JP2011193077A - Optical transmission apparatus, optical transmission system, wavelength dispersion amount calculation method and dispersion compensation method - Google Patents

Optical transmission apparatus, optical transmission system, wavelength dispersion amount calculation method and dispersion compensation method Download PDF

Info

Publication number
JP2011193077A
JP2011193077A JP2010055531A JP2010055531A JP2011193077A JP 2011193077 A JP2011193077 A JP 2011193077A JP 2010055531 A JP2010055531 A JP 2010055531A JP 2010055531 A JP2010055531 A JP 2010055531A JP 2011193077 A JP2011193077 A JP 2011193077A
Authority
JP
Japan
Prior art keywords
transmission
chromatic dispersion
optical
transmission line
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010055531A
Other languages
Japanese (ja)
Other versions
JP5504989B2 (en
Inventor
Eiichi Horiuchi
栄一 堀内
Teruko Fujii
照子 藤井
Sota Yoshida
聡太 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010055531A priority Critical patent/JP5504989B2/en
Publication of JP2011193077A publication Critical patent/JP2011193077A/en
Application granted granted Critical
Publication of JP5504989B2 publication Critical patent/JP5504989B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To calculate a wavelength dispersion amount of a transmission line within a suitable range by taking into consideration a mixture rate of kinds of optical fibers constituting the transmission line. <P>SOLUTION: An optical transmission apparatus includes a device for calculating a range in which the mixture rate of kinds of optical fibers constituting a transmission line is covered by using the wavelength dispersion amount of at least one wavelength of the transmission line and the distance of the transmission line. In addition, the optical transmission apparatus includes a device for calculating a range in which the wavelength dispersion amount is covered by using the wavelength dispersion amount of at least one wavelength of the transmission line, the distance of the transmission line and a mixture rate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光ファイバケーブルの特性による信号品質劣化を補償する光伝送装置に関する。   The present invention relates to an optical transmission apparatus that compensates for signal quality degradation due to characteristics of an optical fiber cable.

WDM(Wavelength Division Multiplex)方式は、複数の異なる波長の光信号を1本の光ファイバ上に多重して伝送する方式である。同方式における個々の波長の伝送フォーマット、多重化形式、監視内容はITU−T(International Telecommunication Union Telecommunication Standardization Sector)勧告であるG.709 "Interfaces for the Optical Transport Network"に定められている。また、伝送装置間の接続に用いられる光ファイバーケーブルには、ITU−T勧告G.653 "Characteristics of a single-mode optical fiber and cable"で規定されるSMF(Single Mode Fiber)ケーブルやG.653" Characteristics of a dispersion-shifted single mode optical fiber and cable"で規定されるDSF(Dispersion Sifted Fiber)ケーブルが通常用いられている。   The WDM (Wavelength Division Multiplex) method is a method in which a plurality of optical signals having different wavelengths are multiplexed and transmitted on a single optical fiber. The transmission format, multiplexing format, and monitoring content of each wavelength in the system are ITU-T (International Telecommunication Union Telecommunication Standardization Sector) recommendations. 709 “Interfaces for the Optical Transport Network”. In addition, an optical fiber cable used for connection between transmission apparatuses includes ITU-T recommendation G.264. 653 "Characteristics of a single-mode optical fiber and cable" A DSF (Dispersion Sifted Fiber) cable defined by “653” Characteristics of a dispersion-shifted single mode optical fiber and cable ”is generally used.

しかし、これら光ファイバケーブルには、波長分散係数(Chromatic dispersion coefficient)、減衰係数(attenuation coefficient)、PMD係数(Polarization mode dispersion coefficient)などの、ファイバあるいはケーブルに対する固有の特性によって、光信号の劣化が生じる。WDM方式によって、高速光伝送を実現するためには、これらの分散特性が光信号の伝送に与える影響を補償することが必要である。   However, these optical fiber cables are subject to optical signal degradation due to the inherent characteristics of the fiber or cable, such as the chromatic dispersion coefficient, attenuation coefficient, and PMD coefficient (polarization mode dispersion coefficient). Arise. In order to realize high-speed optical transmission by the WDM system, it is necessary to compensate for the influence of these dispersion characteristics on optical signal transmission.

従来の装置では、個々の光伝送路(伝送装置間の光ファイバケーブル)での特定の波長の波長分散係数、分散スロープ係数、距離を予め設定しておき、複数の伝送路を経由した伝送を行う際は、予め設定した値から累積の分散補償量を算出して、可変分散補償器の設定値を決定している(例えば特許文献1)。   In the conventional device, the chromatic dispersion coefficient, dispersion slope coefficient, and distance of a specific wavelength in each optical transmission line (optical fiber cable between transmission apparatuses) are set in advance, and transmission via a plurality of transmission lines is performed. When performing, the accumulated dispersion compensation amount is calculated from a preset value, and the set value of the variable dispersion compensator is determined (for example, Patent Document 1).

特開2007−202009JP2007-202009

しかしながら、従来技術では、システムの構築時にすべての値を、事前に、正確に測定することは困難である上、測定のための特別な設備と期間が必要となり、システムを安価・早期に構築することが妨げられるという問題があった。また、算出の元となる数値が、不確定な幅を持った結果、累積の分散補償量も不確定な幅を持つため、適切な範囲内で補償値を探索することができず、算出に長時間必要となり、また、探索する範囲が不正確であったために誤った結果が算出されてしまうという問題があった。   However, with the conventional technology, it is difficult to accurately measure all values in advance when constructing the system, and special equipment and a period for measurement are required, and the system is constructed at low cost and early. There was a problem that was prevented. In addition, the numerical value that is the basis of the calculation has an uncertain width, so the accumulated dispersion compensation amount also has an uncertain width, so it is not possible to search for a compensation value within an appropriate range and There is a problem that a long time is required and an erroneous result is calculated because the search range is inaccurate.

また、システムによっては、隣接する伝送装置間の伝送路が、複数の光ファイバ・ケーブル(ピース)を接続することによって構成され、SMFとDSFに代表される複数種類のピースが混在している場合がある。この場合、光ファイバの分散、非線形効果はファイバの種別により異なり、その混在率により影響を受けることになることから、混在率を求めることが必要になる。しかしながら、光ファイバの混在率が考慮されていないという問題点があった。   In some systems, the transmission path between adjacent transmission devices is configured by connecting multiple optical fiber cables (pieces), and multiple types of pieces represented by SMF and DSF are mixed. There is. In this case, the dispersion and nonlinear effects of the optical fiber vary depending on the type of fiber and are affected by the mixing ratio, so it is necessary to obtain the mixing ratio. However, there is a problem that the mixing ratio of optical fibers is not taken into consideration.

本発明は、上記の課題を解決するためのものであり、伝送路を構成する光ファイバの種別と混在率の取り得る範囲を算出する手段を備え、また、混在率を用いて伝送路の波長分散量の取り得る範囲を算出することを目的とする。   The present invention is for solving the above-described problems, and includes a means for calculating a possible range of the type and the mixing ratio of optical fibers constituting the transmission path, and using the mixing ratio, the wavelength of the transmission path The purpose is to calculate the possible range of dispersion.

本発明にかかる光伝送装置は、伝送路の少なくとも1つの波長の波長分散量と、該伝送路の距離とを用いて、該伝送路を構成する光ファイバの種別と混在率の取り得る範囲を算出する手段を備える。   The optical transmission apparatus according to the present invention uses the chromatic dispersion amount of at least one wavelength of the transmission line and the distance of the transmission line to determine the range of possible types and mixing ratios of the optical fibers constituting the transmission line. Means for calculating are provided.

伝送路を構成する光ファイバの種別と混在率の取り得る範囲を算出できる。また、混在率を用いて伝送路の波長分散量の取り得る範囲を算出することを可能とする。   It is possible to calculate the possible range of the type and mixing ratio of optical fibers constituting the transmission path. In addition, it is possible to calculate a possible range of the chromatic dispersion amount of the transmission path using the mixing ratio.

この発明の実施の形態1における光伝送システムの構成図である。It is a block diagram of the optical transmission system in Embodiment 1 of this invention. この発明の実施の形態1における可変分散補償器に設定する分散補償量を決定する処理のシーケンスチャートである。It is a sequence chart of the process which determines the dispersion compensation amount set to the variable dispersion compensator in Embodiment 1 of this invention. この発明の実施の形態1における光ファイバの種別に応じた波長分散係数の取り得る範囲を示す図である。It is a figure which shows the range which the wavelength dispersion coefficient according to the kind of optical fiber in Embodiment 1 of this invention can take. この発明の実施の形態1における光ファイバの種別の混在率の取り得る範囲を示す図である。It is a figure which shows the range which can take the mixing rate of the kind of optical fiber in Embodiment 1 of this invention. この発明の実施の形態1における情報記憶部203に記録されるレコードの構成例である。It is a structural example of the record recorded on the information storage part 203 in Embodiment 1 of this invention.

実施の形態1.
以下に、本実施の形態にかかる光伝送装置の実施の形態を図面に基づいて詳細に説明する。なお、以下の実施の形態は、本発明を具体化する際の一形態であって、本発明をその範囲内に限定するためのものではない。
Embodiment 1 FIG.
Hereinafter, embodiments of an optical transmission device according to the present embodiment will be described in detail with reference to the drawings. The following embodiment is an embodiment for embodying the present invention, and is not intended to limit the present invention within the scope thereof.

図1に本実施の形態にかかる光伝送システムの構成図を示す。図1は、WDM伝送のための送信、中継、受信を行う伝送装置101、102、103と、1台または複数の伝送装置を監視制御する管理装置201により構成されている。伝送装置101は、WDM送信機能を有し、伝送装置102はWDM中継機能を有し、伝送装置103はWDM受信機能を有する構成とする。伝送路105、106、107は、光ファイバ・ケーブルであり、伝送装置間で、波長多重された光信号を伝搬させる。   FIG. 1 shows a configuration diagram of an optical transmission system according to the present embodiment. FIG. 1 includes transmission apparatuses 101, 102, and 103 that perform transmission, relay, and reception for WDM transmission, and a management apparatus 201 that monitors and controls one or more transmission apparatuses. The transmission apparatus 101 has a WDM transmission function, the transmission apparatus 102 has a WDM relay function, and the transmission apparatus 103 has a WDM reception function. Transmission paths 105, 106, and 107 are optical fiber cables, and propagate wavelength-multiplexed optical signals between transmission apparatuses.

次に、伝送装置101の構成について説明する。光送信器111は、ユーザデータを1つの波長の光信号に変換して送信する機能を有する。伝送装置101には光送信器111が複数配置され、それぞれ異なる波長の光信号を生成する。光合波器121は、複数の光送信器111から生成された波長の異なる光信号を多重する。光増幅器131は、多重化された光のパワーを増幅して送信する。カプラ125は、光を分岐または結合する。監視制御部141は、監視制御光を送受信し、後述の説明では2波長の監視制御光を用いて波長分散の測定を行う。また、監視制御部141は管理装置201と監視制御のための通信、および伝送装置101内の各部を監視制御する機能を有する。   Next, the configuration of the transmission apparatus 101 will be described. The optical transmitter 111 has a function of converting user data into an optical signal of one wavelength and transmitting it. A plurality of optical transmitters 111 are arranged in the transmission apparatus 101 and generate optical signals having different wavelengths. The optical multiplexer 121 multiplexes the optical signals having different wavelengths generated from the plurality of optical transmitters 111. The optical amplifier 131 amplifies the power of the multiplexed light and transmits it. The coupler 125 branches or couples light. The supervisory control unit 141 transmits and receives supervisory control light, and measures wavelength dispersion using supervisory control light of two wavelengths in the following description. The monitoring control unit 141 has a function of monitoring and controlling each unit in the transmission apparatus 101 and communication for monitoring control with the management apparatus 201.

次に、伝送装置102の構成について説明する。固定分散補償器151は、受信した光の波長分散を補償するが、分散補償量の変更が出来ない特性を持つ。光増幅器132は、受信した光のパワーを増幅する。光スイッチ161は光信号を別経路に出力する機能を有し、図1では伝送装置101から受信した光信号を伝送路106または伝送路107に転送する。また、光増幅器133、監視制御部142は、ぞれぞれ、前述の光増幅器131、監視制御部141と同様の機能を有する。また、光カプラ126、127は、前述の光カプラ125と同様の機能を有する。   Next, the configuration of the transmission apparatus 102 will be described. The fixed dispersion compensator 151 compensates for the chromatic dispersion of the received light, but has a characteristic that the dispersion compensation amount cannot be changed. The optical amplifier 132 amplifies the power of the received light. The optical switch 161 has a function of outputting an optical signal to another path. In FIG. 1, the optical switch 161 transfers the optical signal received from the transmission apparatus 101 to the transmission path 106 or the transmission path 107. The optical amplifier 133 and the monitoring control unit 142 have the same functions as the optical amplifier 131 and the monitoring control unit 141, respectively. The optical couplers 126 and 127 have the same function as the above-described optical coupler 125.

次に、伝送装置103の構成について説明する。光分波器191は、波長多重された光を1波長毎の光に分離する。可変分散補償器171は、本実施の形態では、1波長につき1台設置されており、分波された光信号に対して、波長分散を補償し、かつ分散補償量の変更が可能な特性を有する。光受信器181は、分波された1波長を受信して、ユーザデータに変換する。また、その際、受信したビットの誤り数をカウントする機能を有する。ビット誤りは、FEC(Forward Error Correction)の情報を光送信器111にて送信データに付加して光信号を送信し、光受信器181にて参照することにより検出可能である。また、固定分散補償器152、光増幅器134、監視制御部143、光カプラ128は、ぞれぞれ、前述の固定分散補償器151、光増幅器131、監視制御部141、光カプラ125と同様の機能を有する。   Next, the configuration of the transmission apparatus 103 will be described. The optical demultiplexer 191 separates the wavelength-multiplexed light into light for each wavelength. In the present embodiment, one tunable dispersion compensator 171 is installed for each wavelength, and has a characteristic capable of compensating chromatic dispersion for a demultiplexed optical signal and changing the dispersion compensation amount. Have. The optical receiver 181 receives the demultiplexed wavelength and converts it into user data. At that time, it also has a function of counting the number of received bit errors. Bit errors can be detected by adding FEC (Forward Error Correction) information to the transmission data by the optical transmitter 111, transmitting an optical signal, and referring to the optical receiver 181. Further, the fixed dispersion compensator 152, the optical amplifier 134, the monitoring control unit 143, and the optical coupler 128 are the same as the above-described fixed dispersion compensator 151, the optical amplifier 131, the monitoring control unit 141, and the optical coupler 125, respectively. It has a function.

次に、管理装置201の構成について説明する。管理装置201は、伝送装置101、102、103を監視制御するための制御通信部204と、可変分散補償器171に設定した補償値を含む情報を記憶する情報記憶部203、および、光ファイバの混在率や可変分散補償器171に設定する分散補償値について演算するための演算処理部202を備える。   Next, the configuration of the management apparatus 201 will be described. The management device 201 includes a control communication unit 204 for monitoring and controlling the transmission devices 101, 102, and 103, an information storage unit 203 for storing information including compensation values set in the tunable dispersion compensator 171, and an optical fiber An arithmetic processing unit 202 is provided for calculating the mixing ratio and the dispersion compensation value set in the variable dispersion compensator 171.

次に、図2を用いて本実施の形態にかかる光伝送システムの動作内容について説明する。図2は、本実施の形態にかかる光伝送システムの可変分散補償器171に設定する分散補償値を決定する処理のシーケンスチャートである。まず、概略を説明する。図2のステップ1において、伝送装置101〜103は特定の波長の波長分散量と、伝送装置間の伝送路の距離を測定する。ステップ2において、管理装置201は波長分散量と伝送装置間の伝送路の距離を元に伝送路を構成するファイバの種別(SMF/DSF)と混在率の取り得る範囲を算出する。ステップ3において、管理装置201は混在率とファイバ種別に応じた特性値を元に、伝送路における波長分散量の取り得る範囲を算出する。ステップ4において、管理装置201は可変分散補償器171に設定すべき分散補償値の取り得る範囲を算出する。ステップ5において、管理装置201は分散補償値が取り得る範囲内での最適な分散補償値の探索動作を行う。ステップ6において、管理装置201は分散補償値の最終設定値を決定し、その情報をレコードに保存する。   Next, the operation content of the optical transmission system according to the present embodiment will be described with reference to FIG. FIG. 2 is a sequence chart of processing for determining a dispersion compensation value to be set in the variable dispersion compensator 171 of the optical transmission system according to the present embodiment. First, an outline will be described. In step 1 of FIG. 2, the transmission apparatuses 101 to 103 measure the chromatic dispersion amount of a specific wavelength and the distance of the transmission path between the transmission apparatuses. In step 2, the management apparatus 201 calculates a range of possible fiber types (SMF / DSF) and mixing ratios constituting the transmission path based on the chromatic dispersion amount and the transmission path distance between the transmission apparatuses. In step 3, the management apparatus 201 calculates a possible range of the amount of chromatic dispersion in the transmission path based on the characteristic value corresponding to the mixing ratio and the fiber type. In step 4, the management apparatus 201 calculates a possible range of dispersion compensation values to be set in the variable dispersion compensator 171. In step 5, the management apparatus 201 searches for an optimum dispersion compensation value within a range that the dispersion compensation value can take. In step 6, the management apparatus 201 determines the final setting value of the dispersion compensation value and stores the information in a record.

次に、ステップ1の動作について説明する。本実施の形態における光伝送システムでは、伝送路における、ある特定の波長についての波長分散量を測定する。隣接する装置間の伝送路の波長分散量を測定は、ITU−T勧告G.709にて定義されるOSC(Optical supervisory channel)光といった、ユーザデータ(ペイロード)のデータ伝送を行う波長とは異なる波長の監視制御光用波長を使う。伝送装置101の監視制御部141は監視制御光用波長である2つの波長の異なる光信号を送信し、伝送装置102の監視制御部142が光信号を受信し、光信号間の伝送遅延差を測定することで、2つの波長の中間波長についての波長分散量を算出する。2つの波長(単位:nm)をλ1、λ2とし、それぞれの波長を持つ光信号の伝送遅延差(到達時間差。単位:ps)をTとすると、波長分散量vは下記の計算によって求められる。 Next, the operation of step 1 will be described. In the optical transmission system in the present embodiment, the amount of chromatic dispersion for a specific wavelength in the transmission path is measured. The chromatic dispersion amount of a transmission line between adjacent devices is measured by ITU-T Recommendation G.3. A wavelength for supervisory control light having a wavelength different from the wavelength for performing data transmission of user data (payload) such as OSC (Optical supervisory channel) light defined in 709 is used. The supervisory control unit 141 of the transmission apparatus 101 transmits optical signals having two wavelengths that are the wavelengths for supervisory control light, the supervisory control part 142 of the transmission apparatus 102 receives the optical signal, and determines the transmission delay difference between the optical signals. By measuring, the amount of chromatic dispersion for the intermediate wavelength of the two wavelengths is calculated. If the two wavelengths (unit: nm) are λ 1 and λ 2 and the transmission delay difference (arrival time difference, unit: ps) of an optical signal having each wavelength is T, the chromatic dispersion amount v is obtained by the following calculation. It is done.

Figure 2011193077
Figure 2011193077

ただし、波長分散量vは、波長によって異なるため、波長λの関数v(λ)になる。上記の波長分散量vは、2つの波長の中間となる波長λm=(λ21)/2に対する波長分散量v(λm)と見なすことができる。また、同様に、監視制御部142から送られる光信号によって監視制御部143は伝送路106の波長分散量vを測定する。 However, since the chromatic dispersion amount v varies depending on the wavelength, it becomes a function v (λ) of the wavelength λ. The above chromatic dispersion amount v can be regarded as a chromatic dispersion amount v (λ m ) for a wavelength λ m = (λ 2 + λ 1 ) / 2 which is an intermediate between the two wavelengths. Similarly, the monitoring control unit 143 measures the chromatic dispersion amount v of the transmission line 106 based on the optical signal sent from the monitoring control unit 142.

また、ステップ1では伝送装置102、103は伝送装置間の伝送路105、106の距離dを測定する。距離dを測定するためには、伝送路による伝送遅延時間が必要となる。本実施の形態では以下の方法によって距離dを測定する。   In step 1, the transmission apparatuses 102 and 103 measure the distance d of the transmission paths 105 and 106 between the transmission apparatuses. In order to measure the distance d, a transmission delay time through the transmission path is required. In the present embodiment, the distance d is measured by the following method.

伝送装置Aが送信したデータAを伝送装置Bで受信した後直ちに、伝送装置Bが直ちにデータBを伝送装置Aに送信することで、伝送装置AはデータAを送信した時間を起点として、データBを受信するまでの時間を計測する。この時間は、伝送路を往復した時間である。従って、これを2で除した値が、片道の伝送遅延時間である。光ファイバ中の光の伝搬速度は既に知られている値であるため、伝送遅延時間に伝搬速度を乗ずることで、伝送路の距離を得ることができる。厳密には、光ファイバ中の光の伝搬速度は、ファイバの種別、波長によって僅かに異なるが、光の伝搬速度全体に対して微小であるため、距離の測定に関しては、ファイバ種別、波長の依存性を考慮する必要は無い。図1では、伝送装置101から伝送装置102への片方向の光伝送のための構成を示しているが、伝送装置102にも伝送装置101に対して光信号を送信することができる光送信器を備えて、伝送装置102から伝送装置101の逆方向についても伝送路(光ファイバケーブル)が接続されているとし、また、双方向の伝送路が同距離であるとすれば、以上で述べた方法により、距離を得ることが可能である。   Immediately after the transmission device B receives the data A transmitted by the transmission device A, the transmission device B immediately transmits the data B to the transmission device A, so that the transmission device A starts from the time when the data A was transmitted. Time until B is received is measured. This time is the time when the transmission path is reciprocated. Therefore, the value obtained by dividing this by 2 is the one-way transmission delay time. Since the propagation speed of light in the optical fiber is a known value, the transmission path distance can be obtained by multiplying the transmission delay time by the propagation speed. Strictly speaking, the propagation speed of light in an optical fiber varies slightly depending on the type and wavelength of the fiber, but it is very small relative to the entire propagation speed of light, so the distance measurement depends on the fiber type and wavelength. There is no need to consider sex. Although FIG. 1 shows a configuration for one-way optical transmission from the transmission apparatus 101 to the transmission apparatus 102, an optical transmitter capable of transmitting an optical signal to the transmission apparatus 101 also to the transmission apparatus 102. If the transmission path (optical fiber cable) is also connected in the reverse direction from the transmission apparatus 102 to the transmission apparatus 101, and the bidirectional transmission path is the same distance, The distance can be obtained by the method.

具体的には、監視制御部142が監視制御部141に監視制御光を送信し、それを監視制御部141にて受信した後、監視制御部141から監視制御部142に監視制御光を送信する。監視制御部142はこれを受信し、伝送遅延時間を算出する。これによって監視制御部142は伝送路105の距離dを得る。同様の方法にて監視制御部143は伝送路106の距離dを測定する。   Specifically, the monitoring control unit 142 transmits the monitoring control light to the monitoring control unit 141, receives the monitoring control light by the monitoring control unit 141, and then transmits the monitoring control light from the monitoring control unit 141 to the monitoring control unit 142. . The monitoring control unit 142 receives this and calculates the transmission delay time. As a result, the monitoring control unit 142 obtains the distance d of the transmission path 105. The monitoring control unit 143 measures the distance d of the transmission path 106 by the same method.

次に、ステップ2の動作について説明する。ステップ2では、管理装置201が波長分散量、距離の測定結果を元に、ファイバの種別(SMF/DSF)に応じた波長分散特性値を用いて、ファイバの種別(SMF/DSF/両者混在)と、ファイバの混在率の取り得る範囲を特定する。図3は、λmを海底ケーブルなどの比較的長距離の光通信システムなどで用いられるC帯域(1526nm〜1570nm)の波長としたとき、ファイバの種別(SMF/DSF)に応じた、波長(横軸)と波長分散係数(縦軸)の範囲の関係を示した例である。以降の説明においては、上記の波長地域であることを前提とする。波長分散係数は、単位距離(km)あたりの波長分散量であり、伝送路上のファイバの材料・構造が同一であれば、伝送路の波長分散量は、波長分散係数に距離を乗じた値となる。ITU−T勧告G.652、G.653において、それぞれのファイバ種別に応じた、ゼロ分散波長、波長分散係数、波長分散スロープ係数の上限値、下限値について推奨値が規定されており、これらの値を本実施の形態において用いることが可能である。また、推奨値以外にも、ファイバ製造時の保障性能や測定等により、実際に伝送システムに用いられている光ファイバの波長分散係数等の特性の取り得る範囲が判明している場合には、それらの値を用いても良い。また、以下の説明では最大値、最小値を用いるが、必ずしも最大値、最小値でなくとも良く、算出に用いる定数は適宜変えることができる。後述する波長分散スロープ係数も同様である。図3において、波長λmに対するDSFの波長分散係数の最小値Cdminm)、最大値Cdmaxm)、波長λmに対するSMFの最小値Csminm)、最大値Csmaxm)である。 Next, the operation of step 2 will be described. In step 2, the management apparatus 201 uses the chromatic dispersion characteristic value according to the fiber type (SMF / DSF) based on the measurement result of the chromatic dispersion amount and distance, and uses the fiber type (SMF / DSF / both mixed). And the range of possible fiber mixing ratios. FIG. 3 shows the wavelength (in accordance with the type of fiber (SMF / DSF)) when λ m is the wavelength of the C band (1526 nm to 1570 nm) used in a relatively long-distance optical communication system such as a submarine cable. This is an example showing the relationship between the range of the horizontal axis) and the wavelength dispersion coefficient (vertical axis). In the following description, it is assumed that the wavelength region is the above. The chromatic dispersion coefficient is a chromatic dispersion amount per unit distance (km). If the fiber material and structure on the transmission line are the same, the chromatic dispersion amount of the transmission line is obtained by multiplying the chromatic dispersion coefficient by the distance. Become. ITU-T Recommendation G. 652, G.G. In 653, recommended values are defined for the upper limit value and the lower limit value of the zero dispersion wavelength, the chromatic dispersion coefficient, and the chromatic dispersion slope coefficient according to each fiber type, and these values are used in the present embodiment. Is possible. In addition to the recommended values, if the range that can be taken by characteristics such as the chromatic dispersion coefficient of the optical fiber actually used in the transmission system is known by the guaranteed performance and measurement at the time of fiber manufacture, Those values may be used. Moreover, although the maximum value and the minimum value are used in the following description, the maximum value and the minimum value are not necessarily required, and constants used for calculation can be changed as appropriate. The same applies to the wavelength dispersion slope coefficient described later. 3, the minimum value Cd minm) of the wavelength dispersion coefficient of the DSF for the wavelength lambda m, the maximum value Cd maxm), the minimum value of the SMF with respect to the wavelength λ m Cs min (λ m) , the maximum value Cs maxm ).

ステップ1で測定した波長分散量v、距離dを使って、以下の計算により、混在率rの取り得る範囲を算出する。ある伝送路におけるSMFピースの占める割合をrとすると、DSFピースは1−rと表すことができる。例えば、r=1の場合、伝送路はSMFのみで構成され、r=0の場合、伝送路はDSFのみで構成されると判断することができる。
すなわち、混在率rを算出することによって、伝送路を構成する光ファイバの種別を特定することができる。混在率rを用いると伝送路は距離d×rのSMFピースと、距離d×(1−r)のDSFピースにより構成されることから、以下の式が成り立つ。
Using the chromatic dispersion amount v and the distance d measured in step 1, the possible range of the mixture ratio r is calculated by the following calculation. If the proportion of the SMF piece in a certain transmission line is r, the DSF piece can be expressed as 1-r. For example, when r = 1, it can be determined that the transmission path is composed only of SMF, and when r = 0, the transmission path is composed only of DSF.
That is, by calculating the mixing ratio r, it is possible to identify the type of optical fiber that constitutes the transmission path. When the mixing ratio r is used, the transmission path is composed of an SMF piece having a distance d × r and a DSF piece having a distance d × (1−r), and therefore the following equation is established.

Figure 2011193077
Figure 2011193077

これを、混在率rについて書くと、以下の式になる。 When this is written for the mixing ratio r, the following equation is obtained.

Figure 2011193077
Figure 2011193077

上式によりSMFとDSFが混在している場合の混在率rの取り得る範囲(rmin≦r≦rmax)が決まる。混在率rの取り得る範囲を図示すると、図4のようになる。数式3によって、伝送路の少なくとも1つの波長の波長分散量と、伝送路の距離とを用いて伝送路を構成する光ファイバの種別の混在率の取り得る範囲を算出することが可能となる。 The above range determines the range (r min ≦ r ≦ r max ) that the mixing ratio r can take when SMF and DSF are mixed. A possible range of the mixing ratio r is illustrated in FIG. By Equation 3, it is possible to calculate a possible range of the mixing ratio of the types of optical fibers constituting the transmission path using the chromatic dispersion amount of at least one wavelength of the transmission path and the distance of the transmission path.

伝送路105に関して、管理装置201の演算処理部202は、制御通信部204を用いて、伝送装置102の監視制御部142より、波長分散量vと距離dを読み出す。またCdminm)、Cdmaxm)、Csminm)、Csmaxm)の値は、伝送路に依らない伝送システム全体に適用可能な値であり、演算処理部202を実現するプログラムまたは情報記憶部203の記憶領域に予め保持することが可能である。これらの値を参照し、数式3から混在率rの取り得る範囲を得る。演算処理部202はまた、同様の動作を行い、伝送路106に関しても、監視制御部143から、伝送路106についての波長分散量vと距離dを読み出し、混在率rの取り得る範囲を求める。 For the transmission path 105, the arithmetic processing unit 202 of the management apparatus 201 reads the chromatic dispersion amount v and the distance d from the monitoring control unit 142 of the transmission apparatus 102 using the control communication unit 204. The values of Cd minm ), Cd maxm ), Cs minm ), and Cs maxm ) are values that can be applied to the entire transmission system that does not depend on the transmission path. The program can be stored in advance in the storage area of the program that realizes the unit 202 or the information storage unit 203. With reference to these values, the range in which the mixing ratio r can be obtained from Equation 3 is obtained. The arithmetic processing unit 202 also performs the same operation, and also reads out the chromatic dispersion amount v and the distance d for the transmission path 106 from the monitoring control unit 143 for the transmission path 106, and obtains a possible range of the mixing ratio r.

次に、ステップ3の動作について説明する。ステップ3では、管理装置201が伝送路における、任意の波長λに対する波長分散量の取り得る範囲を算出する。ステップ2により、SMFの混在率rの取り得る範囲が確定すると、混在率rのSMF分と混在率(1−r )のDSF分に分け、ファイバ種別毎に異なる分散スロープ係数の最小値、最大値を元に、全体の波長分散量の取り得る幅を算出する。なお、分散スロープ係数(単位ps/nm/nm/km)とは、分散係数の単位波長(nm)あたりの変化量である。SMF分の波長分散スロープ係数Ss、DSF分の波長分散スロープ係数をSdとすると、波長λにおける伝送路の波長分散v(λ)は、以下の値となる。   Next, the operation of step 3 will be described. In step 3, the management apparatus 201 calculates a possible range of the chromatic dispersion amount for an arbitrary wavelength λ on the transmission line. When the possible range of the SMF mixing ratio r is determined in step 2, the SMF component of the mixing ratio r and the DSF component of the mixing ratio (1-r) are divided into the minimum and maximum dispersion slope coefficients that differ for each fiber type. Based on the value, the possible width of the entire chromatic dispersion amount is calculated. The dispersion slope coefficient (unit: ps / nm / nm / km) is the amount of change per unit wavelength (nm) of the dispersion coefficient. Assuming that the chromatic dispersion slope coefficient Ss for SMF and the chromatic dispersion slope coefficient for DSF are Sd, the chromatic dispersion v (λ) of the transmission line at the wavelength λ is as follows.

Figure 2011193077
Figure 2011193077

SMFの取り得る分散スロープ係数の最小値、最大値をそれぞれSsmin、Ssmaxとし、DSFの取り得る分散スロープ係数の最小値、最大値をそれぞれSdmin、Sdmaxとする。図3より分かる通り、Ssmax>Sdmax、Sdmin>Ssminの関係があり、また混在率rが小さくなれば波長分散係数の小さなDSFの割合が増加し、波長分散量v(λ)は小さくなるので、波長分散量v(λ)の取り得る範囲は、λ>λmの場合、 Let Ss min and Ss max be the minimum and maximum values of the dispersion slope coefficient that the SMF can take, and let Sd min and Sd max be the minimum and maximum values of the dispersion slope coefficient that the DSF can take. As can be seen from FIG. 3, there is a relationship of Ss max > Sd max , Sd min > Ss min , and if the mixing ratio r decreases, the proportion of DSFs having a small chromatic dispersion coefficient increases, and the chromatic dispersion amount v (λ) is Therefore, the possible range of the chromatic dispersion amount v (λ) is λ> λ m .

Figure 2011193077
Figure 2011193077

となる。上式におけるSsmin、Ssmax、Sdmin、Sdmaxは伝送路に依らない伝送システム全体に適用可能な値であり、演算処理部202を実現するプログラムまたは情報記憶部203の記憶領域に予め保持することが可能である。また、ステップ2において混在率rの取り得る範囲は求められているので、波長分散量v(λ)の取り得る範囲(vmin(λ)≦v(λ)≦vmax(λ))が決定される。演算処理部202は、SMFのみの場合(r=1)、DSFのみの場合(r=0)、SMFとDSFが混在している場合の伝送路に関して、それぞれ、任意の波長に対する波長分散量v(λ)の取り得る範囲を狭い範囲で特定し、後述するステップ5での波長分散補償量の探索範囲を狭めることができる。これによって、波長分散補償量の導出に係る時間の削減が可能となることに加え、絞られた範囲内で波長分散補償量を探索するので、精度良く、適正な波長分散補償量の導出が可能となる。 It becomes. Ss min , Ss max , Sd min , and Sd max in the above equation are values applicable to the entire transmission system that does not depend on the transmission path, and are stored in advance in a storage area of the program that realizes the arithmetic processing unit 202 or the information storage unit 203. Is possible. Further, since the possible range of the mixing ratio r is obtained in Step 2, the possible range of the chromatic dispersion amount v (λ) (v min (λ) ≦ v (λ) ≦ v max (λ)) is determined. Is done. The arithmetic processing unit 202 is configured to transmit a chromatic dispersion amount v for an arbitrary wavelength with respect to a transmission path when only SMF is used (r = 1), only when DSF is used (r = 0), and when SMF and DSF are mixed. The range that (λ) can take is specified in a narrow range, and the search range of the chromatic dispersion compensation amount in step 5 described later can be narrowed. As a result, the time required for deriving the chromatic dispersion compensation amount can be reduced, and the chromatic dispersion compensation amount is searched within a narrowed range, so that an appropriate chromatic dispersion compensation amount can be derived accurately. It becomes.

また、波長分散スロープ係数が既知でない場合には、図3で示した、波長分散係数の取り得る範囲に基づき、任意の波長に対する波長分散量の取り得る範囲を算出することも可能である。SMF、DSFの波長分散係数をそれぞれCs(λ)、Cd(λ)と記すと、下記式となる。   In addition, when the chromatic dispersion slope coefficient is not known, it is possible to calculate the possible range of the chromatic dispersion amount for an arbitrary wavelength based on the possible range of the chromatic dispersion coefficient shown in FIG. When the wavelength dispersion coefficients of SMF and DSF are written as Cs (λ) and Cd (λ), respectively, the following equations are obtained.

Figure 2011193077
Figure 2011193077

図3から分かるようにCdmax(λ)<Csmin(λ)であり、波長分散量v(λ)は、rが小さいほど、小さくなることから、さらに下記の式が成り立つ。 As can be seen from FIG. 3, Cd max (λ) <Cs min (λ), and the amount of chromatic dispersion v (λ) becomes smaller as r becomes smaller.

Figure 2011193077
Figure 2011193077

上記の式によっても、任意の波長の波長分散量v(λ)の取り得る範囲(vmin(λ)≦v(λ)≦vmax(λ))が決定される。尚、Cdmin(λ)、Cdmax(λ)、Csmin(λ)、Csmax(λ)の値は、伝送路に依らない伝送システム全体に適用可能な値であり、演算処理部202を実現するプログラムまたは情報記憶部203の記憶領域に予め保持することが可能である。数式5と7によって、伝送路の少なくとも1つの波長の波長分散量と、伝送路の距離と、伝送路を構成する光ファイバの種別の混在率とを用いて、伝送路の波長分散量の取り得る範囲を算出することができる。尚、実際の混在率rの値が算出前に判明している場合には、数式5、数式7のrmin、rmaxに、取り得る範囲ではなく、その値を代入して波長分散量の取り得る範囲を算出しても良い。 Also by the above formula, the range (v min (λ) ≦ v (λ) ≦ v max (λ)) that can be taken by the chromatic dispersion amount v (λ) of an arbitrary wavelength is determined. Note that the values of Cd min (λ), Cd max (λ), Cs min (λ), and Cs max (λ) are values applicable to the entire transmission system that does not depend on the transmission path. It is possible to store the program to be realized or the storage area of the information storage unit 203 in advance. Using Equations 5 and 7, the chromatic dispersion amount of the transmission line is calculated using the chromatic dispersion amount of at least one wavelength of the transmission line, the distance of the transmission line, and the mixing ratio of the types of optical fibers constituting the transmission line. The range to be obtained can be calculated. If the actual value of the mixing ratio r is known before the calculation, substitute the value for r min and r max in Equation 5 and Equation 7 for the chromatic dispersion amount. A possible range may be calculated.

次に、ステップ4の動作について説明する。ステップ4では、ステップ3で決定した波長分散量の取り得る範囲を導出する式と、情報記憶部203に保存されている伝送路の分散補償値(以下、補償値と略する。)に関する情報に基づき、1つまたは複数の伝送区間を経由する伝送路の分散補償量(以下、補償量と略する。)を決定する。最初に、演算処理部202は、情報記憶部203から補償量を求めようとしている伝送路と、同一の伝送路について記録されているレコードか、あるいは、補償量を求めようとしている伝送路が、記録されている伝送路の経由する伝送区間すべてを含んでいるレコードを探す。尚、このレコードは後述するステップ6にて蓄積される。伝送システムを新設した場合や、新設の伝送区間のみで構築されている場合等には、該当するレコードが存在しないのでステップ5に進む。   Next, the operation of step 4 will be described. In step 4, information relating to an equation for deriving a possible range of the chromatic dispersion amount determined in step 3 and information on a dispersion compensation value (hereinafter abbreviated as a compensation value) of the transmission path stored in the information storage unit 203 is included. Based on this, a dispersion compensation amount (hereinafter abbreviated as compensation amount) of the transmission path passing through one or a plurality of transmission sections is determined. First, the arithmetic processing unit 202 has a transmission line for which the compensation amount is to be obtained from the information storage unit 203 and a record recorded for the same transmission line, or a transmission line for which the compensation amount is to be obtained, Searches for a record that includes all the transmission sections that pass through the recorded transmission path. This record is accumulated in step 6 described later. When a transmission system is newly established, or when the transmission system is constructed with only a newly established transmission section, the corresponding record does not exist, and the process proceeds to step 5.

レコードの形式は、例えば、図5に示す形式であり、レコード#1には伝送路#1〜伝送路#Mを伝送区間とする経由する伝送路についての情報が記録されている。記録内容は伝送路#1〜伝送路#Mの送信端と受信端に対応する伝送装置の装置番号、および、伝送路#1〜伝送路#Mからなる伝送路を通過した際に必要となる、波長に対する補償値Hが記録されている。補償量を求めようとしている伝送路と、同一の伝送路について記録されているレコードがある場合には、本レコードに記録されている補償値Hを読み出すことによって、必要な補償量の情報を得ることができる。また、レコードに記録されている伝送路が、補償量を求めようとしている伝送路の、一部の伝送区間であってもそれを読み出し、レコードに記録がなかった伝送区間(補償値Hで補償されない区間)について、以下のように補償量を求める。   The format of the record is, for example, the format shown in FIG. 5, and the record # 1 records information about the transmission path that passes through the transmission path # 1 to the transmission path #M. The recorded contents are required when the transmission device number corresponding to the transmission end and the reception end of transmission path # 1 to transmission path #M and the transmission path consisting of transmission path # 1 to transmission path #M are passed. The compensation value H for the wavelength is recorded. When there is a record recorded for the same transmission path as the transmission path for which the compensation amount is to be obtained, the necessary compensation amount information is obtained by reading the compensation value H recorded in this record. be able to. Further, even if the transmission path recorded in the record is a part of the transmission section of the transmission path for which the compensation amount is to be obtained, it is read out, and the transmission section not recorded in the record (compensated with the compensation value H) The amount of compensation is calculated as follows for the non-permitted section).

まず、波長λに対して、任意の伝送路iについての波長分散v(λ)の取り得る範囲の最小値、最大値を前述の数式7を用いて、それぞれvmini(λ)、vmaxi(λ)とする(iは、1〜Nの整数、Nは、レコードに記録されていない残りの区間を経由する伝送路数)。これにより、1つまたは複数の伝送路を経由する、残りの区間全体の波長分散量v(λ)が取り得る範囲は、これらを合計したものであり、以下の式となる。 First, with respect to the wavelength λ, the minimum value and the maximum value of the possible range of the chromatic dispersion v (λ) for an arbitrary transmission line i are represented by v min i (λ), v max , respectively, using Equation 7 described above. Let i (λ) (i is an integer from 1 to N, and N is the number of transmission paths passing through the remaining section not recorded in the record). As a result, the range that can be taken by the chromatic dispersion amount v (λ) of the entire remaining section via one or a plurality of transmission paths is the sum of these, and the following equation is obtained.

Figure 2011193077
Figure 2011193077

i=1からNの伝送区間に関して、可変分散補償器171に設定すべき補償値は、伝送区間の波長分散量v(λ)から、各伝送路における固定分散補償器の補償量を減じた値である。固定分散補償器の補償量は、その製造元などにおいて測定することにより、既知とすることが容易である。そこで、固定分散補償器の補償量の取り得る範囲の最小値、最大値をそれぞれcmini(λ)、cmaxi(λ)とすると、補償値Hで補償されない区間に関する波長分散量は以下となる。 For the transmission interval from i = 1 to N, the compensation value to be set in the tunable dispersion compensator 171 is a value obtained by subtracting the compensation amount of the fixed dispersion compensator in each transmission path from the chromatic dispersion amount v (λ) of the transmission interval. It is. The compensation amount of the fixed dispersion compensator can be easily known by measuring it at the manufacturer. Therefore, assuming that the minimum value and the maximum value of the range that can be taken by the compensation amount of the fixed dispersion compensator are c min i (λ) and c max i (λ), respectively, the chromatic dispersion amount relating to the section not compensated by the compensation value H is as follows: It becomes.

Figure 2011193077
Figure 2011193077

尚、固定分散補償器の補償量の幅が無視できるとした場合には取り得る値の最大値、最小値とするのではなく定数cとしてもよい。 If the range of the compensation amount of the fixed dispersion compensator is negligible, the constant c may be used instead of the maximum and minimum possible values.

以上より、伝送路全体に対して、可変分散補償器に設定する補償値の範囲は、読み出したレコードに記録された補償値Hと併せ、以下の式となる。   As described above, the range of the compensation value set in the tunable dispersion compensator for the entire transmission line is expressed by the following equation together with the compensation value H recorded in the read record.

Figure 2011193077
Figure 2011193077

演算処理部202は、以上の演算により、可変分散補償器171に設定する補償値v(λ)+Hの範囲を算出する。 The arithmetic processing unit 202 calculates the range of the compensation value v (λ) + H set in the variable dispersion compensator 171 by the above calculation.

次に、ステップ5の動作について説明する。ステップ5では、管理装置201は前述の数式10で求めた補償値v(λ)+Hの範囲内で、可変分散補償器171の最終的に使用する補償値の探索を制御する。まず、管理装置201はステップ4で算出した補償値v(λ)+Hの取り得る範囲内を可変分散補償器171に設定する。可変分散補償器171はその範囲内で初期値を設定し、検出可能なビット誤りの単位時間あたりの発生率(以下、ビット誤り率とする。)を計測する。そして、管理装置201の制御に基づき、可変分散補償器171はビット誤り率の情報に基づき補償値を順次変更し、最も誤り率の少ない補償値が最適補償値として算出される。また、この範囲内で、所望の品質(規定のビット誤り率以下)が得られなかった時、補償値の設定を失敗とする。   Next, the operation of step 5 will be described. In step 5, the management apparatus 201 controls the search for the compensation value to be finally used by the tunable dispersion compensator 171 within the range of the compensation value v (λ) + H obtained by the above-described Expression 10. First, the management apparatus 201 sets a variable dispersion compensator 171 within a range that the compensation value v (λ) + H calculated in step 4 can take. The tunable dispersion compensator 171 sets an initial value within the range, and measures the rate of occurrence of detectable bit errors per unit time (hereinafter referred to as bit error rate). Based on the control of the management apparatus 201, the tunable dispersion compensator 171 sequentially changes the compensation value based on the bit error rate information, and the compensation value with the lowest error rate is calculated as the optimum compensation value. Also, when the desired quality (below the prescribed bit error rate) cannot be obtained within this range, the setting of the compensation value fails.

尚、光ファイバケーブルの波長分散量の取り得る範囲の他に、伝送路以外の装置内の部品が持つ分散、マージン等の値を付加することも可能である。また、最もビット誤り率の少ない補償値を最適補償値と決定するのではなく、ビット誤りの判定が出来た補償値の範囲の中心を最適補償値とするなどの、他の決定方法の採用も可能である。   In addition to the range of the chromatic dispersion amount of the optical fiber cable, it is possible to add values such as dispersion and margin of parts in the apparatus other than the transmission path. In addition, instead of determining the compensation value with the lowest bit error rate as the optimum compensation value, other determination methods such as setting the optimum compensation value at the center of the range of compensation values for which bit error can be determined may be adopted. Is possible.

次に、ステップ6について説明する。ステップ6では、管理装置201が得られた最適な補償値、経由する伝送路、および波長を図5に示された形式のレコードとして情報記憶部203に保存する。この情報は、先にステップ4に関して説明したように、次回以降に、同一、または別の伝送装置間の伝送路における可変分散補償器の補償値を算出する際に利用される。   Next, step 6 will be described. In step 6, the optimum compensation value obtained by the management apparatus 201, the transmission path through which it is transmitted, and the wavelength are stored in the information storage unit 203 as a record of the format shown in FIG. 5. This information is used when calculating the compensation value of the tunable dispersion compensator in the transmission path between the same or different transmission apparatuses after the next time, as described above with respect to step 4.

以上の構成、動作により、本実施の形態では、以下のような効果が得られる。ファイバ種別に基づく固定的な特性情報である、波長分散係数、波長分散スロープ係数を、予め保持するのみで済み、伝送路やシステムに依存した可変の情報を予め測定することや、設定する必要が無く、測定のための特別な設備も必要としないことから、可変分散補償器の補償値の決定を自動化し、安価に、短期間のうちにシステムの構築が可能となる。可変分散補償器に設定する補償値の取り得る範囲を限定することで、必要な最適補償値を得るまでに要する時間を短縮できる。また、可変分散補償器の探索する範囲を確定することで、精度の良い適正な補償量を得ることが出来ることに加え、範囲内で良好な伝送が得られない場合に、短時間で失敗と判断することが容易となる。さらには、伝送路を構成するファイバ種別の混在率の取り得る範囲を得ることで、波長分散以外に非線形効果等の光ファイバの他の伝送特性を制御する際の情報として利用することが可能となる。   With the above configuration and operation, the following effects can be obtained in the present embodiment. It is only necessary to hold in advance the chromatic dispersion coefficient and chromatic dispersion slope coefficient, which are fixed characteristic information based on the fiber type, and it is necessary to measure and set variable information depending on the transmission path and system in advance. In addition, since no special equipment for measurement is required, determination of the compensation value of the tunable dispersion compensator can be automated, and a system can be constructed at a low cost in a short period of time. By limiting the range of compensation values set in the tunable dispersion compensator, the time required to obtain the required optimum compensation value can be shortened. In addition to determining the range to be searched by the tunable dispersion compensator, it is possible to obtain an appropriate compensation amount with high accuracy, and in the case where good transmission cannot be obtained within the range, the failure is detected in a short time. It becomes easy to judge. Furthermore, by obtaining the range that the mixing ratio of the fiber types constituting the transmission path can take, it can be used as information when controlling other transmission characteristics of optical fibers such as nonlinear effects in addition to chromatic dispersion. Become.

尚、上記の説明はC帯域(1526nm〜1570nm)の波長を前提としたものであるが、他の波長帯域においても本発明は適用可能である。また、SMFとDSFの2種類について説明したが、本発明の適用は2種類に限られない。DSFにはNZ−DSF(Non-Zero Dispersion Shifted Fiber)も含まれるものとし、また、例えば、近距離通信に使用されるSI(Step index)型やGI(Graded-index)型などのMMF(Multi Mode Fiber)であっても適用可能である。   The above description is based on the premise of the wavelength in the C band (1526 nm to 1570 nm), but the present invention is applicable to other wavelength bands. Further, although two types of SMF and DSF have been described, the application of the present invention is not limited to two types. The DSF includes NZ-DSF (Non-Zero Dispersion Shifted Fiber). For example, an MMF (Multi Index) type such as SI (Step index) type or GI (Graded-index) type used for short-range communication is used. (Mode Fiber) is also applicable.

本実施の形態での光伝送装置は、混在率または波長分散量の取り得る範囲を算出する機能を備える管理装置201に対応する。すなわち、光伝送装置は、これらの機能を備える伝送装置101〜103またはその一部分のみならず、光伝送を管理する管理装置であってもよい。   The optical transmission apparatus according to the present embodiment corresponds to the management apparatus 201 having a function of calculating a possible range of the mixing ratio or the amount of chromatic dispersion. In other words, the optical transmission apparatus may be a management apparatus that manages optical transmission as well as the transmission apparatuses 101 to 103 having these functions or a part thereof.

101〜103 伝送装置
105〜107 伝送路
111 光送信器
121 光合波器
125〜128 カプラ
131〜134 光増幅器
141〜143 監視制御部
151、152 固定分散補償器
161 光スイッチ
171 可変分散補償器
181 光受信器
191 光分波器
201 管理装置
202 演算処理部
203 情報記憶部
204 制御通信部
101-103 Transmission apparatus 105-107 Transmission path 111 Optical transmitter 121 Optical multiplexer 125-128 Coupler 131-134 Optical amplifier 141-143 Monitoring controller 151, 152 Fixed dispersion compensator 161 Optical switch 171 Variable dispersion compensator 181 Light Receiver 191 Optical demultiplexer 201 Management device 202 Arithmetic processing unit 203 Information storage unit 204 Control communication unit

Claims (11)

伝送路の少なくとも1つの波長の波長分散量と、該伝送路の距離とを用いて、該伝送路を構成する光ファイバの種別の混在率の取り得る範囲を算出する手段を備える光伝送装置。   An optical transmission apparatus comprising: means for calculating a possible range of a mixing ratio of types of optical fibers constituting the transmission path using a chromatic dispersion amount of at least one wavelength of the transmission path and a distance of the transmission path. 前記混在率の取り得る範囲を算出する手段を用いて、前記伝送路を構成する光ファイバの種別を特定する手段を備える請求項1に記載の光伝送装置。   The optical transmission apparatus according to claim 1, further comprising: means for specifying a type of optical fiber constituting the transmission path by using means for calculating a possible range of the mixing ratio. 前記混在率の取り得る範囲を算出する手段は、予め保持された波長分散係数を用いる請求項1に記載の光伝送装置。   The optical transmission apparatus according to claim 1, wherein the means for calculating a possible range of the mixing ratio uses a chromatic dispersion coefficient held in advance. 伝送路の少なくとも1つの波長の波長分散量と、該伝送路の距離と、該伝送路を構成する光ファイバの種別の混在率とを用いて、該伝送路の波長分散量の取り得る範囲を算出する手段を備える光伝送装置。   Using the chromatic dispersion amount of at least one wavelength of the transmission line, the distance of the transmission line, and the mixing ratio of the types of optical fibers constituting the transmission line, the range that the chromatic dispersion amount of the transmission line can take An optical transmission device comprising means for calculating. 前記波長分散量の取り得る範囲を算出する手段は、予め保持された波長分散係数、または、予め保持された波長分散スロープ係数を用いる請求項4に記載の光伝送装置。   The optical transmission apparatus according to claim 4, wherein the means for calculating a possible range of the chromatic dispersion amount uses a chromatic dispersion coefficient held in advance or a chromatic dispersion slope coefficient held in advance. 請求項4または5に記載の光伝送装置であって、
前記算出した波長分散量の取り得る範囲内で、可変分散補償器の分散補償量の設定値を決定する手段を備える光伝送装置。
The optical transmission device according to claim 4 or 5,
An optical transmission device comprising means for determining a set value of a dispersion compensation amount of a tunable dispersion compensator within a range that the calculated chromatic dispersion amount can take.
請求項6に記載の光伝送装置であって、
前記可変分散補償器への設定値と、その伝送路についての情報を記録する手段と、
該伝送路と同一の伝送路または該伝送路を伝送区間として含む伝送路について、前記記録された情報を参照して可変分散補償器の補償する波長分散量の取り得る範囲を算出する手段と、
を備える光伝送装置。
The optical transmission device according to claim 6,
A setting value for the tunable dispersion compensator, and means for recording information about the transmission path;
Means for calculating a possible range of the chromatic dispersion amount compensated by the tunable dispersion compensator with reference to the recorded information for the same transmission path as the transmission path or a transmission path including the transmission path as a transmission section;
An optical transmission device comprising:
請求項1乃至7に記載の光伝送装置によって構成される光伝送システム。   An optical transmission system comprising the optical transmission device according to claim 1. 伝送路の少なくとも1つの波長の波長分散量と該伝送路の距離を測定するステップと、
該伝送路を構成する光ファイバの種別の混在率の取り得る範囲を算出するステップと、
を含む波長分散量算出方法。
Measuring a chromatic dispersion amount of at least one wavelength of the transmission line and a distance of the transmission line;
Calculating a possible range of the mixing ratio of the types of optical fibers constituting the transmission path;
A chromatic dispersion amount calculation method including:
伝送路の少なくとも1つの波長の波長分散量と該伝送路の距離を測定するステップと、
該伝送路を構成する光ファイバの種別の混在率の取り得る範囲を算出するステップと、
測定した前記波長分散量と、前記伝送路の距離と、前記混在率とを用いて、伝送路の波長分散量の取り得る範囲を算出するステップと、を含む波長分散量算出方法。
Measuring a chromatic dispersion amount of at least one wavelength of the transmission line and a distance of the transmission line;
Calculating a possible range of the mixing ratio of the types of optical fibers constituting the transmission path;
A method for calculating a chromatic dispersion amount, comprising: calculating a possible range of the chromatic dispersion amount of the transmission line by using the measured chromatic dispersion amount, the distance of the transmission line, and the mixing ratio.
伝送路の少なくとも1つの波長の波長分散量と該伝送路の距離を測定するステップと、
該伝送路を構成する光ファイバの種別の混在率の取り得る範囲を算出するステップと、
測定した前記波長分散量と、前記伝送路の距離と、前記混在率とを用いて、伝送路の波長分散量の取り得る範囲を算出するステップと、
前記算出した波長分散量の範囲内で、可変分散補償器の分散補償量の設定値を決定するステップと、を含む分散補償方法。
Measuring a chromatic dispersion amount of at least one wavelength of the transmission line and a distance of the transmission line;
Calculating a possible range of the mixing ratio of the types of optical fibers constituting the transmission path;
Using the measured chromatic dispersion amount, the distance of the transmission line, and the mixing ratio, calculating a possible range of the chromatic dispersion amount of the transmission line;
Determining a set value of the dispersion compensation amount of the tunable dispersion compensator within the range of the calculated chromatic dispersion amount.
JP2010055531A 2010-03-12 2010-03-12 Optical transmission apparatus, optical transmission system, chromatic dispersion amount calculation method, and dispersion compensation method Expired - Fee Related JP5504989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010055531A JP5504989B2 (en) 2010-03-12 2010-03-12 Optical transmission apparatus, optical transmission system, chromatic dispersion amount calculation method, and dispersion compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010055531A JP5504989B2 (en) 2010-03-12 2010-03-12 Optical transmission apparatus, optical transmission system, chromatic dispersion amount calculation method, and dispersion compensation method

Publications (2)

Publication Number Publication Date
JP2011193077A true JP2011193077A (en) 2011-09-29
JP5504989B2 JP5504989B2 (en) 2014-05-28

Family

ID=44797585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010055531A Expired - Fee Related JP5504989B2 (en) 2010-03-12 2010-03-12 Optical transmission apparatus, optical transmission system, chromatic dispersion amount calculation method, and dispersion compensation method

Country Status (1)

Country Link
JP (1) JP5504989B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004215A1 (en) * 2018-06-29 2020-01-02 日本電信電話株式会社 Dispersion compensation system and dispersion compensation method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118590A (en) * 1997-04-25 1999-01-12 Oki Electric Ind Co Ltd Optical transmission system and supervisory and control method therefor
JP2000236297A (en) * 1999-02-16 2000-08-29 Fujitsu Ltd Method and system for optical transmission applied with dispersion compensation
JP2001069081A (en) * 1999-08-30 2001-03-16 Shin Etsu Chem Co Ltd Wavelength division multiplexed optical fiber communication system
JP2002228550A (en) * 2001-02-02 2002-08-14 Ando Electric Co Ltd Wavelength dispersion distribution measuring apparatus and measuring method
JP2007142855A (en) * 2005-11-18 2007-06-07 Nec Corp Optical signal transmission/reception system, optical wavelength multiplex transmission system, optical transmitter-receiver, and optical wavelength multiplex transmission method
JP2007202009A (en) * 2006-01-30 2007-08-09 Hitachi Communication Technologies Ltd Wdm transmission system
JP2008228002A (en) * 2007-03-14 2008-09-25 Fujitsu Ltd Dispersion compensation quantity setting method when adding optical transmission units in optical transmission apparatus, and optical transmission apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118590A (en) * 1997-04-25 1999-01-12 Oki Electric Ind Co Ltd Optical transmission system and supervisory and control method therefor
JP2000236297A (en) * 1999-02-16 2000-08-29 Fujitsu Ltd Method and system for optical transmission applied with dispersion compensation
JP2001069081A (en) * 1999-08-30 2001-03-16 Shin Etsu Chem Co Ltd Wavelength division multiplexed optical fiber communication system
JP2002228550A (en) * 2001-02-02 2002-08-14 Ando Electric Co Ltd Wavelength dispersion distribution measuring apparatus and measuring method
JP2007142855A (en) * 2005-11-18 2007-06-07 Nec Corp Optical signal transmission/reception system, optical wavelength multiplex transmission system, optical transmitter-receiver, and optical wavelength multiplex transmission method
JP2007202009A (en) * 2006-01-30 2007-08-09 Hitachi Communication Technologies Ltd Wdm transmission system
JP2008228002A (en) * 2007-03-14 2008-09-25 Fujitsu Ltd Dispersion compensation quantity setting method when adding optical transmission units in optical transmission apparatus, and optical transmission apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013046358; 藤井 照子,堀内 栄一,馬場 義昌,妹尾 尚一郎: '全光ネットワークのための波長分散補償量広告方式の検討' 電子情報通信学会技術研究報告. OCS, 光通信システム 109巻、103号, 20090618, P.37-P.41, 一般社団法人電子情報通信学会 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004215A1 (en) * 2018-06-29 2020-01-02 日本電信電話株式会社 Dispersion compensation system and dispersion compensation method
JP2020005165A (en) * 2018-06-29 2020-01-09 日本電信電話株式会社 Dispersion compensation system, and dispersion compensation method
US11251868B2 (en) 2018-06-29 2022-02-15 Nippon Telegraph And Telephone Corporation Dispersion compensation system and dispersion compensation method
JP7099088B2 (en) 2018-06-29 2022-07-12 日本電信電話株式会社 Dispersion compensation system and dispersion compensation method

Also Published As

Publication number Publication date
JP5504989B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
US7693365B2 (en) Dispersion mapping of transmitted channels in a WDM system
US7433599B2 (en) Automatic dispersion compensation device and compensation method
CN102652406B (en) Method and device for determining optical signal to noise ratio (osnr) cost
KR101392797B1 (en) Dynamic evaluation of the optical multiplex section per―channel pre―emphasis power
US7653310B2 (en) Wavelength division multiplex (WDM) transmission system
US8265485B2 (en) Optical transmission system and method for chromatic dispersion compensation
WO2009100148A1 (en) Dispersion mapping of transmitted channels in a wdm system
US7773839B2 (en) Optical dispersion compensation
US20080131116A1 (en) Optical power measurement apparatus and optical power measurement method
US10498439B2 (en) Method and device for determining the latency or length of an optical path, especially an optical fiber, of a fiber-optic transmission link
US20080089700A1 (en) Receiving apparatus, transmitting apparatus, receiving method, and transmitting method for optical signal dispersion compensation
JP2008005340A (en) Communication apparatus, line diagnostic method, program, and recording medium
US6687464B1 (en) Optimization of a communications system based on identification of an optical medium
US8326160B2 (en) Dispersion compensation device, optical reception device, method for dispersion compensation, and method for optical reception
JP2014023068A (en) Optical receiver and characteristics compensation method
JP2009177237A (en) Dispersion compensation device
JP5504989B2 (en) Optical transmission apparatus, optical transmission system, chromatic dispersion amount calculation method, and dispersion compensation method
CN108603803A (en) A kind of method and the network equipment measuring fiber dispersion coefficient
US20050074244A1 (en) Optimization of a communications system based on identification of an optical member
CN108781113A (en) Method and apparatus for providing pilot tone
JP2018011218A (en) Transmission quality estimation method and transmission quality estimation device
JP2003258726A (en) Dispersion compensation circuit and light receiving apparatus
JP4161491B2 (en) Optical communication system and signal channel assignment method
US7483125B2 (en) Method for wavelength independent dispersion penalty measurement
KR20160133874A (en) Optical communication device for compensating dispersion of optical signal according to the transmission distance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R151 Written notification of patent or utility model registration

Ref document number: 5504989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees