JP2011192437A - プラズマディスプレイパネル - Google Patents

プラズマディスプレイパネル Download PDF

Info

Publication number
JP2011192437A
JP2011192437A JP2010055727A JP2010055727A JP2011192437A JP 2011192437 A JP2011192437 A JP 2011192437A JP 2010055727 A JP2010055727 A JP 2010055727A JP 2010055727 A JP2010055727 A JP 2010055727A JP 2011192437 A JP2011192437 A JP 2011192437A
Authority
JP
Japan
Prior art keywords
oxide
base film
pdp
dielectric layer
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010055727A
Other languages
English (en)
Inventor
Takehito Zukawa
武央 頭川
Umi Hayashi
海 林
Susumu Ishibashi
将 石橋
Kyohei Yoshino
恭平 吉野
Kazuya Nomoto
和也 野本
Takuji Tsujita
卓司 辻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010055727A priority Critical patent/JP2011192437A/ja
Publication of JP2011192437A publication Critical patent/JP2011192437A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gas-Filled Discharge Tubes (AREA)

Abstract

【課題】高精細で高輝度の表示性能を備え、かつ低消費電力のプラズマディスプレイパネルを実現することを目的とする。
【解決手段】プラズマディスプレイパネルにおいて、保護層9は、誘電体層8上に下地膜91を形成するとともに、下地膜91上に酸化マグネシウムの結晶粒子92aが複数個凝集した凝集粒子92を付着させて形成し、かつ下地膜91を、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムから選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成し、金属酸化物は下地膜91面のX線回折分析において、特定方位面の金属酸化物を構成する酸化物の単体より発生する最小回折角と最大回折角との間にピークが存在するものであり、さらに前記表示電極の幅を100μm以上180μm以下とした。
【選択図】図2

Description

本発明は、表示デバイスなどに用いるプラズマディスプレイパネルに関する。
プラズマディスプレイパネル(以下、PDPと呼ぶ)は、高精細化、大画面化の実現が可能であることから、100インチクラスのテレビなどが製品化されている。近年、PDPにおいては、従来のNTSC方式に比べて走査線数が2倍以上の高精細テレビへの適用が進められており、エネルギー問題に対応してさらなる消費電力低減への取り組みや、環境問題に配慮した鉛成分を含まないPDPへの要求なども高まっている。
PDPは、基本的には、前面板と背面板とで構成されている。前面板は、フロート法により製造された硼硅酸ナトリウム系ガラスのガラス基板と、ガラス基板の一方の主面上に形成されたストライプ状の透明電極とバス電極とで構成される表示電極と、表示電極を覆ってコンデンサとしての働きをする誘電体層と、誘電体層上に形成された酸化マグネシウム(MgO)からなる保護層とで構成されている。
一方、背面板は、ガラス基板と、その一方の主面上に形成されたストライプ状のアドレス電極と、アドレス電極を覆う下地誘電体層と、下地誘電体層上に形成された隔壁と、各隔壁間に形成された赤色、緑色及び青色それぞれに発光する蛍光体層とで構成されている。
前面板と背面板とはその電極形成面側を対向させて気密封着され、隔壁によって仕切られた放電空間にネオン(Ne)−キセノン(Xe)の放電ガスが400Torr〜600Torrの圧力で封入されている。PDPは、表示電極に映像信号電圧を選択的に印加することによって放電させ、その放電によって発生した紫外線が各色蛍光体層を励起して赤色、緑色、青色の発光をさせてカラー画像表示を実現している。
また、このようなPDPの駆動方法としては、書き込みをしやすい状態に壁電荷を調整する初期化期間と、入力画像信号に応じて書き込み放電を行う書き込み期間と、書き込みが行われた放電空間で維持放電を生じさせることによって表示を行う維持期間を有する駆動方法が一般的に用いられている。これらの各期間を組み合わせた期間(サブフィールド)が、画像の1コマに相当する期間(1フィールド)内で複数回繰り返されることによってPDPの階調表示を行っている。
このようなPDPにおいて、前面板の誘電体層上に形成される保護層の役割としては、放電によるイオン衝撃から誘電体層を保護すること、アドレス放電を発生させるための初期電子を放出することなどがあげられる。イオン衝撃から誘電体層を保護することは、放電電圧の上昇を防ぐ重要な役割であり、またアドレス放電を発生させるための初期電子を放出することは、画像のちらつきの原因となるアドレス放電ミスを防ぐ重要な役割である。
保護層からの初期電子の放出数を増加させて画像のちらつきを低減するために、例えば、酸化マグネシウム(MgO)保護層に不純物を添加する例や、酸化マグネシウム(MgO)粒子を酸化マグネシウム(MgO)保護層上に形成した例が開示されている(例えば、特許文献1、2、3、4、5など参照)。
特開2002−260535号公報 特開平11−339665号公報 特開2006−59779号公報 特開平8−236028号公報 特開平10−334809号公報
近年、テレビは高精細化が進んでおり、市場では低コスト・低消費電力・高輝度のフルHD(ハイ・ディフィニション)(1920×1080画素:プログレッシブ表示)PDPが要求されている。保護層からの電子放出特性はPDPの画質を決定するため、電子放出特性を制御することが非常に重要である。
すなわち、高精細化された画像を表示するためには、1フィールドの時間が一定にもかかわらず書き込みを行う画素の数が増えるため、サブフィールド中の書き込み期間において、アドレス電極へ印加するパルスの幅を狭くする必要が生じる。しかしながら、電圧パルスの立ち上がりから放電空間内で放電が発生するまでには放電遅れと呼ばれるタイムラグの存在があるため、パルスの幅が狭くなれば書き込み期間内で放電が終了できる確率が低くなってしまう。その結果、点灯不良が生じ、ちらつきといった画質性能の低下という問題も生じてしまう。
また、消費電力低減のために放電による発光効率を向上させることを目的として、蛍光体の発光に寄与する放電ガスの一成分であるキセノン(Xe)の放電ガス全体における含有率をあげると、やはり放電電圧が高くなるとともに、放電遅れが大きくなって点灯不良などの画質低下が発生するという問題が生じてしまう。
このようにPDPの高精細化や低消費電力化を進めるにあたっては、放電電圧が高くならないようにすることと、さらに、点灯不良を低減して画質を向上させることを、同時に実現させなければならないという課題があった。
保護層に不純物を混在させることで電子放出特性を改善しようとする試みが行われている。しかしながら、保護層に不純物を混在させて電子放出特性を改善した場合には、保護層表面に電荷を蓄積させてメモリー機能として使用しようとする際に、電荷が時間とともに減少する減衰率が大きくなってしまうため、これを抑えるための印加電圧を大きくする必要があるなどの対策が必要になる。
一方、酸化マグネシウム(MgO)保護層上に酸化マグネシウム(MgO)結晶粒子を形成する例では、放電遅れを小さくして点灯不良を低減することは可能であるが、放電電圧を低減することができないといった課題を有していた。
本発明はこのような課題に鑑みなされたもので、高輝度の表示性能を備え、かつ低電圧駆動が可能なPDPを実現することを目的としている。
上記の目的を達成するために、本発明のPDPは、基板上に形成した表示電極を覆うように誘電体層を形成するとともに前記誘電体層上に保護層を形成した第1基板と、前記第1基板に放電ガスが充填された放電空間を形成するように対向配置され、かつ前記表示電極と交差する方向にアドレス電極を形成するとともに前記放電空間を区画する隔壁を設けた第2基板とを有するプラズマディスプレイパネルであって、前記第1基板の前記保護層は、前記誘電体層上に下地膜を形成するとともに、前記下地膜上に酸化マグネシウムの結晶粒子が複数個凝集した凝集粒子を付着させて形成し、かつ前記下地膜を、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムから選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成し、前記金属酸化物は前記下地膜面のX線回折分析において、特定方位面の前記金属酸化物を構成する前記酸化物の単体より発生する最小回折角と最大回折角との間にピークが存在するものであり、さらに前記表示電極の幅を100μm以上180μm以下としたことを特徴とする。
このような構成によれば、保護層における二次電子放出特性を向上させ、輝度を高めるために放電ガスのキセノン(Xe)ガス分圧を大きくした場合でも放電開始電圧を低減し、さらに、放電遅れを低減して高精細画像表示でも点灯不良など発生しない、表示性能に優れたPDPを実現することができ、高精細画像でも高輝度で低電圧駆動が可能なPDPを実現することができる。
本発明の実施の形態におけるPDPの構造を示す斜視図 同PDPの前面板の構成を示す断面図 同PDPの下地膜におけるX線回折結果を示す図 同PDPの他の構成の下地膜におけるX線回折結果を示す図 同PDPの凝集粒子を説明するための拡大図 同PDPの放電遅れと保護層中のカルシウム(Ca)濃度との関係を示す図 同PDPの電子放出性能と電荷保持性能について調べた結果を示す図 同PDPに用いた結晶粒子の粒径と電子放出特性の関係を示す特性図 同PDPの表示電極の幅が80μmの領域における寿命試験の実施時間と放電遅れの関係を示す図 同PDPの表示電極の幅が120μmの領域における寿命試験の実施時間と放電遅れの関係を示す図
以下、本発明の実施の形態におけるPDPについて図面を用いて説明する。
図1は本発明の実施の形態におけるPDP1の構造を示す斜視図である。PDP1の基本構造は、一般的な交流面放電型PDPと同様である。図1に示すように、PDP1は前面ガラス基板3などよりなる前面板2と、背面ガラス基板11などよりなる背面板10とが対向して配置され、その外周部をガラスフリットなどからなる封着材によって気密封着されている。封着されたPDP1内部の放電空間16には、キセノン(Xe)とネオン(Ne)などの放電ガスが400Torr〜600Torrの圧力で封入されている。
前面板2の前面ガラス基板3上には、走査電極4及び維持電極5よりなる一対の帯状の表示電極6とブラックストライプ(遮光層)7が互いに平行にそれぞれ複数列配置されている。前面ガラス基板3上には表示電極6と遮光層7とを覆うように電荷を保持してコンデンサとしての働きをする誘電体層8が形成され、さらにその上に保護層9が形成されている。
また、背面板10の背面ガラス基板11上には、前面板2の走査電極4及び維持電極5と直交する方向に、複数の帯状のアドレス電極12が互いに平行に配置され、これを下地誘電体層13が被覆している。さらに、アドレス電極12間の下地誘電体層13上には放電空間16を区切る所定の高さの隔壁14が形成されている。隔壁14間の溝ごとに、紫外線によって赤色、緑色及び青色にそれぞれ発光する蛍光体層15が順次塗布して形成されている。走査電極4及び維持電極5とアドレス電極12とが交差する位置に放電空間が形成され、表示電極6方向に並んだ赤色、緑色、青色の蛍光体層15を有する放電空間がカラー表示のための画素になる。
図2は、本発明の実施の形態におけるPDP1の前面板2の構成を示す断面図であり、図2は図1と上下反転させて示している。図2に示すように、フロート法などにより製造された前面ガラス基板3に、走査電極4と維持電極5よりなる表示電極6と遮光層7がパターン形成されている。走査電極4と維持電極5はそれぞれインジウムスズ酸化物(ITO)や酸化スズ(SnO2)などからなる透明電極4a、5aと、透明電極4a、5a上に形成された金属バス電極4b、5bとにより構成されている。金属バス電極4b、5bは透明電極4a、5aの長手方向に導電性を付与する目的として用いられ、銀(Ag)材料を主成分とする導電性材料によって形成されている。
誘電体層8は、前面ガラス基板3上に形成されたこれらの透明電極4a、5aと金属バス電極4b、5bと遮光層7を覆って設けた第1誘電体層81と、第1誘電体層81上に形成された第2誘電体層82の少なくとも2層構成とし、さらに第2誘電体層82上に保護層9が形成されている。
保護層9は、誘電体層8に形成した下地膜91と、下地膜91上に酸化マグネシウム(MgO)の結晶粒子92aが複数個凝集させた凝集粒子92とにより構成している。下地膜91は、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成され、さらに下地膜91上に酸化マグネシウム(MgO)の結晶粒子92aが複数個凝集した凝集粒子92を付着形成している。
次に、このようなPDP1の製造方法について説明する。まず、前面ガラス基板3上に、走査電極4及び維持電極5と遮光層7とを形成する。走査電極4と維持電極5とを構成する透明電極4a、5aと金属バス電極4b、5bは、フォトリソグラフィ法などを用いてパターニングして形成される。透明電極4a、5aは薄膜プロセスなどを用いて形成され、金属バス電極4b、5bは銀(Ag)材料を含むペーストを所定の温度で焼成して固化している。また、遮光層7も同様に、黒色顔料を含むペーストをスクリーン印刷する方法や黒色顔料をガラス基板の全面に形成した後、フォトリソグラフィ法を用いてパターニングし、焼成することにより形成される。
次に、走査電極4、維持電極5及び遮光層7を覆うように前面ガラス基板3上に誘電体ペーストをダイコート法などにより塗布して誘電体ペースト(誘電体材料)層を形成する。誘電体ペーストを塗布した後、所定の時間放置することによって塗布された誘電体ペースト表面がレベリングされて平坦な表面になる。その後、誘電体ペースト層を焼成固化することにより、走査電極4、維持電極5及び遮光層7を覆う誘電体層8が形成される。なお、誘電体ペーストはガラス粉末などの誘電体材料、バインダ及び溶剤を含む塗料である。
次に、誘電体層8上に下地膜91を形成する。本発明の実施の形態においては、下地膜91を、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成している。
下地膜91は、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)の単独材料のペレットや、それらの材料を混合したペレットを用いて薄膜成膜方法によって形成される。薄膜成膜方法としては、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法などの公知の方法を適用できる。一例として、スパッタリング法では1Pa、蒸着法の一例である電子ビーム蒸着法では0.1Paが実際上取り得る圧力の上限と考えられる。
また、下地膜91の成膜時の雰囲気としては、水分付着や不純物の吸着を防止するために外部と遮断された密閉状態で、成膜時の雰囲気を調整することにより、所定の電子放出特性を有する金属酸化物よりなる下地膜91を形成することができる。
次に、下地膜91上に付着形成する酸化マグネシウム(MgO)の結晶粒子92aの凝集粒子92について述べる。これらの結晶粒子92aは、以下に示す気相合成法または前駆体焼成法のいずれかで製造することができる。
気相合成法では、不活性ガスが満たされた雰囲気下で純度が99.9%以上のマグネシウム金属材料を加熱し、さらに、雰囲気に酸素を少量導入することによって、マグネシウムを直接酸化させ、酸化マグネシウム(MgO)の結晶粒子92aを作製することができる。
一方、前駆体焼成法では、以下の方法によって結晶粒子92aを作製することができる。前駆体焼成法では、酸化マグネシウム(MgO)の前駆体を700℃以上の高温で均一に焼成し、これを徐冷して酸化マグネシウム(MgO)の結晶粒子92aを得ることができる。前駆体としては、例えば、マグネシウムアルコキシド(Mg(OR)2)、マグネシウムアセチルアセトン(Mg(acac)2)、水酸化マグネシウム(Mg(OH)2)、炭酸マグネシウム(MgCO2)、塩化マグネシウム(MgCl2)、硫酸マグネシウム(MgSO4)、硝酸マグネシウム(Mg(NO32)、シュウ酸マグネシウム(MgC24)のうちのいずれか1種以上の化合物を選ぶことができる。なお選択した化合物によっては、通常、水和物の形態をとることもあるがこのような水和物を用いてもよい。
これらの化合物は、焼成後に得られる酸化マグネシウム(MgO)の純度が99.95%以上、望ましくは99.98%以上になるように調整する。これらの化合物中に、各種アルカリ金属、B、Si、Fe、Alなどの不純物元素が一定量以上混じっていると、熱処理時に不要な粒子間癒着や焼結を生じ、高結晶性の酸化マグネシウム(MgO)の結晶粒子92aを得にくいためである。このため、不純物元素を除去することなどにより予め前駆体を調整することが必要となる。
上記いずれかの方法で得られた酸化マグネシウム(MgO)の結晶粒子92aを、溶媒に分散させ、その分散液をスプレー法やスクリーン印刷法、静電塗布法などによって下地膜91の表面に分散散布させる。その後、乾燥・焼成工程を経て溶媒除去を図り、酸化マグネシウム(MgO)の結晶粒子92aを下地膜91の表面に定着させることができる。
このような一連の工程により前面ガラス基板3上に所定の構成物(走査電極4、維持電極5、遮光層7、誘電体層8、保護層9)が形成されて前面板2が完成する。
一方、背面板10は次のようにして形成される。まず、背面ガラス基板11上に、銀(Ag)材料を含むペーストをスクリーン印刷する方法や、金属膜を全面に形成した後、フォトリソグラフィ法を用いてパターニングする方法などによりアドレス電極12用の構成物となる材料層を形成する。その後、所定の温度で焼成することによりアドレス電極12を形成する。次に、アドレス電極12が形成された背面ガラス基板11上にダイコート法などにより、アドレス電極12を覆うように誘電体ペーストを塗布して誘電体ペースト層を形成する。その後、誘電体ペースト層を焼成することにより下地誘電体層13を形成する。なお、誘電体ペーストはガラス粉末などの誘電体材料とバインダ及び溶剤を含んだ塗料である。
次に、下地誘電体層13上に隔壁材料を含む隔壁形成用ペーストを塗布し、所定の形状にパターニングすることにより隔壁材料層を形成する。その後、所定の温度で焼成することにより隔壁14を形成する。ここで、下地誘電体層13上に塗布した隔壁用ペーストをパターニングする方法としては、フォトリソグラフィ法やサンドブラスト法を用いることができる。
次に、隣接する隔壁14間の下地誘電体層13上及び隔壁14の側面に蛍光体材料を含む蛍光体ペーストを塗布し、焼成することにより蛍光体層15が形成される。さらに、前面板2と背面板10を強固に接着するためのガラスフリットを背面板10の周囲に形成する。以上の工程により、背面ガラス基板11上に所定の構成部材を有する背面板10が完成する。
次に、所定の構成部材を備えた前面板2と背面板10とを走査電極4とアドレス電極12とが直交するように対向配置し、固定する。固定した前面板2と背面板10は、ガラスフリットの融点以上、かつ、隔壁材料層の融点以下の温度で焼成する。これにより、前面板2と背面板10は、ガラスフリットで接着される。最後に、放電空間16にキセノン(Xe)とネオン(Ne)などを含む放電ガスを封入してPDP1が完成する。
ここで、前面板2の誘電体層8を構成する第1誘電体層81と第2誘電体層82について詳細に説明する。第1誘電体層81の誘電体材料は、次の材料組成より構成されている。すなわち、酸化ビスマス(Bi23)を20重量%〜40重量%、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)から選ばれる少なくとも1種を0.5重量%〜12重量%含み、酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)、二酸化マンガン(MnO2)から選ばれる少なくとも1種を0.1重量%〜7重量%含んでいる。
なお、酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)、二酸化マンガン(MnO2)に代えて、酸化銅(CuO)、酸化クロム(Cr23)、酸化コバルト(Co23)、酸化バナジウム(V27)、酸化アンチモン(Sb23)から選ばれる少なくとも1種を0.1重量%〜7重量%含ませてもよい。
また、上記以外の成分として、酸化亜鉛(ZnO)を0重量%〜40重量%、酸化硼素(B23)を0重量%〜35重量%、酸化硅素(SiO2)を0重量%〜15重量%、酸化アルミニウム(Al23)を0重量%〜10重量%など、鉛成分を含まない材料組成が含まれていてもよい。
これらの組成成分からなる誘電体材料を、湿式ジェットミルやボールミルで粒径が0.5μm〜2.5μmとなるように粉砕して誘電体材料粉末を作製する。次にこの誘電体材料粉末55重量%〜70重量%と、バインダ成分30重量%〜45重量%とを三本ロールでよく混練してダイコート用、または印刷用の第1誘電体層81用ペーストを作製する。
バインダ成分はエチルセルロース、またはアクリル樹脂1重量%〜20重量%を含むターピネオール、またはブチルカルビトールアセテートである。また、ペースト中には、必要に応じて可塑剤としてフタル酸ジオクチル、フタル酸ジブチル、リン酸トリフェニル、リン酸トリブチルを添加し、分散剤としてグリセロールモノオレート、ソルビタンセスキオレヘート、ホモゲノール(Kaoコーポレーション社製品名)、アルキルアリル基のリン酸エステルなどを添加してペーストとして印刷特性を向上させてもよい。
次に、この第1誘電体層用ペーストを用い、表示電極6を覆うように前面ガラス基板3にダイコート法あるいはスクリーン印刷法で印刷して乾燥させ、その後、誘電体材料の軟化点より少し高い温度の575℃〜590℃で焼成して第1誘電体層81を形成する。
次に、第2誘電体層82について説明する。第2誘電体層82の誘電体材料は、次の材料組成より構成されている。すなわち、酸化ビスマス(Bi23)を11重量%〜20重量%、さらに、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)から選ばれる少なくとも1種を1.6重量%〜21重量%含み、酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)から選ばれる少なくとも1種を0.1重量%〜7重量%含んでいる。
なお、酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)に代えて、酸化銅(CuO)、酸化クロム(Cr23)、酸化コバルト(Co23)、酸化バナジウム(V27)、酸化アンチモン(Sb23)、酸化マンガン(MnO2)から選ばれる少なくとも1種を0.1重量%〜7重量%含ませてもよい。
また、上記以外の成分として、酸化亜鉛(ZnO)を0重量%〜40重量%、酸化硼素(B23)を0重量%〜35重量%、酸化硅素(SiO2)を0重量%〜15重量%、酸化アルミニウム(Al23)を0重量%〜10重量%など、鉛成分を含まない材料組成が含まれていてもよい。
これらの組成成分からなる誘電体材料を、湿式ジェットミルやボールミルで粒径が0.5μm〜2.5μmとなるように粉砕して誘電体材料粉末を作製する。次にこの誘電体材料粉末55重量%〜70重量%と、バインダ成分30重量%〜45重量%とを三本ロールでよく混練してダイコート用、または印刷用の第2誘電体層用ペーストを作製する。バインダ成分はエチルセルロース、またはアクリル樹脂1重量%〜20重量%を含むターピネオール、またはブチルカルビトールアセテートである。また、ペースト中には、必要に応じて可塑剤としてフタル酸ジオクチル、フタル酸ジブチル、リン酸トリフェニル、リン酸トリブチルを添加し、分散剤としてグリセロールモノオレート、ソルビタンセスキオレヘート、ホモゲノール(Kaoコーポレーション社製品名)、アルキルアリル基のリン酸エステルなどを添加して印刷性を向上させてもよい。
次にこの第2誘電体層用ペーストを用いて第1誘電体層81上にスクリーン印刷法あるいはダイコート法で印刷して乾燥させ、その後、誘電体材料の軟化点より少し高い温度の550℃〜590℃で焼成する。
なお、誘電体層8の膜厚としては、可視光透過率を確保するために第1誘電体層81と第2誘電体層82とを合わせ41μm以下とすることが好ましい。また、第1誘電体層81は、金属バス電極4b、5bの銀(Ag)との反応を抑制するために酸化ビスマス(Bi23)の含有量を第2誘電体層82の酸化ビスマス(Bi23)の含有量よりも多くして20重量%〜40重量%としている。そのため、第1誘電体層81の可視光透過率が第2誘電体層82の可視光透過率よりも低くなるので、第1誘電体層81の膜厚を第2誘電体層82の膜厚よりも薄くしている。
なお、第2誘電体層82においては、酸化ビスマス(Bi23)の含有量が11重量%以下であると着色は生じにくくなるが、第2誘電体層82中に気泡が発生しやすくなるため好ましくない。一方、含有率が40重量%を超えると着色が生じやすくなるため透過率が低下する。
また、誘電体層8の膜厚が小さいほど輝度の向上と放電電圧を低減するという効果は顕著になるので、絶縁耐圧が低下しない範囲内であればできるだけ膜厚を小さく設定するのが望ましい。このような観点から、本発明の実施の形態では、誘電体層8の膜厚を41μm以下に設定し、第1誘電体層81を5μm〜15μm、第2誘電体層82を20μm〜36μmとしている。
このようにして製造されたPDP1は、表示電極6に銀(Ag)材料を用いても、前面ガラス基板3の着色現象(黄変)が少なくて、なおかつ、誘電体層8中に気泡の発生などがなく、絶縁耐圧性能に優れた誘電体層8を実現することを確認している。
次に、本発明の実施の形態におけるPDP1において、これらの誘電体材料によって第1誘電体層81において黄変や気泡の発生が抑制される理由について考察する。すなわち、酸化ビスマス(Bi23)を含む誘電体ガラスに酸化モリブデン(MoO3)、または酸化タングステン(WO3)を添加することによって、Ag2MoO4、Ag2Mo27、Ag2Mo413、Ag2WO4、Ag227、Ag2413といった化合物が580℃以下の低温で生成しやすいことが知られている。本発明の実施の形態では、誘電体層8の焼成温度が550℃〜590℃であることから、焼成中に誘電体層8中に拡散した銀イオン(Ag+)は誘電体層8中の酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)、酸化マンガン(MnO2)と反応し、安定な化合物を生成して安定化する。すなわち、銀イオン(Ag+)が還元されることなく安定化されるため、凝集してコロイドを生成することがない。したがって、銀イオン(Ag+)が安定化することによって、銀(Ag)のコロイド化に伴う酸素の発生も少なくなるため、誘電体層8中への気泡の発生も少なくなる。
一方、これらの効果を有効にするためには、酸化ビスマス(Bi23)を含む誘電体ガラス中に酸化モリブデン(MoO3)、酸化タングステン(WO3)、酸化セリウム(CeO2)、酸化マンガン(MnO2)の含有量を0.1重量%以上にすることが好ましいが、0.1重量%以上7重量%以下がさらに好ましい。特に、0.1重量%未満では黄変を抑制する効果が少なく、7重量%を超えるとガラスに着色が起こり好ましくない。
すなわち、本発明の実施の形態におけるPDP1の誘電体層8は、銀(Ag)材料よりなる金属バス電極4b、5bと接する第1誘電体層81では黄変現象と気泡発生を抑制し、第1誘電体層81上に設けた第2誘電体層82によって高い光透過率を実現している。その結果、誘電体層8全体として、気泡や黄変の発生が極めて少なく透過率の高いPDPを実現することが可能となる。
次に本発明の実施の形態における保護層9の詳細について説明する。
本発明の実施の形態におけるPDPでは、図2に示すように、保護層9は、誘電体層8に形成した下地膜91と、下地膜91上に付着させた酸化マグネシウム(MgO)の結晶粒子92aが複数個凝集した凝集粒子92とにより構成されている。また、下地膜91を、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成し、金属酸化物は下地膜91面のX線回折分析において、特定方位面の金属酸化物を構成する酸化物の単体より発生する最小回折角と最大回折角との間にピークが存在するようにしている。
図3は、本発明の実施の形態におけるPDP1の保護層9を構成する下地膜91面におけるX線回折結果を示す図である。また、図3中には、酸化マグネシウム(MgO)単体、酸化カルシウム(CaO)単体、酸化ストロンチウム(SrO)単体、及び酸化バリウム(BaO)単体のX線回折分析の結果も示す。
図3において、横軸はブラッグの回折角(2θ)であり、縦軸はX線回折波の強度である。回折角の単位は1周を360度とする度で示し、強度は任意単位(arbitrary unit)で示している。図3中には特定方位面である結晶方位面を括弧付けで示している。図3に示すように、結晶方位面の(111)では、酸化カルシウム(CaO)単体では回折角32.2度、酸化マグネシウム(MgO)単体では回折角36.9度、酸化ストロンチウム(SrO)単体では回折角30.0度、酸化バリウム(BaO)単体では回折角27.9度にピークを有していることがわかる。
本発明の実施の形態におけるPDP1では、保護層9の下地膜91として、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)から選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成している。
図3には、下地膜91を構成する単体成分が2成分の場合についてのX線回折結果を示している。すなわち、酸化マグネシウム(MgO)と酸化カルシウム(CaO)の単体を用いて形成した下地膜91のX線回折結果をA点、酸化マグネシウム(MgO)と酸化ストロンチウム(SrO)の単体を用いて形成した下地膜91のX線回折結果をB点、さらに、酸化マグネシウム(MgO)と酸化バリウム(BaO)の単体を用いて形成した下地膜91のX線回折結果をC点で示している。
すなわち、A点は特定方位面としての結晶方位面の(111)において、単体の酸化物の最大回折角となる酸化マグネシウム(MgO)単体の回折角36.9度と、最小回折角となる酸化カルシウム(CaO)単体の回折角32.2度との間である回折角36.1度にピークが存在している。同様に、B点、C点もそれぞれ最大回折角と最小回折角との間の35.7度、35.4度にピークが存在している。
また、図4には、図3と同様に、下地膜91を構成する単体成分が3成分以上の場合のX線回折結果を示している。すなわち、図4には、単体成分として酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化ストロンチウム(SrO)を用いた場合の結果をD点、酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化バリウム(BaO)を用いた場合の結果をE点、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)及び酸化バリウム(BaO)を用いた場合の結果をF点で示している。
すなわち、D点は特定方位面としての結晶方位面の(111)において、単体の酸化物の最大回折角となる酸化マグネシウム(MgO)単体の回折角36.9度と、最小回折角となる酸化ストロンチウム(SrO)単体の回折角30.0度との間である回折角33.4度にピークが存在している。同様に、E点、F点もそれぞれ最大回折角と最小回折角との間の32.8度、30.2度にピークが存在している。
したがって、本発明の実施の形態におけるPDP1の下地膜91は、単体成分として2成分であれ、3成分であれ、下地膜91を構成する金属酸化物の下地膜91面のX線回折分析において、特定方位面の金属酸化物を構成する酸化物の単体より発生するピークの最小回折角と最大回折角との間にピークが存在するようにしている。
なお、上記の説明では特定方位面としての結晶方位面として(111)を対象として説明したが、他の結晶方位面を対象とした場合も金属酸化物のピークの位置が上記と同様である。
酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、及び酸化バリウム(BaO)の真空準位からの深さは酸化マグネシウム(MgO)と比較して浅い領域に存在する。そのため、PDP1を駆動する場合において、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)のエネルギー準位に存在する電子がキセノン(Xe)イオンの基底状態に遷移する際に、オージェ効果により放出される電子数が、酸化マグネシウム(MgO)のエネルギー準位から遷移する場合と比較して多くなると考えられる。
また、上述のように、本発明の実施の形態における下地膜91は、金属酸化物を構成する酸化物の単体より発生するピークの最小回折角と最大回折角との間にピークが存在するようにしている。X線回折分析の結果が、図3及び図4に示す特徴を有する金属酸化物はそのエネルギー準位もそれらを構成する単体の酸化物の間に存在する。したがって、下地膜91のエネルギー準位も単体の酸化物の間に存在し、オージェ効果により放出される電子数が酸化マグネシウム(MgO)のエネルギー準位から遷移する場合と比較して多くなると考えられる。
その結果、下地膜91では、酸化マグネシウム(MgO)単体と比較して、良好な二次電子放出特性を発揮することができ、結果として、放電維持電圧を低減することができる。そのため、特に輝度を高めるために放電ガスとしてのキセノン(Xe)分圧を高めた場合に、放電電圧を低減し、低電圧でなおかつ高輝度のPDPを実現することが可能となる。
表1には、本発明の実施の形態におけるPDPにおいて、60kPaのキセノン(Xe)及びネオン(Ne)の混合ガス(Xe、15%)を封入した場合の放電維持電圧の結果で、下地膜91の構成を変えた場合の、PDPの結果を示す。
Figure 2011192437
なお、表1の放電維持電圧は比較例を100とした場合の相対値で表している。サンプルAの下地膜91は、酸化マグネシウム(MgO)と酸化カルシウム(CaO)による金属酸化物、サンプルBの下地膜91は酸化マグネシウム(MgO)と酸化ストロンチウム(SrO)による金属酸化物、サンプルCの下地膜91は酸化マグネシウム(MgO)と酸化バリウム(BaO)による金属酸化物、サンプルDの下地膜91は、酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化ストロンチウム(SrO)による金属酸化物、サンプルEの下地膜91は酸化マグネシウム(MgO)、酸化カルシウム(CaO)及び酸化バリウム(BaO)による金属酸化物によって構成されている。また、比較例は、下地膜91が酸化マグネシウム(MgO)単体である場合について示している。
放電ガスのキセノン(Xe)の分圧を10%から15%に高めた場合には輝度が約30%上昇するが、下地膜91が酸化マグネシウム(MgO)単体の場合の比較例では、放電維持電圧が約10%上昇する。
一方、本発明の実施の形態におけるPDPでは、サンプルA、サンプルB、サンプルC、サンプルD、サンプルEいずれも、放電維持電圧を比較例に比較して約10%〜20%低減することができる。そのため、通常動作範囲内の放電開始電圧とすることができ、高輝度で低電圧駆動のPDPを実現することができる。
なお、酸化カルシウム(CaO)、酸化ストロンチウム(SrO)、酸化バリウム(BaO)は、単体では反応性が高いため不純物と反応しやすく、そのために電子放出性能が低下してしまうという課題を有していた。しかしながら、本発明の実施の形態においては、それらの金属酸化物の構成とすることにより、反応性を低減し、不純物の混入や酸素欠損の少ない結晶構造で形成されている。そのため、PDPの駆動時に電子が過剰放出されるのが抑制され、低電圧駆動と二次電子放出性能の両立効果に加えて、適度な電子保持特性の効果も発揮される。この電荷保持特性は、特に初期化期間に貯めた壁電荷を保持しておき、書き込み期間において書き込み不良を防止して確実な書き込み放電を行う上で有効である。
次に、本発明の実施の形態における下地膜91上に設けた、酸化マグネシウム(MgO)の結晶粒子92aが複数個凝集した凝集粒子92について詳細に説明する。酸化マグネシウム(MgO)の凝集粒子92は、本願発明者の実験により、主として書き込み放電における放電遅れを抑制する効果と、放電遅れの温度依存性を改善する効果が確認されている。そこで本発明の実施の形態では、凝集粒子92が下地膜91に比べて高度な初期電子放出特性に優れる性質を利用して、放電パルス立ち上がり時に必要な初期電子供給部として配設している。
放電遅れは、放電開始時において、トリガーとなる初期電子が下地膜91表面から放電空間16中に放出される量が不足することが主原因と考えられる。そこで、放電空間16に対する初期電子の安定供給に寄与するため、酸化マグネシウム(MgO)の凝集粒子92を下地膜91の表面に分散配置する。これによって、放電パルスの立ち上がり時に放電空間16中に電子が豊富に存在し、放電遅れの解消が図られる。したがって、このような初期電子放出特性により、PDP1が高精細の場合などにおいても放電応答性の良い高速駆動ができるようになっている。なお下地膜91の表面に金属酸化物の凝集粒子92を配設する構成では、主として書き込み放電における放電遅れを抑制する効果に加え、放電遅れの温度依存性を改善する効果も得られる。
以上のように、本発明の実施の形態におけるPDP1では、低電圧駆動と電荷保持の両立効果を奏する下地膜91と、放電遅れの防止効果を奏する酸化マグネシウム(MgO)の凝集粒子92とにより構成することによって、PDP1全体として、高精細なPDPでも高速駆動を低電圧で駆動でき、かつ、点灯不良を抑制した高品位な画像表示性能を実現できる。
本発明の実施の形態では、下地膜91上に、結晶粒子92aが数個凝集した凝集粒子92を離散的に散布させ、全面に亘ってほぼ均一に分布するように複数個付着させることにより構成している。図5は凝集粒子92を説明するための拡大図である。
凝集粒子92とは、図5に示すように、所定の一次粒径の結晶粒子92aが凝集またはネッキングした状態のものである。すなわち、固体として大きな結合力を持って結合しているのではなく、静電気やファンデルワールス力などによって複数の一次粒子が集合体の体をなしているもので、超音波などの外的刺激により、その一部または全部が一次粒子の状態になる程度で結合しているものである。凝集粒子92の粒径としては、約1μm程度のもので、結晶粒子92aとしては、14面体や12面体などの7面以上の面を持つ多面体形状を有するのが望ましい。
また、結晶粒子92aの一次粒子の粒径は、結晶粒子92aの生成条件によって制御できる。例えば、炭酸マグネシウムや水酸化マグネシウムなどのMgO前駆体を焼成して生成する場合、焼成温度や焼成雰囲気を制御することで粒径を制御することができる。一般的に、焼成温度は700℃から1500℃の範囲で選択できるが、焼成温度を比較的高い1000℃以上にすることで、その粒径を0.3μm〜2μm程度に制御することが可能である。さらに、結晶粒子92aをMgO前駆体を加熱して得ることにより、その生成過程において、複数個の一次粒子同士が凝集またはネッキングと呼ばれる現象により結合して凝集粒子92を得ることができる。
図6は、本発明の実施の形態におけるPDP1のうち、酸化マグネシウム(MgO)と酸化カルシウム(CaO)との金属酸化物で構成した下地膜91を用いた場合の放電遅れと保護層9中のカルシウム(Ca)濃度との関係を示す図である。下地膜91として酸化マグネシウム(MgO)と酸化カルシウム(CaO)とからなる金属酸化物で構成し、金属酸化物は、下地膜91面におけるX線回折分析において、酸化マグネシウム(MgO)のピークが発生する回折角と酸化カルシウム(CaO)のピークが発生する回折角との間にピークが存在するようにしている。
なお、図6には、保護層9として下地膜91のみの場合と、下地膜91上に凝集粒子92を配置した場合とについて示し、放電遅れは、下地膜91中にカルシウム(Ca)が含有されていない場合を基準として示している。
図6より明らかなように、下地膜91のみの場合と、下地膜91上に凝集粒子92を配置した場合とにおいて、下地膜91のみの場合はカルシウム(Ca)濃度の増加とともに放電遅れが大きくなるのに対し、下地膜91上に凝集粒子92を配置することによって放電遅れを大幅に小さくすることができ、カルシウム(Ca)濃度が増加しても放電遅れはほとんど増大しないことがわかる。
次に、本発明の実施の形態における凝集粒子92を有する保護層9の効果を確認するために行った実験結果について説明する。まず、構成の異なる下地膜91と下地膜91上に設けた凝集粒子92を有するPDPを試作した。なお、試作したPDPは42インチサイズのフルハイビジョンディスプレイである。よって、表示セルのサイズは、縦が480μmで横が160μmである。また、表示電極6の幅を変更した際の表示特性を確認するため、1枚のPDPの面内で表示領域を複数分割し、各表示領域の電極幅を変更した。形成した電極幅は、80μm、90μm、100μm、110μm、140μm、170μm、180μm、190μm、200μmの9水準である。試作品1は酸化マグネシウム(MgO)の下地膜91のみの保護層9を形成したPDP、試作品2は酸化マグネシウム(MgO)にAl、Siなどの不純物をドープした下地膜91のみの保護層9を形成したPDP、試作品3は酸化マグネシウム(MgO)による下地膜91上に酸化マグネシウム(MgO)の結晶粒子92aの一次粒子のみを散布し付着させた保護層9を形成したPDPである。
一方、試作品4は本発明の実施の形態におけるPDP1であり、保護層9として、前述のサンプルAを用いている。すなわち、保護層9は、酸化マグネシウム(MgO)と酸化カルシウム(CaO)との金属酸化物で構成した下地膜91と、下地膜91上に結晶粒子92aを凝集させた凝集粒子92を全面に亘ってほぼ均一に分布するように付着させている。なお、下地膜91は、下地膜91面のX線回折分析において、下地膜91を構成する酸化物の単体より発生するピークの最小回折角と最大回折角との間にピークが存在するようにしている。すなわち、この場合の最小回折角は酸化カルシウム(CaO)の32.2度、最大回折角は酸化マグネシウム(MgO)の36.9度であり、下地膜91の回折角のピークが36.1度に存在するようにしている。
これらのPDPについて、その電子放出性能と電荷保持性能を調べ、その結果を図7に示す。なお、電子放出性能は、大きいほど電子放出量が多いことを示す数値で、表面状態及びガス種とその状態によって定まる初期電子放出量によって表現する。初期電子放出量については表面にイオン、あるいは電子ビームを照射して表面から放出される電子電流量を測定する方法で測定できるが、PDP1の前面板2表面の評価を非破壊で実施することは困難を伴う。そこで、特開2007−48733号公報に記載されている方法を用いた。すなわち、放電時の遅れ時間のうち、統計遅れ時間と呼ばれる放電の発生しやすさの目安となる数値を測定し、その逆数を積分すると初期電子の放出量と線形に対応する数値になる。
そこで、この数値を用いて評価している。放電時の遅れ時間とは、パルスの立ち上がりから放電が遅れて行われる放電遅れの時間を意味し、放電遅れは、放電が開始される際にトリガーとなる初期電子が保護層9表面から放電空間中に放出されにくいことが主要な要因として考えられている。
電荷保持性能は、その指標として、PDPとして作製した場合に電荷放出現象を抑えるために必要とする走査電極に印加する電圧(以下、Vscn点灯電圧と呼称する)の電圧値を用いた。すなわち、Vscn点灯電圧の低い方が電荷保持能力の高いことを示す。このことは、PDPを設計する上で、電源や各電気部品として、耐圧及び容量の小さい部品を使用することが可能となる。現状の製品において、走査電圧を順次パネルに印加するためのMOSFETなどの半導体スイッチング素子には、耐圧150V程度の素子が使用されており、Vscn点灯電圧としては、温度による変動を考慮して120V以下に抑えるのが望ましい。
図7は本発明の実施の形態におけるPDPの電子放出性能と電荷保持性能について調べた結果を示す図である。図7から明らかなように、本発明の実施の形態における下地膜91に酸化マグネシウム(MgO)の結晶粒子92aを凝集させた凝集粒子92を散布して全面に亘って均一に分布させた試作品4は、電荷保持性能の評価において、Vscn点灯電圧を120V以下にすることができ、なおかつ電子放出性能が酸化マグネシウム(MgO)のみの保護層の場合の試作品1に比べて格段に良好な特性を得ることができる。
一般的にはPDPの保護層の電子放出能力と電荷保持能力は相反する。例えば、保護層の製膜条件を変更することや、保護層中にAlやSi、Baなどの不純物をドーピングして製膜することにより電子放出性能を向上することは可能であるが、副作用としてVscn点灯電圧も上昇してしまう。
本発明の実施の形態における保護層9を形成した試作品4のPDP1においては、電子放出能力としては、酸化マグネシウム(MgO)のみの保護層9を用いた試作品1の場合に比べて8倍以上の特性を有し、電荷保持能力としてはVscn点灯電圧が120V以下のものを得ることができる。したがって、高精細化により走査線数が増加し、かつセルサイズが小さいPDPに対しては有用で、電子放出能力と電荷保持能力の両方を満足させて、放電遅れを低減して良好な画像表示を実現することができる。
次に、本発明の実施の形態によるPDP1の保護層9に用いた結晶粒子の粒径について詳細に説明する。なお、以下の説明において、粒径とは平均粒径を意味し、平均粒径とは、体積累積平均径(D50)のことを意味している。
図8は、上記図7で説明した本発明の試作品4において、結晶粒子92aの粒径を変化させて電子放出性能を調べた実験結果を示す特性図である。なお、図8において、結晶粒子92aの粒径は、結晶粒子92aをSEM観察することで測長した。図8に示すように、粒径が0.3μm程度に小さくなると、電子放出性能が低くなり、ほぼ0.9μm以上であれば、高い電子放出性能が得られることがわかる。
ところで、放電セル内での電子放出数を増加させるためには、下地膜91上の単位面積あたりの結晶粒子92aの数は多い方が望ましいが、本発明者の実験によれば、前面板2の保護層9と密接に接触する背面板10の隔壁14の頂部に相当する部分に結晶粒子92aが存在することで、隔壁14の頂部を破損させ、その材料が蛍光体層15の上に乗るなどし、それによって、該当するセルが正常に点灯消灯しなくなる現象が発生することがわかった。この隔壁破損の現象は、結晶粒子92aが隔壁14頂部に対応する部分に存在しなければ発生しにくいことから、付着させる結晶粒子92aの数が多くなれば隔壁14の破損発生確率が高くなる。このような観点からは、結晶粒子径が2.5μm程度に大きくなると、隔壁破損の確率が急激に高くなり、2.5μmより小さい結晶粒子径であれば、隔壁破損の確率は比較的小さく抑えることができる。
以上の結果より、本発明の実施の形態におけるPDP1においては、凝集粒子92として、粒径が0.9μm〜2μmの範囲にある凝集粒子92を使用すれば、上述した本発明の効果を安定的に得られることがわかった。
以上のように本発明によるPDPによれば、電子放出性能が高く、電荷保持能力としてはVscn点灯電圧が120V以下のものを得ることができる。
図9は、試作品1の従来のPDPと試作品4のPDPにおいて、表示電極6の線幅を80μmにした領域の寿命試験の実施時間と放電遅れの関係を示している。寿命試験は、走査電極4と維持電極5に相反する60kHzの矩形波の電圧を任意の時間印加し、パネルを白色に表示し続けることで実施した。
図9から、放電遅れの増加は、試作品1のPDPよりも試作品4のPDPの方が大きいことが分かる。試作品4のPDPにおいて寿命試験後に放電遅れの増加が大きい理由としては、凝集粒子92と下地膜91の材料組成が一致していないため、放電に晒されることで凝集粒子92が消失するためと考えられる。よって、放電の遅れが大きくなる現象は、試作品4のPDPに限らず、本発明の実施の形態の保護膜9において全て発現することは言うまでも無い。
図10は、試作品1のPDPと試作品4のPDPにおいて、表示電極6の線幅を120μmにした領域の寿命試験の実施時間と放電遅れの関係を示している。
図10から、表示電極6の線幅を120μmにすることで、試作品4のPDPの放電遅れが試作品1のPDPと同等になっていることが分かる。表示電極6の線幅を広くすることで放電遅れが試作品1のPDPと同等になった理由としては、幅を広くすることで電極直下の凝集粒子92が完全に消失されにくくなったためと考えられる。
表2は、試作品1のPDPと試作品4のPDPにおいて、寿命試験の前と1000時間の寿命試験を実施した後の画像のちらつきを目視評価した結果である。放電遅れが大きすぎる場合、書き込み放電が起こらないため画像のちらつきが発生し、PDPの画像品質が悪化する。表2から、表示電極6の線幅が100μm以上180μm以下においては、寿命試験後においても画像のちらつきが発生しないことが分かる。また、190μmでちらつきが発生する理由としては、表示電極6の幅が広くなるほど電極間の間隔が狭くなるため、隣接する電極間で誤放電が起きるためと考えられる。よって、表示電極6の線幅は100μm以上180μm以下が適していることが分かる。
Figure 2011192437
以上のように、本発明の実施の形態におけるPDP1では、低電圧駆動と電荷保持の両立効果を奏する下地膜91と、放電遅れの防止効果を奏する酸化マグネシウム(MgO)の凝集粒子92とにより構成し、表示電極6の線幅を100μm以上180μm以下にすることによって、高精細なPDPでも高速駆動を低電圧で駆動でき、かつ、寿命試験後でも点灯不良を抑制した高品位な画像表示性能を実現できる。
なお、本発明の実施の形態では、結晶粒子として酸化マグネシウム(MgO)粒子を用いて説明したが、この他の単結晶粒子でも、酸化マグネシウム(MgO)同様に高い電子放出性能を持つSr、Ca、Ba、Alなどの金属酸化物による結晶粒子を用いても同様の効果を得ることができるため、粒子種としては酸化マグネシウム(MgO)に限定されるものではない。
なお、本発明の実施の形態では、42インチのフルハイビジョンのパネルサイズで試作を行っているが、他のパネルサイズでも同様の効果を得ることができる。また、本発明の実施の形態では、MGを80μmにしたが、放電がIPG側に広がることが重要であるため、80μmに限らなくても良い。
さらに、本発明の実施の形態では、放電ガスにキセノンとネオンの混合ガスを用いているが、アルゴンやクリプトンといった希ガスであっても良い。なお、本発明の実施の形態では、Xeが15%でNeが85%の放電ガスを60kPaの圧力で封入したが、放電ガスの組成及び圧力はこれ以外でも良い。
以上のように本発明は、高画質の表示性能を備え、かつ低消費電力のPDPを実現する上で有用な発明である。
1 PDP
2 前面板
3 前面ガラス基板
4 走査電極
4a,5a 透明電極
4b,5b 金属バス電極
5 維持電極
6 表示電極
7 ブラックストライプ(遮光層)
8 誘電体層
9 保護層
10 背面板
11 背面ガラス基板
12 アドレス電極
13 下地誘電体層
14 隔壁
15 蛍光体層
16 放電空間
81 第1誘電体層
82 第2誘電体層
91 下地膜
92 凝集粒子
92a 結晶粒子

Claims (1)

  1. 基板上に形成した表示電極を覆うように誘電体層を形成するとともに前記誘電体層上に保護層を形成した第1基板と、前記第1基板に放電ガスが充填された放電空間を形成するように対向配置され、かつ前記表示電極と交差する方向にアドレス電極を形成するとともに前記放電空間を区画する隔壁を設けた第2基板とを有するプラズマディスプレイパネルであって、前記第1基板の前記保護層は、前記誘電体層上に下地膜を形成するとともに、前記下地膜上に酸化マグネシウムの結晶粒子が複数個凝集した凝集粒子を付着させて形成し、かつ前記下地膜を、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、及び酸化バリウムから選ばれる少なくとも2つ以上の酸化物からなる金属酸化物により形成し、前記金属酸化物は前記下地膜面のX線回折分析において、特定方位面の前記金属酸化物を構成する前記酸化物の単体より発生する最小回折角と最大回折角との間にピークが存在するものであり、さらに前記表示電極の幅を100μm以上180μm以下としたことを特徴とするプラズマディスプレイパネル。
JP2010055727A 2010-03-12 2010-03-12 プラズマディスプレイパネル Pending JP2011192437A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010055727A JP2011192437A (ja) 2010-03-12 2010-03-12 プラズマディスプレイパネル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010055727A JP2011192437A (ja) 2010-03-12 2010-03-12 プラズマディスプレイパネル

Publications (1)

Publication Number Publication Date
JP2011192437A true JP2011192437A (ja) 2011-09-29

Family

ID=44797146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010055727A Pending JP2011192437A (ja) 2010-03-12 2010-03-12 プラズマディスプレイパネル

Country Status (1)

Country Link
JP (1) JP2011192437A (ja)

Similar Documents

Publication Publication Date Title
WO2010035488A1 (ja) プラズマディスプレイパネル
WO2010035493A1 (ja) プラズマディスプレイパネル
WO2010070861A1 (ja) プラズマディスプレイパネル
WO2010035487A1 (ja) プラズマディスプレイパネル
JP2010186665A (ja) プラズマディスプレイパネル
JP5126451B2 (ja) プラズマディスプレイパネル
JP2010192356A (ja) プラズマディスプレイパネルの製造方法
JP2011181317A (ja) プラズマディスプレイ装置
WO2011114662A1 (ja) プラズマディスプレイパネル
JP2011192437A (ja) プラズマディスプレイパネル
JP2011192509A (ja) プラズマディスプレイパネル
JP2010192355A (ja) プラズマディスプレイパネルの製造方法
JP2011192508A (ja) プラズマディスプレイパネル
JP2011192510A (ja) プラズマディスプレイパネル
JP2011192570A (ja) プラズマディスプレイパネル
JP2011181320A (ja) プラズマディスプレイパネル
JP2011192511A (ja) プラズマディスプレイパネル
JP2011192573A (ja) プラズマディスプレイパネル
JP2011192571A (ja) プラズマディスプレイパネル
JP2011181318A (ja) プラズマディスプレイパネル
JP2011180333A (ja) プラズマディスプレイ装置
WO2011102145A1 (ja) プラズマディスプレイパネルの製造方法
JP2011198480A (ja) プラズマディスプレイパネル
JP2011204536A (ja) プラズマディスプレイパネルの製造方法
JP2011192569A (ja) プラズマディスプレイパネル