JP2011191152A - Control device - Google Patents

Control device Download PDF

Info

Publication number
JP2011191152A
JP2011191152A JP2010056900A JP2010056900A JP2011191152A JP 2011191152 A JP2011191152 A JP 2011191152A JP 2010056900 A JP2010056900 A JP 2010056900A JP 2010056900 A JP2010056900 A JP 2010056900A JP 2011191152 A JP2011191152 A JP 2011191152A
Authority
JP
Japan
Prior art keywords
control device
temperature
load
cpu
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010056900A
Other languages
Japanese (ja)
Inventor
Yasuhiko Nagata
恭彦 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2010056900A priority Critical patent/JP2011191152A/en
Publication of JP2011191152A publication Critical patent/JP2011191152A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein, in conventional technologies, since the temperatures are monitored for the purpose of protection of only specific elements which are important as functions, and the temperature of a load-driving element which is a heat-generating portion is not monitored, a sensor for monitoring the temperature of the load-driving element is required to be installed, but the cost and a component-mounting area are increased. <P>SOLUTION: A control device includes a current-monitoring circuit for monitoring a load current; a CPU for calculating information from the current-monitoring circuit on the basis of a prescribed condition, and performing prescribed processings; and the load-driving element connected to the CPU, for driving an induction load on the basis of the information related to the prescribed processing performed by the CPU. Furthermore, the control device includes a voltage-monitoring circuit for monitoring the drop in the forward-direction voltage of a reflux diode. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、自動車用制御装置のフェイルセーフに関する。   The present invention relates to a fail safe for an automotive control device.

従来、自動車用制御装置において、機能上重要な素子の近くに配置された温度センサの情報に基づいて、CPUが制御装置の温度をモニタし、そのモニタした温度が所定の温度を超える状態が発生した時にフェイルセーフ動作に移行するのが一般的である。ここで、相互に異なる温度特性を有する2つのバイアス電圧Vin,Vbiasを用い、反転増幅器がそれらの差に対応した電圧を出力することで、2つのバイアス電圧源の相対精度で温度検出する技術がある(特許文献1参照)。   Conventionally, in a control device for an automobile, a CPU monitors the temperature of the control device based on information from a temperature sensor arranged near a functionally important element, and the monitored temperature exceeds a predetermined temperature. It is common to move to fail-safe operation when Here, there is a technique for detecting temperature with relative accuracy of two bias voltage sources by using two bias voltages Vin and Vbias having mutually different temperature characteristics and an inverting amplifier outputting a voltage corresponding to the difference between them. Yes (see Patent Document 1).

特開2001−336987号公報JP 2001-336987 A

特許文献1によれば、機能上重要な特定素子のみの保護を目的に温度をモニタしており、発熱部位である負荷駆動素子は温度をモニタしていない、という課題がある。そこで、負荷駆動素子の温度をモニタするセンサを設置することが考えられるが、そうすると、コスト及び部品実装面積が増大するという課題がある。   According to Patent Document 1, there is a problem that the temperature is monitored for the purpose of protecting only a specific element that is important in terms of function, and the load driving element that is a heat generating part does not monitor the temperature. Therefore, it is conceivable to install a sensor for monitoring the temperature of the load driving element, but there is a problem that the cost and the component mounting area increase.

そこで、本発明の目的は、コストの増大を抑えつつ、負荷駆動素子の温度をモニタできる制御装置を提供することにある。   Therefore, an object of the present invention is to provide a control device that can monitor the temperature of a load driving element while suppressing an increase in cost.

上記課題を解決するため、本発明の望ましい態様の一つは次の通りである。   In order to solve the above problems, one of the desirable embodiments of the present invention is as follows.

当該制御装置は、負荷電流をモニタする電流モニタ回路と、電流モニタ回路からの情報を所定の条件に基づいて計算し、所定の処理を行うCPUと、CPUに接続され当該CPUが行った所定の処理に関する情報に基づいて、誘導負荷を駆動する負荷駆動素子と、を備え、更に、還流ダイオードの順方向電圧降下をモニタする電圧モニタ回路を備える。   The control device calculates a load monitor of a load current, calculates information from the current monitor circuit based on a predetermined condition, performs a predetermined process, and performs a predetermined process performed by the CPU connected to the CPU. A load driving element that drives the inductive load based on information related to the processing, and a voltage monitor circuit that monitors a forward voltage drop of the free wheeling diode.

本発明によれば、コストの増大を抑えつつ、負荷駆動素子の温度をモニタできる制御装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the control apparatus which can monitor the temperature of a load drive element can be provided, suppressing the increase in cost.

実施例1の制御装置を示す図。FIG. 3 is a diagram illustrating a control device according to the first embodiment. 従来技術の制御装置を示す図。The figure which shows the control apparatus of a prior art. 実施例2の制御装置を示す図。FIG. 5 is a diagram illustrating a control device according to a second embodiment. 実施例3の制御装置を示す図。FIG. 6 is a diagram illustrating a control device according to a third embodiment. 実施例4の制御装置を示す図。FIG. 6 is a diagram illustrating a control device according to a fourth embodiment. 実施例5の制御装置を示す図。FIG. 10 is a diagram illustrating a control device according to a fifth embodiment. 実施例6の制御装置を示す図。FIG. 10 is a diagram illustrating a control device according to a sixth embodiment.

以下、図面を用いて、実施例について説明する。   Embodiments will be described below with reference to the drawings.

図1は、実施例1の制御装置の構成図である。   FIG. 1 is a configuration diagram of a control device according to the first embodiment.

制御装置11は、制御装置11に電源を供給する電源31,還流ダイオード54のVfモニタ回路41,負荷電流を検出する電流検出抵抗53及び電流モニタ回路42,前記モニタ回路からの情報を取り込み所定の条件に基づいて演算処理を行うCPU21,CPU21に接続されCPU21において演算処理された情報に基づいて負荷を駆動する負荷駆動素子51、及び、負荷駆動素子51により駆動される誘導負荷52とから構成される。   The control device 11 takes in information from the power supply 31 that supplies power to the control device 11, the Vf monitor circuit 41 of the freewheeling diode 54, the current detection resistor 53 that detects the load current, the current monitor circuit 42, and the monitor circuit. A CPU 21 that performs arithmetic processing based on conditions, a load driving element 51 that is connected to the CPU 21 and drives a load based on information that is arithmetically processed by the CPU 21, and an inductive load 52 that is driven by the load driving element 51. The

ここで、例えばオートマチックトランスミッション内に搭載されるATコントロールユニット(以下、ATCUと略す)の場合、車両がスタックするなど走行風による冷却が行われない状況下での温度が上昇したオートマチックフルードからのもらい熱、又はATCUの負荷駆動条件が変化し負荷電流が増加する、もしくは駆動負荷及び駆動素子の異常による発熱といった要因等により、制御装置の動作保証温度を超えた場合における従来のフェイルセーフ動作への移行方法について図2を用いて説明する。   Here, for example, in the case of an AT control unit (hereinafter abbreviated as “ATCU”) installed in an automatic transmission, it is received from an automatic fluid whose temperature has risen in a situation in which the vehicle is stuck or not cooled by running wind. Change to the conventional fail-safe operation when the temperature exceeds the guaranteed operating temperature of the control device due to factors such as heat, ATCU load drive conditions change and load current increases, or heat generation due to abnormalities of drive load and drive element The transition method will be described with reference to FIG.

図2は従来技術の制御装置を示す図である。   FIG. 2 is a diagram showing a conventional control device.

制御装置11は、制御装置11に電源を供給する電源31,還流ダイオード54,負荷電流を検出する電流検出抵抗53及び電流モニタ回路42,制御装置11の内部の温度を検出する温度センサ61,モニタ回路及び温度センサからの情報を取り込み所定の条件に基づいて演算処理を行うCPU21、及び、CPU21に接続されCPU21において演算処理された情報に基づいて負荷52を駆動する負荷駆動素子51とから構成される。   The control device 11 includes a power supply 31 that supplies power to the control device 11, a freewheeling diode 54, a current detection resistor 53 that detects a load current and a current monitor circuit 42, a temperature sensor 61 that detects the internal temperature of the control device 11, and a monitor. A CPU 21 that takes in information from the circuit and the temperature sensor and performs arithmetic processing based on a predetermined condition, and a load driving element 51 that is connected to the CPU 21 and drives the load 52 based on the information processed by the CPU 21. The

まず、制御装置11が正常動作している時、CPU21は温度センサ61を用いて制御装置内部温度が制御装置の動作保証温度の上限値を超えていないかモニタし、動作保証温度の上限値を超えていない場合、CPU21は演算処理された制御の目標値に従い負荷を駆動する。次に制御装置の負荷駆動条件が変化し、負荷電流が増加する、もしくは制御装置の外部温度が、例えばATCUの場合、車両がスタックするなど走行風による冷却が行われない状況下での温度が上昇したオートマチックフルードからのもらい熱等で上昇した場合、制御装置内部温度が上昇し始める。このまま、制御装置内部温度が上昇し続けると、制御装置の動作保証温度の上限値に達する。この後、CPU21は制御装置内部基板温度が制御装置の動作保証温度の上限値を超えた場合、フェイルセーフ動作に移行する。   First, when the control device 11 is operating normally, the CPU 21 uses the temperature sensor 61 to monitor whether the internal temperature of the control device exceeds the upper limit value of the operation guarantee temperature of the control device, and sets the upper limit value of the operation guarantee temperature. If not exceeded, the CPU 21 drives the load in accordance with the control target value that has been subjected to arithmetic processing. Next, when the load driving condition of the control device changes and the load current increases, or the external temperature of the control device is, for example, ATCU, the temperature in a situation where cooling by running wind is not performed, for example, the vehicle is stuck When the temperature rises due to heat from the raised automatic fluid, the internal temperature of the control device starts to rise. If the control device internal temperature continues to rise, the upper limit value of the operation guarantee temperature of the control device is reached. Thereafter, the CPU 21 shifts to a fail-safe operation when the internal substrate temperature of the control device exceeds the upper limit value of the operation guarantee temperature of the control device.

しかしながら、この時、温度センサ61は機能上重要な特定素子のみ温度をモニタしており、発熱部位である負荷駆動素子51の温度をモニタしていないため、負荷駆動条件によっては、温度をモニタしている機能上重要な特定素子が動作保証温度範囲内であっても、負荷駆動素子51の温度が動作保証温度範囲を超える可能性があった。   However, at this time, the temperature sensor 61 monitors the temperature of only a specific element that is important in terms of function, and does not monitor the temperature of the load driving element 51 that is a heat generation part. Therefore, depending on the load driving conditions, the temperature sensor 61 monitors the temperature. Even if the specific element important in function is within the guaranteed operating temperature range, the temperature of the load driving element 51 may exceed the guaranteed operating temperature range.

次に、本実施例のフェイルセーフ動作に移行する方法について説明する。   Next, a method for shifting to the fail-safe operation of this embodiment will be described.

まず、制御装置11が正常動作している時、CPU21は電流検出抵抗53及び電流モニタ回路42を用いて負荷電流をモニタし、還流ダイオード54の順方向電圧降下VfをVfモニタ回路41にてモニタする。   First, when the control device 11 is operating normally, the CPU 21 monitors the load current using the current detection resistor 53 and the current monitor circuit 42, and monitors the forward voltage drop Vf of the freewheeling diode 54 using the Vf monitor circuit 41. To do.

次に、CPU21は、モニタした負荷電流より負荷駆動OFF時の還流ダイオード54に流れる電流を算出し、還流ダイオード54のVfと電流の相関関係より、還流ダイオード54の素子温度を算出する。   Next, the CPU 21 calculates the current flowing through the freewheeling diode 54 when the load driving is OFF from the monitored load current, and calculates the element temperature of the freewheeling diode 54 from the correlation between Vf of the freewheeling diode 54 and the current.

CPU21は、還流ダイオード54の素子温度が制御装置の動作保証温度の上限値を超えていないかモニタし、動作保証温度の上限値を超えていない場合、CPU21は演算処理された制御の目標値に従い負荷を駆動する。   The CPU 21 monitors whether or not the element temperature of the freewheeling diode 54 exceeds the upper limit value of the operation guarantee temperature of the control device. If the upper limit value of the operation guarantee temperature is not exceeded, the CPU 21 follows the target value of the calculated control. Drive the load.

次に制御装置の負荷駆動条件が変化し、負荷電流が増加する、もしくは制御装置の外部温度が、例えばATCUの場合、車両がスタックするなど走行風による冷却が行われない状況下での温度が上昇したオートマチックフルードからのもらい熱等で上昇した場合、制御装置内部温度が上昇し始める。このまま、制御装置内部温度が上昇し続けると、制御装置の動作保証温度の上限値に達する。この後、CPU21は制御装置内部基板温度が制御装置の動作保証温度の上限値を超えた場合、フェイルセーフ動作に移行する。   Next, when the load driving condition of the control device changes and the load current increases, or the external temperature of the control device is, for example, ATCU, the temperature in a situation where cooling by running wind is not performed, for example, the vehicle is stuck When the temperature rises due to heat from the raised automatic fluid, the internal temperature of the control device starts to rise. If the control device internal temperature continues to rise, the upper limit value of the operation guarantee temperature of the control device is reached. Thereafter, the CPU 21 shifts to a fail-safe operation when the internal substrate temperature of the control device exceeds the upper limit value of the operation guarantee temperature of the control device.

本実施例において、負荷駆動OFFが継続する条件では還流ダイオード54に還流電流が流れないため、還流ダイオードのVfをモニタすることによる温度検出ができないが、負荷駆動OFFが継続する条件であっても温度検出だけを目的に、負荷が反応しない駆動Dutyにて微少な負荷電流を流すことにより、温度検出が可能であることはいうまでもない。又、ATCUは製造時に高温及び低温環境下にて特性試験を実施し、電流検出抵抗53及び電流モニタ回路42のばらつきを補正するための校正データを取得すると共に記憶媒体へ保存し、制御へ校正データを用いるのが一般的である。同様に還流ダイオード54の順方向電圧降下Vf及びVfモニタ回路41のばらつきを補正するために、校正データを制御に用いることで還流ダイオード54の素子温度の算出精度を向上させることが可能である。   In this embodiment, since the return current does not flow through the return diode 54 under the condition that the load drive OFF continues, the temperature cannot be detected by monitoring the Vf of the return diode, but even under the condition that the load drive OFF continues. Needless to say, for the purpose of temperature detection alone, temperature detection is possible by passing a minute load current in a drive duty in which the load does not react. In addition, ATCU performs a characteristic test under high temperature and low temperature environment at the time of manufacture, acquires calibration data for correcting variations of the current detection resistor 53 and the current monitor circuit 42, stores it in a storage medium, and calibrates to control. It is common to use data. Similarly, in order to correct the forward voltage drop Vf of the freewheeling diode 54 and the variation of the Vf monitor circuit 41, it is possible to improve the calculation accuracy of the element temperature of the freewheeling diode 54 by using calibration data for control.

本実施例によれば、制御装置自体に専用の温度センサを実装しなくても、制御装置の負荷駆動回路であるリニアソレノイド駆動回路部の還流ダイオードを用いることで制御装置自体の内部温度を算出することができ、例えばATCUの場合、車両がスタックするなど走行風による冷却が行われない状況下での温度が上昇したオートマチックフルードからのもらい熱、又はATCUの負荷駆動条件が変化し負荷電流が増加する、もしくは駆動負荷及び駆動素子の異常による発熱といった要因等により、制御装置が動作保証温度を超える場合にフェイルセーフ動作へ移行することができる。   According to the present embodiment, the internal temperature of the control device itself can be calculated by using the free wheel diode of the linear solenoid drive circuit unit that is the load drive circuit of the control device without mounting a dedicated temperature sensor on the control device itself. For example, in the case of ATCU, the heat received from the automatic fluid whose temperature has increased under conditions where the vehicle is stuck or not cooled by traveling wind, or the load driving condition of the ATCU changes and the load current is When the control device exceeds the operation guarantee temperature due to an increase or a factor such as heat generation due to an abnormality of the drive load and the drive element, it is possible to shift to the fail safe operation.

又、制御装置内の温度検出箇所が複数個ある場合でも、リニアソレノイド駆動回路が制御装置に複数個あれば、温度センサを個別に準備しなくても制御装置自体の内部温度を個別に算出することができ、制御装置が動作保証温度を超える場合にフェイルセーフ動作へ移行することができる。これにより、複数の温度検出箇所に対して個別に温度センサを準備する必要がないため、コスト,部品実装面積を低減することが可能である。   Even if there are a plurality of temperature detection points in the control device, if there are a plurality of linear solenoid drive circuits in the control device, the internal temperature of the control device itself can be calculated individually without preparing temperature sensors individually. When the control device exceeds the guaranteed operating temperature, the operation can be shifted to the fail-safe operation. As a result, it is not necessary to prepare temperature sensors individually for a plurality of temperature detection locations, so that the cost and component mounting area can be reduced.

図3は、実施例2の制御装置を示す図である。   FIG. 3 is a diagram illustrating a control device according to the second embodiment.

本実施例において、71は警告をユーザへ知らせる警告灯であり、72は他制御装置との通信を行うためのインターフェース回路、73は他制御装置を示す。   In the present embodiment, reference numeral 71 denotes a warning lamp for notifying the user of a warning, 72 denotes an interface circuit for communicating with another control device, and 73 denotes another control device.

本実施例は、実施例1に対し、制御装置の内部温度が制御装置の動作保証温度の上限値を超える場合、ユーザ又は、通信回路を用いて他の制御装置へ警告を実施する手段を有していることを特徴とする。   The present embodiment is different from the first embodiment in that there is a means for issuing a warning to a user or another control device using a communication circuit when the internal temperature of the control device exceeds the upper limit value of the operation guarantee temperature of the control device. It is characterized by that.

制御装置内部温度が制御装置11の動作保証温度の上限値を超える場合、例えば警告灯を点灯もしくは点滅させることで、ユーザに制御装置11がフェイルセーフ動作に移行することを知らせる。警告灯は制御装置11が直接駆動してもよいが、他制御装置との通信を行うためのインターフェース回路72を経由して他制御装置73が駆動してもよい。この場合、他の制御装置は当該制御装置がフェイルセーフ動作へ移行したことを認識することが可能である。ユーザ及び他の制御装置は警告に基づき、適切な処置、例えば制御装置11の電源遮断などを実施しうる。警告の手段としては警告灯の他にアラーム等の警告音もしくは、警告灯,警告音を併用しうることはいうまでもない。   When the internal temperature of the control device exceeds the upper limit value of the operation guarantee temperature of the control device 11, for example, a warning lamp is turned on or blinked to notify the user that the control device 11 shifts to the fail-safe operation. The warning light may be directly driven by the control device 11, but the other control device 73 may be driven via an interface circuit 72 for communicating with the other control device. In this case, the other control device can recognize that the control device has shifted to the fail-safe operation. Based on the warning, the user and other control devices can take appropriate measures, for example, power off the control device 11. As a warning means, it goes without saying that a warning sound such as an alarm or a warning light and a warning sound can be used in combination with the warning light.

図4は、実施例3の制御装置を示す図である。   FIG. 4 is a diagram illustrating a control device according to the third embodiment.

本実施例において、81はフェイルセーフモードへ移行した情報を記憶する記憶媒体であり、82は他制御装置との通信を行うためのインターフェース回路72を利用して記憶媒体に記憶されたフェイル情報を確認することが可能なモニタ装置を示す。   In this embodiment, 81 is a storage medium for storing information that has been shifted to the fail-safe mode, and 82 is used to check fail information stored in the storage medium using an interface circuit 72 for communication with other control devices. The monitor apparatus which can do is shown.

フェイル情報は通信用インターフェースを用いて制御装置の外部にある別な記憶媒体に記憶させても問題なく、又、情報を記憶する記憶媒体81及び、通信を行うためのインターフェース回路72を用いることにより、製品の機能試験時の温度補正データを記憶媒体81に記憶させ、製品の制御に適用しても問題ないことはいうまでもない。   Fail information can be stored in another storage medium outside the control device using a communication interface, and by using a storage medium 81 for storing information and an interface circuit 72 for communication. Needless to say, there is no problem even if the temperature correction data at the time of the product function test is stored in the storage medium 81 and applied to the control of the product.

本実施例は、実施例1に対し、制御装置の内部温度が制御装置の動作保証温度の上限値を超える場合、CPU内蔵又は制御装置11内部に準備された記憶媒体を用いてフェイル情報を記憶する手段を有し、後からフェイル情報を確認することが可能な構成を特徴とする。   In this embodiment, when the internal temperature of the control device exceeds the upper limit value of the operation guarantee temperature of the control device, the failure information is stored using the storage medium built in the CPU or prepared in the control device 11 as compared with the first embodiment. It is characterized by having a means for checking the fail information later.

図5は、実施例4の制御装置を示す図である。   FIG. 5 is a diagram illustrating a control device according to the fourth embodiment.

実施例1では制御装置11の負荷駆動回路が1回路場合について説明したが、本実施例では、複数の負荷駆動回路を用いている。   In the first embodiment, the case where the load driving circuit of the control device 11 is one circuit has been described. However, in this embodiment, a plurality of load driving circuits are used.

まず、制御装置11が正常動作している時、CPU21は電流検出抵抗53a及び53b,電流モニタ回路42a及び42bを用いてそれぞれの負荷電流をモニタし、それぞれの還流ダイオード54a及び54bの順方向電圧降下VfをVfモニタ回路41a及び42bにてモニタする。   First, when the control device 11 is operating normally, the CPU 21 monitors the respective load currents using the current detection resistors 53a and 53b and the current monitor circuits 42a and 42b, and the forward voltage of the respective free-wheeling diodes 54a and 54b. The drop Vf is monitored by the Vf monitor circuits 41a and 42b.

次に制御装置11は、モニタした負荷電流より負荷駆動OFF時の還流ダイオード54a及び54bに流れる電流を算出し、還流ダイオードのVfと還流ダイオード54a及び54bに流れる電流の相関関係より、還流ダイオード54a及び54bについてそれぞれの素子温度を算出する。   Next, the control device 11 calculates the current flowing through the freewheeling diodes 54a and 54b when the load driving is OFF from the monitored load current, and based on the correlation between the freewheeling diode Vf and the current flowing through the freewheeling diodes 54a and 54b, the freewheeling diode 54a. And 54b, the respective element temperatures are calculated.

CPU21は、それぞれの還流ダイオード54a及び54bの素子温度が制御装置の動作保証温度の上限値を超えていないかモニタし、動作保証温度の上限値を超えていない場合、CPU21は演算処理された制御の目標値に従いそれぞれの負荷を駆動する。次に制御装置の負荷駆動条件が変化し、誘導負荷52aまたは52bに流れる負荷電流が増加する、もしくは制御装置の外部温度が、例えばATCUの場合、車両がスタックするなど走行風による冷却が行われない状況下での温度が上昇したオートマチックフルードからのもらい熱等で上昇した場合、制御装置内部温度が上昇し始める。このまま、制御装置内部温度が上昇し続けると、制御装置の動作保証温度の上限値に達する。   The CPU 21 monitors whether the element temperature of each of the free-wheeling diodes 54a and 54b exceeds the upper limit value of the operation guarantee temperature of the control device. If the upper limit value of the operation guarantee temperature is not exceeded, the CPU 21 performs the control for the arithmetic processing. Each load is driven according to the target value. Next, when the load driving condition of the control device changes, the load current flowing through the inductive load 52a or 52b increases, or when the external temperature of the control device is, for example, ATCU, cooling by running wind is performed, for example, the vehicle is stacked. When the temperature rises due to heat received from the automatic fluid that has risen under no circumstances, the internal temperature of the control device begins to rise. If the control device internal temperature continues to rise, the upper limit value of the operation guarantee temperature of the control device is reached.

この後、CPU21は制御装置内部基板温度が制御装置の動作保証温度の上限値を超えた場合、フェイルセーフ動作に移行する。制御装置内部基板温度を算出する場合において、複数の還流ダイオードの素子温度情報から多数決判定を用いることにより、フェイルセーフ動作の信頼性を向上させることが可能である。ここでの信頼性の向上とは、還流ダイオード54の素子異常、又はVfモニタ回路41の故障が発生時、CPU21が単数の素子温度をモニタしている場合は制御装置の温度の算出ができなくなるが、複数の素子温度をモニタしている場合は多数決判定を用いることで、還流ダイオード54の素子異常、又はVfモニタ回路41の故障を検出することが可能であり、確度の高い制御装置の温度を算出することである。   Thereafter, the CPU 21 shifts to a fail-safe operation when the internal substrate temperature of the control device exceeds the upper limit value of the operation guarantee temperature of the control device. In calculating the internal substrate temperature of the control device, it is possible to improve the reliability of the fail-safe operation by using the majority decision from the element temperature information of the plurality of free-wheeling diodes. Here, the improvement of the reliability means that when the device abnormality of the freewheeling diode 54 or the failure of the Vf monitor circuit 41 occurs, the temperature of the control device cannot be calculated when the CPU 21 monitors a single device temperature. However, when a plurality of element temperatures are monitored, it is possible to detect an element abnormality of the freewheeling diode 54 or a failure of the Vf monitor circuit 41 by using the majority decision, and the temperature of the control device with high accuracy can be detected. Is to calculate.

又、本実施例において、負荷駆動OFFが継続する条件では還流ダイオード54a及び54bに還流電流が流れないため、還流ダイオードのVfをモニタすることによる温度検出ができないが、負荷駆動OFFが継続する条件であっても温度検出だけを目的に、負荷が反応しない駆動Dutyにて微少な負荷電流を流すことにより、温度検出が可能であることはいうまでもない。又、ATCUは製造時に高温及び低温環境下にて特性試験を実施し、電流検出抵抗53並びに電流モニタ回路42のばらつきを補正するための校正データを取得すると共に記憶媒体へ保存し、制御へ校正データを用いるのが一般的である。同様に還流ダイオード54の順方向電圧降下Vf及びVfモニタ回路41のばらつきを補正するために、校正データを制御に用いることで還流ダイオード54の素子温度の算出精度を向上させることが可能である。   Further, in this embodiment, since the return current does not flow through the return diodes 54a and 54b under the condition where the load drive OFF continues, the temperature cannot be detected by monitoring the Vf of the return diode, but the condition where the load drive OFF continues. However, it goes without saying that the temperature can be detected only by detecting a load current with a drive duty that does not respond to the load for the purpose of temperature detection only. In addition, ATCU performs a characteristic test under high and low temperature environments at the time of manufacture, acquires calibration data for correcting variations in the current detection resistor 53 and the current monitor circuit 42, saves it in a storage medium, and calibrates to control. It is common to use data. Similarly, in order to correct the forward voltage drop Vf of the freewheeling diode 54 and the variation of the Vf monitor circuit 41, it is possible to improve the calculation accuracy of the element temperature of the freewheeling diode 54 by using calibration data for control.

ここでのフェイルセーフとは、複数の負荷駆動回路において、発熱が懸念される負荷駆動回路への通電電流を低減又は遮断する、もしくは制御装置自体の電源を遮断する、又はフェイルセーフ動作移行時に予め決められた負荷駆動条件に変更するなど、制御装置自体の内部温度が動作保証温度の上限値を超えないようにすることである。   The fail-safe here refers to reducing or shutting off the energization current to the load drive circuit where heat generation is a concern in a plurality of load drive circuits, or shutting off the power supply of the control device itself, or pre- It is to prevent the internal temperature of the control device itself from exceeding the upper limit value of the guaranteed operating temperature, such as changing to a predetermined load driving condition.

図6は、実施例5の制御装置を示す図である。   FIG. 6 is a diagram illustrating a control device according to the fifth embodiment.

本実施例は、実施例4に実施例2を組み合わせた形態である。   The present embodiment is a form in which the second embodiment is combined with the fourth embodiment.

図7は、実施例6の制御装置を示す図である。   FIG. 7 is a diagram illustrating a control device according to the sixth embodiment.

本実施例は、実施例4に実施例3を組み合わせた形態である。   The present embodiment is a form in which the third embodiment is combined with the fourth embodiment.

上記実施例によれば、制御装置自体に専用の温度センサを実装しなくても、制御装置の負荷駆動回路であるリニアソレノイド駆動回路部の還流ダイオードを用いることで制御装置自体の内部温度を算出することができ、例えばオートマチックトランスミッション内に搭載されるATCUの場合、車両がスタックするなど走行風による冷却が行われない状況下での温度が上昇したオートマチックフルードからのもらい熱、又はATCUの負荷駆動条件が変化し負荷電流が増加する、もしくは駆動負荷及び駆動素子の異常による発熱といった要因等により、制御装置が動作保証温度を超える場合にフェイルセーフ動作へ移行することができる。   According to the above embodiment, the internal temperature of the control device itself can be calculated by using the free wheel diode of the linear solenoid drive circuit unit that is the load drive circuit of the control device without mounting a dedicated temperature sensor on the control device itself. For example, in the case of an ATCU mounted in an automatic transmission, heat received from an automatic fluid whose temperature has increased under conditions where cooling by running wind is not performed, such as when a vehicle is stuck, or load driving of an ATCU When the control device exceeds the operation guarantee temperature due to factors such as a change in conditions and an increase in load current, or heat generation due to an abnormality in the drive load and drive element, it is possible to shift to a fail-safe operation.

又、制御装置内の温度検出箇所が複数個ある場合でも、リニアソレノイド駆動回路が制御装置に複数個あれば、温度センサを個別に準備しなくても制御装置自体の内部温度を個別に算出することができ、制御装置が動作保証温度を超える場合にフェイルセーフ動作へ移行することができる。これにより、複数の温度検出箇所に対して個別に温度センサを準備する必要がないため、コスト,部品実装面積を低減することが可能である。   Even if there are a plurality of temperature detection points in the control device, if there are a plurality of linear solenoid drive circuits in the control device, the internal temperature of the control device itself can be calculated individually without preparing temperature sensors individually. When the control device exceeds the guaranteed operating temperature, the operation can be shifted to the fail-safe operation. As a result, it is not necessary to prepare temperature sensors individually for a plurality of temperature detection locations, so that the cost and component mounting area can be reduced.

11 制御装置
21 CPU
31 電源
41a,41b Vfモニタ回路
42a,42b 電流モニタ回路
51a,51b 負荷駆動素子
52a,52b 誘導負荷
61 温度センサ
71 警告灯
72 通信用インターフェース回路
73 他制御装置
81 記憶媒体
82 モニタ装置
11 Control device 21 CPU
31 Power supply 41a, 41b Vf monitor circuit 42a, 42b Current monitor circuit 51a, 51b Load drive element 52a, 52b Inductive load 61 Temperature sensor 71 Warning light 72 Communication interface circuit 73 Other control device 81 Storage medium 82 Monitor device

Claims (10)

負荷電流をモニタする電流モニタ回路と、
前記電流モニタ回路からの情報を所定の条件に基づいて計算し、所定の処理を行うCPUと、
前記CPUに接続され当該CPUが行った所定の処理に関する情報に基づいて、誘導負荷を駆動する負荷駆動素子と、を備え、更に、
還流ダイオードの順方向電圧降下をモニタする電圧モニタ回路を備える、制御装置。
A current monitor circuit for monitoring the load current;
CPU that calculates information from the current monitor circuit based on a predetermined condition, and performs a predetermined process;
A load driving element that is connected to the CPU and drives an inductive load based on information related to a predetermined process performed by the CPU; and
A control device comprising a voltage monitor circuit for monitoring a forward voltage drop of the freewheeling diode.
前記負荷駆動素子を複数備え、
前記負荷駆動素子毎に前記電流モニタ回路、及び、前記電圧モニタ回路を備える、請求項1記載の制御装置。
A plurality of the load driving elements;
The control device according to claim 1, comprising the current monitor circuit and the voltage monitor circuit for each load driving element.
前記CPUは、前記電流モニタ回路がモニタした電流及び前記電圧モニタ回路がモニタした順方向電圧降下に基づいて、前記還流ダイオードの素子温度を算出する、請求項1又は2記載の制御装置。   The control device according to claim 1, wherein the CPU calculates an element temperature of the free wheeling diode based on a current monitored by the current monitor circuit and a forward voltage drop monitored by the voltage monitor circuit. 前記CPUは、負荷駆動OFFの場合、負荷駆動Dutyと負荷電流の関係に基づいて還流電流を推定し、当該推定した還流電流と前記還流ダイオードの順方向電圧降下のモニタ値に基づいて、温度を算出する、請求項3記載の制御装置。   When the load drive is OFF, the CPU estimates the return current based on the relationship between the load drive duty and the load current, and calculates the temperature based on the estimated return current and the monitored value of the forward voltage drop of the return diode. The control device according to claim 3, which calculates. 前記CPUは、負荷駆動条件,負荷電流モニタ結果及び還流ダイオードの順方向電圧降下モニタ値に基づいて前記制御装置の上昇温度を算出し、所定以上の温度に達すると判定した時、前記制御装置をフェイルセーフ動作へ移行させる、請求項1又は2記載の制御装置。   The CPU calculates the rising temperature of the control device based on the load driving condition, the load current monitoring result, and the forward voltage drop monitoring value of the freewheeling diode, and determines that the temperature reaches a predetermined temperature or more. The control device according to claim 1, wherein the control device shifts to a fail-safe operation. フェイルセーフモードへ移行する時、ユーザに警告する警告手段を更に備える、請求項5記載の制御装置。   The control device according to claim 5, further comprising warning means for warning a user when shifting to the fail-safe mode. フェイル情報を記憶する記憶手段を更に備え、
前記CPUは、フェイルセーフモードへ移行する時、前記フェイル情報を参照する、請求項5記載の制御装置。
It further comprises storage means for storing fail information,
The control device according to claim 5, wherein the CPU refers to the fail information when shifting to the fail-safe mode.
温度を算出するための校正データを記憶する手段を更に備える、請求項5記載の制御装置。   The control device according to claim 5, further comprising means for storing calibration data for calculating the temperature. 前記CPUは、フェイルセーフモードへ移行する時、複数の還流ダイオードの順方向電圧降下モニタ値に基づいて前記制御装置の上昇温度を算出し、多数決判定を用いる、請求項1又は2記載の制御装置。   3. The control device according to claim 1, wherein when the CPU shifts to the fail-safe mode, the CPU calculates an increase temperature of the control device based on a forward voltage drop monitor value of a plurality of free-wheeling diodes, and uses majority decision. 前記誘導負荷とは、リニアソレノイドである、請求項1乃至9何れか一に記載の制御装置。   The control device according to claim 1, wherein the inductive load is a linear solenoid.
JP2010056900A 2010-03-15 2010-03-15 Control device Pending JP2011191152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010056900A JP2011191152A (en) 2010-03-15 2010-03-15 Control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010056900A JP2011191152A (en) 2010-03-15 2010-03-15 Control device

Publications (1)

Publication Number Publication Date
JP2011191152A true JP2011191152A (en) 2011-09-29

Family

ID=44796251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010056900A Pending JP2011191152A (en) 2010-03-15 2010-03-15 Control device

Country Status (1)

Country Link
JP (1) JP2011191152A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038075A (en) * 2014-08-11 2016-03-22 ジヤトコ株式会社 Transmission controller and current control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189990A (en) * 2005-01-04 2006-07-20 Hitachi Ltd Operation method for controller, and controller
JP2006228796A (en) * 2005-02-15 2006-08-31 Hitachi Ltd Linear solenoid drive circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006189990A (en) * 2005-01-04 2006-07-20 Hitachi Ltd Operation method for controller, and controller
JP2006228796A (en) * 2005-02-15 2006-08-31 Hitachi Ltd Linear solenoid drive circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016038075A (en) * 2014-08-11 2016-03-22 ジヤトコ株式会社 Transmission controller and current control method thereof

Similar Documents

Publication Publication Date Title
JP4591246B2 (en) Power converter
WO2011052623A1 (en) Inverter device
JP2014187789A (en) Motor drive device having abnormality detection function
US9035689B2 (en) Thermal controller for semiconductor switching power devices
US8660752B2 (en) Electric power steering system
US20170184658A1 (en) Semiconductor device, electronic control unit and vehicle apparatus
JP2011040942A (en) Device and method for controlling load drive
JP4887945B2 (en) Load drive circuit
JP2015106948A (en) Power conversion device equipped with lc filter abnormality detection function
US9698678B2 (en) Circuitry and method for regulating a current for diagnosing an electromechanical load utilizing multiple current measurements
JP2007112188A (en) Electric power steering device
JP6653609B2 (en) Water leakage detection device for inverter cooling device
WO2014129052A1 (en) Temperature estimation device and semiconductor device
JP2011191152A (en) Control device
JP2017183530A (en) Semiconductor device
JP5904375B2 (en) Power supply control device
JP2011133420A (en) Temperature detection method for switching element
JP4872906B2 (en) Fuel pump control device
KR101887030B1 (en) Apparatus for controlling cooling fan of vehicle
JP2008116233A (en) Motor drive device
JP2001244411A (en) Driver ic module
JP2007221908A (en) Motor controlling device
WO2018198739A1 (en) Motor drive device, and electric power steering device
JP2013172540A (en) Electric power conversion system
JP6413825B2 (en) Drive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130917