各項目を含む。このうち計測値種別4211には、当該レコードに設定されている計測値が、電力系統2の周波数であるのか、分散型電源3の出力(発電機出力)であるのかを示す値が設定される。   FIG. 5A shows the configuration of data records stored in the measurement value database 421. As shown in the figure, this record includes items of a measurement value type 4211, an identifier 4212, a measurement value 4213, an acquisition date and time 4214, and a constraint condition 4215. Among these, the measurement value type 4211 is set to a value indicating whether the measurement value set in the record is the frequency of the power system 2 or the output of the distributed power source 3 (generator output). .

識別子4212には、そのレコードが発電機出力についてのレコードである場合に、当該レコードに格納されている発電機出力がどの分散型電源3についてのものかを示す識別子(分散型電源3ごとに固有に付与される識別子)が設定される。計測値4213には、計測値(自機周波数、他機周波数、自機出力、及び他機出力のいずれか)が設定される。取得日時4214には、その計測値の取得日時(タイムスタンプ)が設定される。   In the identifier 4212, when the record is a record relating to the generator output, an identifier indicating which distributed power source 3 the generator output stored in the record is for (specific to each distributed power source 3) Identifier to be assigned). A measurement value (any of the own machine frequency, the other machine frequency, the own machine output, and the other machine output) is set in the measurement value 4213. In the acquisition date 4214, the acquisition date (time stamp) of the measurement value is set.

制約条件4215には、他機周波数や他機出力とともに他機から送られてくる制約条件が設定される。ここで制約条件とは、当該他機の運転についての制約であり、例えば当該他機の出力可変域を示す情報(出力上限値又は出力下限値のうちの少なくともいずれかを含む)である。また他機がエンジン発電機又は燃料電池である場合には、現在出力を所定の範囲内で増減できるという制約条件が設定される。また他機が太陽電池である場合には、出力が上昇する方向の制御ができないが減少する方向の調整はできるという制約条件が設定される。また他機が蓄電池である場合は、出力上限値や負側の制御(充電)が可能であるという制約条件が設定される。   In the constraint condition 4215, a constraint condition sent from the other machine together with the other machine frequency and the other machine output is set. Here, the constraint condition is a constraint on the operation of the other machine, for example, information indicating the output variable range of the other machine (including at least one of the output upper limit value and the output lower limit value). When the other machine is an engine generator or a fuel cell, a restriction condition is set that the current output can be increased or decreased within a predetermined range. In the case where the other device is a solar cell, a restriction condition is set that the direction in which the output increases cannot be controlled but the direction in which the output decreases can be adjusted. Further, when the other device is a storage battery, a restriction condition that an output upper limit value or negative side control (charging) is possible is set.

図5Bに接続状態管理データベース422に格納されるデータのレコード構成を示している。同図に示すように、このレコードは、識別子4221、及び接続状態4222の各項目を含む。識別子4221には、通信ネットワーク50を介して自機と通信可能な他機の識別子(分散型電源3ごとに固有に付与される識別子)が設定される。接続状態4222には、その他機の電源系統2への接続状態を示す情報(例えば、「接続中」、「未接続」)が設定される。   FIG. 5B shows a record structure of data stored in the connection state management database 422. As shown in the figure, this record includes items of an identifier 4221 and a connection state 4222. In the identifier 4221, an identifier of an other device that can communicate with the own device via the communication network 50 (an identifier uniquely given to each distributed power source 3) is set. In the connection state 4222, information indicating the connection state of the other machine to the power supply system 2 (for example, “connected”, “not connected”) is set.

図6は演算装置11が行う処理(以下、自機指令値生成処理S700と称する。)の概要を説明する図である。また図7は自機指令値生成処理S700の詳細を説明するフローチャートである。以下、これらの図とともに、自機指令値生成処理S700について説明する。   FIG. 6 is a diagram for explaining the outline of the processing performed by the arithmetic device 11 (hereinafter referred to as “own device command value generation processing S700”). FIG. 7 is a flowchart for explaining the details of the own machine command value generation process S700. Hereinafter, the self-machine command value generation processing S700 will be described with reference to these drawings.

図7に示すように、演算装置11は、自機の指令値を生成する機会が到来(例えば10分毎)したか否かをリアルタイムに監視している(S711)。上記機会が到来すると(S711:YES)、演算装置11の自機計測部411は、計測装置12から、現在周波数を取得し、取得した現在周波数を計測値データベース421に格納する(S712、図6のS611)。また演算装置11の自機計測部411は、計測装置12から、自機出力を取得し、取得した自機出力を計測値データベース421に格納する(S713、図6のS612)。また自機情報送信部412は、取得した自機出力を他機の全ての計測指令装置10に通知(ブロードキャスト)する(S714)。尚、各計測指令装置10の演算装置11は、他機の計測指令装置10から他機出力が通知されると、通知された他機出力を自身の計測値データベース421に格納する。   As shown in FIG. 7, the arithmetic unit 11 monitors in real time whether or not an opportunity to generate a command value of the own device has arrived (for example, every 10 minutes) (S711). When the above opportunity arrives (S711: YES), the own device measurement unit 411 of the arithmetic device 11 acquires the current frequency from the measurement device 12, and stores the acquired current frequency in the measurement value database 421 (S712, FIG. 6). S611). In addition, the own device measuring unit 411 of the arithmetic device 11 acquires the own device output from the measuring device 12, and stores the acquired own device output in the measured value database 421 (S713, S612 in FIG. 6). In addition, the own device information transmitting unit 412 notifies (broadcasts) the acquired own device output to all the measurement command devices 10 of other devices (S714). In addition, if the other apparatus output is notified from the measurement instruction apparatus 10 of another machine, the arithmetic unit 11 of each measurement instruction apparatus 10 stores the notified other machine output in its own measured value database 421.

次に演算装置11の他機出力取得部413は、他の計測指令装置10から、電力系統2に接続していると判断した全ての他機の他機出力を、通信ネットワーク50を介して取得する(S715、図6のS613)。   Next, the other-device output acquisition unit 413 of the arithmetic device 11 acquires the other-device outputs of all the other devices determined to be connected to the power system 2 from the other measurement command devices 10 via the communication network 50. (S715, S613 in FIG. 6).

次に演算装置11の発電機出力合計部415は、計測した自機出力と、取得した全ての他機の他機出力とを合計して発電量合計を求める(S718、図6のS614)。   Next, the generator output totaling unit 415 of the arithmetic device 11 calculates the total power generation amount by summing the measured own device output and the acquired other device outputs (S718, S614 in FIG. 6).

次に演算装置11の地域要求量算出部416は、計測した現在周波数について周波数偏差ΔFを求め(図6のS615)、求めた周波数偏差ΔFに系統周波数特性定数Kを乗算し(図6のS616)、乗算した値にさらに発電量合計を乗算して(図6のS617)地域要求量ARを求める(S719)。   Next, the regional requirement amount calculation unit 416 of the arithmetic device 11 obtains a frequency deviation ΔF for the measured current frequency (S615 in FIG. 6), and multiplies the obtained frequency deviation ΔF by a system frequency characteristic constant K (S616 in FIG. 6). ) And multiplying the multiplied value by the total power generation amount (S617 in FIG. 6) to obtain the regional requirement amount AR (S719).

次に演算装置11のフィルタ処理部417は、求めた地域要求量ARについてフィルタ処理、即ち、地域要求量ARに含まれる極短周期成分を除去する平滑化処理、及び微動成分を除去する不感帯処理を行う(S720、図6のS618)。   Next, the filter processing unit 417 of the arithmetic unit 11 performs filtering processing on the obtained regional requirement amount AR, that is, smoothing processing that removes an extremely short period component included in the regional requirement amount AR, and dead zone processing that removes a fine movement component. (S720, S618 in FIG. 6).

次に演算装置11の配分処理部418は、フィルタ処理された地域要求量ARを、電力系統2に接続している各分散型電源3に課せられる条件(前述の制約条件や前述の第1乃至第3条件)に従い各分散型電源3に配分する(S721、図6のS619)。   Next, the distribution processing unit 418 of the arithmetic unit 11 applies the filtered area request amount AR to the conditions imposed on each of the distributed power sources 3 connected to the power system 2 (the above-described restriction conditions and the above-described first to first). The distributed power sources 3 are distributed according to the third condition) (S721, S619 in FIG. 6).

次に演算装置11の指令値入力部419は、配分処理部418によって自身が担当する分散型電源3に配分された地域要求量ARに応じた指令値(例えばLFC制御量)を生成し、生成した指令値を制御装置13に入力する(S722、図6のS620)。その後はS711に戻る。   Next, the command value input unit 419 of the arithmetic device 11 generates and generates a command value (for example, LFC control amount) corresponding to the regional request amount AR distributed to the distributed power source 3 that the distribution processing unit 418 is responsible for. The command value is input to the control device 13 (S722, S620 in FIG. 6). Thereafter, the process returns to S711.

=電力系統への接続状態の判断=
図4に示した演算装置11の接続状態取得部414は、通信ネットワーク50を介して自機と通信可能に接続している他機が電力系統2に接続しているか否か(電力系統2への電力の供給が可能な状態で電力系統2に接続しているか否か)を判断する。図4に示しているように、接続状態取得部414は、微小変動生成部4141、自機周波数変動算出部4142、他機周波数変動算出部4143、他局出力変動算出部4144、及び接続状態判断部4145を有する。
= Judgment of connection status to power system =
The connection state acquisition unit 414 of the arithmetic device 11 shown in FIG. 4 determines whether or not another device that is communicably connected to the own device via the communication network 50 is connected to the power system 2 (to the power system 2). Whether or not it is connected to the power system 2 in a state in which the power can be supplied. As shown in FIG. 4, the connection state acquisition unit 414 includes a minute variation generation unit 4141, own device frequency variation calculation unit 4142, other device frequency variation calculation unit 4143, other station output variation calculation unit 4144, and connection state determination. Part 4145.

このうち微小変動生成部4141は、制御装置13を制御することにより、自機出力に電力系統2の運用に殆ど影響を与えない程度の微小変動を与える。自機周波数変動算出部4142は、微小変動ΔPに対する自機周波数の変動ΔFを、ロックインアンプ1241を用いて算出する。他機周波数変動算出部4143は、微小変動ΔPに対する他機周波数の変動ΔFi(i=1,2,・・・n:nは自機と通信可能な他機の数)を、ロックインアンプ1241を用いて算出する。他機出力変動算出部4144は、微小変動ΔPに対する他機出力の変動ΔPi(i=1,2,・・・n)を、ロックインアンプ1241を用いて算出する。尚、図8に微小変動ΔP、自機周波数変動ΔF、他機周波数変動Fiの関係を示す。   Among these, the minute fluctuation generation unit 4141 controls the control device 13 to give the own output a minute fluctuation that hardly affects the operation of the power system 2. Self-machine frequency fluctuation calculation section 4142 calculates self-machine frequency fluctuation ΔF with respect to minute fluctuation ΔP using lock-in amplifier 1241. The other machine frequency fluctuation calculation unit 4143 calculates the fluctuation ΔFi (i = 1, 2,..., N: n is the number of other machines that can communicate with the own machine) of the other machine frequency with respect to the minute fluctuation ΔP. Calculate using. The other device output fluctuation calculation unit 4144 uses the lock-in amplifier 1241 to calculate the other device output fluctuation ΔPi (i = 1, 2,... N) with respect to the minute fluctuation ΔP. FIG. 8 shows the relationship between the minute fluctuation ΔP, the own machine frequency fluctuation ΔF, and the other machine frequency fluctuation Fi.

そして接続状態判断部4145は、自機周波数変動算出部4142により算出される自機周波数変動ΔFと他機周波数変動算出部4143により算出される他機周波数変動ΔFiとを比較する第1の比較、及び、微小変動ΔPと他機出力変動算出部4144により算出される他機出力変動ΔPiとを比較する第2の比較、のうちの少なくともいずれか(第1の比較と第2の比較の双方を行う場合を含む)を行うことにより、自機と通信可能に接続している他機が電力系統2に接続しているか否かを判断する。   Then, the connection state determination unit 4145 performs a first comparison that compares the own device frequency variation ΔF calculated by the own device frequency variation calculation unit 4142 with the other device frequency variation ΔFi calculated by the other device frequency variation calculation unit 4143, And at least one of the second comparisons for comparing the minute variation ΔP and the other device output variation ΔPi calculated by the other device output variation calculation unit 4144 (both the first comparison and the second comparison are performed). It is determined whether or not another device that is communicably connected to the own device is connected to the power system 2.

図9にロックインアンプ1241の構成を示している。同図に示すように、このロックインアンプ1241は、測定信号を必要とされる電圧に増幅するプリアンプ911、測定信号に含まれている高調波を除去するバンドパスフィルタ912、参照信号を矩形波に整形する波形整形回路913、参照信号と測定信号との間の位相差を調整する位相回路914、同期検波による周波数変換を行う同期検波回路915(PSD(Phase Sensitive Detecter))、及び同期検波回路915の出力信号から交流成分を除去し直流成分を取り出すローパスフィルタ916を備える。尚、ロックインアンプ1241は、同図に示した構成からなるものに限られない。例えばロックインアンプ1241として、位相調整が不要な2位相方式のロックインアンプ(Two Phase Lock-In Amplifier)を用いてもよい。   FIG. 9 shows the configuration of the lock-in amplifier 1241. As shown in the figure, this lock-in amplifier 1241 includes a preamplifier 911 that amplifies the measurement signal to a required voltage, a bandpass filter 912 that removes harmonics contained in the measurement signal, and a rectangular signal as a reference signal. A waveform shaping circuit 913 that shapes the signal, a phase circuit 914 that adjusts the phase difference between the reference signal and the measurement signal, a synchronous detection circuit 915 (PSD (Phase Sensitive Detector)) that performs frequency conversion by synchronous detection, and a synchronous detection circuit A low-pass filter 916 that removes the AC component from the output signal 915 and extracts the DC component is provided. The lock-in amplifier 1241 is not limited to the one having the configuration shown in FIG. For example, as the lock-in amplifier 1241, a two-phase lock-in amplifier that does not require phase adjustment may be used.

次に自機周波数変動算出部4142が図9に示した構成からなるロックインアンプ1241を用いて自機周波数変動ΔFを算出する仕組みについて説明する。尚、以下の説明では、ロックインアンプ1241に供給される測定信号及び参照信号を夫々次式のように表記する。
参照信号=ΔP・sin(ωt+α) ・・・式2
測定信号=F0・sin(ωt+β)=F1・sin(ωt+β)+F2・sin(ωt+β)+・・・+ΔF・sin(ωt+β)) ・・・式3
Next, a mechanism in which own device frequency fluctuation calculation section 4142 calculates own device frequency fluctuation ΔF using lock-in amplifier 1241 having the configuration shown in FIG. 9 will be described. In the following description, the measurement signal and the reference signal supplied to the lock-in amplifier 1241 are respectively expressed as the following equations.
Reference signal = ΔP · sin (ωt + α) Equation 2
Measurement signal = F 0 · sin (ω 0 t + β 0 ) = F 1 · sin (ω 1 t + β 1 ) + F 2 · sin (ω 2 t + β 2 ) +... + ΔF · sin (ωt + β)) Equation 3

尚、式2におけるΔPは微小変動の振幅、ωは微小変動の角周波数、αは微小変動の位相、tは時間である。また式3におけるFは測定信号の振幅、ωは測定信号の角周波数、βは測定信号の位相である。 In Equation 2, ΔP is the amplitude of minute fluctuation, ω is the angular frequency of minute fluctuation, α is the phase of minute fluctuation, and t is time. In Equation 3, F is the amplitude of the measurement signal, ω 0 is the angular frequency of the measurement signal, and β is the phase of the measurement signal.

ここで式2の参照信号と式3の測定信号を乗算すれば次のようになる。
参照信号×測定信号=ΔP・sin(ωt+α)×F0・sin(ωt+β)=(1/2)・ΔP・ΔFcos(α−β)−(1/2)・ΔP・ΔF・cos(2ωt+α+β)+(1/2)・ΔP×F1cos((ω−ω)t+α−β)−(1/2)・ΔP・F1cos((ω+ω)t+α+β)+・・・ ・・・式4
Here, multiplying the reference signal of Formula 2 by the measurement signal of Formula 3 gives the following.
Reference signal × measurement signal = ΔP · sin (ωt + α) × F 0 · sin (ω 0 t + β 0 ) = (1/2) · ΔP · ΔFcos (α−β) − (1/2) · ΔP · ΔF · cos (2ωt + α + β) + (1/2) · ΔP × F 1 cos ((ω−ω 1 ) t + α−β) − (1/2) · ΔP · F 1 cos ((ω + ω 1 ) t + α + β) +. ..Formula 4

ここで上式において、F1・sin(ωt+β)、F2・sin(ωt+β)等は除去対象となる成分であり、ΔF・sin(ωt+β)は測定対象成分である。上式において2ωt、ωt・・・についてはローパスフィルタ916によって除去される。また同期検波回路915によって参照信号と測定信号とが同期されることにより(α=β)、式4は(1/2)・ΔP・ΔFとなり、この値がDC出力としてロックインアンプ1241から出力される。従って、このDC出力を微小変動ΔPで除算すれば自機周波数変動ΔFを求めることができる。尚、以上と全く同様の方法で他機周波数変動ΔFi、及び他機出力変動ΔPiを求めることができる。 Here, in the above equation, F 1 · sin (ω 1 t + β 1 ), F 2 · sin (ω 2 t + β 2 ) and the like are components to be removed, and ΔF · sin (ωt + β) is a component to be measured. In the above equation, 2ωt, ω 1 t... Are removed by the low-pass filter 916. Further, when the reference signal and the measurement signal are synchronized by the synchronous detection circuit 915 (α = β), Equation 4 becomes (1/2) · ΔP · ΔF, and this value is output from the lock-in amplifier 1241 as a DC output. Is done. Accordingly, if the DC output is divided by the minute fluctuation ΔP, the own frequency fluctuation ΔF can be obtained. The other device frequency fluctuation ΔFi and the other device output fluctuation ΔPi can be obtained by the same method as described above.

図10は、以上のようにして算出された自機周波数変動ΔF、他機周波数変動ΔFi、及び他機出力変動ΔPiに基づき、他機が電力系統2に接続しているか否かを判断する処理(以下、接続状態判断処理S1000と称する。)を説明するフローチャートである。   FIG. 10 is a process for determining whether or not another machine is connected to the power system 2 based on the own machine frequency fluctuation ΔF, the other machine frequency fluctuation ΔFi, and the other machine output fluctuation ΔPi calculated as described above. It is a flow chart explaining (hereinafter referred to as connection state determination processing S1000).

同図に示すように、まず接続状態取得部414が、他機を特定する変数iに0を設定し(S1011)、続いて変数iに1を加算する(S1012)。次に自機周波数変動算出部4142が自機周波数変動ΔFを求める(S1013)。また他機周波数変動算出部4143が他機周波数変動ΔFiを求める(S1014)。さらに他機出力変動算出部4144が他機出力ΔPiを求める(S1015)。   As shown in the figure, the connection state acquisition unit 414 first sets 0 to a variable i that identifies another device (S1011), and then adds 1 to the variable i (S1012). Next, the own device frequency fluctuation calculation unit 4142 obtains the own device frequency fluctuation ΔF (S1013). In addition, the other apparatus frequency fluctuation calculation unit 4143 obtains the other apparatus frequency fluctuation ΔFi (S1014). Further, the other machine output fluctuation calculation unit 4144 obtains the other machine output ΔPi (S1015).

次に接続状態判断部4145が、自機周波数変動ΔFと他機周波数変動ΔFiとを比較する前述した第1の比較、及び、微小変動ΔPと他機出力変動ΔPiとを比較する前述した第2の比較のうちの少なくともいずれか(第1の比較と第2の比較の双方を行う場合を含む)を行うことにより、他機(iで特定される他機)が電力系統2に接続しているか否かを判断する(S1016)。   Next, the connection state determination unit 4145 compares the first comparison in which the own device frequency variation ΔF and the other device frequency variation ΔFi are compared, and the second comparison in which the minute variation ΔP is compared with the other device output variation ΔPi. By performing at least one of the comparisons (including the case where both the first comparison and the second comparison are performed), the other device (the other device identified by i) is connected to the power system 2. It is determined whether or not (S1016).

ここで第1の比較のみによって判断する場合には、自機周波数変動ΔFと他機周波数変動ΔFiとが一致すれば他機が電力系統2に接続していると判断し、自機周波数変動ΔFと他機周波数変動ΔFiとが一致しなければ他機が電力系統2に接続していないと判断する。尚、この一致不一致の判断は、例えば自機周波数変動ΔFと他機周波数変動ΔFiとの相関係数を求め、求めた相関係数が予め設定された閾値を超えるか否かを判断することにより行う。   Here, when judging only by the first comparison, if the own machine frequency fluctuation ΔF and the other machine frequency fluctuation ΔFi coincide with each other, it is judged that the other machine is connected to the power system 2, and the own machine frequency fluctuation ΔF. If the other device frequency fluctuation ΔFi does not match, it is determined that the other device is not connected to the power system 2. The coincidence / non-coincidence is determined by, for example, obtaining a correlation coefficient between the own apparatus frequency fluctuation ΔF and the other apparatus frequency fluctuation ΔFi and determining whether the obtained correlation coefficient exceeds a preset threshold value. Do.

また第2の比較のみによって判断する場合には、微小変動ΔPと他機出力変動ΔPiとが一致すれば他機が電力系統2に接続していると判断し、一致していなければ他機が電力系統2に接続していないと判断する。尚、この一致不一致の判断は、例えば微小変動ΔPと他機出力変動ΔPiとの相関係数を求め、求めた相関係数が予め設定された閾値を超えるか否かを判断することにより行う。   Further, when judging only by the second comparison, it is judged that the other device is connected to the electric power system 2 if the minute fluctuation ΔP and the other device output fluctuation ΔPi coincide with each other. It is determined that the power system 2 is not connected. The determination of coincidence / non-coincidence is performed by, for example, obtaining a correlation coefficient between the minute fluctuation ΔP and the other apparatus output fluctuation ΔPi and determining whether the obtained correlation coefficient exceeds a preset threshold value.

また第1の比較と第2の比較の双方を行って判断する場合には、自機周波数変動ΔFと他機周波数変動ΔFiとが一致し、かつ、微小変動ΔPと他機出力変動ΔPiとが一致すれば、他機が電力系統2に接続していると判断し、一方、自機周波数変動ΔFと他機周波数変動ΔFi、又は、微小変動ΔPと他機出力変動ΔPiのうちの少なくとも一方が不一致であれば、他機は電力系統2に接続していないと判断する。尚、この場合における一致不一致の判断は前述と同様に相関係数を求めることにより行う。   When both the first comparison and the second comparison are used for determination, the own apparatus frequency fluctuation ΔF and the other apparatus frequency fluctuation ΔFi coincide with each other, and the minute fluctuation ΔP and the other apparatus output fluctuation ΔPi are equal to each other. If they match, it is determined that the other machine is connected to the power system 2, while at least one of the own machine frequency fluctuation ΔF and the other machine frequency fluctuation ΔFi or the minute fluctuation ΔP and the other machine output fluctuation ΔPi is If they do not match, it is determined that the other device is not connected to the power system 2. In this case, the determination of coincidence / non-coincidence is performed by obtaining a correlation coefficient as described above.

図10のS1016において、他機(iで特定される他機)が電力系統2に接続していると判断した場合は(S1016:一致)S1017に進み、電力系統2に接続していないと判断した場合は(S1016:不一致)S1018に進む。   In S1016 of FIG. 10, when it is determined that another device (the other device specified by i) is connected to the power system 2 (S1016: coincidence), the process proceeds to S1017 and is determined not to be connected to the power system 2. If so (S1016: mismatch), the process proceeds to S1018.

S1017では、接続状態判断部4145が、接続状態管理テーブル422に、他機(iで特定される他機)が電力系統2に接続している旨を設定する。   In S1017, the connection state determination unit 4145 sets in the connection state management table 422 that another device (the other device specified by i) is connected to the power system 2.

S1018では、i=n(自機と通信可能な他機の数)か否かを判断する。もしiがnよりも小さければ(S1018:NO)、S1012に戻る。一方、i=nであれば(S1018:YES)処理が終了する。   In S1018, it is determined whether i = n (the number of other devices that can communicate with the own device). If i is smaller than n (S1018: NO), the process returns to S1012. On the other hand, if i = n (S1018: YES), the process ends.

以上に説明したように、分散型電源3(計測指令装置10)の夫々は、自機出力及び自機周波数を計測し、他の分散型電源3から送られてくる他機周波数及び他機出力を受信し、自機出力に微小変動を与え、微小変動に対する自機周波数の変動である自機周波数変動を取得し、微小変動に対する他機周波数の変動である他機周波数変動を取得し、自機周波数変動と他機周波数変動とを比較することにより、他の分散型電源3の電力系統2への接続状態を判断する。このため、分散型電源3の起動や停止、停電作業や運用変更等による系統の構成変更、各分散型電源3における出力調整しろの変更等により、電力系統2に接続する分散型電源3の接続状態に変化が生じた場合でも、分散型電源3(計測指令装置10)の夫々において他の分散型電源3の接続状態を判断することができ、分散型電源3の接続状態に応じて自律的な需給制御を適切に行うことができる。   As described above, each of the distributed power source 3 (measurement command device 10) measures its own device output and its own device frequency, and the other device frequency and other device output sent from the other distributed device 3. Is received, a small fluctuation is given to the own machine output, the own machine frequency fluctuation that is the fluctuation of the own machine frequency with respect to the minute fluctuation is obtained, and the other machine frequency fluctuation that is the fluctuation of the other machine frequency with respect to the minute fluctuation is obtained. By comparing the machine frequency fluctuation and the other machine frequency fluctuation, the connection state of the other distributed power source 3 to the power system 2 is determined. For this reason, the connection of the distributed power source 3 connected to the power system 2 by starting or stopping the distributed power source 3, changing the configuration of the system due to a power failure operation or operation change, changing the output adjustment margin in each distributed power source 3, etc. Even when the state changes, it is possible to determine the connection state of the other distributed power source 3 in each of the distributed power sources 3 (measurement command device 10), and autonomously according to the connection state of the distributed power source 3. Supply and demand control can be performed appropriately.

また分散型電源(計測指令装置10)の夫々は、自機周波数変動と他機周波数変動とを比較するとともに、微小変動と他機出力変動とを比較することにより、他の分散型電源3の電力系統への接続状態を判断することで、他の分散型電源3の接続状態をより確実に判断することができる。   Each of the distributed power sources (measurement command device 10) compares the frequency fluctuation of the own device with the frequency variation of the other device, and compares the minute variation with the output fluctuation of the other device, thereby By determining the connection state to the power system, the connection state of the other distributed power supply 3 can be determined more reliably.

以上に説明した実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることは勿論である。   Embodiment described above is for making an understanding of this invention easy, and does not limit this invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes the equivalents thereof.

1 電力供給システム
2 電力系統
3 分散型電源
4 負荷
10 計測指令装置
11 演算装置
12 計測装置
1241 ロックインアンプ
13 制御装置
50 通信ネットワーク
411 自機計測部
412 自機情報送信部
413 他機情報取得部
414 接続状態取得部
4141 微小変動生成部
4142 自機周波数変動算出部
4143 他機周波数変動算出部
4144 他機出力変動算出部
4145 接続状態判断部
415 発電機出力合計部
416 地域要求量算出部
417 フィルタ処理部
418 配分処理部
419 指令値入力部
421 計測値データベース
422 接続状態管理データベース
S700 自機指令値生成処理
S1000 接続状態判断処理
DESCRIPTION OF SYMBOLS 1 Electric power supply system 2 Electric power system 3 Distributed type power supply 4 Load 10 Measurement instruction apparatus 11 Arithmetic apparatus 12 Measuring apparatus 1241 Lock-in amplifier 13 Control apparatus 50 Communication network 411 Own machine measurement part 412 Own machine information transmission part 413 Other machine information acquisition part 414 Connection state acquisition unit 4141 Minute variation generation unit 4142 Own unit frequency variation calculation unit 4143 Other unit frequency variation calculation unit 4144 Other unit output variation calculation unit 4145 Connection state determination unit 415 Generator output total unit 416 Regional requirement calculation unit 417 Filter Processing unit 418 Distribution processing unit 419 Command value input unit 421 Measurement value database 422 Connection state management database S700 Own device command value generation processing S1000 Connection state determination processing

Claims (7)

電力系統に接続する互いに通信可能に接続された複数の分散型電源を含んで構成される電力供給システムの制御方法であって、
前記分散型電源の夫々が、
自機の出力である自機出力、及び前記電力系統の周波数である自機周波数を計測し、
他の前記分散型電源から送られてくる、前記電力系統の周波数である他機周波数、及び他の前記分散型電源の出力である他機出力を受信し、
前記自機出力に微小変動を与え、
前記微小変動に対する前記自機周波数の変動である自機周波数変動を取得し、
前記微小変動に対する前記他機周波数の変動である他機周波数変動を取得し、
前記自機周波数変動と前記他機周波数変動とを比較することにより、他の前記分散型電源の前記電力系統への接続状態を判断する
ことを特徴とする電力供給システムの制御方法。
A control method of a power supply system configured to include a plurality of distributed power sources connected to an electric power system so as to communicate with each other,
Each of the distributed power sources
Measure the own machine output that is the output of the own machine, and the own machine frequency that is the frequency of the power system,
Received from the other distributed power supply, the other machine frequency that is the frequency of the power system, and the other machine output that is the output of the other distributed power supply,
Give minute fluctuation to the output of the machine,
Obtain the own frequency fluctuation that is the fluctuation of the own frequency with respect to the minute fluctuation,
Obtain the other machine frequency fluctuation that is the fluctuation of the other machine frequency with respect to the minute fluctuation,
A control method of the power supply system, wherein the connection state of the other distributed power source to the power system is determined by comparing the frequency variation of the own device and the frequency variation of the other device.
請求項1に記載の電力供給システムの制御方法であって、
前記分散型電源の夫々が、
前記微小変動に対する前記他機出力の変動である他機出力変動を取得し、
前記自機周波数変動と前記他機周波数変動とを比較するとともに、前記微小変動と前記他機出力変動とを比較することにより、他の前記分散型電源の前記電力系統への接続状態を判断する
ことを特徴とする電力供給システムの制御方法。
It is a control method of the electric power supply system according to claim 1,
Each of the distributed power sources
Obtain the other device output fluctuation that is the fluctuation of the other device output with respect to the minute fluctuation,
The self-machine frequency fluctuation is compared with the other-machine frequency fluctuation, and the connection state of the other distributed power source to the power system is determined by comparing the minute fluctuation with the other-machine output fluctuation. A control method for an electric power supply system.
請求項1に記載の電力供給システムの制御方法であって、
前記分散型電源の夫々は、
前記自機出力と、前記判断により前記電力系統に接続していると判断した全ての前記他の分散型電源の前記他機出力とを合計することにより、前記電力系統における現在の発電機出力の合計である発電量合計を求め、
前記自機周波数と前記電力系統について設定されている基準周波数とに基づき、前記電力系統の周波数偏差を求め、
前記周波数偏差に系統周波数特性定数を乗算した値と前記発電量合計とを乗算することにより地域要求量を求め、
求めた前記地域要求量を所定の配分条件に従い前記分散型電源の夫々に配分し、
配分した前記地域要求量に基づき前記分散型電源の夫々の出力を制御するための指令値を生成する
ことを特徴とする電力供給システムの制御方法。
It is a control method of the electric power supply system according to claim 1,
Each of the distributed power sources
By summing the output of the own device and the outputs of all other distributed power sources determined to be connected to the power system by the determination, the current generator output of the power system Find the total power generation amount,
Based on the own machine frequency and the reference frequency set for the power system, to determine the frequency deviation of the power system,
By multiplying the frequency deviation by a value obtained by multiplying the frequency deviation by a system frequency characteristic constant and the total power generation amount, a regional requirement amount is obtained,
The obtained regional requirement amount is distributed to each of the distributed power sources according to a predetermined distribution condition,
A command value for controlling each output of the distributed power source is generated based on the allocated regional requirement amount. A control method for a power supply system, comprising:
請求項3に記載の電力供給システムの制御方法であって、
前記分散型電源の夫々は、
他の前記分散型電源から送られてくる当該他の分散型電源の出力可変域を示す情報を受信し、
前記他の前記分散型電源の前記出力が当該他の前記分散型電源の出力可変域の範囲内になるように前記指令値を生成する
ことを特徴とする電力供給システムの制御方法。
It is a control method of the electric power supply system according to claim 3,
Each of the distributed power sources
Receiving information indicating the output variable range of the other distributed power source sent from the other distributed power source;
The control method of the power supply system, wherein the command value is generated so that the output of the other distributed power source falls within the output variable range of the other distributed power source.
請求項4に記載の電力供給システムの制御方法であって、
前記出力可変域を示す情報は、出力上限値又は出力下限値のうちの少なくともいずれかを含む
ことを特徴とする電力供給システムの制御方法。
It is a control method of the electric power supply system according to claim 4,
The information indicating the output variable range includes at least one of an output upper limit value and an output lower limit value.
請求項3に記載の電力供給システムの制御方法であって、
前記配分条件は、
前記地域要求量を前記分散型電源の夫々に均等に配分するという条件、
前記地域要求量を前記分散型電源の夫々の出力の変化速度に応じて配分するという条件、及び
前記地域要求量を前記分散型電源の夫々の経済性に応じて配分するという条件
のうちのいずれかである
ことを特徴とする電力供給システム。
It is a control method of the electric power supply system according to claim 3,
The distribution condition is as follows:
A condition for equally distributing the regional demand to each of the distributed power sources;
Any of the condition that the regional requirement amount is distributed according to the change rate of the output of each of the distributed power sources, and the condition that the regional requirement amount is distributed according to the economics of each of the distributed power sources. A power supply system characterized by
電力系統に接続する互いに通信可能に接続された複数の分散型電源を含み、
前記分散型電源の夫々は、
自機の出力である自機出力、及び前記電力系統の周波数である自機周波数を計測する自機計測部、
他の前記分散型電源から送られてくる、前記電力系統の周波数である他機周波数、及び他の前記分散型電源の出力である他機出力を受信する他機情報受信部、
前記自機出力に微小変動を与える微小変動入力部、
前記微小変動に対する前記自機周波数の変動である自機周波数変動を取得する自機周波数変動取得部、
前記微小変動に対する前記他機周波数の変動である他機周波数変動を取得する他機周波数変動取得部、及び
前記自機周波数変動と前記他機周波数変動とを比較することにより、他の前記分散型電源の前記電力系統への接続状態を判断する接続状態判断部
を備えることを特徴とする電力供給システム。
Including a plurality of distributed power sources connected to a power grid so as to communicate with each other;
Each of the distributed power sources
A self-machine measurement unit that measures a self-machine output that is the output of the self-machine and a self-machine frequency that is a frequency of the power system;
Other device information receiving unit that receives the other device frequency that is the frequency of the power system and the other device output that is the output of the other distributed power source, sent from the other distributed power source,
A minute fluctuation input unit for giving minute fluctuations to the output of the own device,
A self-machine frequency fluctuation acquisition unit that acquires a self-machine frequency fluctuation that is a fluctuation of the self-machine frequency with respect to the minute fluctuation;
The other machine frequency fluctuation acquisition unit that acquires the other machine frequency fluctuation that is the fluctuation of the other machine frequency with respect to the minute fluctuation, and the other distributed type by comparing the own machine frequency fluctuation with the other machine frequency fluctuation. A power supply system comprising: a connection state determination unit that determines a connection state of a power supply to the power system.
JP2010058040A 2010-03-15 2010-03-15 Power supply system control method and power supply system Expired - Fee Related JP5295155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010058040A JP5295155B2 (en) 2010-03-15 2010-03-15 Power supply system control method and power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010058040A JP5295155B2 (en) 2010-03-15 2010-03-15 Power supply system control method and power supply system

Publications (2)

Publication Number Publication Date
JP2011193643A true JP2011193643A (en) 2011-09-29
JP5295155B2 JP5295155B2 (en) 2013-09-18

Family

ID=44797972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010058040A Expired - Fee Related JP5295155B2 (en) 2010-03-15 2010-03-15 Power supply system control method and power supply system

Country Status (1)

Country Link
JP (1) JP5295155B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135561A (en) * 2011-12-27 2013-07-08 Tokyo Gas Co Ltd Power output variation complementation system, and control device and program thereof
JP2015119629A (en) * 2013-12-19 2015-06-25 三菱電機株式会社 Finite time power control for smart grid distribution system
JP2021129433A (en) * 2020-02-14 2021-09-02 株式会社東芝 Power supply-demand control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000253585A (en) * 1999-02-25 2000-09-14 Matsushita Electric Works Ltd Distributed power supply system
JP2008187836A (en) * 2007-01-30 2008-08-14 Sanyo Electric Co Ltd System interconnection device and system
JP2009278834A (en) * 2008-05-16 2009-11-26 Chugoku Electric Power Co Inc:The Control method for power supply system, and power supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000253585A (en) * 1999-02-25 2000-09-14 Matsushita Electric Works Ltd Distributed power supply system
JP2008187836A (en) * 2007-01-30 2008-08-14 Sanyo Electric Co Ltd System interconnection device and system
JP2009278834A (en) * 2008-05-16 2009-11-26 Chugoku Electric Power Co Inc:The Control method for power supply system, and power supply system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135561A (en) * 2011-12-27 2013-07-08 Tokyo Gas Co Ltd Power output variation complementation system, and control device and program thereof
JP2015119629A (en) * 2013-12-19 2015-06-25 三菱電機株式会社 Finite time power control for smart grid distribution system
JP2021129433A (en) * 2020-02-14 2021-09-02 株式会社東芝 Power supply-demand control device
JP7286566B2 (en) 2020-02-14 2023-06-05 株式会社東芝 Power supply and demand controller

Also Published As

Publication number Publication date
JP5295155B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP6361304B2 (en) Battery control device, control device, battery control system, battery control method, and battery control support method
JP6070773B2 (en) Power control system and method
CN105406496B (en) A kind of isolated micro-capacitance sensor frequency modulation control method based on practical frequency response identification
JP5076157B2 (en) Distributed power supply system and system voltage stabilization method using this system
JP6892349B2 (en) Power supply and demand control device, power supply and demand control system, computer program for power supply and demand control, and power supply and demand control method
JP5700684B2 (en) Power generation output fluctuation compensation system, its control device, program
US20170338679A1 (en) Supply and demand adjustment system, supply and demand adjustment method, and supply and demand adjustment program
JP2011114899A (en) Method and apparatus for controlling load frequency
Tamrakar et al. Optimization-based fast-frequency estimation and control of low-inertia microgrids
JPWO2016158899A1 (en) Control device, device control device and control system
JP5268961B2 (en) Power supply system control method and power supply system
CN107591836B (en) Method and device for determining maximum permeability of distributed power supply
Xiao et al. Flat tie-line power scheduling control of grid-connected hybrid microgrids
JP2016194849A (en) Tidal flow calculation device, tidal flow calculation method, and program
JP5295155B2 (en) Power supply system control method and power supply system
JP2013038966A (en) Power supply unit
CN106712103B (en) A kind of micro-capacitance sensor voltage stabilizing control system and control method
JP5100764B2 (en) Method for measuring system frequency characteristic constant in power system and information processing apparatus used therefor
JP2018107919A (en) Power supply-demand control system, computer program for power supply-demand control and power supply-demand control method
WO2017056379A1 (en) Power control system and power control method
JP2017060325A (en) Load frequency controller, load frequency control method, and program
JP2020022320A (en) Power supply-demand control device, power supply-demand control system, computer program for power supply-demand control, and power supply-demand control method
KR20130074187A (en) System and method of demand response resource management of controlling frequency for building energy management
JP5306286B2 (en) Power supply system control method and power supply system
Liu System deployment and decentralized control of islanded AC microgrids without communication facility

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130611

R150 Certificate of patent or registration of utility model

Ref document number: 5295155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees